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INTRODUCTION

Triple-negative breast cancer (TNBC) refers to a subgroup of aggressive breast cancers defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) accounting for 15-20% of all breast tumors (Onitilo et al. 2009). Along with transcriptional heterogeneity, TNBC is characterized by complex genomes, dictated by high genetic instability and complex patterns of copy number alterations and chromosomal rearrangements (R. Gao et al. 2016;Engebraaten, Vollan, and Børresen-Dale 2013). Defects in double-stranded DNA repair mechanisms are indeed characteristic of TNBC, as a result of either germline or somatic mutations in BRCA1/2 and other genes involved in DNA repair (Timms et al. 2014;Stefansson et al. 2011). In this genetically unstable context, there is a chaotic de-structuration of the mammary gland, with recurrent loss of proper cell identity. Part of these cancers harbor basal-like phenotypes, expressing an incomplete set of basal markers but with high intra-tumor heterogeneity (Marra et al. 2020;Bianchini et al. 2016). Interestingly, BRCA1-deficient tumors are suspected to originate from luminal progenitor cells of the gland, implicating a recurrent switch or loss in cell identity during tumorigenesis (Molyneux et al. 2010;Lim et al. 2009). Recent data indicate that Brca1-deficiency in the mammary gland induces aberrant alveolar differentiation of luminal progenitors, suggesting early phenotypic defects in the mammary gland of a Brca1-deficient individual (Bach et al. 2021). However, the tumor-initiating events leading to the emergence of tumor cells per se remain unknown.

Studying early steps of tumorigenesis is not feasible solely based on human tumor samples which are complex stacks of molecular alterations acquired over time. Animal models enable the isolation of a continuum of states from normal to pathologic gland to precisely map the evolution of the physiological mammary gland towards tumorigenesis. In the case of basal-like breast cancers, models with Brca1/Trp53 deficiency in luminal progenitors have been shown to mimic formation of human basal-like breast cancers (Selbert et al. 1998;Molyneux et al. 2010). TP53 mutations remain the most common genetic alteration in basal-like cancers (85%, (Cancer Genome Atlas Network 2012)). In BRCA1-germline carriers, TP53 mutation was actually shown to be among the earliest events in tumor formation (Martins et al. 2012). In this context, a mouse model with conditional deletion of Trp53 and Brca1 in the luminal compartment of the mammary gland appears as an apropos model to catch the rare transforming events leading an HDR-deficient luminal progenitor to tumorigenesis. In contrast to humans, where these events are extremely rare, the deletion in the mouse of these genes in multiple cells of the mammary glands greatly enhances our ability to detect the transitioning states from aberrant luminal progenitor to basal-like breast cancer phenotype.

Here, we first map steps of Brca1-tumorigenesis in vivo, with a focus on epithelial cells to catch rare pre-tumoral epithelial states. We combine single-cell transcriptomics and multiplex imaging in a Blg-Cre Trp53 Fl/Fl and Brca1 Fl/Fl mouse model, where Trp53 and Brca1 are deleted in luminal progenitor cells (Molyneux et al. 2010). We identify cells transitioning from luminal progenitor to tumor phenotype, expressing p16 and with highly remodeled genomes. These cells are partially switching to a mesenchymal phenotype while retaining their epithelial characteristics and activating angiogenesis.

We furthermore discover that these cells have undergone a major epigenomic crisis with a disruption of their heterochromatin through the accumulation of multiple heterochromatin foci. In human tumor cohorts, signature of such pre-tumoral states is found in basal-like tumors of low stage that rarely recur. Finally, studying juxta-tumoral tissue of BRCA1 carriers with single-nuclei transcriptomics, we show the existence of aberrant luminal states, attesting to the enhanced plasticity of the luminal compartment in BRCA1 carriers. We detect a population of luminal cells with abnormal activation of FOXC1 transcription factor, pivotal mesenchymal regulator in physiological development. We propose that partial EMT occurs at the initiation of BRCA1 tumorigenesis, and is not only restricted to its wellknown pivotal role in cell dissemination and metastasis of cells from tumors.

RESULTS

Identification of p16-high luminal cells with mesenchymal traits

Virgin Blg-Cre Trp53 fl/fl Brca1 fl/fl females develop mammary tumors at a median age of 5.2 months. In order to map early state transitions in the mammary gland, we profiled mammary epithelium from animals at various time points (2.7, 3.2 and 5.2 months, n=12), as well as from three tumors (Fig. 1A, n=15 mice in total). To maximize our chances of identifying tumor-initiating cells, among the n=15 mice, we profiled the mammary epithelium of 2 mice at 5.2 months of age, with no apparent tumor, but belonging to a litter of an animal with a tumor. Among these individuals at 5.2 months of age, we observed multiple lesions -less than 0,5 mm -within the mammary epithelium (Fig. 1A, black arrows).

Part of the collected samples were enriched for epithelial fraction to further increase our chances of identifying rare phenotypic states within the Brca1/Trp53 deficient mammary epithelium (see Methods).

With single-cell transcriptomics, we identify n=11,113 epithelial cells (Fig. 1B) from all samples. Using reference lists of physiological markers (Bach et al. 2021(Bach et al. , 2017;;Watson and Khaled 2008), we identify, in 2.7-, 3-, and 5.2-month samples, physiological cell populations of the mammary gland: basal cells (Krt5) and clusters of luminal cells (Krt8) -luminal hormone-sensing (Luminal H-S, Prlr), luminal progenitor (LP, Aldh1a3) and secretory alveolar cells (Avd, Csn2) (Fig. 1C, Fig. S1A). The abnormal presence of secretory alveolar cells in the mammary gland of virgin mice at all timepoints, confirms the abnormal differentiation of luminal progenitors into alveolar cells in Brca1/Trp53 deficient mammary glands, which had recently been observed during Brca1 tumorigenesis (Bach et al. 2021).

With the objective to disentangle the earliest steps of Brca1-tumorigenesis, we next focused on clusters of cells belonging to earliest time points prior to tumor detection and including the smallest tumor (Fig. 1D, n= 3,525 cells). With unsupervised clustering, we identify a cluster of cells in between normal luminal compartments and tumor cells (green cluster, Fig. 1D) characterized by an unequivocal activation of Cdkn2a/p16 compared to both LP and Avd (Fig. S1B-C, Table S1). This partition originates mainly from pre-tumoral glands with lesions (at 5.2 months of age) (Fig. S1D, adj.p value < 5.0 10 -2 , Fisher's test), but few cells also belong to mammary glands of 2.7 and 3 month-old animals.

In terms of identity, these cells show a significant down-regulation of genes characteristic of luminal compartment, compared to LP and Avd cells -e.g Krt8, Krt18, Csn2 (Fig. 1E, Fig. S1B, Table S1). In addition to a partial repression of epithelial cytokeratins, a series of transcriptional changes testify of dampened epithelial characteristics and acquisition of mesenchymal features: (i) upregulation of Vim, Fn1 and Sparc (Fig. 1E, Table S1), indicative of changes in cytoskeleton and extracellular matrix, and (ii) down-regulation of Cdh1 and several Claudin genes (Cldn4, 3 and 1, Table S1), indicative of the dissolution of adherens and tight junctions. Such intermediary epithelial/mesenchymal state recalls partial EMT phenomena (Yang et al. 2021). In addition, cells from the p16-high cluster display a specific downregulation of Lmna (Table S1), indicative of diminished nuclear stiffness, potentially increasing their migration potential (Harada et al. 2014). This cell population also presents a higher cycling rate than normal epithelial cells, similar to that of tumor cells (Fig. S1E).

