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ABSTRACT
We provide optimized range proofs, called Sharp, in discrete log-

arithm and hidden order groups, based on square decomposition.

In the former setting, we build on the paradigm of Couteau et al.

(Eurocrypt ’21) and optimize their range proof (from now on, CKLR)

in several ways: (1) We introduce batching via vector commitments

and an adapted Σ-protocol. (2) We introduce a new group switching

strategy to reduce communication. (3) As repetitions are necessary

to instantiate CKLR in standard groups, we provide a novel batch

shortness test that allows for cheaper repetitions. The analysis of

our test is nontrivial and forms a core technical contribution of our

work. For example, for 𝜆 = 128 bit security and 𝐵 = 64 bit ranges

for 𝑁 = 1 (resp. 𝑁 = 8) proof(s), we reduce the proof size by 34%

(resp. 75%) in arbitrary groups, and by 66% (resp. 88%) in groups of

order 256-bit, compared to CKLR.

As Sharp and CKLR proofs satisfy a “relaxed” notion of security,

we show how to enhance their security with one additional hidden
order group element. In RSA groups, this reduces the size of state

of the art range proofs (Couteau et al., Eurocrypt ’17) by 77% (𝜆 =

128, 𝐵 = 64, 𝑁 = 1).

Finally, we implement our most optimized range proof. Com-

pared to the state of the art Bulletproofs (Bünz et al., S&P 2018),

our benchmarks show a very significant runtime improvement.

Eventually, we sketch some applications of our new range proofs.

CCS CONCEPTS
• Security and privacy → Cryptography; • Theory of compu-
tation → Interactive proof systems; Cryptographic protocols;
Communication complexity.
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1 INTRODUCTION
Zero-Knowledge Proofs and Range Proofs. Zero-knowledge proofs,

introduced in the seminal work of Goldwasser, Micali, and Rack-

off [30], allow a prover to convince a verifier of the truth of a

statement while concealing all other information. This makes them

an important tool in theory and practice. Efficient constructions

are now known for a variety of NP-languages, and are routinely

used in real-world applications. An example of particular interest is

range proofs, which are zero-knowledge proofs for demonstrating

that a secret value (committed or encrypted) belongs to a public

range. Range proofs are a core component in numerous applications,

such as anonymous credentials [19], e-voting [31], or e-cash [15],

and have been introduced recently in some popular anonymous

cryptocurrencies (see [12, 27, 42]).

Range Proofs. Many range proofs which have been constructed

in the past can be categorized in two main paradigms:

(1) Range proofs based on 𝑛-ary decomposition [14, 32], where

one proves a statement of the form 𝑥 ∈ [0, 𝑛ℓ ) by committing to

an 𝑛-ary decomposition (𝑥0, . . . , 𝑥ℓ−1) of 𝑥 , and proving that 𝑥 =∑
𝑖 𝑥𝑖 ·𝑛𝑖 and each 𝑥𝑖 belongs to [0, 𝑛) (which can be done efficiently

when 𝑛 is small). The state of the art method in this paradigm is

Bulletproofs [13], which features very small proof size 𝑂 (𝜆 · log ℓ)
for a security parameter 𝜆 (using binary decomposition), and also

enjoys a transparent setup: the only trusted parameter it requires

is an unstructured common random string, which can be easily

generated by standard “nothing up my sleeve” methods (in contrast,

protocols requiring a structured common string need to trust the

parameter generator, which is undesirable). Due to its great concrete

efficiency and its transparent setup, Bulletproofs have become the

most commonly used solution in real-world applications.

(2) Range proofs based on square decomposition [10, 23, 31, 36],

where one proves a statement of the form 𝑥 ≥ 0 by using special

integer commitment schemes [25, 29] to commit to 𝑥 over Z, and
by proving the existence of four squares 𝑥1, . . . , 𝑥4 such that 𝑥 =∑
𝑖 𝑥

2

𝑖
(such a decomposition always exist by a theorem of Lagrange,

and ensures non-negativity). This generalizes to arbitrary intervals

[𝑎, 𝑏] by proving non-negativity of (𝑥 −𝑎) (𝑏−𝑥). While avoiding 𝑛-

ary decomposition is attractive, instantiating integer commitments
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required until recently the use of hidden order groups (such as

RSA groups), whose elements are too large to be competitive with

Bulletproofs for any reasonable interval size, and which require a

trusted setup (to set up the RSA modulus).

The CKLR Range Proof. In a recent work [22], Couteau et al. re-
vived the square decomposition paradigm, by constructing bounded
integer commitment schemes, which can be instantiated over cryp-

tographic groups with hardDLOG problem. They instantiate (a vari-

ant of) the range proof of [23] with this new commitment scheme,

significantly reducing their size and removing the need for a struc-

tured common reference string. The CKLR scheme was shown to

compare favorably with Bulletproofs: for a careful choice of pa-

rameters and underlying group, the proofs are about 15% shorter

than Bulletproofs, and require an order of magnitude less group

operations. Therefore, on paper, CKLR seems to offer a competitive

alternative to Bulletproofs.

CKLR versus Bulletproofs. However, this cost estimation ignores

several important practical aspects, and the distinction turns out

to be far from clear cut in real-world instantiations. The main lim-

itation of CKLR is that it requires exotic group sizes – typically,

elliptic curves with elements of size 352 or 416 bits to achieve 128

bits of security for 32- or 64-bit ranges. While in theory, we can

use curves with a wide variety of sizes, and many standard options

exist, the vast majority of cryptographic applications build upon

256-bit elliptic curves, and highly optimized implementations of

some of these curves are available (for example in libsecp256k1 [43]

or ristretto255 [26]). These libraries typically offer runtimes 10 to

20 times faster than the NIST standardized implementations of

other standard curves. Hence, the use of large curves in CKLR actu-

ally negates the efficiency gains of their smaller number of group

operations compared to Bulletproofs. Furthermore, several appli-

cations constrain the choice of curve; for example, the Ethereum

cryptocurrency only allows the curve secp256k1.

This is not the only limitation of the CKLR range proof, com-

pared to Bulletproofs. The latter is especially attractive when per-

forming several range proofs at once, because it allows for very

efficient batching of multiple proofs; no such batching is known for

CKLR. This stems from the fact that the CKLR range proof revolves

around an “extraction lemma” which was formulated and proven

in the setting of a single proof, and operates on top of single-value

commitments (while Bulletproofs operate on generalized Pedersen

commitments, which can commit compactly to vectors of values).

Eventually, CKLR is also more restricted in its range of applica-

tions compared to Bulletproofs. This is because Bulletproofs operate

with standard Pedersen commitments, while CKLR is designed on

top of a new (Pedersen-based) construction of bounded integer

commitments. Compared to Pedersen commitments, these new

commitments have (1) only limited homomorphic properties, and

(2) a relaxed notion of opening, where a malicious opener is given

more freedom in what is regarded as a valid opening (this is similar

in spirit to the property of standard integer commitment schemes,

such as the Damgård-Fujisaki commitment [25]). This means that in

some applications, for example when a value opened by a malicious

party must be reused afterwards by an honest prover (this is the

case, e.g. in some cryptocurrency applications), CKLR cannot be

used as a drop-in replacement: the use of CKLR is only appropriate

when the new commitment scheme can be used in the application

without harming security or correctness.

Summing up, the CKLR paradigm is a promising new approach

for constructing range proofs with strong performance. However,

it does not currently compare favorably to Bulletproofs in practical

applications, mostly due to its use of larger curves which lack

competitive implementations, but also due to its lack of batching

features. Furthermore, it operates on a new commitment scheme,

which makes it not a priori clear what are the standard applications

of range proofs where it can be safely used.

1.1 Our Contributions
In this work, we thoroughly revisit the CKLR paradigm. We intro-

duce a new family of range proof schemes, which we call Sharp
(for short relaxed range proofs). The name Sharp stems from a

change of perspective with respect to CKLR: in CKLR, a proof is

interpreted as a full-fledged range proof for values committed with

a new bounded integer commitment which they introduce. The latter
is essentially a Pedersen commitment where openings are allowed

to be rationals, which are rounded to the nearest integer in the

opening phase. We observe that one can equivalently “push the

relaxation from the commitment to the range proof” and see CKLR

as a relaxed range proof operating over standard Pedersen com-

mitments, where relaxed means that the prover is only bound to a

rational inside the target range, instead of an integer.
1
While this

change of perspective does not in itself change the construction

nor its security properties, it allows for a more modular treatment

of the construction, and simplifies the analysis of how CKLR (or

Sharp) integrates within standard application of range proofs.

Our new constructions build upon numerous optimizations,

which are a combination of known techniques and entirely new

approaches. The security analysis of our scheme is subtle and techni-

cally involved; it forms the core technical contribution of our work.

Sharp proofs improve upon CKLR on all possible fronts: they are

much shorter, more efficient, allow for a considerably more flexible

choice of the underlying group (and can in particular be efficiently

instantiated over 256-bit curves), and can be batched efficiently. In

addition, we also demonstrate how to overcome the relaxation of

soundness, obtaining schemes that operate directly with standard

Pedersen commitments and effectively bind the prover to an integer
in the range (instead of a rational) at the cost of slightly larger

proofs (but still with very competitive performance).

To complement the above results, we elaborate on how Sharp
can be used to improve the efficiency of some flagship applications

of range proofs, such as anonymous credentials and anonymous

transactions, clarifying which applications can work with bounded

integer commitment schemes, and which require using a scheme

with stronger features. We validate our efficiency claims with im-

plementations and benchmarks of our main schemes. While our im-

plementation is an unoptimized proof-of-concept implementation,

our benchmarks show that it offers a ten-fold runtime improve-

ment over a heavily optimized implementation of Bulletproofs; we

expect that the efficiency gap would widen further with a more

1
This is a purely conceptual change of view with respect to CKLR, where the rational

opening is afterwards interpreted as an encoding of the closest integer via rounding.
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optimized implementation of Sharp. Below, we elaborate on our

contributions.

1.1.1 Improved Range Proof Constructions. Our new family of

range proofs, Sharp, can be instantiated in a variety of settings, lead-
ing to tradeoffs between efficiency and the underlying soundness

notion. We build upon the paradigm introduced in [22] and obtain

range proofs with improved efficiency and flexibility. In applications

where low communication matters the most, our scheme SharpGS
provides the most competitive performance, but uses curves of

sizes other than the standard 256-bit setting. For runtime-critical

applications, or when the application restricts the available curve,

we describe SharpPoSO, a scheme fully optimized to work over 256-bit

groups.

At the heart of our flexibility and efficiency improvements is a

modular treatment of the structure of a range proof. We split the

range proof into two conceptual parts: the proof of short opening

(PoSO) and the proof of decomposition (PoDec). The PoSO guaran-

tees that extracted openings are short and the PoDec ensures that

the square decomposition holds over Z𝑝 , where 𝑝 is the order of the
DLOG group. Combining both parts ensures that the committed

value is a rational inside the given range, as the shortness allows

us to argue over the integers. This decoupling allows us to develop

tailored optimizations for each part, but also clarifies the exact

soundness guarantees which the proof provides. We stress that one

can still equivalently see Sharp as a standard range proof operating

over a relaxed integer commitment scheme, using the rounding

technique of CKLR: our change of perspective improves the con-

ceptual simplicity of analyzing the use of Sharp within standard

applications, but the exact guarantees remain identical to CKLR.

Optimizing the decomposition proof. We optimize the PoDec via

a polynomial-based technique, similar to the lattice version of [22]

(with some tweaks that improve efficiency). Besides improving

efficiency of the PoDec, this adaption enables two additional im-

provements: (1) The new protocol is suited for vector commitments,

such as Pedersen multi-commitments (MPed). This enables more

efficient batch range proofs, in the sense of performing range proofs

for all 𝑁 values in the vector commitment at once. (2) We intro-

duce a group switching strategy that enables the use of different

groups for the PoSO and PoDec. To our knowledge, this is the first

time group switching is (efficiently) used without leveraging hid-

den order groups. This optimization further reduces proof length

(and computation), while allowing more flexibility to instantiate

the underlying groups. These changes lead to an optimized range

proof: SharpGS.

