
HAL Id: hal-03860710
https://hal.science/hal-03860710

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph data temporal evolutions: From conceptual
modelling to implementation

Landy Andriamampianina, Franck Ravat, Jiefu Song, Nathalie
Vallès-Parlangeau

To cite this version:
Landy Andriamampianina, Franck Ravat, Jiefu Song, Nathalie Vallès-Parlangeau. Graph data tem-
poral evolutions: From conceptual modelling to implementation. Data and Knowledge Engineering,
2022, SI: Special Issue on Research Challenges in Information Science (RCIS 2021), 139 (Suppl. C),
pp.102017. �10.1016/j.datak.2022.102017�. �hal-03860710�

https://hal.science/hal-03860710
https://hal.archives-ouvertes.fr

Graph data temporal evolutions: from conceptual
modelling to implementation

Landy Andriamampianinaa,b,∗, Franck Ravata, Jiefu Songb, Nathalie
Vallès-Parlangeaua

aIRIT-CNRS (UMR 5505) - Université Toulouse 1 Capitole (UT1), 2 Rue du Doyen
Gabriel Marty F-31042 Toulouse Cedex 09 - France

bActivus Group, 1 Chemin du Pigeonnier de la Cépière, 31100 Toulouse - France

Abstract

Graph data management systems are designed for managing highly intercon-

nected data. However, most of the existing work on the topic does not take into

account the temporal dimension of such data, even though they may change

over time: new interconnections, new internal characteristics of data (etc.). For

decision makers, these data changes provide additional insights to explain the

underlying behaviour of a business domain. The objective of this paper is to

propose a complete solution to manage temporal interconnected data. To do so,

we propose a new conceptual model of temporal graphs. It has the advantage

of being generic as it captures the different kinds of changes that may occur in

interconnected data. We define a set of translation rules to convert our con-

ceptual model into the logical property graph. Based on the translation rules,

we implement several temporal graphs according to benchmark and real-world

datasets in the Neo4j data store. These implementations allow us to carry out

a comprehensive study of the feasibility and usability (through business analy-

ses), the efficiency (saving up to 99% query execution times comparing to classic

approaches) and the scalability of our solution.

Keywords: Data models, Temporal graphs, Query, Neo4j.

∗Corresponding author
Email addresses: landy.andriamampianina@activus-group.fr (Landy

Andriamampianina), franck.ravat@irit.fr (Franck Ravat), jiefu.song@activus-group.fr
(Jiefu Song), nathalie.valles-parlangeau@ut-capitole.fr (Nathalie Vallès-Parlangeau)

Preprint submitted to Data and Knowledge Engineering November 18, 2022

1. Introduction

The era of Big/Smart data has seen a proliferation of highly interconnected

data [1]. In response to this, graph data management systems (GDMS) has

emerged for managing data in areas where the main concern has to do with the

interconnectivity (or topology) of that data [2]. If the temporal dimension of5

data is taken into account in the context of relational data (such as in multi-

version data warehouses [3]), it is not considered in current GDMS. Yet, many

kind of changes may occur over time in interconnected data: new interconnec-

tions can be added and/or removed and internal characteristics of data can be

added and/or removed and/or updated. Moreover, analyzing changes in data10

can help a decision maker to explain and predict the behaviour of a business

domain [4].

At the present time, temporal interconnected data (i.e. interconnected data

changing over time) are usually modelled as temporal graphs (i.e. graphs with

components changing over time) in the area of networks [4]. Such models gather15

information along time of networks to capture the changes in their structure,

such as the formation of new communities in social networks. Few works focus

on modelling, querying and storing interconnected and evolving data [2]. Our

work focuses on the latter topic. More specifically, the objective of our work

is to provide a comprehensive solution for temporal graph data management,20

ranging from a business oriented (conceptual) data model to an implementation

through a systematic study of feasibility and efficiency.

The remainder of this paper is organized as follows. First, we review the lit-

erature on temporal data management and graph data management (Section 2).

Second, we propose a conceptual model for representing temporal graph data25

(Section 3). We also provide a graphical notation to facilitate the exploitation

of our conceptual model by business users. Third, we propose rules to transform

our conceptual model into the logical property-graph model (Section 4). Fourth,

we propose a study of the feasibility and usability of our conceptual model

2

through real business analyses (Section 5). Finally, we evaluate the querying30

efficiency and scalability of our implemented model through experiments using

benchmark and real-world datasets (Section 6).

2. Related Work

To manage interconnected data changing over time, we analyze existing ap-

proaches in the field of temporal data management and graph data management.35

2.1. Temporal data management

Temporal data management involves all methods and techniques to model,

query and store time-varying data (or temporal data) [5]. There is a vast liter-

ature on this topic since the 80’s focusing on relational database management

systems (RDBMS) [6]. In this field, the classic type of data model is the point-40

based data model [7]. This data model is characterized by two features: (i)

snapshots of data are taken in a systematic manner (based on pre-defined rules

to capture), and (ii) snapshots are taken in a global manner (capturing all data

of the database). As a result, we obtain a representation of the states of data

at successive discrete time points. This approach is generally applied in the45

field of networks to capture the changes of interconnected data over time [8].