We next sought to validate the detection of p16-high cycling cells in situ. We performed multiplex immunohistochemistry on paraffin-embedded formalin-fixed (FFPE) sections from mice with lesions or tumors, and control Cre-mammary gland, studying for over 70,090 cells: i) cell identity (Krt8, Krt5), ii) cell cycle status (p16, Ki67), and iii) epithelial to mesenchymal plasticity (EMP) (E-cadherin, Ncadherin, Vim) (Fig. 1F, Fig. S1). In lesions, we could detect patches of p16-high cells and vimentinbased filaments (Fig. 1F, Fig. S1I). In full grown tumors, in addition to p16 and vimentin, we also detected N-Cadherin and N-Cadherin/E-Cadherin-positive cells (Fig. S1F). While we did not observe any p16 positivie cells in the Cre-animals (Fig. 1G), they were found within juxta-tumoral tissues of tumor-bearing animals, as isolated single cells located in the inner part of the duct, within the luminal compartment. Such initial localization, in addition to the co-occurrence of p16 and Krt8 stainings (Fig. 1F, Fig. S1G) confirms their luminal origin (89% of the total p16 positive cells). Within juxta-tumoral tissue and lesions, more than 32% of p16 positive cells are Ki67+, supporting their capacity to escape p16-mediated cell cycle arrest (Fig. S1H-I). The proliferative index of p16 positive cells is significantly higher in juxta-tumoral duct and lesions, compared to p16 positive cells in tumors (15% Ki67+) and control mammary epithelial cells (6% Ki67+), suggesting that p16 positive cells at the onset of Brca1 tumorigenesis are particularly proliferative (Fig. 1F, Fig. S1H).

Partial EMT in luminal cells precedes tumor formation

We then sought to reconstitute the potential timeline of state transitions leading luminal progenitors to tumor formation. With the algorithm PHATE (Moon et al. 2019) -which works without any specified root state -we first show the existence of a progression between the luminal towards the tumor cell state, identifying the p16-high EMT cell state as the intermediary cell state (Fig. S2A). With the PAGA algorithm, we further map and quantify connections between cell states (Wolf et al. 2019) and show that the p16-high EMT state is the most connected to all other cell states found in the dataset (Fig. 2A). In addition, the tumor cell states are only reachable through this central hub. These results position the p16-high EMT state as a prerequisite for luminal progenitors to transform and become tumor cells. We will refer to this state as 'pre-tumoral state' for the rest of the study.

We next further studied which biological pathways characterized the transition from luminal progenitor to the pre-tumoral state. We first used the Slingshot algorithm to infer a pseudotime ordering of the cells, taking the LP cluster as the root (Fig. 2B). Next, we identified the most correlated genes to Slingshot pseudo-time values and performed pathway enrichment and quantification using MsigDB Hallmark as a reference (Liberzon et al. 2015). We show that while transitioning from LP to tumor state, pre-tumoral cells activate angiogenesis and EMT (Fig. 2C), while inhibiting pathways of apoptosis and estrogen response (Fig. S2B). Such transcriptional signatures endorse the pre-tumoral nature of this intermediate state: angiogenesis and inhibition of apoptosis are canonical hallmarks of cancer cells (Hanahan and Weinberg 2016) -meant to enable fast growth of cells.

As loss of BRCA1 impairs homologous repair (HR) mechanisms and leads to a major genomic crisis (Scully and Livingston 2000;Polak et al. 2017) -it appeared critical to understand when such a genomic crisis was occurring, and how it related to the state transitions we were observing. We used our scRNAseq epithelial dataset to quantify Copy Number Variation (CNV) (Fig. S2C, Patel et al. 2014), taking the basal cells as reference, as the Cre is not expressed in these cells (Molyneux et al. 2010). For each cell, we calculated the percentage of their genome displaying CNVs (Fig. 2D). LP cells of tumorfree & lesion-free animals already display a high percentage of CNVs (median 23 %), even at 2.7 months (median 22.4%), compared to basal cells (Fig. 2B). Such observations imply that the LP compartment can tolerate numerous CNVs following Brca1/Trp53 deletion, without any rapid phenotypic consequence. Rates of genome rearrangement in pre-tumoral cells are among the highest of the LP compartment (median 25%), yet their maximum rate does not exceed what is observed in the LP population (Fig. 2D). Our data show that the major outburst of CNVs occurs in the LP compartment prior to any tumor formation, and before the activation of p16 and partial EMT process. Such findings are in agreement with previous genomic studies which proposed that a large fraction of copy number alterations were acquired in short punctuated bursts at early stages of tumor formation (R. Gao et al. 2016). In terms of clonality, if the LP compartment is multi-clonal and tumors rather poly-clonal, half of the pre-tumoral cell population is multi-clonal, (47%, Fig. S2C-D), showing that multiple cells can switch to the pre-tumoral state.

To decipher the molecular mechanisms driving initial state transitions in vivo, we next examined gene regulatory networks using two complementary approaches. With SCENIC (Aibar et al. 2017), we inferred the master regulons -defined as expressed Transcription Factors (TFs) with their putative expressed direct targets-active in our scRNAseq in vivo clusters (Fig. S2E). Out of 12 regulons, Twist1 regulon (set of 27 target genes) was the only regulon positively correlated to pseudotime values (Fig. 2E) and had a significantly higher expression (adj. p-value= 3.0 10 -14 ) in the pre-tumoral cluster as compared to the LP and Avd ones (Fig. S2F). We also performed a TF enrichment test on the markers of the pre-tumoral state (Table1, log2FC > 0.8) using Chea3 (Keenan et al. 2019) which, in contrast to SCENIC, does not rely on the expression of the TF itself, which can be hardly detected with scRNA-seq approaches. In addition to Twist1, previously identified, the top candidate TF predicted to drive the pre-tumoral expression programs (Fig. 2G) are key EMT-associated TF (Twist2, Snail2) as well as Prrx2, a recently discovered EMT inducer in breast cancer (Lv et al. 2017), and several forkhead box (FOX) family of proteins.

Pre-tumoral state displays scars of past senescent-like process

The top marker of the pre-tumoral state is Cdkn2a/p16 (Fig. S1B; Table S1), a marker of cell-cycle arrest and senescence (Collado and Serrano 2010;Koppelstaetter et al. 2008;Di Micco et al. 2021;Campisi and d'Adda di Fagagna 2007). In line with this, the transcriptional profile of the pre-tumoral state is significantly enriched for senescence-related hallmark signatures (REACTOME_Senescence Associated Secretory Phenotype, adj. p-value < 2.0 10 -2 ). In addition, cells from the pre-tumoral cluster express a pro-senescence secreted factor, Igfbp4 (Fig. 3), that can trigger senescence in neighboring cells (Severino et al. 2013). Yet, pre-tumoral cells are cycling (Fig. S1E, Fig. 1H), suggesting they have overcome cell cycle arrest. Combined over-expression in these cells of Cdk4 and Ccnd1 (Table S1; adj. p-value < 2.0 10 -5 ), that together promote G1 to S transition, could for example help cells bypass cellcycle arrest imposed by p16 overexpression (Roupakia, Markopoulos, and Kolettas 2021).