Optimizing the short opening proof. We further present SharpPoSO,
a range proofwith optimized PoSO (in combinationwith the changes

described above). The analysis of this scheme is delicate and uses

several new ideas. It constitutes the main technical contribution

of this work. As range and challenge space (hence soundness) in-

troduce lower bounds on group size, repetitions are required to

achieve high security levels when the group is fixed. In CKLR, such

repetitions were very expensive, as much of the proof had to be

repeated. To reduce their cost, we introduce a (fractional) shortness

test that allows the prover to show that numerator and denomina-

tor of multiple fractions are short by sending a single short integer,

per repetition. Integrating this shortness test in the range proof, a

“repetition” requires only two scalars, independent of the batch size.

Thus, the bulk of communication and computation of the range

proof is the optimized PoDec (without any repetition).

We note that these optimizations also lead to significant im-

provements in a batch setting, where multiple range proofs must

be executed at once. For example, executing 𝑁 = 8 range proofs

with 128 bits of security and 64-bit inputs communicates only 2.9

times more than executing a single range proof. We also observe

that a similar batch technique is used in the context of lattice-based

range proofs, in the setting where all challenges are bits. However,

the possibility of using general short challenges instead of bits is

precisely what allows our schemes to remain very compact, and is

also what makes the analysis of our shortness test so delicate (we

elaborate on this aspect in the technical overview).

Binding to integers instead of rationals. The bounded integer

commitment scheme of [22] is essentially a Pedersen commitment

where malicious openers are allowed to reveal a rational instead

of an integer (that is later rounded to encode an integer inside the

range). Consequently SharpGS, like CKLR, provides only a relaxed

notion of soundness, in that it only binds the prover to a rational

in the target range. We develop several new approaches to over-

come this limitation, obtaining proofs that operate with standard

Pedersen commitments (where openings are required to be inte-

gers). In the interactive setting, where soundness is statistical (and

a 2
−40

statistical soundness error is a common choice), we show

how our batch shortness test allows us to use challenges in {0, 1}
with much more reasonable communication overhead compared

to previous approaches, which gives a competitive three-round

range proof with transparent setup and full-fledged soundness. In

the non-interactive setting (where soundness is computational and

128 repetitions would be too expensive), we show how to combine

our schemes with a minimal use of hidden order groups, obtaining

two variants: SharpCL (using class groups to instantiate the hid-

den order group) and SharpRSA (using RSA groups). These variants

retain a strong efficiency, as only a single element of the hidden
order group must be added to the proof. They achieve stronger

soundness notions, namely: (1) SharpRSA achieves standard sound-

ness (allowing our scheme to be used as a drop-in replacement

in essentially any application of range proofs, but at the cost of

loosing the transparent setup), and (2) SharpCL achieves a slightly
weaker soundness where the prover is bound to a dyadic rational,
which suffices to overcome some attacks that arise from the use of

a range proof with relaxed soundness in some applications, while

retaining the transparent setup.

We note that many range proofs in RSA groups have been de-

scribed in the past [10, 23, 31, 36]. Our RSA-based variant achieves

considerable efficiency improvements compared to all these pre-

vious works (both communication and computation-wise), while

achieving the same soundness guarantees.

Concrete efficiency estimations. We compare the communication

efficiency of SharpGS, Sharp
Po
SO, and SharpRSA to the state-of-the-

art in table 1. For performing a single range proof, SharpGS proofs
are almost 50% shorter than Bulletproofs, and about 34% shorter

than the CKLR range proofs. For our computation-optimized range
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proofs SharpPoSO, these numbers are about 42% and 29% respectively.

When performing a large number of range proofs, Bulletproofs

become better communication-wise, because of their logarithmic

cost in the batch size; nevertheless, even for a batch of 𝑁 = 8 range

proofs, our range proofs are only between 1.1 and 1.3 times larger

than Bulletproofs (in concrete applications, we believe that this

should be largely compensated by our strong computational im-

provements). Our variant in RSA groups, which achieves standard

soundness, improves by a large margin compared to the previous

best-known RSA-based range proof of [23]: a factor 3 improvement

for a single range proof, and up to a factor 14 improvement for

𝑁 = 8 simultaneous range proofs.

We implemented our computation-optimized range proof SharpPoSO,
using the 256-bit elliptic curve from the libsecp256k1 library [43].

We stress that this is an unoptimized implementation; yet, com-

pared to the optimized reference implementation of Bulletproofs

using the same library, and running the two protocols on the same

machine, we observe very significant runtime improvements. The

runtime of our prover is 11 to 17 times faster than Bulletproofs’

(for 32-bit and 64-bit ranges), while our verifier is two to four times

faster; see table 2. For a larger batch size of 𝑁 = 8, our verifier

runtime remains two to four times faster than Bulletproofs, while

the gap with our prover runtimes increases slightly, ranging from

11 to 21 times faster (all while maintaining a proof size only 1.1

to 1.3 larger than that of Bulletproofs for 𝑁 = 8). We expect these

gaps to further increase with a more optimized implementation.

1.1.2 Security and Applications. We analyze the guarantees of

range proofs with relaxed soundness (such as CKLR and Sharp) in
standard range proof applications. For this, we show which manip-

ulations of the committed values can be allowed depending on the

setting. Specifically, we discuss the arithmetical behaviour of the

manipulated rationals, the impact of the chosen decomposition on

soundness and show that Sharp proofs provide standard soundness

when the committed values are short. Then, we use these insights

to sketch how Sharp can be applied to two important applications

of range proofs: anonymous credentials (AC) and anonymous trans-

actions (AT). While relaxed soundness is sufficient in AC, range

proofs with relaxed soundness do not suffice as drop-in replacement

in AT (and their usage would lead to concrete attacks). Nevertheless,

some (but not all) range proofs can be replaced with Sharp proofs

in AT, and we sketch how Sharp proofs augmented with both a

RSA and class group element improve this situation, even without
trusted setup of the RSA modulus.

1.2 Technical Overview
1.2.1 CKLR Proofs. Before introducing our technical improve-

ments, we give a short overview of CKLR in the DLOG setting.

Given a groupG of order 𝑝 with generators (𝐺,𝐻 ), a Pedersen com-

mitment (Ped) to 𝑥 ∈ Z𝑝 with randomness 𝑟 is given by 𝑥𝐺 + 𝑟𝐻 .
(We use additive notation.)

CKLR opens the commitment to 𝑥 ∈ [0, 𝐵] in a zero-knowledge

manner using standard Σ-protocol techniques. That is, the prover
commits to random masks in 𝐷 = Ped.Commit(𝑥, �̃� ), where 𝑥 and

�̃� are additive masks for 𝑥 and 𝑟 respectively. Then, sends 𝐷 to

the verifier who in turn sends a random challenge 𝛾 ∈ [0, Γ]. The
prover responds with two linear combinations 𝑧 = 𝛾𝑥 +𝑥 , 𝑡 = 𝛾𝑟 + �̃� .

Finally, the verifier checks the linear combination via 𝐷 + 𝛾𝐶 =

Ped.Commit(𝑧, 𝑡) and checks 𝑧 ∈ [0, (𝐵Γ + 1)𝐿], where 𝐿 is the

“masking overhead”.We call such a “proof of openingwith shortness

check” a proof of short opening (PoSO).
The basic observation in [22] is that the soundness of the above

protocol guarantees the extraction of a value of the form 𝑥 ≡𝑝 𝑦 ·𝛾−1,
where both (𝑦,𝛾) are short as well. While this does not suffice to

bind the prover to a small integer, CKLR observes that 𝑥 ≡𝑝 𝑦 · 𝛾−1
uniquely defines a small rational number 𝑢 = 𝑦/𝛾 ∈ Q (where 𝑦,𝛾

are short and coprime), if 2(𝐵Γ + 1)Γ𝐿 ≤ 𝑝 holds.
2
We call 𝑢 ∈ Q

the rational representative of 𝑥 and write 𝑢 = [𝑥]Q .
To show that 𝑢 resides in the range [0, 𝐵], CKLR decomposes

𝑥 (𝐵 − 𝑥) = ∑
𝑖∈[1,4] 𝑦

2

𝑖
as the sum of four squares, commits to 𝑦𝑖

in separate Ped commitments, performs a PoSO for the 𝑦𝑖 and 𝑥 ,

and shows that the decomposition holds over Z𝑝 using the homo-

morphic properties of Ped. We call this part a proof of decompo-
sition (PoDec). The shortness guarantees of the PoSO imply that

𝑢 (𝐵 − 𝑢) ≥ 0 and thus 𝑢 ∈ [0, 𝐵]Q, if 18((𝐵Γ + 1)𝐿)2 ≤ 𝑝 holds.
3

1.2.2 SharpGS: Group Switching and Batching via an Adapted PoDec.
To weaken the requirements on commitment homomorphism, we

use a polynomial-based technique. That is, the prover commits

to 𝑦𝑖 in Ped commitments and performs a PoSO for each 𝑦𝑖 , as

before. To show that the four square decomposition holds, i.e.

𝑥 (𝐵 − 𝑥) = ∑
𝑖∈[1,4] 𝑦

2

𝑖
, the prover computes a polynomial 𝑓 using

the (short) masked witnesses 𝑧 = 𝛾𝑥 + 𝑥 and 𝑧𝑖 = 𝛾𝑦𝑖 + 𝑦𝑖 from the

PoSO as follows:

𝑓 = 𝑧 (𝛾𝐵 − 𝑧) −
4∑
𝑖=1

𝑧2𝑖 = 𝛼2𝛾
2 + 𝛼1𝛾 + 𝛼0 .

A short computation shows that 𝛼2 = 0, i.e. the degree of 𝑓 in 𝛾 is

1, iff the decomposition holds. To show that the degree of 𝑓 is one,

the prover commits to 𝛼1 and 𝛼0 in 𝐶∗ = Ped.Commit(𝛼1; 𝑟∗) and
𝐷∗ = Ped.Commit(𝛼0; �̃�∗) and sends 𝐶∗, 𝐷∗ to the verifier. Then,

the verifier sends the challenge 𝛾 and the prover replies with 𝑡∗ =
�̃�∗ + 𝛾𝑟∗. Note that the verifier can recompute 𝑓 from 𝑧, {𝑧𝑖 }4𝑖=1 and
the statement. Now, the verifier can check whether 𝑓 ≡𝑞 𝛼1𝛾 + 𝛼0
via Ped.Commit(𝑓 , 𝑡∗) = 𝐷∗ + 𝛾𝐶∗. As the challenge is not known
to the prover at the point of committing to the coefficients, the

Schwartz–Zippel lemma guarantees that the decomposition holds

over Z𝑞 with overwhelming probability. Further, the prover reveals

nothing about the values as the commitments are hiding and the

openings are masked in 𝑡∗.
By construction, the polynomial-based technique allows us to use

Pedersen multi-commitments (MPed), instead of separate Pedersen
commitments (as in CKLR). Thus, we can perform 𝑁 range proofs

at once, with a constant number of group elements and a linear

number of short integers.
The high level structure of this Σ-protocol resembles the lattice-

based version of CKLR. But now, by committing to the entire de-

composition 𝑦𝑖 in a single Pedersen multi-commitment, which was

not possible in the DLOG Σ-protocol of CKLR, the prover needs to

2
CKLR interprets (𝑦,𝛾, 𝑟 ) as a valid opening to𝑢 with respect to a modified Pedersen

commitment that commits to rationals 𝑢 = 𝑦/𝛾 as (𝑦 · 𝛾−1)𝐺 + 𝑟𝐻 (or integers with

rounding). Instead of relaxing the commitment, we relax the soundness guarantee of

the range proof and keep working over rationals. This is more flexible and precise.