It is called the "sequence of snapshots" [9]. However, the snapshot-based ap-

proach presents some limitations. First, capturing snapshots systematically do

not reflect the changes of data but only their states at specific time points [10].

Second, capturing snapshots globally does not allow for tracking the changes of50

a single object directly. Moreover, it introduces redundancy of data that do not

change over time [11]. Consequently, our objective is to manage temporal in-

terconnected data (i) in more flexible manner to track changes at the evolution

rate of each object and (ii) more locally to track all changes at the level of each

object and avoid redundancy. To do so, the interval-based data model consists55

in attaching a time interval to each object which refers to the time when a fact

was true in the modelled reality [12]. This approach in the field of networks

3

consists of attaching a time interval to each graph component (node or edge)

[9]. Our proposition extends the last approach.

2.2. Graph data management60

Graph data management involves all methods and techniques to model,

query and store highly interconnected data [2]. Contrary to other models (such

as relational model), graph models focus on representing the interconnectivity

(or topology) of data in areas where it is the main concern. Their advantages

are (i) to be recognized as one of the most simple, natural and intuitive repre-65

sentation of human knowledge [13] and (ii) to allow for a natural and explicit

modelling of data having graph structure [2]. However, few works in this field

focus on time-varying graph data (or temporal graph data) contrary to the lit-

erature of RDBMS. To do so, we analyze existing works involving aspects of

the management of temporal graph data at three levels: conceptual, logical and70

physical.

Conceptual level. At the conceptual level, most modelling solutions of temporal

graph data follow the property graph paradigm [2]. The specific features are:

a set of nodes representing entities, a set of edges representing relationships

between entities and a set of attributes describing each node or edge. Over75

time, changes may happen to (i) the topology (i.e. the way nodes and edges are

connected), to (ii) the descriptive attribute set within a node or an edge and to

(iii) the values of an attribute [8]. Some works focus on one above-mentioned

change type [14, 15, 16, 17]. For instance, [14] focuses on capturing the addition

or removal of edges only, while [15] captures the addition or removal of both80

nodes and edges. Some works propose a modelling solution including two change

types and their combination [18, 19]. For instance, in addition to the evolution of

graph topology, [18] captures the changes in the value of node attributes, while

[19] capture the changes in the value of edge attributes. Other works try to take

into account all changes types [9, 20]. Their graph model relies on a flat structure85

by creating new nodes for each descriptive attribute in the nodes of the original

4

Table 1: Temporal graph models at the conceptual level. The capital letters in the table

are defined as follows: EN= Entities, R= Relationships, P = Point-based data model,

I = Interval-based data model, N = Node, E = Edge.
Model Time approach Evolution type Purpose

Topology Attribute value Attribute set

Evolving graph [14] P E Mining interesting patterns

Dynamic network [15, 16] P N/E Mining interesting patterns

Dynamic attributed graph [18] P E N Mining co-evolution patterns

Stream graph [17] I N/E Discovery of graph properties

Attributed Dynamic Graph [19] I E E Temporal paths discovery

Temporal property graph [9, 20] I N/E N N Management of temporal graph data

Our model I N/E N/E N/E Management of temporal graph data

graph and ignoring the attributes of edges. So the changes of attribute set and

attribute value are not managed for edges. Our objective in this paper is to

extend the existing modelling solutions by providing a comprehensive overview

of graph data and their changing components. Moreover, our work should cover90

all possible evolution types of temporal graph data (topology, attribute set and

attribute value).

Logical level. At the logical level, property-graph and RDF data models are

commonly used in the context of graph data management [2]. Traditionally,

the translation between the conceptual level and the logical level is framed by95

rules such as in the relational databases domain. However, to our knowledge,

this translation is implicit in the domain of graphs [14, 16, 15]. No standard

is defined at the present time to guarantee a compliant implementation of a

conceptual model of temporal graph data at the logical level. Our objective in

this paper is to propose standard translation rules of our conceptual model into100

a logical model.

Physical level. At the physical level, existing works try to maximize the im-

plementation and query efficiency of temporal graph data. We distinguish two

research axis in existing works: data redundancy reduction and implementation

environment (Table 2). Regarding the first axis, snapshots inevitably intro-105

duce data redundancy since consecutive snapshots share in common nodes and

5

Table 2: Temporal graph models at the physical level.
Research axis Work Purpose Setting

Data redundancy reduction

[21] Snapshot storage and retrieval, Distribution of historical queries Centralized

[22] Snapshot storage and retrieval Distributed

[23] Snapshot storage and retrieval Centralized

[24] Temporal graph storage and algorithms, Interval-centric model Distributed

[25] Temporal property graph, Interval-centric model, Temporal path queries Distributed