We looked for additional markers of senescence associated to p16 upregulation (Collado and Serrano 2010) within tissues over different time points: presence of B-galactosidase (Bgal) and senescenceassociated heterochromatin foci (SAHF). We could not quantify any Bgal within juxta-tumoral or tumor sections (Fig. S3A), however we identified SAHF-like structure in lesions by immunofluorescence (Fig. 3A). SAHF were initially defined as main cores enriched in H3K9me3 mark, coated by enriched rings in H3K27me3 (Aird and Zhang 2013;Paluvai, Di Giorgio, and Brancolini 2020). As H3K9me3 mark is already organized into foci, corresponding to chromocenters, in non-senescent cells in mice (Probst and Almouzni 2008), we chose H3K27me3 staining to study changes in heterochromatin organization during tumorigenesis.

As expected, in control mammary glands from Cre-mice, H3K27me3 staining revealed one single foci per cell (Fig. 3A-B), corresponding to the inactive X (Xi), whereas the remaining staining is homogeneously diffused in the nucleus (Fig. 3A-B). In lesions and tumors, we observed the accumulation of multiple H3K27me3 foci (Fig. 3A-B), attesting a disruption of heterochromatin in these cells. In addition, H3K27me3-enriched foci tended to accumulate in ring-like structures, surrounding nuclear regions devoid of DNA as attested by negative DAPI staining -possibly corresponding to nucleoli (Cmarko et al. 2008).

We next investigated whether this major nuclear reorganization was associated with changes in genomic distribution of H3K27me3 during tumorigenesis. First, when comparing breadth of peaks across autosomes from tumor and normal cells, we could not identify any significant spreading of the H3K37me3 marks in the autosomal regions in tumor samples (Fig. S3B). At a more local scale, when comparing the genomic distribution of H3K27me3 in tumors versus cells of the physiological gland (Fig. S3E), we show that tumor cells present recurrent epigenomic differences with normal cells (Fig. S3C,PC1). In particular, several cell cycle genes (Cdkn2a, Cdk12, Cdk6) -both inhibitors and inducersdisplay a recurrent loss of repressive H3K27me3 enrichment in tumors (Fig. 3D), suggesting that local epigenomic remodeling could participate in the entry and exit of the cell cycle during tumorigenesis.

Loss of H3K27me3 had already been shown to enable Cdkn2a transcriptional activation at the onset of senescence (Ito et al. 2018). Altogether, our data suggest that our pre-tumoral cells, now cycling, may have previously undergone a G1/S blockade and senescence-like phenomenon (Buj et al. 2021;Herranz and Gil 2018).

Pre-tumoral signature of early luminal transformation is detected in low-stage basal-like human tumors

We next wanted to investigate whether we could find traces of our pre-tumoral state in human breast cancers. To do so, we defined a "mouse-derived pre-tumoral signature", as the top over-expressed genes (log2FC> 0.8 and adj. p-value < 5.0 10 -2 ) in the pre-tumoral mouse cluster compared to both LP and Avd compartments and studied its expression in publicly available large bulk RNAseq cohorts (Berger et al. 2018, Xu et al. 2015). First, studying the Pan Cancer cohort, we show that basal-like tumors have higher pre-tumoral scores than other breast cancer subtypes (Fig. 4A). Among basal-like tumors, BRCA1-deficient tumors displayed slightly higher scores than BRCA1 WT tumors (Fig. 4A). In addition, our mouse-derived pre-tumoral signature was significantly more expressed in early-stage (I) than late-stage tumors (II and III) (Fig. 4B).

We next derived a human pre-tumoral signature from our mouse pre-tumoral signature, selecting the genes most predictive of early stages in Pan Cancer basal-like tumors (n=13 genes out of 38, Fig. 4C).

This refined signature included genes involved in EMT (VIM, FN1 and COL9A3) and senescenceassociated processes (IGFBP4, SPP1). CDKN2A/p16 was not included in the human pre-tumoral signature: its overexpression is specific to basal-like tumors (Fig. S4A) but not predictive of early stages.

CDKN2A is indeed over-expressed in most basal-like tumors (n=128, 75%), irrespective of the stage, suggesting that its activation might be an early event that is kept throughout the life of the tumor. In contrast, genes from the human derived signature might correspond to genes overexpressed more specifically in early stages. We next tested the relevance of the human pre-tumoral signature in an independent dataset (CPTAC (Xu et al. 2015)). We confirmed that the human pre-tumoral signature is specific to low-stage basal-like tumors (Fig. 4D,E). Focusing on survival, we demonstrate that patients who display high expression scores of such pre-tumoral signature exhibit longer progression-free survival (p=2.2 10 -2 , Pan-Cancer), and a tendency to longer overall survival (p=8.3 10 -2 , CPTAC) (Fig. 4F-G). Overall, we demonstrate that the signature of initial luminal transformation -reflecting senescence and partial EMT processes -is detected specifically in early-stage basal-like tumors that more rarely recur.

Detection of abnormal luminal progenitors with pre-tumoral signature in BRCA1 carriers

We next tested whether we could detect signs of pre-tumoral states directly in luminal cells from BRCA1 human carriers. In this context, in contrast to established human tumors and the mouse model presented above, only one copy of BRCA1 is deficient and TP53 is initially functional. We reasoned that the steps of early transformation would be detected in normal-like tissue of these patients, potentially looking (i) prior to tumor formation thanks to mastectomy samples, or (ii) in juxta-tumoral tissues. In the latter case, we suspect that some luminal progenitors could be in a pre-tumoral state at that time, as at least one or a few of them had already transformed into a tumor.

We used a published dataset to investigate mammary epithelial cells of BRCA1 carriers prior to tumor formation (Fig. S5, GSE161529, Pal et al. 2021). We performed the same semi-manual annotation procedure as in the first part of our study and focused solely on the mammary epithelial compartment from normal-like and BRCA1+/pre-neoplastic samples (Fig. S5A). Studying all cells together, we could not detect clusters of epithelial cells specific to BRCA1 carriers. Neither could we detect a pool of cells with higher CNV or pre-tumoral scores compared to normal LPs (Fig. S5B-C). To further search for unexpected cell states, we next studied each compartment with an independent principal component analysis (PCA). We show that LPs are the most affected cell type by BRCA1 deficiency: the informative PCs with the highest explained variance were retrieved from the LP PCA projection (Fig. S5D, Methods).

LPs in BRCA1 carriers display transcriptional defects, as they aberrantly activate genes involved in mammary stem cell signatures and in senescence associated secretory phenotype (SASP), including the chemokine IL6 and metalloproteinase MMP3 (Fig. S5E-F, Table S2). Altogether, we did not detect aberrant luminal states in BRCA1 deficient glands per se, prior to tumor formation, but identified activation of few senescence markers and pathways. In line with previous observations that BRCA1 deficiency could lead to senescence-like states (Sedic et al. 2015). However, we could not detect signs of partial EMT or of our pre-tumoral state.