3
For improved efficiency, CKLR and our protocols actually use a three square decom-

position which can lead to problems in applications, see section 6.1.2. For simplicity,

we stick with the four square decomposition in the introduction.
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Table 1: Theoretical proof size in Bytes for showing that some 𝑥 ∈ [0, 𝐵] of CKLR proofs [22], Bulletproofs [13], RSA-based
range proofs [23] and Sharp proofs (SharpGS, Sharp

Po
SO and SharpRSA) given the security parameter 𝜆. The groups Gcom and

G3sq used for Sharp proofs have order 𝑝 and 𝑞 respectively. 𝜋 denotes proof size in Bytes, 𝑁 denotes the number of proofs
in the batch, and log 𝑝, log𝑞 is the bit-size of 𝑝 and 𝑞.

CKLR BPs RSA SharpGS SharpPoSO SharpRSA

(𝜆, log𝐵) 𝑁 log𝑝 𝜋 𝜋 𝜋 log𝑝 log𝑞 𝜋 log𝑝 log𝑞 𝜋 𝜋

128, 64

1 416 545 672 2424 333 411 360 256 256 389 793

8 416 4360 864 19056 333 411 1070 256 256 1119 1503

16 416 8720 928 38064 333 411 1882 256 256 1928 2315

128, 32

1 352 501 608 2404 301 347 318 256 256 335 751

8 352 4008 800 18896 301 347 916 256 256 932 1349

16 352 8016 864 37744 301 347 1600 256 256 1612 2033

Table 2: Benchmark of our optimized range proofs compared to Bulletproofs, using the reference Bulletproofs implementa-
tion in𝐶 of [13], using batch sizes 𝑁 = 1 and 𝑁 = 8. Both implementations use the library libsecp256k1 [43], and were run on
a MacBook Pro with a 2.3 GHz Intel core i7 processor. All timings are in milliseconds.

Bulletproofs SharpPoSO
(𝜆, log𝐵) N Prover’s work Verifier’s work Prover’s work Verifier’s work

128, 64

1 20.6 2.55 1.17 0.75

8 157 12.1 7.47 3.88

128, 32

1 10.5 1.46 0.97 0.74

8 80.0 6.93 6.74 3.39

communicate two integers and group elements fewer, compared to

CKLR. This improves over the standard Σ-protocol for the showing
the square decomposition in a group setting [22, 23].

Group Switching. We highlighted in the overview above that

the uniqueness of rational representatives requires (only) that 𝑝 ≥
2(𝐵Γ + 1)Γ𝐿. Unfortunately, for the guarantee that the 3-square
decomposition holds, this becomes 𝑝 ≥ 18𝐾2

, where 𝐾 = (𝐵Γ +
1)𝐿, which almost doubles the minimal possible group size. We

observe that a dependency of PoSO and PoDec, which was present

in CKLR, is removed with our improved Σ-protocol. Thus, we can
choose groups with different modulus for the PoSO and PoDec. This

gives us flexibility in group choices, and no compromise between

optimal choice for commitment (typically 256-bit groups) or PoDec

(typically larger groups) has to be made.

1.2.3 SharpPoSO: Cheaper Repetitions via a Novel PoSO. To clarify

the requirements for our PoSO, we take a closer look at the security

proof of SharpGS. The PoDec proves (among other equations) the

square decomposition of 𝑁 integers 𝑥𝑖 :

𝑥𝑖 (𝐵 − 𝑥𝑖 ) ≡𝑝
4∑
𝑗=1

𝑦2𝑖, 𝑗 (1)

for each committed value 𝑥𝑖 . Security of PoDec follows from 3-

special soundness, i.e. 3 related transcripts. To derive that [𝑥𝑖 ]Q ∈
[0, 𝐵]Q, the security proof exploits a guarantee of the (simple) PoSO:

Given two related transcripts (𝑎,𝛾, ®𝑧) and (𝑎,𝛾 ′, ®𝑧′), we can extract

𝑥𝑖 ≡𝑝 𝑧𝑖/𝑑 where 𝑧𝑖 = 𝑧
′
𝑖
−𝑧𝑖 and 𝑑 = 𝛾 ′−𝛾 ∈ [−Γ, Γ], and likewise

for 𝑦𝑖, 𝑗 ; given a third related transcript, eq. (1) is ensured. Moreover,

𝑧𝑖 ∈ [−𝐾,𝐾] due to verifier size checks, so [𝑥𝑖 ]Q =
𝑧𝑖
𝑑
∈ Q𝐾,Γ ,

i.e. a fraction with numerator bounded by 𝐾 and denominator

bounded by Γ. Thus, multiplying eq. (1) by 𝑑2, it is a homogeneous

quadratic equation in 𝑑 , 𝐵, 𝑧𝑖 , and 𝑧𝑖, 𝑗 , all of which bounded by

𝐾 , so short. Since 18𝐾2 < 𝑝 , the equation holds over the integers.

As a consequence, any PoSO which ensures that all extracted 𝑥𝑖 ,

𝑦𝑖, 𝑗 are of the form 𝑥𝑖 = 𝑧𝑖/𝑑 and 𝑦𝑖, 𝑗 = 𝑧𝑖, 𝑗/𝑑 is sufficient for this

argument. Note that it is important that all fractions 𝑥𝑖 , 𝑦𝑖, 𝑗 share

the same denominator 𝑑 for the above argument. Thus, we aim to

replace the individual PoSOs by a “Batch-PoSO”: Given any number

of 𝑥𝑖s (where we do not distinguish between 𝑥𝑖 and 𝑦𝑖, 𝑗 anymore),

prove that all of them are short fractions (i.e. in Q𝐾,Γ ) with a shared

denominator 𝑑 .

A straightforward approach is the following: To check shortness

of 𝑥1, . . . , 𝑥𝑁 , check shortness of the random linear combination

𝑆 =
∑
𝑖 𝛾𝑖𝑥𝑖 for 𝛾𝑖 ← [0, Γ] (where we ignore masking terms for

zero-knowledge for simplicity). Intuitively, if any 𝑥𝑖 is not short,
4

the term 𝛾𝑖𝑥𝑖 should ensure that 𝑆 is not short with high probability.

And indeed, it is not hard to see that individually, every 𝑥𝑖 is of
the form 𝑧𝑖/𝑑𝑖 for short 𝑧𝑖 and 𝑑𝑖 , where 𝑑𝑖 ∈ [1, Γ]. However, as
we explained above, we require that the common denominator 𝑑
of all 𝑧𝑖/𝑑𝑖 is also short. Perhaps surprisingly, this does not follow

trivially.

It is clear that, by using binary challenges, i.e. Γ = 1, all 𝑑𝑖 are

1, and thus, the common denominator 𝑑 is 1. In fact, all 𝑧𝑖/𝑑𝑖 = 𝑧𝑖
are small integers. This simple approach is well-known and used

in (lattice-based) cryptography for proving knowledge of short

4
Recall that, e.g. 1/𝑑 ∈ Z𝑝 , is considered short for 𝑑 ≤ Γ in our setting.
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preimages via random subset sums. While this even ensures stan-

dard soundness, it has the huge drawback of a binary challenge

space. Thus, 128 repetitions are required for knowledge error 2
−128

,

which leads to relatively large proof size, e.g. instead of a 335-byte

(relaxed sound) we get a 1877-byte (standard sound) range proof

from SharpPoSO (for 32-bit range).

To achieve the claimed proof size, we must therefore choose a

large challenge space [0, Γ], so as to minimize repetitions. The crux

of the security proof is then to ensure the common denominator 𝑑

of all 𝑧𝑖/𝑑𝑖 is still short. Our core theorem (theorem 3.3) asserts,

that either such a short common 𝑑 exists, or the false acceptance

probability at most 8/Γ, This result is surprisingly non-trivial to

prove, and it may be of independent interest.

Relation to similar lattice-based approaches. As noted before, our

Batch-PoSO bears close similarities to some (approximate) batch

proofs of (knowledge of) short preimages in the lattice setting.

Indeed, random linear combinations for batch proofs are a stan-

dard approach and used in the lattices setting, e.g. with binary

challenges in [5]. It is also used with larger challenges spaces to

prove “fractional openings” of commitments, resulting in relaxed

soundness somewhat similar to our setting, e.g. in [6, 7]. Namely,

by multiplying with the (small) denominator, an extracted solution

grows in size, but if parameters are chosen accordingly, the lattice

problem still remains hard even for such larger solutions. Moreover,

in special settings, e.g. ring-lattices, special challenge sets 𝒞 where

even (𝛾 ′ − 𝛾)−1 is small for all 𝛾,𝛾 ′ ∈ 𝒞 are used [2].

However, a crucial difference between our setting and the lattice-

setting is that, in all the lattice-based works we are aware of, the

challenge space for proving (approximate or relaxed) shortness is

small and a large number of repetitions are required. Moreover, in

these works, there is no requirement for a short common denomi-

nator 𝑑 , instead, it suffices that individually each 𝑑𝑖 is small, which

is straightforward to show (but insufficient in our case). Since we

embrace relaxed soundness and aim to maximize the challenge

space, our approach exhibits such a requirement. Hence, to prove

security, we require an entirely new analysis for the random linear

combination test. Our current proof seems quite different from (ad-

vanced) lattice-based techniques, but it is an interesting question if

and how such techniques are applicable to strengthen the lemma

or simplify its proof.

Lastly, we note that lattice-based proof systems have vastly im-

proved; even exact (range) proofs are now quite small, e.g. [38, 39],

though still an order of magnitude larger than group-based proofs,

e.g. [38] notes that a proof of opening alone needs 8 kB. We leave it

as an interesting question, whether lattice-based range proofs could

benefit from square-decompositions or our techniques as well.

1.2.4 SharpHO: Augmenting Sharp with Hidden Order Groups. By
using groups of hidden order, we can achieve improved soundness

guarantees. On a high level, we add a single MPed commitment 𝐶 ′

in a hidden order group to Sharp to restrict the possible commit-

ment openings to “special” rationals. In contrast, all other range

proofs in hidden order groups perform the entire range proof in
the hidden order group [10, 22, 23, 31, 36]. As these groups are

larger than standard DLOG groups, our approach heavily improves

efficiency.

Our proof of opening for the additional commitment only re-

quires one additional short integer (for proving knowledge of the

randomness of 𝐶 ′), as we use a synthesized challenge 𝛾 ′ and re-

sponse 𝑧′
𝑖
(computed from the actual challenges and responses) to

avoid further repetitions (even if the underlying range proof is re-

peated). Inmore detail, when the PoSO is repeated𝑅 times with chal-

lenges {𝛾𝑘 }𝑅𝑘=1, the prover and verifier set 𝛾 ′ =
∑𝑅
𝑘=1

𝛾𝑘 (Γ + 1)𝑘−1
and similarly for 𝑧′

𝑖
. So for completing the proof, only the masked

commitment randomness 𝑡 ′𝑥 is sent additionally. When instantiat-

ing this augmentation with suitable class groups, the committed

𝑥𝑖s are restricted to be dyadic rationals, i.e. of the form𝑚/2ℓ . With

RSA groups, the 𝑥𝑖 must be integers, hence the proof is standard

sound.

2 PRELIMINARIES
2.1 Notation and Basic Functions
We use log for the binary logarithm. We write [𝑎, 𝑏] for an interval

[𝑎, 𝑏] in Z, and we write [𝑎, 𝑏]𝑅 for an interval in another space 𝑅,

e.g. Q,R,Z𝑝 . We use Minkowski sum notation for sets, i.e. 𝐴 + 𝐵 =

{𝑎+𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵} andwrite𝐴+𝑏 B 𝐴+{𝑏} for offsets.We denote

by |𝑥 | the absolute value of 𝑥 ∈ R. Let 𝑝 be an (odd) (prime) number.

Let Z𝑝 = Z/𝑝Z be the integers modulo 𝑝 , with representatives

either Z𝑝 = [0, 𝑝 − 1] or Z𝑝 = [⌈−𝑝−1
2
⌉, ⌈𝑝−1

2
⌉]. Generally, we

write ≡𝑝 for equalitymod 𝑝 and ∈Z𝑝 for set membership modulo 𝑝 ,

i.e. 𝑥 ∈Z𝑝 𝑆 iff ∃𝑠 ∈ 𝑆 : 𝑥 ≡𝑝 𝑠 . For 𝑥 ∈ Z𝑝 , let |𝑥 | = min{|𝑘 | | 𝑘 ∈
Z, 𝑘 ≡𝑝 𝑥} ≤ 𝑝/2.