We next studied cells from juxta-tumoral tissues of BRCA1 carriers, profiling 5 frozen biopsies using single nucleus RNA sequencing (Fig. 5A). All expected cell types and epithelial subtypes from a mammary gland were retrieved in the pooled datasets, averaging a total of 4,038 nuclei from the 5 samples (Fig. 5B-C). Focusing on the epithelial compartment, we depicted the major subtypes using canonical markers; basal cells expressing KRT5 and KRT14, mature luminal cells expressing PRLR and ESR1, luminal progenitors characterized by the expression of ALDH1A3 and KIT (Fig. 5C). We also revealed the abnormal presence of alveolar differentiated cells (Avd, characterized by high ELF5 expression) and a second cluster of LP (named LP_2). The presence of alveolar cells attests an abnormal differentiation process of luminal progenitors in BRCA1 carriers, exactly as observed in vivo in mouse models above and by others (Bach et al. 2021). They were not detected in mastectomy samples, suggesting that aberrant differentiation either occurs only in some BRCA1 carriers and not others, and/or only at the last stages prior to tumor formation.

The second cluster of luminal progenitors, LP_2 cells, originated from all profiled samples (Fig. 5D), and harbored significant higher levels of genomic alterations, as compared to the remaining epithelial cell populations (average fraction of altered genome 8.4%, Fig. 5E). These cells exhibited the highest scores of the human pre-tumoral signature (Fig. 5F), and displayed among their top ten markers (compared to LP and Avd cells, Table S3): FOXC1, a mesenchymal master regulator during physiological development (Ray, Ryusaki, and Ray 2021;Haldipur et al. 2014), INHBA/ActivinA a ligand of the TGF-Beta pathway -a pathway known to trigger EMT (Zavadil and Böttinger 2005) -and CCND1/cyclin D1, just like mouse pre-tumoral cells (Fig. S5H). The TF FOXC1 is suspected to play a role in EMT in several types of cancer cells (Zhu et al. 2017;Bloushtain-Qimron et al. 2008). In addition, LP_2 cells partially lose their luminal identity, with a decreased expression of several luminal markers (KRT7, KRT15, ELF5 & ALDH1A3, Fig. S5G), while others remain unchanged (KRT8 e.g).

Altogether, LP_2 cells show several similarities with mouse pre-tumoral cells: partial loss of luminal ID, expression program potentially orchestrated by TFs involved in EMT, an elevated level of genomic alterations, and cyclin D1 overexpression. We envisage these cells could (i) either be originating from the pool of BRCA1+/luminal progenitors -impacted potentially by the presence of a tumor -or (ii) from the tumor itself; the former hypothesis being supported by the transcriptional similarity of LP_2 with LP_1 cells.

DISCUSSION

Here we detect a continuum of rare state transitions occurring in epithelial cells prior to tumor formation, thanks to a mouse model launching tumorigenesis in multiple luminal progenitor cells.

Luminal progenitor cells can tolerate multiple genomic alterations while not transforming and we actually show that partial epithelial to mesenchymal transition occurs at the initiation of tumor formation in these cells. In humans, despite the absence of such a continuum, we were still able to catch several abnormal luminal states in the mammary glands of BRCA1 carriers, giving us a glimpse of potential human pre-tumoral states. In both species, we detect luminal progenitors partially losing their luminal identity and displaying signs of partial epithelial to mesenchymal transition. In vivo, we show that luminal progenitors, after encountering a senescence-like state, undergo partial EMTdriven by a myriad of potential transcription factors (Twist1/2, Snail2, Fox family members, Prxx1/2)before forming tumors. In humans, we caught luminal progenitors activating the transcription factor FOXC1, a regulator of mesenchymal state during normal development ((Ray, Ryusaki, and Ray 2021)) and suspected to play a role in cancer-associated EMT (Zhu et al. 2017;[START_REF] Yu | Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition[END_REF][START_REF] Li | An Alternative Splicing Switch in FLNB Promotes the Mesenchymal Cell State in Human Breast Cancer[END_REF].

Our data supports a role for EMT at the onset of tumorigenesis, suggesting it might not only be restricted to its well-known pivotal role in tumor cell dissemination and metastasis (Aggarwal et al. 2021). Transient dampening of epithelial characteristics and acquisition of few mesenchymal-like features, could be essential for the rupture of the duct structure and formation of the initial tumor bud.

In both human and mouse BRCA1 deficient contexts, we detect alveolar cells in mammary glands of non-gestating individuals, not only validating previous observations made in mice (Bach et al. 2021), but demonstrating the existence of such an aberrant differentiation process in humans. The unexpected presence of milk secreting cells could be a proxy of the extensive plasticity of the luminal progenitor compartment in such a context; as if in a BRCA1 deficient context, there was a relaxation of the control of cell state in luminal progenitors. The occurrence of partial EMT in luminal progenitors could be another manifestation of the extensive plasticity of this compartment. What triggers exactly the extensive plasticity of the LP population and subsequent state transitions to alveolar or pEMT state remains to be understood. BRCA1 itself has recently been identified as a guardian of the epithelial states (Zhang et al. 2022) -inactivation of BRCA1 by CRISPR leads to increased epithelial-tomesenchymal plasticity in mammary cells. Alternatively, or in combination, state transitions could be driven by key TFs, as the ones detected in mouse and human pre-tumoral cells in our study (TWIST, SNAI or FOX family members). Another trigger of partial EMT could also be senescence -itself induced by extensive genomic rearrangements following Trp53 and Brca1 deletion. It has been proposed in vitro that EMT, driven by Twist1 and 2, could help override Ras-induced senescence in mouse fibroblasts (Ansieau et al. 2008). In a therapy-induced senescence phenotype, it was also shown that senescence promotes reprogramming and cancer stemness (Milanovic et al. 2018), suggesting that non-genetic mechanisms could be tightly associated to the entry and exit of the senescent state in various contexts.

The time resolution of a mouse model was instrumental to partially bridge the gap between individual fixed observations made in humans from pre-tumoral and juxta-tumoral tissues and established basallike tumors. There might be several differences between the timing of events in a mouse model and in humans, that will need to be further investigated with complementary mouse models. Here in vivo, both Brca1 and Trp53 are inactivated simultaneously in luminal progenitors. In humans, it was shown for BRCA1 carriers that TP53 mutation was actually among the earliest events in tumor formation (Martins et al. 2012), yet full BRCA1 and TP53 inactivation remains a stepwise process. Regarding activation of CDKN2A/p16, if ultimately the majority of basal-like breast cancers will express CDKN2A/p16, the timing of CDKN2A activation could differ between mice and humans. CDKN2A activation could depend on the TP53 status of cells; cells undergoing major genomic rearrangement might rather over-express CDKN1A/p21 in a TP53 proficient context for example. In addition, our datasets suggest that pre-tumoral cells escape CDKN2A-associated cell cycle arrest through overexpression of Ccnd1 and Cdk4; in contrast, in humans, overexpression of CDKN2A is frequently associated with a loss of RB1, which we have not observed at the protein nor expression level in pretumoral cells (not shown). RB1 could be lost later during tumorigenesis.