For a randomized algorithm 𝒜 with input 𝑥 , we write 𝑦 ←
𝒜 (𝑥 ; 𝑟 ) for its execution with explicit randomness 𝑟 . If the random-

ness is not explicit, we write 𝑦 ← 𝒜 (𝑥) and assume that 𝑟 was

sampled accordingly. We write 𝑠
$← 𝑆 for sampling 𝑠 uniformly

at random from a finite set 𝑆 or 𝑑
$← 𝐷 to sample 𝑑 randomly

according to a given probability distribution 𝐷 . Further, we gener-

ally assume that some public parameters, denoted by pp, and the

security parameter, denoted by 𝜆, are implicitly passed as input to

algorithms if it is clear by context.

We define the “prime number analogue” of the factorial.

Definition 2.1 (Primorial). We write priml(𝑘) for the product of
the first 𝑘 primes, i.e. priml(𝑘) B ∏𝑘

𝑖=1 𝑝𝑖 where 𝑝𝑖 is the 𝑖-th prime

number.
5
We write primlmin(𝑛) for min{𝑘 | priml(𝑘) ≥ 𝑛}, i.e. the

smallest 𝑘 such that priml(𝑘) ≥ 𝑛.

2.2 Cryptographic Primitives
We define syntax and semantics of cryptographic primitives, and

sketch their security properties. For formal definitions, see the full

version [21].

2.2.1 Cryptographic Groups. We work in the DLOG setting with

cryptographic groups. We writeG,H, etc. for groups and use capital
letters 𝐺 , 𝐻 , etc. for group elements. All groups are commutative

and we use additive notation, i.e. we write 𝐺 + 𝐻 and 𝑥 · 𝐺 or

𝑥𝐺 for 𝐺,𝐻 ∈ G, 𝑥 ∈ Z. We denote by ⟨𝐺⟩ the cyclic subgroup

generated by𝐺 . The subgroup indistinguishability (SI) assumption

in G asserts that 𝐻
$← G and 𝐻

$← ⟨𝐺⟩ are indistinguishable.
5
The usual definition of primorial is 𝑛# =

∏
𝑝𝑖 ≤𝑛 𝑝𝑖 , where 𝑝𝑖 is the 𝑖-th prime. That

is, 𝑛# is the product of all primes 𝑝𝑖 up to 𝑛. Thus, priml(𝑘) = 𝑝𝑘#.
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A PPT algorithm GenGrp on input 1
𝜆
outputs a (description of

a) group G = G𝜆 . Given the description, group operations (addition

and inverse) and membership tests are efficient, as well as bounds

𝑈lo ≤ |G| ≤ 𝑈up on the group order are specified. For notational

simplicity, we leaveGenGrp implicit in the rest of the work. By𝐴
$←

G we denote randomly drawn group elements without trapdoors.6

When we say “G is a group of (prime) order 𝑝 = 𝑝𝜆”, we mean that

𝑝 = |𝐺 | is known unless explicitly stated otherwise.

The DLOG assumption in cyclic groups asserts that finding the

discrete logarithm of a random group element 𝐻
$← G is hard. It

translates to groups of hidden order (where ⟨𝐺⟩ ⊊ G is possible),

by considering 𝐻
$← ⟨𝐺⟩. For better efficiency in groups of large

order, the DLOG assumption can be strengthened.

Definition 2.2 (DLSE, SEI). The 𝑆-bounded DLSE assumption as-

serts that it is hard to compute DLOG (w.r.t. 𝐺) of 𝑧𝐺 where 𝑧
$←

[0, 𝑆]. The 𝑆-bounded SEI assumption asserts that it is hard to dis-

tinguish (𝐺,𝐻 ) and (𝐺,𝐻 ′) where 𝐻 $← ⟨𝐺⟩ and 𝐻 ′ = 𝑧𝐺 for

𝑧
$← [0, 𝑆] (and 𝐺 $← G).

The above assumptions are only of interest if 𝑆 ≪ ord(G).
Throughout this work, we generally set 𝑆 = 2

2𝜆 − 1.7

2.2.2 Hash Functions. A (keyed) hash function Hash is of the form

Hash : 𝒦 × {0, 1}∗ ↦→ {0, 1}ℓ . The key (i.e. the first input) to Hash
is usually implicit, and part of the public parameters. We call Hash
a collision-resistant hash function (CRHF), if it is hard to find a

collision, i.e. two inputs𝑚,𝑚′ such that Hash(𝑚) = Hash(𝑚′).

2.2.3 Commitment Schemes. A (non-interactive) commitment scheme
Com allow committing to a message𝑚, obtaining a commitment

𝑐 and opening information 𝑑 . More formally, Com is a 3-tuple of

PPT algorithms (Setup,Commit,Verify) s.t.
• Com.Setup(1𝜆): outputs a commitment key ck (often left

implicit),

• Com.Commit
ck
(𝑥): outputs a pair (𝑐, 𝑑) of commitment 𝑐

(to 𝑥 ) and opening 𝑑 under commitment key ck,

• Com.Verify
ck
(𝑐, 𝑥, 𝑑): outputs 1 iff it accepts that 𝑐 opens to

𝑥 given opening 𝑑 under commitment key ck.

We require that Com is (perfectly) correct, i.e. honest commitments

always verify. Moreover, Com should be binding and hiding, i.e. a
commitment 𝑐 can be opened to (at most) one message 𝑥 , and it

is hard to distinguish whether an (unopened) commitment is to

message 𝑥0 or 𝑥1.

Instantiation. We consider Pedersenmulti-commitments (MPed),
a generalization of the Pedersen commitment scheme [40], with

short openings over a prime or hidden order group G. Let 𝑁, 𝑆 ∈ N
and 𝑈lo ≤ |G| ≤ 𝑈up. Setup samples 𝐺𝑖

$← G for 𝑖 ∈ [0, 𝑁 ] and
outputs commitment key ck = ({𝐺𝑖 }𝑖∈[0,𝑁 ] ). Given a message

6
Transparent setup typically requires trapdoor-free sampling. Otherwise,𝐴 could be

sampled/encoded via 𝑥 ∈ Z, as𝐴 = 𝑥𝐺 , leaking the dlog of𝐴. A stronger form, called

invertible sampling is often used in security reductions to “program” the setup, and

possible in most cryptographic groups (including Z×𝑝 , elliptic curves, and RSA groups).

However, as noted in [1], there are no known invertible sampling algorithms for class

groups. In this work, we rely on suitably strengthened hardness assumptions to avoid

invertible sampling in class groups.

7
To the best of our knowledge, there are no non-generic attacks on the (short) discrete

logarithm assumption in hidden order groups. The best generic algorithm (without

preprocessing) has𝒪 (
√
𝑆) runtime, see for example [20, Section 3.2].

vector {𝑥𝑖 }𝑖∈[1,𝑁 ] , Commit samples 𝑟
$← [0, 𝑆], sets 𝐶 = 𝑟𝐺0 +∑

𝑖∈[1,𝑁 ] 𝑥𝑖𝐺𝑖 , and outputs the pair (𝐶, 𝑟 ). Given commitment 𝐶 ,

message {𝑥𝑖 }𝑖∈[1,𝑁 ] and opening 𝑟 , Verify outputs 1 iff 𝐶 = 𝑟𝐺0 +∑
𝑖∈[1,𝑁 ] 𝑥𝑖𝐺𝑖 and 𝑥𝑖 is in the right message space for all 𝑖 . That is,

if G has prime order 𝑝 , then 𝑥𝑖 ∈ Z𝑝 , or else 𝑥𝑖 ∈ Z unless stated
otherwise. We write Ped for the Pedersen commitment scheme,

i.e.MPed for 𝑁 = 1. The schemeMPed is hiding under the SI and
SEI assumptions and binding under the DLOG assumption. The

strength of the hiding property scales with hiding parameter 𝑆 .8

2.2.4 Zero-Knowledge Proofs of Knowledge. A proof system (P,V)
for NP-relation R is a two-party protocol, where prover P has input

(𝑥,𝑤) ∈ R and verifier V has input 𝑥 . The verifier accepts or rejects

an interaction (by outputting 1 or 0). The prover has no output.

Moreover, we require correctness with error 𝛾err, that is if (𝑥,𝑤) ∈
R, then in an honest execution, the verifier accepts except with

probability 𝛾err.

Our proof systems will be proofs of knowledge (PoK) and non-
abort special honest verifier zero-knowledge (SHVZK). PoK means,

that one can extract a witness 𝑤 for 𝑥 from any prover which

convinces V with probability higher than the knowledge error 𝜅err.

We consider relaxed soundness, that is, the witness relation RExt for
an extracted witness can differ from the correctness relation R. We

share this efficiency trade-offwithmany lattice-based proof systems.

Non-abort SHVZK means, that transcripts where the prover does

not abort can be simulated efficiently given only 𝑥 , if the verifier’s

challenges are known ahead of time. In our proof systems, prover

aborts happen due to rejection sampling.

We work in the common reference string (CRS) model. Most of

our protocols require only a uniform (common) random string (URS),
a.k.a. transparent setup.

2.2.5 Random Oracle Model (ROM). In the ROM, all parties have

access to a truly random function RO : {0, 1}∗ → {0, 1}2𝜆 . The
Fiat–Shamir transformation converts public coin protocols to non-

interactive zero-knowledge proofs of knowledge (NIZKPoK) by

computing the verifier’s challenges as hashes over partial tran-

scripts and other context information (which includes 𝑥). In case

of non-zero correctness error, one retries in case of aborts [37]. In

practice, the ROM is heuristically instantiated by a strong crypto-

graphic hash function, e.g. SHA-3. Note that a URS can be generated

trivially in the ROM.

2.3 Rational Representatives
Using Z-valued representatives for Z/𝑝Z is a natural choice, ob-

tained from the homomorphism Z→ Z𝑝 , 𝑥 ↦→ 𝑥 mod 𝑝 . Another
choice is induced by the ring Z(𝑝) = {𝑛𝑑 | 𝑛 ∈ Z, 𝑑 ∈ N, 𝑝 ∤ 𝑑} ⊆ Q,
and the homomorphism

𝑛
𝑑
↦→ 𝑛 · (𝑑−1 mod 𝑝) mod 𝑝 . We call such

representatives rational. Strictly speaking, a set of representatives

𝑅 ⊆ Z(𝑝) should have a unique representative for each element in

Z𝑝 . We work with smaller sets, which do not have representatives

for all of Z𝑝 , but existing representatives are unique. The lack of

surjectivity will be of no concern.

8
If𝐺𝑖

$← ⟨𝐺0 ⟩ and 𝑆 is large enough, then MPed is statistically hiding. Under the

SI assumption, instead using 𝐺𝑖
$← G remains (computationally) hiding. Usually,

sampling𝐺𝑖
$← G can be transparent (trapdoor-free), but𝐺𝑖

$← ⟨𝐺0 ⟩ not necessarily.
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Definition 2.3. Let Q𝑁,𝐷 ⊆ Q be the rationals whose numerator

is bounded by 𝑁 and denominator bounded by 𝐷 , that is

Q𝑁,𝐷 = {𝑛
𝑑
∈ Q | |𝑛 | ≤ 𝑁, |𝑑 | ≤ 𝐷} ⊆ Q.

The value 𝑥 is represented by
𝑛
𝑑
if 𝑥 ≡𝑝 𝑛𝑑−1 (where 𝑑−1 is com-

puted modulo 𝑝).

Note that we interpret
𝑛
𝑑
as a fraction; the tuple (𝑛,𝑑) is not

unique. It becomes unique if
𝑛
𝑑
is reduced and 𝑑 ≥ 1.

Lemma 2.4 (Criterion for Uniqe Representative in Q𝑁,𝐷 ).
Let 𝑁, 𝐷 so that 𝑁 · 𝐷 < 𝑝/2. Then for any 𝑥 ∈ Z𝑝 , if there is a
representative in Q𝑁,𝐷 of 𝑥 , i.e. some 𝑛

𝑑
so that 𝑛𝑑−1 ≡𝑝 𝑥 , then 𝑛

𝑑
is

unique (as a fraction).

We always assume that 𝑁 · 𝐷 < 𝑝/2 whenever we use Q-
representatives.

Remark 2.1. Let 𝑎 ∈ Z𝑝 and 𝑁𝐷 < 𝑝/2. We define [𝑎]Q ∈ Q𝑁,𝐷
as the unique irreducible representatives 𝑛

𝑑
of 𝑎, assuming it exists.

(We assume that some maximal bounds 𝑁, 𝐷 are implicitly fixed
in the context.) We note that [𝑎]Q can be efficiently computed (if it
exists), see [28].

2.4 Masking Scheme
We use “additive masking” to hide information with random noise.

For readability, we use an abstraction of this technique formal-

ized below, in a way similar to [3]. A masking scheme is a tuple

(R,mask,𝑉) of efficiently samplable distribution R and a masking

algorithm mask for values in range [0,𝑉].
• 𝑟 $← R is an integer 𝑟 ∈ [0, (𝑉 + 1)𝐿], i.e. supp(R) ⊆ [0, (𝑉 +
1)𝐿]. We call 𝑟 the mask and 𝐿 ≥ 1 the masking overhead.
• mask (𝑣, 𝑟 ) takes as input an integer 𝑣 ∈ [0,𝑉] and a mask 𝑟

and outputs 𝑣+𝑟 or⊥. For simplicity, we requiremask (𝑣, 𝑟 ) =
⊥ if 𝑣 + 𝑟 ∉ [0, (𝑉 + 1)𝐿].
• p denotes an upper bound on the abort probability, so that

sup𝑣∈[0,𝑉 ] Pr[mask (𝑣, 𝑟 ) = ⊥ | 𝑟 $← R] ≤ p.
• Let 𝑀𝑣 denote the distribution defined via: Sample 𝑟

$← R,
then returnmask (𝑣, 𝑟 ). Then 𝜀mask = sup𝑣,𝑤∈[0,𝑉] Δ(𝑀𝑣, 𝑀𝑤)
is called the masking error.

The range 𝑉 is sometimes left implicit. Intuitively, 𝑧 = mask (𝑣, 𝑟 )
reveals almost nothing about 𝑣 , since the random mask 𝑟 ensures

that 𝑧 is distributed (almost) independently from 𝑣 . The masking

error quantifies this intuition.

Rejection Sampling. (Uniform) Rejection sampling is usually de-

scribed for values in intervals [−𝑉,𝑉], i.e. symmetric around 0. We

use [0,𝑉] instead, and adapt mask accordingly. Namely, for given

masking overhead 𝐿:

• The distribution R is the uniform distribution 𝑈 [0,(𝑉+1)𝐿 ] .
• mask (𝑣, 𝑟 ) outputs 𝑣 + 𝑟 if 𝑣 + 𝑟 ∈ [𝑉, (𝑉 + 1)𝐿], else ⊥.
• The abort probability is p =

𝑉+1
(𝑉+1)𝐿+1 ≤

1

𝐿
.
9

• The masking error is 0.
10

9
For any 𝑣 ∈ [0,𝑉], there are𝑉 + 1 “bad” 𝑟 (out of (𝑉 + 1)𝐿 + 1 choices for 𝑟 ).

10
The abort probability is independent of 𝑣. Conditioned on no abort, the distribution

is uniform over [𝑉, (𝑉 + 1)𝐿 ].

Drowning in noise. In the above, set 𝐿 = 2
𝜆
. Then abort probabil-

ity is 2
−𝜆
. This is convenient to use if “size” of 𝑟 does not matter

much.

No aborts. We also use masking schemes to save communication.

In these cases, once R grows beyond Z𝑝 , i.e. Z𝑝 = [0, 𝑝 − 1] ⊆ R,
we assume that R = Z𝑝 and mask (𝑣, 𝑟 ) = 𝑣 + 𝑟 mod 𝑝 (without

abort). We will be explicit about such potential optimizations.

3 SHORTNESS TESTING mod 𝑝

In this section, we present a result that allows us to test shortness of

many fractions at once. We will apply this result later to efficiently

test shortness of committed values in our range proofs (see sec-

tion 5). Indeed, it is the basis for constructing a range proof which

communicates a single integer per repetition. First, we define a

notion of “shortness test” which is tailored to our application.

Definition 3.1 (Fractional Shortness Test). A (fractional) shortness
test is an algorithm 𝑇 which takes as input ®𝑥 ∈ Z𝑁𝑝 (where 𝑇 is

implicitly parameterized by 𝑝 and 𝑁 ) and outputs 𝑇 ( ®𝑥) ∈ {0, 1}.
Let 𝐾, 𝐷 ∈ N with 𝐾𝐷 < 𝑝/2. A vector ®𝑥 ∈ Z𝑁𝑝 is uniformly (𝐾, 𝐷)-
short, if ∃𝑑 ∈ [1, 𝐷] : 𝑑 ®𝑥 ∈ [−𝐾,𝐾]𝑁

Z𝑝
. Let 𝜙𝐾,𝐷 ( ®𝑥) ∈ {0, 1} be the

predicate which is 1 if ®𝑥 is uniformly (𝐾, 𝐷)-short. We say that 𝑇

is a fractionally (𝐾, 𝐷)-sound shortness test with error 𝜅, if

∀®𝑥 ∈ Z𝑁𝑝 : 𝜙𝐾,𝐷 ( ®𝑥) = 0 =⇒ Pr[𝑇 ( ®𝑥) = 1] ≤ 𝜅. (2)

The crucial point in fractional (𝐾, 𝐷)-soundness is that a vector
is rejected with high probability if there is no single denominator

of size at most 𝐷 such that 𝑑 · ®𝑥 ∈ [−𝐾,𝐾]𝑁
Z𝑝
, i.e. ∥𝑑 · ®𝑥 ∥∞ ≤ 𝐾 . A

weaker definition might only require 𝑥𝑖 ∈ Q𝐾,𝐷 for all 𝑖 , but this is

not enough for our applications. Note that we do not define what

correctness of a fractional shortness test is; it will be evident in

applications and concrete requirements may vary.

Definition 3.2 (RAST). We define the random affine shortness test
RAST𝑁,𝒟,𝐾,𝜇 for shortness over Z𝑝 with dimension or batch-size 𝑁 ,

test distribution 𝒟𝑁 range bound 𝐾 , and offset 𝜇 as follows: To test

®𝑥 ∈ Z𝑁𝑝 , pick ®𝛾 $← 𝒟𝑁 , and output 1 if 𝜇 + ∑𝑁𝑖=1 𝑥𝑖𝛾𝑖 ∈ [0, 𝐾]Z𝑝 ,
else output 0.

The following theorem assures fractional soundness of the RAST.

The proof is technical, and we refer to the full version [21] for

details.

Theorem 3.3. Let RAST be the random affine shortness test with
uniform distribution 𝒟 over [0, 𝐷]𝑁 , dimension 𝑁 , range bound 𝐾 ,
and any offset 𝜇 ∈ Z𝑝 . Let𝐾 ′ = (1+2𝛽)𝐾 where 𝛽 = min(𝑁, primlmin(
𝐷 + 1)) and suppose that 2𝐷 (𝐾 ′ + 𝐷𝐾 + 2) < 𝑝 . Then RAST is frac-
tionally (𝐾 ′, 𝐷)-sound with error 8/(𝐷 + 1),

4 SharpGS: BATCHING AND GROUP
SWITCHING

In this section, we present the optimized Σ-protocol for showing
the decomposition in the DLOG setting, introduce group switching,

and show how to perform efficient proofs for batches of integers.

4.1 Parameters
Here, we give an overview of all the used parameters in SharpGS.
Let 𝑁 ∈ N be the number of integers 𝑥1, . . . , 𝑥𝑁 in the ranges
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[0, 𝐵𝑖 ]. In the following, we fix 𝐵 = 𝐵𝑖 for simplicity. Let 𝑅 be the

number of repetitions of the proof and [0, Γ] be the challenge set.
Generally, we have 𝑅 = ⌈𝜆/log(Γ + 1)⌉ unless lower soundness
than 𝜆 bits is satisfactory. We will need to mask values 𝑥 ∈ [0, 𝐵Γ]
and values 𝑟 ∈ [0, 𝑆Γ] (where 𝑆 is defined below) with masking

algorithm mask𝑥 ,mask𝑟 , masking randomness distribution R𝑥 , R𝑟 ,
masking overhead 𝐿𝑥 , 𝐿𝑟 and masking abort probability px, pr re-
spectively. Let 𝑝 ≥ 2(𝐵Γ2 + 1)𝐿𝑥 and 𝑞 ≥ 18((𝐵Γ + 1)𝐿𝑥 )2. We

useMPed commitments with hiding parameter 𝑆 in groups Gcom
and G3sq, with prime order 𝑝 and 𝑞 respectively. We fix gener-

ators 𝐺0,𝐺𝑖 ,𝐺𝑖, 𝑗
$← Gcom for the commitment key ckGcom and

𝐻0, 𝐻𝑖
$← G3sq for ckG3sq , where 𝑖 ∈ [1, 𝑁 ] and 𝑗 ∈ [1, 3]. Let Hash

be a collision resistant hash function with output size 2𝜆 bits. The

CRS is crs = (ckGcom , ckG3sq ).

4.2 Scheme Overview
The Σ-protocol SharpGS is described in algorithm 1. The prover

receives the witnesses 𝑥𝑖 ∈ [0, 𝐵] and 𝑟𝑥 ∈ [0, 𝑆], and the statement

𝐶𝑥 = 𝑟𝑥𝐺0 +
∑𝑁
𝑖=1 𝑥𝑖𝐺𝑖 and 𝐵 as input. Prover and verifier proceed

as follows: (1) In the first flow, the prover computes and commits

to a decomposition of 𝑥𝑖 usingMPed in Gcom (lines 1 and 2). Then,

for all repetitions 𝑘 ∈ [1, 𝑅], she commits to random masks of

the witnesses and decomposition inMPed over Gcom (line 4 to 7)

and the garbage terms of the decomposition polynomial (lines 8

to 12). Finally, she sends the commitments to the verifier. (2) In

the second flow, the verifier draws a random challenge for each

repetition (line 1) and sends it to the prover. (3) In the third flow,

the prover masks the witnesses (multiplied with the challenges) for

each repetition and sends the result to the verifier (lines 13 to 18).

(4) Finally, the verifier checks whether the linear relation between

the commitments and the challenge holds, after recomputing the

decomposition polynomial (lines 2 to 8).

Optimizations. We use uniform rejection sampling for the mask-

ing (instead of Gaussian rejection sampling in CKLR). This reduces

the masking overhead in our setting. As in CKLR, the prover can

avoid sending 𝒟 = (𝐷𝑘,𝑥 , 𝐷𝑘,𝑦, 𝐷𝑘,∗)𝑅𝑘=1 by replacing the output

𝒟 in the first flow with a hash Δ ← Hash(𝒟). Then, the veri-

fier can recompute 𝒟 in the verification and check whether the

hash matches. Applying the Fiat-Shamir transformation yields a

non-interactive range proof.

4.3 Security and Correctness
Non-abort probability. With 𝑅 repetitions, the probability of the

honest prover not aborting (due to masking) is lower-bounded by

[(1 − pr)3 · (1 − px)4𝑁 ]𝑅 .

Security. SharpGS proofs satisfy correctness, non-abort SHVZK

and relaxed soundness. Intuitively, the verifier is convinced that

the committed value has a unique rational representative in the

range [− 1

4𝐵
, 𝐵 + 1

4𝐵
]Q, formalized in theorem 4.1 below. Note that

with the four square decomposition, we obtain exact range mem-

bership in [0, 𝐵], in exchange for slightly increasing proof size (see

section 6.1.2).