Finally, our work opens up several translational perspectives for the early interception of BRCA1 tumorigenesis and potential patient stratification. Using mouse and human datasets, we were able to define a 'pre-tumoral signature', characteristic of the epithelial changes occurring at the onset of basallike tumorigenesis. In human tumors, we show that this signature is specific to basal-like cancers. In addition, we show that it has prognostic potential: with basal-like tumors, patients with high pretumoral signature score have a significantly longer disease-free survival. Our results suggest that basallike tumors with a high pre-tumoral signature score might have been detected at an earlier stage, hence with a better outcome. Our pre-tumoral gene signatures could constitute candidate biomarkers to detect early epithelial transformation and be favorable prognostic markers.

In terms of therapeutic targets, preventing the early state transitions occurring in the luminal progenitor compartment could be a relevant therapeutic avenue that we need to investigate. One strategy could be to target early epithelial-to-mesenchymal plasticity, targeting candidate TFs with proteolysis targeting chimeras, as shown for Brachyury or NF-KB (Samarasinghe and Crews 2021).

Another Achilles heel of the pre-tumoral state could be the over-expression of Ccnd1 that promotes the switch from G1 to S phase. In this line, cycling pre-tumoral cells might be particularly sensitive to CDK4/6 inhibitors.

Methods

Animal models. The generation of Brca1 fl/fl and Trp53 fl/fl mice has been previously described (Jonkers et al. 2001;Liu et al. 2007). Blg-Cre transgenic mice were purchased from The Jackson Laboratory. Mice strains were crossed to obtain Blg-Cre Trp53 fl/fl Brca1 fl/fl animals. Genotypes were determined by PCR (primers Cre: 3' CGAGTGATGAGGTTCGCAAG 5' -3' TGAGTGAACGAACCTGGTCG 5'; primer Brca1 : 3'TATCACCACTGAATCTCTACC 5' -3' GACCTCAAACTCTGAGATCCAC 5'; Trp53: 3' AAGGGGTATGAGGGACAAGG 5' -3' GAAGACAGAAAAGGGGAGGG 5'). Mice were sacrificed by cervical dislocation. For each sample (gland or tumor), one piece was fixed in 4% paraformaldehyde (15710, Euromedex) for histological analysis, one piece was snap frozen in dry ice and stored at -80°C and one piece was kept fresh for the desired experimentation.

Ethics statement. All procedures used in the animal experimentations are in accordance with the European Community Directive (2010/63/EU) for the protection of vertebrate animals. The project has been approved by the ethics committee n°02265.02. We followed the international recommendations on containment, replacement and reduction proposed by the Guide for the Care and Use of Laboratory Animals (NRC 2011). We used as few animals as possible and minimized their suffering, no painful procedures were performed. The breeding, care and maintenance of the animals were performed by the Institut Curie animal facility (facility license #C75-05-18). Patients (n=5 juxta-tumoral tissue) gave informed consent for the use of their tissue in the study.

Immunostaining. Glands and tumors were fixed in 4%PFA/PBS at 4°C overnight, then washed with PBS (Gibco, 10010023) a first time for 1h and a second time at 4°C overnight. The samples were then passed through consecutive (50%, 60%, 70%) ethanol baths for 30 min each at room temperature. Paraffin embedding and sectioning (5µm) was performed by the experimental pathology department of Institut Curie. At the staining time, the slides are dewaxed by heating at 65°C for 1h and wash 2 times in Xylene 10min, then rehydrated via consecutive bath: 2x Ethanol 100% (VWR 20821,31) 10min, 1x Ethanol 90% 5min, 1x Ethanol 80% 5min, 1x Ethanol 70% 5min, 1x Ethanol 50% 5min, 2x Water 5min. Retrieval treatment was performed by incubation in citrate buffer (C9999) for 20min at 95°C. After a 1h room temperature cooling, the slides are cleaned in PBS and permeabilized in permeabilization buffer (BSA 2%, FBS 5%, Triton 0,3% in PBS) for 2h at room temperature. Primary Antibody incubation was done on blocking buffer (BSA 2%, FBS 5%, PBS) at 4°C overnight with Chicken Krt5 antibody 1:500 (905901), Rat Krt8 antibody 1:500 (MABT329), Rabbit H3K27me3 antibody 1:20 (C36B11), Rabbit p16 antibody 1:100 (Abcam, ab211542). After 3 washes in PBS for 10 min each, incubation of the antibodies was performed for 2h at room temperature with: goat anti-rabbit Cy3 1:1000 (A10520), goat anti-rat Cy5 1:1000 (A10525), goat anti-chicken Alexa Fluor 488 (A11039) 1:500, DAPI 0,5µg/ml. After 3 wash in PBS 10min, sections were mounted in Aquapoly mount media.

LacZ staining. Glands and tumors were directly fixed in PFA 4% for 2h and incubated in PBS, 30%

Sucrose at least 24h. Samples were included in optimal cutting temperature OCT medium (23-730-751) in moulds and cooled on a metal support previously cooled on dry ice. The samples were stored at -80°C before being cut in a cryostat at -20°C in a 6µm section. Slides were stored at -80°C before use.

For the staining, the slides were equilibrated at room temperature for 10-20 min and washed 3 times for 5 min at room temperature in the washing buffer: PBS, 2mM MgCl2, 1x Na-DOC, 0,02% NP40. After that, slides were incubated in the LacZ Stain: Washing solution, 10mM K3Fe, 10mM K4FE, 1,5 mg/ml X-Gal in a humidified chamber in the dark at 37°C for 4h to overnight. Slides were washed in a consecutive bath of: PBS for 1 min then for 15 min at room temperature, water for 15 min at room temperature and (optionally) Nuclear fast red for 5 min and 2 times in water for 5 min each. Sections were mounted in Aquapoly mount media. and 633 nm. Images were captured using Metamorph. Image processing was performed using Fiji Software, version 1.0. The counting of µ-HF was done in Fiji with a custom macro, for each nucleus, we selected the most representative Z, then the counting was done automatically with the AutoThreshold MaxEntropy.

Microscopy

Multiplex histological staining. Multiplexed IHC was performed according to the protocol developed by (Remark et al. 2016), with some adjustment. Tissues were baked at 60°C for 1h, deparaffinized in Xylene (Fisher Scientific, 10467270) and rehydrated. The heat-induced epitope retrieval was done with pH6.1 citrate buffer (Dako, S169984-2) or pH9 EDTA buffer (Dako, S236784-2) in a 95°C water bath for 30 minutes for the first staining (otherwise 15min) followed by incubation in REAL peroxydase blocking solution (Agilent Dako, S202386-2) for 10 minutes. If the primary antibody was the same species as any antibody used in prior stains, another blocking step was added with Fab Fragment, only for antirabbit (Jackson ImmunoResearch Europe Ltd, 711-007-003) during 20 minutes. Protein block serum free (Agilent Dako, X090930-2) was added for 10 minutes. Primary antibody was incubated for 1 or 2 hours at room temperature or overnight at 4°C. The primary antibody was detected using a secondary antibody directed against the first one, conjugated with horseradish peroxydase (Anti-rabbit: Agilent Dako, K400311-2) (Anti-rat: BioTechne, VC005-050) followed by chromogenic revelation with 3-amino-9-ethylcarabazole (AEC) (Agilent Dako, K3468). Slides were counterstained with hematoxylin (Thermo Scientific, 6765001) and mounted with Glycergel aqueous mounting medium (Dako, C056330-2). After scanning (Philips Ultra Fast Scanner 1.6 RA), tissues were bleached with ethanol baths and another cycle was performed starting with the heat induced epitope retrieval.

Overlay of multiplex histological stainings. Histological analysis was performed using the open-source image analysis QuPath software (QuPath-0.3.2, http://qupath.github.io/) (Bankhead et al., n.d.) and ImageJ/Fiji. We created a new QuPath project containing all scans of each slide which allow us to crop and export (BioFormats plugin) and then overlay the images using Fiji script following these different steps: 1. Color deconvolution (separation of hematoxylin and AEC signal); 2. Alignment on hematoxylin images; 3. Creation of transformation matrix on AEC images; 4. For a part of the staining (Edac, Vim, Ki67) an automatic threshold using MaxEntropy was done to remove background, for the rest of the stainings (p16, Krt5, Krt8, Ncad) different threshold was determined using control cell signal (cf.

Computational part). Each staining was colored as desired. To further analysis, the composite image was transferred back to QuPath. By hand, the different structures of the gland/tumors were annotated (duct, stroma, juxta-lesion or juxta-tumoral duct, lesion, tumor). To identify all the cells, we used the 'cell detection' function based on hematoxylin nucleus staining. We then used the 'show detection measurement' function to export the annotation and the intensity signal for all staining for each cell and analyzed it in R.

Multiplex histological data analysis strategy. The resulting measurements were exported and analyzed in R (4.1.1). Briefly, high signal channels, corresponding to Ki67, Vim were thresholded by the Maximum Entropy algorithm, whereas the remaining channel markers were subjected to a custom thresholding approach. To identify true positive cells for each marker, mean "Cell" signal values were binarized as follows: -non-zero values of the Max Entropy thresholded markers were set to 1, whereas zero values were set to 0. To determine positive cells for p16, Ncad and Krt5, the local minimum after the highest peak was fitted on the density distribution of the merged cells from all the samples corresponding to each marker. Different thresholds were defined for each sample for the following markers: Krt8 and Ecad. Briefly, the "approxfunc" r interpolation function was applied on the density distribution of each marker on each sample, followed by an optimization step using the "optimize" r function to retrieve the local minimum within the interval of the density function. Higher values as compared to each threshold were set to 1, whereas smaller values were set to 0. basic r functions were used to calculate the percentages of positive cells for each or double positive for many markers, and the ggplot package was used for graphical representations. Stromal cells were excluded in the analyses.

Mammary gland / tumor dissociation and flow cytometry. Samples were cut roughly with dissecting scissors and then with 2 scalpels for approximative 10 min. Then single cell dissociation was done by enzymatic digestion with 3mg/ml collagenase I (Roche, 11088793001) and 100U/ml hyaluronidase (Sigma-Aldrich, H3506) in complete media (HBSS (24020117), 5% SVF) during 1h30 under agitation at 170 rpm at 37°C. Cells were then dissociated in PBS 0,25% Trypsin-Versen (Thermo Fisher Scientific, 15040-033) prewarmed at 37°C for 1min30s with pipetting for 45s. The cell suspension was then treated with dispase 5 mg/ml (Sigma-Aldrich, D4693) and DNase 0,1 mg/ml (Roche, 11284932001) in complete media for 5 min at 37°C. A treatment with Red Blood cell lysis buffer (Thermo Fisher Scientific, 00-4333-57) was carried out then the suspension was filtered at 40µM before counting and Nuclei from frozen samples (around 20mg) were directly mechanically dissociated using dounce with pestle (15-20 strokes) in buffer containing 0,2U Superase IN (ThermoFisher, AM2696); 0,01M Tris HCL pH 7,4; 0,01M NaCL; 0,003M MgCL2, 0,1M Igepal CA-630; 0,1M Tween-20; 0,001x Digitonin; 0,225% Sucrose in water. After vortexing briefly and pipette up and down 5-10 times with a micropipette, nuclei suspension is filtered with a 30um strainer. After a last centrifugation at 500g for 5 min at 4°C, nucleus are resuspended in PBS 0,2U SuperaseIN, 0,04% BSA, counted and processed on 10x

Chromium.

Bulk and single-cell ChIP-seq. ChIP experiments were performed as previously described (Marsolier et al. 2022) using an anti-H3K27me3 antibody (Cell Signaling Technology, 9733 -C36B11). Bulk sequencing libraries were prepared using the NEBNext Ultra II DNA Library Prep Kit (NEB, E7645S)

according to the manufacturer's instructions. For single-cell experiments, cells were encapsulated on a custom microfluidic device as described before (Grosselin et al. 2019). Cells were stained with DAPI 3µM or with 1µM CFSE during 15 min (CellTrace CFSE, ThermoFisher Scientific, Ref: C34554).

COMPUTATIONAL ANALYSIS

Code related to the following sections will be deposited on Github (https://github.com/vallotlab).

Chromium 10X scRNAseq data pre-processing. scRNAseq data acquisition was performed using the Quality Control (QC) for scRNAseq data analysis. Low quality cells were defined as having aberrant values for the type and number of genes/UMIs detected. We evaluated the distribution of the total number of genes, molecules (UMIs) and the fraction of UMIs mapped to mitochondrial (MT) genes and set up thresholds to filter out those cells. Three upper cutoffs of 30% UMIs mapped to MT genes, 10,000 genes and 100,000 nUMIs were fixed to get rid of outliers. Additionally, cells with less than 1000 detected genes were excluded. This resulted in a total of 17,330 high quality cells, which were used for further analysis.

scRNAseq data Normalization. Normalization and variance stabilization were performed using the SCTransform method, implemented in the "SCTransform'' function from the Seurat Suit. SCTransform omits the need for heuristic steps comprising log-transformation and pseudo-count addition, and results in improved downstream analytical steps. More recently, SCTransform also supports using the glmGamPoi package. Briefly, this method fits a "Gamma-Poisson Generalized Linear Model" to the overdispersed count matrices due to the high sparsity of the scRNAseq data, and results in a substantial improvement of the variance stabilization.

scRNAseq data dimension reduction and clustering. Principal Component Analysis (PCA) was performed on the top 3000 Highly variable genes of the SCT assay from the SCTransform step, to reduce the data dimensionality. The top 60 PCs were further used to perform graph-based clustering and community (cell cluster) detection.