Theorem 4.1. The scheme SharpGS has correctness error at most
1 − [(1 − pr)3 · (1 − px)𝑁 ]𝑅 . It is non-abort SHVZK under the SEI
assumption in Gcom and G3sq. If 2(𝐵Γ2 + 1)𝐿 < 𝑝 and 18𝐾2 < 𝑞

Algorithm 1 SharpGS
Prover(𝐶𝑥 , 𝐵, 𝑟𝑥 , {𝑥𝑖 }𝑁𝑖=1) Verifier(𝐶𝑥 , 𝐵)

1: Compute 𝑦𝑖, 𝑗 s.t. 4𝑥𝑖 (𝐵 − 𝑥𝑖 ) + 1 =
∑
3

𝑗=1 𝑦
2

𝑖, 𝑗
for 𝑖 ∈ [1, 𝑁 ]

2: Set 𝐶𝑦 = 𝑟𝑦𝐺0 +
∑𝑁
𝑖=1

∑
3

𝑗=1 𝑦𝑖, 𝑗𝐺𝑖, 𝑗 for 𝑟𝑦
$← [0, 𝑆]

3: for all 𝑘 ∈ [1, 𝑅] do
4: Set �̃�𝑘,𝑥 , �̃�𝑘,𝑦

$← R𝑟 ⊲ Opening

5: Set 𝑥𝑘,𝑖 , 𝑦𝑘,𝑖, 𝑗
$← R𝑥 for 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3]

6: Set 𝐷𝑘,𝑥 = �̃�𝑘,𝑥𝐺0 +
∑𝑁
𝑖=1 𝑥𝑘,𝑖𝐺𝑖

7: Set 𝐷𝑘,𝑦 = �̃�𝑘,𝑦𝐺0 +
∑𝑁
𝑖=1

∑
3

𝑗=1 𝑦𝑘,𝑖, 𝑗𝐺𝑖, 𝑗

8: Set 𝑟∗
𝑘

$← [0, 𝑆] and �̃�∗
𝑘

$← R𝑟 ⊲ Decomposition

9: Set 𝛼∗
1,𝑘,𝑖

= 4𝑥𝑘,𝑖𝐵 − 8𝑥𝑖𝑥𝑘,𝑖 − 2

∑
𝑗 ∈[1,3] 𝑦𝑖, 𝑗𝑦𝑘,𝑖, 𝑗 for 𝑖 ∈

[1, 𝑁 ]
10: Set 𝛼∗

0,𝑘,𝑖
= −(4𝑥2

𝑘,𝑖
+∑𝑗 ∈[1,3] 𝑦

2

𝑘,𝑖, 𝑗
) for 𝑖 ∈ [1, 𝑁 ]

11: Set 𝐶𝑘,∗ = 𝑟
∗
𝑘
𝐻0 +

∑𝑁
𝑖=1 𝛼

∗
1,𝑘,𝑖

𝐻𝑖

12: Set 𝐷𝑘,∗ = �̃�
∗
𝑘
𝐻0 +

∑𝑁
𝑖=1 𝛼

∗
0,𝑘,𝑖

𝐻𝑖

𝐶𝑦 , {𝐶𝑘,∗, 𝐷𝑘,𝑥 , 𝐷𝑘,𝑦 , 𝐷𝑘,∗ }𝑅𝑘=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1: 𝛾𝑘
$← [0, Γ] for 𝑘 ∈ [1, 𝑅] ⊲ Challenge

{𝛾𝑘 }𝑅𝑘=1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13: for all 𝑘 ∈ [1, 𝑅], 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3] do
14: Set 𝑧𝑘,𝑖 = mask𝑥 (𝛾𝑘 ·𝑥𝑖 , 𝑥𝑘,𝑖 ), 𝑧𝑘,𝑖, 𝑗 = mask𝑥 (𝛾𝑘 ·𝑦𝑖, 𝑗 , 𝑦𝑘,𝑖, 𝑗 )
15: Set 𝑡𝑘,𝑥 = mask𝑟 (𝛾𝑘𝑟𝑥 , �̃�𝑘,𝑥 ), 𝑡𝑘,𝑦 = mask𝑟 (𝛾𝑘 · 𝑟𝑦, �̃�𝑘,𝑦)
16: Set 𝑡∗

𝑘
= mask𝑟 (𝛾𝑘 · 𝑟∗𝑘 , �̃�

∗
𝑘
)

17: if any 𝑧𝑘,𝑖 , 𝑡𝑘,𝑥 or 𝑡∗
𝑘
is ⊥ then

18: abort ⊲ Masking failed

{𝑧𝑘,𝑖,𝑗 , 𝑧𝑘,𝑖 , 𝑡𝑘,𝑥 , 𝑡𝑘,𝑦 , 𝑡∗𝑘 }𝑘∈[1,𝑅 ],𝑖∈[1,𝑁 ], 𝑗∈[1,3]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2: for all 𝑘 ∈ [1, 𝑅] do
3: Check 𝐷𝑘,𝑥 + 𝛾𝑘𝐶𝑥 = 𝑡𝑘,𝑥𝐺0 +

∑𝑁
𝑖=1 𝑧𝑘,𝑖𝐺𝑖

4: Check 𝐷𝑘,𝑦 + 𝛾𝑘𝐶𝑦 = 𝑡𝑘,𝑦𝐺0 +
∑𝑁
𝑖=1

∑
3

𝑗=1 𝑧𝑘,𝑖, 𝑗𝐺𝑖, 𝑗

5: Set 𝑓 ∗
𝑘,𝑖

= 4𝑧𝑘,𝑖 (𝛾𝑘𝐵 − 𝑧𝑘,𝑖 ) + 𝛾2𝑘 −
∑
3

𝑗=1 𝑧
2

𝑘,𝑖, 𝑗

6: Check 𝐷𝑘,∗ + 𝛾𝑘𝐶𝑘,∗ = 𝑡∗𝑘𝐻0 +
∑𝑁
𝑖=1 𝑓

∗
𝑘,𝑖
𝐻𝑖

7: Check 𝑧𝑘,𝑖 , 𝑧𝑘,𝑖, 𝑗 ∈ [0, (𝐵Γ + 1)𝐿𝑥 ] for 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3]
8: return 1 iff all checks succeed

with 𝐾 = (𝐵Γ + 1)𝐿, then SharpGS has relaxed soundness under
the DLOG and SEI assumptions in Gcom and G3sq with knowledge
error ( 2

Γ+1 )
𝑅 for the relation RExt =

{
((𝑥𝑖 )𝑁𝑖=1, 𝑟𝑥 ) : 𝐶𝑥 = 𝑟𝑥𝐺0 +∑𝑁

𝑖=1 𝑥𝑖𝐺𝑖 ∧ [𝑥𝑖 ]Q ∈ [−
1

4𝐵
, 𝐵 + 1

4𝐵
]Q𝐾,Γ

}
. To be precise, we consider

the 𝑆-bounded SEI assumption in Gcom and G3sq. Moreover, in RExt
all [𝑥𝑖 ]Q have a common denominator 𝑑 ∈ [1, Γ].

Security proof, outline. Here, we only sketch the proof of se-

curity and the relaxed soundness guarantee. We refer to the full

version [21] for details. (The proof is given for the SharpGS with all

optimizations.) Informally, the committed 𝑥𝑖 are guaranteed to have

rational representatives in [− 1

4𝐵
, 𝐵 + 1

4𝐵
]Q𝐾,Γ , where the numerator

and denominator is bounded by 𝐾 = (𝐵Γ + 1)𝐿 and Γ respectively.
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Since either mask aborts or the 𝑧’s lie within a predetermined

range, correctness follows easily. Also, we can simulate a valid tran-

script of the proof for statement (𝐶𝑥 , 𝐵) by first sampling the chal-

lenge and then computing a transcript starting from the last flow.

For this, we replace each witness 𝑤 in the masking mask (𝛾𝑤,𝑤)
with 0 (where𝑤 is the usedmask) which affects the distribution only

by 𝜀mask = 0 (see section 2.4). If any masking aborts, the simulator

returns ⊥. Thus, the scheme is non-abort SHVZK under the SEI
assumption (for hiding commitments). For the soundness proof, we

show 3-special soundness, i.e. extraction from 3 related transcripts.

First, we extract the commitments (with a standard argument). Sec-

ond, we verify that the three square decomposition holds over Z𝑞
for the extracted 𝑥𝑖s and infer that [𝑥𝑖 ]Q ∈ [− 1

4𝐵
, 𝐵 + 1

4𝐵
]Q. The

switch between groups requires special care, as the rings Z𝑝 and Z𝑞
are “algebraically incompatible”. But the shortness of the extracted

values suffices to show that the three square decomposition over Z𝑞
implies non-negativity for the rational representative committed

over Z𝑝 .

5 SharpPoSO: IMPROVED PROOF OF SHORT
OPENING

We present SharpPoSO, which is based on SharpGS but uses a (batch)
shortness test to separate PoSO and PoDec, and to reduce costs of

“internal” repetitions.

5.1 Parameters
The groups Gcom and G3sq, and parameters 𝐵, Γ, 𝑁 , and 𝑆 , are

identical to SharpGS (cf. section 4.1). The commitment key ckcom is

augmented by additional elements 𝐺 𝑗
$← Gcom for 𝑗 ∈ [1, 𝑅]. For

simplicity, we define Γ̂ B (Γ+1)𝑅 −1 (the size of “large” challenge),
and require that Γ̂ ≤ 𝑝 .11

Masking and mask sizes. For simplicity, we fix a single masking

overhead 𝐿 for all masks. Logically, some masks must be short

due to shortness checks, while other masks only hide the value

and shortness is used to reduce communication. The latter may be

drawn uniformly from Z𝑝 as well. In SharpGS, 𝐿𝑥 was the former, 𝐿𝑟

the latter type. In SharpPoSO, we have following masking behaviour:

• R𝑝𝑜𝑠𝑜 = [0, (𝑉𝑝𝑜𝑠𝑜 + 1)𝐿], where 𝑉𝑝𝑜𝑠𝑜 = 4𝑁𝐵Γ must be

short.

• For 𝑧 ∈ {𝑥, 𝜇, 𝑟, 𝑟∗}, R𝑧 need only hide the value, somask𝑧 (𝑣,
𝑚) is computed modulo 𝑝 (resp. 𝑞). If R𝑧 = Z𝑝 (resp. Z𝑞),
mask𝑧 never aborts.
• For 𝑧 ∈ {𝑥, 𝜇, 𝑟 }, we set R𝑧 = [0,min(𝑝 − 1, (𝑉𝑧 + 1)𝐿)],
where 𝑉𝑥 = 𝐵Γ̂, 𝑉𝑟 = 𝑆 , and 𝑉𝜇 = R𝑝𝑜𝑠𝑜 · Γ̂𝐿. And we set

R𝑟 ∗ = [0,min(𝑞 − 1, (𝑉𝑟 ∗ + 1)𝐿)] where 𝑉𝑟 ∗ = 𝑆 .
• If Gcom = G3sq, then typically R𝑟 = R𝑟 ∗ = R𝜇 = Z𝑝 .

5.2 Scheme Overview
The difference between SharpGS and SharpPoSO is the use of the

Batch-PoSO. Again, to simplify we only consider one range [0, 𝐵]
for all 𝑥𝑖 . It will be evident how to generalize to independent ranges

𝑥𝑖 ∈ [0, 𝐵𝑖 ].
11
Since the maximal challenge set for a scalar challenge is [0, 𝑝 − 1] = Z𝑝 , increasing

the challenge set would require repetitions in “Phase 2”, which is trivially implemented

but completely unnecessary for our instantiations.

The scheme is defined in algorithms 2 and 3. It is a 5-move pro-

tocol which effectively consists of 2 phases: In Phase 1, the prover

commits to the 3-square decompositions (and masks 𝜇𝑘 ). Then, 𝑘

parallel random affine shortness tests are run on committed values.

In Phase 2, the prover proves that it has correctly answered the

shortness test, and that the 3-square decomposition holds modulo

𝑞. Thus, Phase 2 is very similar to SharpGS, except, it uses a large
challenge space [0, Γ̂], so no repetitions are required.

Algorithm 2 SharpPoSO– Phase 1

Prover(𝐶𝑥 , 𝐵, 𝑟𝑥 , {𝑥𝑖 }𝑁𝑖=1) Verifier(𝐶𝑥 , 𝐵)

1: Compute 4𝑥𝑖 (𝐵 − 𝑥𝑖 ) + 1 =
∑
3

𝑗=1 𝑦
2

𝑖, 𝑗
for 𝑖 ∈ [1, 𝑁 ]

2: Set 𝑟𝑦
$← [0, 𝑆] and 𝜇1, . . . , 𝜇𝑅 $← R𝑝𝑜𝑠𝑜

3: Set 𝐶𝑦 = 𝑟𝑦𝐺0 +
∑𝑁
𝑖=1

∑
3

𝑗=1 𝑦𝑖, 𝑗𝐺𝑖, 𝑗 +
∑𝑅
𝑘=1

𝜇𝑘𝐺𝑘

𝐶𝑦−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1: Sample 𝛾
(𝑘)
𝑖, 𝑗

$← [0, Γ] for 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [0, 3], 𝑘 ∈ [1, 𝑅]

{𝛾 (𝑘 )
𝑖,𝑗
}𝑖,𝑗,𝑘

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4: Let 𝑦𝑖,0 B 𝑥𝑖

5: Set 𝜁𝑘 B mask𝑝𝑜𝑠𝑜 (
∑𝑁
𝑖=1

∑
3

𝑗=0 𝛾
(𝑘)
𝑖, 𝑗
𝑦𝑖, 𝑗 , 𝜇𝑘 ) for 𝑘 ∈ [1, 𝑅]

6: if any 𝜁𝑘 is ⊥ then
7: abort ⊲ Masking Failed

{𝜁𝑘 }𝑘∈[1,𝑅 ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2: if any 𝜁𝑘 ∉ [0, (4𝑁𝐵Γ + 1)𝐿] then
3: return 0 ⊲ PoSO rejected

Run Phase 2: Proof of consistency of 𝜁𝑘 and 3-square

decomposition (see algorithm 3)

5.3 Security and Correctness
Non-abort probability. With 𝑅 “internal” repetitions, the non-

abort probability is lower-bounded by (1 − 1

𝐿
)2𝑅+4𝑁+3.

Security. The security guarantee of SharpPoSO is almost the same

as that of SharpGS, except for a small tightness loss due to the

weaker (provable) guarantees of the shortness test (theorem 3.3).

Theorem 5.1. The scheme SharpPoSO has correctness error at most
1− (1− 1

𝐿
)2𝑅+4𝑁+3. It is non-abort SHVZK under the SEI assumption

in Gcom and G3sq. Let 𝐾 ′ = (1 + 2𝛽)𝐾 where 𝐾 = (𝐵Γ + 1)𝐿 and
𝛽 = min(4𝑁, primlmin(Γ + 1)). If 18(𝐾 ′)2 < 𝑞 and 2(Γ + 1)2𝐾 ′ < 𝑝
and (Γ + 1)𝑅 − 1 < 𝑝 , then SharpPoSO has relaxed soundness under
the DLOG and SEI assumptions in Gcom and G3sq with knowledge

error 2+8𝑅
(Γ+1)𝑅 for the relation RExt =

{
((𝑥𝑖 )𝑁𝑖=1, 𝑟𝑥 ) : 𝐶𝑥 = 𝑟𝑥𝐺0 +∑𝑁

𝑖=1 𝑥𝑖𝐺𝑖 ∧ [𝑥𝑖 ]Q ∈ [−
1

4𝐵
, 𝐵 + 1

4𝐵
]Q𝐾′,Γ

}
. To be precise, we consider

the 𝑆-bounded SEI assumption in Gcom and G3sq. Moreover, in RExt
all [𝑥𝑖 ]Q have a common denominator 𝑑 ∈ [1, Γ].
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Algorithm 3 SharpPoSO– Phase 2

After Phase 1 (shortness proof, see algorithm 2)

8: Set �̃�𝑥 , �̃�𝑦
$← R𝑟

9: Set 𝑥𝑖 , 𝑦𝑖, 𝑗
$← R𝑥 for 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3]

10: Set �̃�𝑘
$← R𝜇 for 𝑘 ∈ [1, 𝑅] ⊲ PoSO

11: Set 𝑑𝑘 =
∑𝑁
𝑖=1

∑
3

𝑗=0 𝑦𝑖, 𝑗𝛾
(𝑘)
𝑖, 𝑗
+ �̃�𝑘 for 𝑘 = 1, . . . , 𝑅 ⊲ PoSO

12: Set 𝐷𝑥 = �̃�𝑥𝐺0 +
∑𝑁
𝑖=1 𝑥𝑖𝐺𝑖

13: Set 𝐷𝑦 = �̃�𝑦𝐺0 +
∑𝑁
𝑖=1

∑
3

𝑗=1 𝑦𝑖, 𝑗𝐺𝑖, 𝑗 +
∑𝑅
𝑘=1

�̃�𝑘𝐺𝑘

14: Set 𝑟∗ $← [0, 𝑆] and �̃�∗ $← R𝑟 ∗
15: Set 𝛼∗

1,𝑖
= 4𝑥𝑖𝐵 − 8𝑥𝑖𝑥𝑖 − 2

∑
𝑗 ∈[1,3] 𝑦𝑖, 𝑗𝑦𝑖, 𝑗 for 𝑖 ∈ [1, 𝑁 ]

16: Set 𝛼∗
0,𝑖

= −(4𝑥2
𝑖
+∑𝑗 ∈[1,3] 𝑦

2

𝑖, 𝑗
) for 𝑖 ∈ [1, 𝑁 ]

17: Set 𝐶∗ = 𝑟∗𝐻0 +
∑𝑁
𝑖=1 𝛼

∗
1,𝑖
𝐻𝑖

18: Set 𝐷∗ = �̃�∗𝐻0 +
∑𝑁
𝑖=1 𝛼

∗
0,𝑖
𝐻𝑖

𝐶∗, 𝐷𝑥 , 𝐷𝑦 , 𝐷∗, {𝑑𝑘 }𝑅𝑘=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4: 𝛾
$← [0, (Γ + 1)𝑅 − 1) ⊆ Z𝑝 ⊲ Large challenge

𝛾
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19: for all 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 3], 𝑘 ∈ [1, 𝑅] do
20: Set 𝑧𝑖 = mask𝑥 (𝛾 · 𝑥𝑖 , 𝑥𝑖 ) and 𝑧𝑖, 𝑗 = mask𝑥 (𝛾 · 𝑦𝑖, 𝑗 , 𝑦𝑖, 𝑗 )
21: Set 𝑡𝑥 = mask𝑟 (𝛾 · 𝑟𝑥 , �̃�𝑥 ) and 𝑡𝑦 = mask𝑟 (𝛾 · 𝑟𝑦, �̃�𝑦)
22: Set 𝑡∗ = mask𝑟 (𝛾 · 𝑟∗, �̃�∗)
23: Set 𝜏𝑘 = mask𝜇 (𝛾 · 𝜇𝑘 , �̃�𝑘 ) ⊲ PoSO

24: if any 𝑧𝑖 , 𝑧𝑖, 𝑗 , 𝑡𝑥 , 𝑡𝑦 𝑡∗, 𝜏𝑘 is ⊥ then
25: abort ⊲ Masking failed

{𝑧𝑖 }𝑖∈[1,𝑁 ] , {𝑧𝑖,𝑗 }𝑖∈[1,𝑁 ], 𝑗∈[1,3] , 𝑡𝑥 , 𝑡𝑦 , 𝑡∗ , {𝜏𝑘 }𝑘∈[1,𝑅 ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

5: Compute 𝐹𝑥 = −𝛾𝐶𝑥 + 𝑡𝑥𝐺0 +
∑𝑁
𝑖=1 𝑧𝑖𝐺𝑖

6: Compute 𝐹𝑦 = −𝛾𝐶𝑦 + 𝑡𝑦𝐺0 +
∑𝑁
𝑖=1

∑
3

𝑗=1 𝑧𝑖, 𝑗𝐺𝑖, 𝑗 +
∑𝑅
𝑘=1

𝜏𝑘𝐺𝑘
7: Let 𝑧𝑖,0 B 𝑧𝑖

8: Set 𝑓𝑘 = −𝛾𝜁𝑘 +
∑𝑁
𝑖=1

∑
3

𝑗=0 𝑧𝑖, 𝑗𝛾
(𝑘)
𝑖, 𝑗
+ 𝜏𝑘 for 𝑘 ∈ [1, 𝑅] ⊲ PoSO

9: Compute 𝑓 ∗
𝑖
= 4𝑧𝑖 (𝛾𝐵 − 𝑧𝑖 ) + 𝛾2 −

∑
3

𝑗=1 𝑧
2

𝑖, 𝑗
for 𝑖 ∈ [1, 𝑁 ]

10: Recompute 𝐹∗ = −𝛾𝐶∗ + 𝑡∗𝐻0 +
∑𝑁
𝑖=1 𝑓

∗
𝑖
𝐻𝑖

11: if 𝐹𝑥 = 𝐷𝑥 , 𝐹𝑦 = 𝐷𝑦 , 𝐹∗ = 𝐷∗, and 𝑓𝑘 = 𝑑𝑘 for 𝑘 ∈ [1, 𝑅] then
12: return 1

13: else return 0

Security proof, outline. The proof of correctness and non-abort

SHVZK for SharpPoSO are completely analogous to the respective

proofs for SharpGS.
The ideas behind the soundness proof of theorem 5.1 are quite

straightforward. It proceeds by dealing with the two phases sep-

arately. First, observe that Phase 2 is effectively a Σ-protocol for
the statement which was completed in Phase 1, i.e. that𝐶𝑥 resp.𝐶𝑦
are commitments to the 𝑥𝑖 ’s resp. auxiliary values 𝑦𝑖, 𝑗 and 𝜇𝑘 , the

answers 𝜁𝑘 of a random affine shortness test are correct, and the

3-square decomposition holds. Indeed, Phase 2 is 3-special sound,

i.e. given 3 accepting transcripts identical up until the challenge

message 𝛾 for 3 distinct challenges, one can extract openings to the

commitments which satisfy the relation (or the binding property

is broken). Thus, as a first step, one can replace Phase 2 with an

extractor with knowledge error 2/(Γ + 1)𝑅 .
Next, one needs to argue that the𝑥𝑖 and𝑦𝑖, 𝑗 are short (from above,

we know that they satisfy the 3-square decomposition). This does

not follow from (3 transcripts for) Phase 2 alone. Intuitively, if the

“shortness test” used has soundness error 𝜅 , then if any 𝑥𝑖 ,𝑦𝑖, 𝑗 is not

short, the probability that the verifier accepts is at most 𝜅𝑅 . More

precisely, if there is no 𝑑 ∈ [1, Γ] such that 𝑑𝑥𝑖 , 𝑑𝑦𝑖, 𝑗 ∈ [−𝐾 ′, 𝐾 ′]Z𝑝
for all 𝑖, 𝑗 , then the shortness test accepts with probability at most 𝜅 .

However, there is a gap: Our commitment is only computationally

binding, so, by breaking the commitment, the adversary might win

with probability 𝜀 (much) higher than 𝜅𝑅 . Fortunately, to win with

probability 𝜀 > 𝜅𝑅 , the adversary must break the binding property.

Thus, except with probability 𝜅𝑅 , one obtains a binding break from

such an adversary in expected time (by rewinding until 𝒜 succeeds

again). Overall, this proves the soundness claim of theorem 5.1.

5.4 Trade-offs and Optimizations
Reducing communication. As with SharpGS, hashing can reduce

the communication in Phase 2 of the protocol. Also, since Phase 2

is effectively independent of Phase 1, it may be exchanged with

other suitable (succinct) argument systems.

Fiat–Shamir transformation. SharpPoSO is public-coin and the Fiat–

Shamir transformation is applicable. This yields a non-interactive
zero-knowledge argument.

Standard Soundness and higher knowledge error. It is easy to see

that RAST with uniform distribution over {0, 1}𝑁 is fractionally

(𝑁𝐵𝐿, 1)-sound with error 1/2. In this case, SharpPoSO has standard

soundness with knowledge error 𝜅err = 2
−𝑅

, and 𝑅 repetitions

require approximately 2𝑅 · log(𝑁𝐵𝐿) bits communication overhead.