All the Uniform Manifold Approximation and Projection (UMAP) plots were computed using the "RunUMAP" Seurat function with default parameters ("uwot" as umap.method, n.neighbours=30, distance metric= "cosine", min.dist=0.3) and "random.state=42". The two-dimensional UMAP coordinates were calculated using the top 60 PCs previously computed on the SCT assay. For the sake of clarity, once the epithelial compartment is sub clustered, the same UMAP embeddings were used to represent the "transitioning cell clusters". Further "zoom ins" were performed using the corresponding umap coordinates of the cells of interest.

Graph-based clustering and cell cluster identification. Cell clustering was performed using a two-step wise approach, using the "FIndNeighbours'' and "FindClusters'' respectively. Briefly, a k-Nearest Neighbours (kNN) graph is built on the dissimilarity matrix based on the pairwise euclidean distance between cells in the PCA space (using the previously computed 60 PCs). Edges are drawn between nodes (cells) with similar expression patterns (Jaccard Similarity). Edge weights are refined based on their shared overlap in their neighborhood.

"FindClusters" function was used to cluster the cells, using the Louvain algorithm as default, setting the resolution parameter to 1.2 to ensure an optimal granularity and stability of the cell clusters.

scRNAseq cluster annotation. Manual annotation of the cell clusters was performed on the merged samples on a two-steps basis. First, the cell clusters were annotated according to the major cell compartments, using well-established canonical markers. The latter included: Immune (Ptprc+, Cd68+, Cd52+), Epithelial (Epcam, Krt5, Krt8, Elf5), Endothelial (Pecam1, Fabp4, Apold1) and Fibroblasts (Mgp, Dpep1, Col3a1). Briefly, we computed the mean expression of each gene across the cells belonging to each cluster, to obtain a pseudo-bulked matrix containing only the genes of interest. A classical hierarchical clustering was performed on the clusters based on their correlation distance matrix to determine the cell cluster groups "Metaclusters" which displayed similar expression levels for each canonical gene signature. According to the dendrogram length, computed using the "ward.D" method, 5 meta-clusters were identified. Each meta-cluster was assigned the cell type name for which the canonical genes were mostly expressed, as compared to the remaining genes. For instance, COl3a1

displayed the highest expression level in the meta-cluster "1". Therefore, all cell clusters previously defined (see Graph-based clustering and cell cluster identification section above) belonging to metacluster "1" are labeled as "Fibroblasts".

Refined Epithelial clusters annotation. The epithelial compartment was further sub clustered to better explore the cell subtype/state heterogeneity between the control and the tumor samples.

SCTrasnform, PCA dimension reduction and clustering steps were run on the subsetted clusters of interest. To achieve a high-resolutive cell subtype annotation, DIfferential expression (DE) was performed using the "FindAllMarkers" function. Briefly, a non-parametric Wilcoxon-Sum rank test was performed on a "1 cluster vs all" basis, setting a log2 Fold Change (FC) threshold at 0.5, and keeping only genes expressed in at least 30% of the cell clusters (to ensure expression homogeneity within the cluster). Associated p-values were corrected using the "Bonferroni" correction method, with a set threshold at 5%.

An automated function was designed to annotate the clusters. It takes as input the top 10 logFC ranked geneset for each cluster, and initially computes the contribution percentage of each tumor size feature of our dataset (control, control with primary lesions, small tumor (ST), medium tumor (MT) and large tumor (LT)) to each cell cluster. For a given cluster, if the major contributor is the control dataset, the function intersects the corresponding top genes with a knowledge-driven gene list of the known epithelial cell types (including basal, luminal progenitor, alveolar-differentiated, hormone-sensing ...) and labels the cluster with the corresponding cell type. If most of the cells (> 60%) were from tumor samples, the subtype name would be the concatenation of the top gene name with the tumor size symbol (ST, MT or LT).

Differential expression. Differential gene expression (DGE) analysis was performed using "FindMarkers" function. Non parametric Wilcoxon sum rank test was used to identify genes with an abs(FC)> 0.5 at an FDR of 0.05. To ensure cell cluster homogeneity, we set a lower cutoff of 30% of cells expressing a given gene.

Pathway Enrichment Analysis (PEA). Pathway Enrichment Analysis was performed on the significantly differentially expressed gene lists using the Hallmark collection from the Molecular Signature Database (MSigDB). The latter was loaded into the R session using the "msigdbr" package available on Bioconductor. Gene Set Enrichment Analysis was performed using the "enricher" function from the "msigdbr" package. Only significantly enriched pathways (adjusted P-values < 0.05) were considered.

Signature construction. Transcriptional signatures were constructed from the gene lists contributing to each corresponding enriched pathway, using the "AUCell" package available on Github ( ). Briefly, the genes of a given cell vs.gene data matrix are ranked based on their expression levels in each cell.

UCell computes then a Mann-Whitney U statistic (which is similar to AUC Area Under Curve), which is further used to evaluate gene signatures on the gene expression ranks of individual cells. We computed the gene signatures using the wrapper function "AddModuleScore_UCell", giving as input a list of features, along with the seurat object.

Trajectory inference -Slingshot. Pseudotime ordering of cells was conducted using Slingshot (Github link), with default parameters, giving as input the UMAP coordinates and setting the starting cluster as the luminal progenitors "LP", with stretch=2.

To ease the interpretation of the trajectory, we performed SLingshot only on the transitioning compartment, including ("LP", Alveolar differentiated "Avd", Luminal differentiated hormone-sensing "Luminal H-S", and the annotated clusters of the small tumor. Downstream analytical steps were performed only on the longest branch starting from the "LP" and ending in the "Fgf8+ ST" cluster.

Contribution of genes to a branch tree. The aim of this section was to identify the most contributing genes to the transition observed from the Slingshot trajectory inference. To do so, a cell vs.gene expression matrix was created including the contributing cells to the longest branch, and the top 2000 highly variable genes. We then applied a random forest regression model using 500 trees to predict the genes which contribute the most to predict pseudotime values (the response variable). The features (genes) were sorted according to their "variable.importance"parameter after the model was fit.

Associated pathways to pseudotime values prediction. We computed the mean expression values of the selected top 200 most important predictive genes to get pseudo-bulked matrices for the transitioning cells. To cluster the genes according to their profile correlation with pseudotime values, a pairwise-correlation matrix, followed by a hierarchical clustering were performed. 5 gene groups were obtained, each having a distinct profile along pseudotime. PEA (see below) was performed on each gene set, followed by a signature construction step and ultimately visualized on the UMAP embeddings.

Partition-based graph abstraction (PAGA). PAGA was performed using "scanpy" Python library loaded on RStudio using "reticulate" R package. Default parameters were used to construct the graph partition, and a threshold of 0.1 was set to preserve the highly connected nodes. Connectivity scores were extracted from the PAGA output, along with the nodes and edges connections. Centrality scores (number of edges) were computed by counting the number of edges that passed the cutoff (0.15) for each cell cluster.

Potential of Heat-diffusion for Affinity-based Transition Embedding (PHATE)

. PHATE was used as a visualization method to investigate continual progressions, branches and clusters in our data. Briefly, PHATE uses an information-geometric distance between cells (data points) to capture both local and global nonlinear structures, setting knn = 20, t (diffusion parameter) =40 as input parameters.