This trade-off is especially interesting if high knowledge error is

acceptable. for example, a statistical knowledge error 𝜅err = 2
−40 +

negl in interactive settings12 is a common choice, and in application

to anonymous credentials may be considered acceptable.

By using the Fiat–Shamir transformation on Phase 2 (with Γ̂ =

2
𝜆 −1), an interactive 3-move protocol can be obtained.

13
The trade-

off is also useful if batch size 𝑁 is huge (hence amortized cost to

achieve standard soundness is small).

6 SOUNDNESS GUARANTEES AND HIDDEN
ORDER AUGMENTATION

We provide some insights into the consequences of relaxed sound-

ness and the use of hidden order groups in that context. Further

discussions can be found in the full version [21].

6.1 Remarks on Relaxed Soundness
The relaxed soundness of CKLR-type proofs only ensures that a

committed value 𝑥 is a fraction 𝑥 ≡𝑝 𝑚/𝑑 with short numerator and

denominator, say 𝑥 ∈ Q𝑀,𝐷 . As we will see, this can be sufficient

12
In this case, the communication overhead is reasonable and computational effi-

ciency remains excellent. For 128 repetitions, the communication overhead becomes

noticeable. See the full version [21] for concrete size estimates.

13
We stress that high knowledge error, e.g. 2

−40
, only makes sense in interactive

settings. Fiat–Shamir transformations are trivial (and cheap) to break in this regime.
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in important applications, such as anonymous credentials. How-

ever, this guarantee is, in general, too weak to allow unchecked

homomorphic operations on commitments, e.g. the sum

∑𝑁
𝑖=1

𝑚𝑖
𝑑𝑖

of short fractions𝑚𝑖/𝑑𝑖 need not be short. The main problem is

the growth of the common denominator as 𝑑 = lcm(𝑑1, . . . , 𝑑𝑁 ),
and the numerator grows similarly. Thus, after a few operations,

all guarantees on shortness are lost.

6.1.1 Cheating with Small Denominators. The use of relaxed sound-
ness is not a proof artefact: For small 𝑑 and 𝑚, find

∑
3

𝑗=1 𝑎
2

𝑗
=

𝑑2 + 4(𝑚 − 𝑑)𝑚 and let 𝑥 ≡𝑝 𝑚/𝑑 and 𝑦 𝑗 ≡𝑝 𝑎 𝑗/𝑑 . This decom-

position has a chance of 1/𝑑 (per repetition, and 1/𝑑𝑅 overall) to

fool the verifier. In particular, after the Fiat–Shamir transformation,

generating proofs for 𝑥 is efficiently possible if 𝑑 is not too large.

6.1.2 Three Square Decomposition. Our range proofs use the 3-

square decomposition and prove membership in [− 1

4𝐵
, 𝐵 + 1

4𝐵
]Q𝐾′,Γ .

To obtain membership in [0, 𝐵]Q𝐾′,Γ one can either use the 4-square

decomposition, or use Γ < 4𝐵 (perhaps, increasing repetitions), as

this ensures that denominators 𝑑 ≥ 4𝐵 violate soundness, hence

[0, 𝐵]Q𝐾′,Γ = [− 1

4𝐵
, 𝐵 + 1

4𝐵
]Q ∩ Q𝐾 ′,Γ = [− 1

4𝐵
, 𝐵 + 1

4𝐵
]Q𝐾′,Γ .

6.2 Using Groups of Hidden Order
The problem of denominator growth can be mitigated by resorting

to a group H of hidden order. For SharpGS and SharpPoSO, the ap-
proach works as follows: Add a single additional commitment𝐶 ′𝑥 to

all values 𝑥𝑖 in H (using aMPed commitment). Moreover, include

a proof of knowledge of opening of𝐶 ′𝑥 (to the same value as in𝐶𝑥 ).

This small change, allows us to reduce to properties of H to control

the denominator. Using reasonable assumptions, it can be shown

that the denominators 𝑑𝑖 are of the form 𝑑𝑖 = 𝑒
𝑘𝑖

for 𝑘𝑖 ∈ N0.

6.2.1 Instantiating the Hidden Order Group. When instantiating

H with suitable class groups of hidden order for which a plausible

strengthened 2-fROOT assumption holds, the prover will be bound

to dyadic rationals, i.e. 𝑥𝑖 of the form 𝑥𝑖 =𝑚𝑖/2𝑘𝑖 . This improves

the applicability of the range proof significantly, since, even in

homomorphic computations, the common denominator 𝑑 is of the

form 2
𝑘
with 𝑘 ≤ log(Γ). This restriction already enables the use

of homomorphic computations.

When using RSA groups (with trusted setup), the proof provides

standard soundness, since the prover is bound to an integer under

the 1-fROOT assumption (a.k.a. strong RSA assumption). Interest-

ingly, even without trusted setup, e.g. in cases with a “designated

verifier”, we sketch how RSA groups enable the use of Sharp proofs

(cf. section 7.3).

6.3 Non-Relaxed Soundness from Prior
Knowledge

Prior knowledge on the shortness of committed values can “up-

grade” the soundness from relaxed to non-relaxed. Namely, suppose

for some reason, that you have prior knowledge or the guarantee

that the committed value 𝑥 ∈ Z𝑝 is short, i.e. 𝑥 ∈ [−𝑀,𝑀]. Then its

representative in Q𝑀,𝐷 is an integer (namely,
𝑥
1
). Thus, the range

proof then directly implies that 𝑥 = [𝑥]Q ∈ Z is in the desired range
[0, 𝐵]Q. More formally, we use that [− 1

4𝐵
, 𝐵 + 1

4𝐵
]Q ∩ Q𝑀,𝐷 ∩ Z =

[0, 𝐵]Q ∩ Z = [0, 𝐵]Z. Note that this reasoning also works for the

range proofs from CKLR [22].

7 APPLICATIONS
In this section, we show how range proofs with relaxed soundness,

such as Sharp (or CKLR), can be used in certain applications, namely

as anonymous credentials and anonymous transactions.

7.1 Anonymous Credentials
Anonymous credential schemes [11, 16, 19] allow users to obtain

credentials from issuing authorities. Later, the user can present

this credential to a verifier, without revealing his identity, which

is fixed (but hidden via a commitment) in the credential. These

credentials can also have attributes, for example a birthdate or a

validity date. When showing the credential, the user might need to

show that he is older than 18 or that the credential is still valid in a

privacy-preserving manner.

Constructions of anonymous credentials typically rely on very

efficient special-purpose zero-knowledge proofs. Concretely, most

rely on so-called “CL-type” (algebraic) signature schemes, which

come with very efficient proofs of knowledge of a signature on

committed messages [17]. These are used to sign the identity and

attributes of a user. To prove that attributes lie in some range, e.g.

for age restrictions or a validity date of the credential, range proofs

are employed. Thus, range proofs often constitute a significant, if

not dominant, part in computation (and communication) in these

settings.

Sharp proofs can often be used as an almost drop-in replacement

in such settings. Consider the DLOG setting in a group of prime

order 𝑝 .

• When issuing the credential, all attribute values are known to
the issuer. Assuming suitably small ranges [0, 𝐵] ⊆ [−𝐾,𝐾]
for valid attributes, the verifier’s validity check of attribute

values ensures shortness. If 𝐾 < 𝑝/(4Γ), then a rational

representative 𝑚/𝑑 of an attribute 𝑥 must be of the form

𝑚/1, i.e. 𝑥 is a short integer. Thus, our range proof will be

standard sound for 𝑥 (see section 6.3).

• In case of blind issuance (where identity and attributes re-

main (partially) hidden), the relaxed soundness of DLOG-

based Sharp may not suffice (see section 6.1.1). Here, we can

use SharpRSA which provides standard soundness, using a

trusted public RSA-based setup of the issuer.

• For showing the credential, our range proofs can be used if

the (blind) issuing phase ensured that the attributes lie within

valid ranges, as in that case, our range proof is standard

sound (see section 6.3).

The same reasoning applies to so-called keyed-verification anony-
mous credentials [18], where the issuer and verifiers have a shared

secret key, which allows for more efficient protocols (but restricts

the use-cases).

Anonymous credentials and their constructions come in many

flavours [4, 24, 41], and not all rely on prime order groups alone.

Some use pairing groups and some use hidden order groups. Never-

theless, it is very likely that in all these settings, our range proofs

offer favourable trade-offs when compared to those in use. For
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example, while hidden order groups allow for three-square de-

composition based range proofs, working in prime order groups

is typically more efficient in terms of computation and communi-

cation. In the pairing-based settings, the approach of [14] allows

quite efficient digit-based decompositions. However, operations in

pairing-groups are slower, elements are bigger, and for efficiency,

[14] needs relatively large (non-transparent) public parameters.

7.2 Updatable Anonymous Credentials and
BBAs

A line of works [8, 9, 33–35] uses techniques from anonymous cre-

dentials in a “non-static” manner to construct updateable anoymous
credentials or black-box accumulation (BBA) schemes, which can be

used for electronic payments, ticket systems, incentive systems and

more. Most of the schemes feature range proofs as a core compo-

nent, as these are required to prevent users from spending more

than they have. The (blind) issuing process is mostly unchanged

in comparison to anonymous credentials. The show protocol is re-

placed by (one or more) update protocol(s), which modify the user’s

attributes (e.g. the user’s current balance).

Most applications work in the “public balance update” setting,

where the user interacts with an operator, and the operator knows

the amount Δ by which a user’s (hidden) balance 𝑣 is changed.

That is, after the transaction, the balance should be 𝑣 + Δ, and for

security, 𝑣 + Δ ≥ 0 must be ensured. In this “public balance update”

setting, our range proofs are again almost drop-in replacements.

Namely, if the security proof ensures that the balance 𝑣 is “small”

(i.e. has rational representative 𝑣/1), then our proof has standard

soundness for 𝑣 + Δ ∈ [0, 𝐵]. Since the security proofs typically

prove inductively that, after each operation, the (new) balance 𝑣

has certain properties (e.g. lies in the range [0, 𝐵]), the requirement

for our proof to be standard sound is easily seen to be satisfied.

Range proofs are so expensive that early works [33, 35] consider

weakened (security) requirements to achieve practical efficiency.

Even in later works [8, 9, 34], they amount to a large part of (or

even dominate) the runtime. Our optimized range proofs greatly

improve efficiency.

7.3 Anonymous Transactions
Range proofs are often used in privacy-preserving blockchain-based

smart contract platforms in order to ensure that the fixed (but

hidden) balance of users is non-negative after performing a trans-

fer [12, 27, 42]. This ensures that no user can spend more coins than

he owns while preserving privacy. Thus, this is a “secret balance

update” setting. Here, we give an overview on the applicability of

Sharp in this context and refer to the full version [21] for more

details.

When a sender with a balance of 𝑏 coins performs a transfer of 𝑎

coins to a receiver, she has to guarantee the following: (1) 𝑏 −𝑎 ≥ 0,

i.e. the sender’s balance remains non-negative after the transaction

and (2) 𝑎 ≥ 0, i.e. the sender transfers a non-negative number

of coins to the receiver. Often, the values 𝑎 and 𝑏 are committed

(or fixed via an encryption), and the sender performs two range

proofs to show equations (1) and (2). Unfortunately, even an initial

shortness guarantee on the committed balances𝑏 is not sufficient for

relaxed soundness to provide standard guarantees, as the shortness

of 𝑎 cannot be guaranteed this way. Thus, we cannot replace all
range proofs with Sharp proofs naively (and doing so would lead to

concrete attacks). Nevertheless, some range proofs can be replaced

with Sharp proofs for efficiency improvements.

Furthermore, in the full version [21] we sketch how the use of

augmented Sharp proofs, with both an additional RSA and class

group element, is sufficient to avoid these attacks without trusted
setup of the RSA modulus. Perhaps surprisingly, we can still lever-

age the properties of RSA groups in this case.
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