Copy Number Variation (CNV) inference from scRNAseq data. CNVs were inferred using inferCNV (https://github.com/broadinstitute/infercnv) with default parameters, taking as reference the basal cells. We extracted residual cell matrices, binarized the values using the 10th as lower and 90th percentile as higher thresholds, to get -1 (if the value < 10th percentile); +1 (if the value is higher than the 90th percentile) and 0 if the value is in between the two thresholds. To estimate the percentage of altered genome, we calculated the absolute value of binarized matrices, and counted the number of 0s and 1s aggregated by chromosome. These values were added to the metadata of the scRNAseq Seurat object.

TCGA_Breast cancer dataset. To compare the expression levels of CDKN2A, P16-signature, EMT and apoptosis pathway signatures, between non-diseased healthy tissues, tumor-adjacent normal tissue and tumor breast tissues, we harnessed breast tissues datasets from TCGA and GTEx consortia from normalized transcriptomic data available from Github (https://github.com/mskcc/RNAseqDB/tree/master/data/normalized). We constructed the gene signatures using the UCell package, and compared the tissue types using Wilcoxon T tests.

scRNAseq data analysis of normal, preneoplastic and tumorigenic states in the human breast. We downloaded the dataset from GEO, using the accession number: GSE161529. Briefly, we selected only the normal epithelium samples from pre-menopausal women (n=6), tumor samples (labeled as Triple Negative tumor, and Triple negative (Brca) tumor) (ntotal=8), and the nulliparous, pre-menopausal pre-neoplastic Brca1 samples (n=2). After sample merging, SCT normalization, dimension reduction and graph-based clustering, we selected the cell clusters expressing epithelial markers (Epcam, Krt8, Krt5) for further analysis. The same procedure was conducted on the epithelial compartment, followed by a finer annotation of the cell clusters using canonical markers of epithelial sub-populations. To point out the epithelial population which underwent major transcriptional modifications upon Brca1 deficiency as compared to the normal population, we subset the luminal progenitor (LP), Basal and mature luminal (ML) clusters. For each subpopulation, principal component analysis (PCA) was performed, and the top 20 variable PCs were kept. To identify the main PC drivers of a normal/preneoplastic gradient, we tested whether the cell distributions along each PC coordinate were the same, using a Kosmogorov Smirnov nonparametric test. We selected the PCs with a significant p-value (<0.05) and a D-value > quantile(D-value,0.8). Alternatively, a linear regression method was tested to select the top predictive PCs to separate cells labeled as preneoplastic from normal ones. Both methods indicated similar PCs. Next, to identify the epithelial sub-population for which the PCs were the most discriminant, we ranked the top "informative" PCs according to their percentage of variance explained. Pathway enrichment analysis was performed on the top genes (ranked by eigenvalues) which contributed most to the PC part corresponding to preneoplastic cells.

snRNAseq juxta-tumor data analysis

Similar pre-processing steps were followed for the snRNAseq data analysis. Expression matrices from the 5 samples, obtained with the cellranger count suite were merged, filtered (setting 25% as the maximum rate of mitochondrial genes per cell), and integrated using Harmony algorithm. Similar semiautomatic approach was used to annotate the cell clusters according to major cell types (epithelial, adipocytes, fibroblasts, immune, fibroblasts and endothelial). Downstream analyses were only focused on the epithelial compartment, in which a refined annotation was performed to retrieve epithelial subtypes. Similarly, fraction of altered genome and scoring of the human-derived pre-tumoral state were estimated using inferCNV and UCell algorithms, respectively. Stack violin plots were plotted using a custom function. 

FACS

  staining. Cell suspensions were stained 20 min in dark at 4°C with anti-CD45-APC 1:100 (BioLegend, 103112), anti-CD31-APC 1:100 (BioLegend, 102510), anti-CD24-BV421 1:50 (BioLegend, 101826), anti-CD49f-PE 1:50 (BioLegend, 313622). Cells were resuspended in cytometry media (PBS, BSA, EDTA). For the mammary gland samples, we either recovered the total epithelium or the luminal and basal cells populations separately.Single-cell / single-nuclei RNA-seq. In accordance with the protocol of 10X Chromium manufacture, the cells were resuspended in PBS 0,04% BSA (Sigma, A8577). Depending on the samples, approximately 3000 or 4000 cells were loaded on the Chromium Single Cell Controller Instrument (Chromium single cell 3' v3 or 3' NextGem, 10X Genomics, PN-1000075) in accordance with the manufacturer's protocol. Libraries were prepared according to the same protocol. For the frozen samples, a nuclear extraction was performed before the microfluidic part.

  10X toolkit. Briefly, the CellRanger Software Suite (version 3.0.1) was used for demultiplexing, cell barcode assignment and further UMI (Unique molecular Identifier) quantification. The pre-built mm10 reference genome proposed by 10X Genomics ((https://support.10xgenomics.com/single-cell-geneexpression/software/downloads/latest) was used to align the reads. All the in vivo mouse datasets were analyzed together, without performing any batch correction. Doublet removal step was included in the 10X workflow, and was performed by the "emptyDrops" function from DropletUtils at an FDR of 0.01.

Figure 2 :

 2 Figure 2: Partial EMT occurs at the onset of tumorigenesis. (A) Partition-based graph abstraction (PAGA) graphical representation of the transition cluster, previously represented on UMAP embedding (Fig. 1D); nodes are the clusters and the edge thickness quantifies the connectivity scores between the graph-partitions highlighted on the graph. (B) UMAP representation with cells colored according to inferred pseudotime values, using the Slingshot algorithm. (C) Left: Scatter plot representation of UCell scores for EMT and Angiogenesis signature, cells are ranked by increasing pseudotime values and colored according to their cluster ID. Right: UMAPs representation with cells colored according to Ucell scores for EMT and Angiogenesis signature. (D) Violin plot distribution of the percentage of altered genome per cells, grouped by cluster ID. Asterisks represent the significance levels of mean coparison with basal cells. *p < 0.05, **p < 0.01, ***p < 0.001. (E) Barplot of correlation values between pseudotime & AUC enrichment scores of TF modules inferred by SCENIC. (F) UMAP representation colored according to AUC scores of the Twist1-module inferred by SCENIC. (G) Dot plot representation of the 30 top candidate TFs which could regulate the pre-tumoral expression program. TF enrichment was inferred using ChEA3.
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 345 Figure 3: Traces of past senescent state in tumor cells. (A) Representative sections for mammary gland from 3 months-old Cre-mouse, 5 months-old Cre+ mouse with lesion, and tumor. All are stained by immunoflorescence for basal marker Krt5 (in green), luminal marker Krt8 (in red), histone mark H3K27me3 (in orange) and Dapi (in blue, left image in each panel), scale bars represent 20µm. For zoom scale bares represent 10µm. (B) Jitter plot representing the number of heterochromatin foci (H-F) per nucleus in the studied samples in (A). Asterisks represent the significance levels of median comparison with Cre-/-control sample. ns: non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. (C) Violin plot of the H3K27me3 peak breadth on autosomes in tumor samples compared to normal-like mammary glands. (D) Cumulative coverage plot for H3K27me3 signal in Cdkn2a/b, Cdk12 promoteur genes in sorted basal, luminal and tumoral cells.
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