[26] Historical graph storage and analysis, Node-centric model Distributed

Implementation environment
[27] Modelling, storing and querying time-varying graphs, Neo4j Centralized

[28] Temporal graph data management system, ACID transactions, Neo4j Centralized

edges that do not change over time [11]. Processing snapshots causes redundant

computation limiting scalability [24]. In response to this issue, [21] proposes

a strategy to determine when snapshots should be materialized based on the

distribution of historical queries. [22] introduces an in-memory data structure110

and a hierarchical index structure to retrieve efficiently snapshots of an evolving

graph. [23] proposes a framework to construct a small number of representative

graphs based on similarity. However, these optimization techniques snapshots

always accept some data redundancy. To completely avoid data redundancy,

some works recommend to use a data model completely in break with snap-115

shots. However, they are oriented towards distributed computing so do not

provide a business-oriented view [24, 25, 26]. Regarding the implementation

environment, some works focus on evaluating the performance of graph data

stores supporting temporal graphs via experimental assessments. Some exper-

iments rely on RDF triple stores, such as Virtuoso1 or TDB-Jena2, to store120

the evolution of Linked Open Data (LOD) in the Semantic Web area [29, 30].

However, it is already known that graph oriented NoSQL databases are more

efficient than RDF triple stores when querying RDF data [31]. It is necessary to

see if these NoSQL databases are as efficient in the context of temporal graphs.

The authors in [27] use Neo4j to store the time-varying networks and to retrieve125

specific snapshots. The authors in [28] have developed a graph database man-

1https://virtuoso.openlinksw.com/
2https://jena.apache.org/documentation/tdb/

6

https://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/tdb/

agement system based on Neo4j to support graphs changing in the value of nodes

and edges’ properties but do not address the change in graph topology. It is

necessary to evaluate systematically the performance of graph oriented NoSQL

databases by including all change types in the set of benchmark queries.130

3. Conceptual modelling

In this section, first we introduce how time is modelled within our concep-

tual modelling (Section 3.1). Second, we present our temporal graph model

(Section 3.2). Third, we describe the evolution management using our pro-

posed concepts (Section 3.3). Finally, we illustrate the proposed concepts in an135

example (Section 3.4).

3.1. Time

Time can be schematized as a domain denoted by Ω, which is linear and

discretized by ordered natural numbers corresponding to their succession in

time [24, 25]. Each time point corresponds to an instant.140

A time unit is an atomic increment in time defined by some user [24, 25].

It is defined by a mapping function T (x) ⊂ 2N. T (x) allows to associate a

time interval, indexed by x ∈ N, to a set of instants (Figure 1). Following the

definition in [32], it has the following characteristics:

• 0 ∈ T (0) {each time unit starts from the beginning};145

• ∀i, j ∈ N, i 6= j → T (i)∩T (j) = ∅ {two continuous blocks do not overlap};

• ∀i ∈ N,∃j ∈ N such that i ∈ T (j) {each time unit covers the whole

timeline, i.e., N}.

The most common units are corresponding to the usual partitions of calen-

dars are: millennium, century, year, month, day, week, hour, second, etc. A150

time unit can be the partition of another such as days for months.

A time interval defines a set of instants between two instant limits in time.

We denote it T = [ts, te[where ts, te ∈ Ω which indicates a time interval starting

7

from ts and extending to but excluding te. Therefore, an instant is a time

interval T = [ts, te] where ts = te and ts, te ∈ Ω. It has no duration relatively155

to its time unit. [33] propose interval relations that are boolean comparators

between time intervals. In our model, we manage the valid time interval i.e.,

the time interval during which a fact is true in the modelled reality [12].

Figure 1: Time modelling.

3.2. Temporal Graph

We define a conceptual model for representing business graph data that160

change over time [34]. More specifically, we propose concepts to model objects

of a business context, the relationships between those objects and their evolution

aspects.

Definition 1. A temporal entity, called ei, is defined by 〈lei , idei , Sei , T ei〉 where

lei is the label of ei, idei is the identifier of ei, Sei = {sei1 , ..., seim} is the non-165

empty set of states of ei and T ei is the valid time interval of ei. Each state

seij ∈ Sei is defined by 〈Asj , V sj , T sj 〉 where Asj = {aei1 ; ...; aein } is the set of

attributes of seij , V sj = {v(aei1); ...; v(aein)} is a set of attribute values and T sj

is the valid time interval of seij . Each v(aeiq) ∈ V sj is the value of each attribute

aeiq ∈ Asj .170

Definition 2. The valid time interval of each state of a temporal entity seij ∈ Sei

is defined by T sj = [ts, te[where ts 6= ∅ and te 6= ∅. The valid time interval of

each temporal entity ei is obtained by calculation:

T ei = ∪j=m
j=1 T

sj where sj ∈ Sei (1)

8

We describe an object of a business context with the concept of temporal

entity and its descriptive characteristics with the concept of attributes. We

consider three types of evolution of objects: (i) their presence and absence over

time referred as the evolution in topology, (ii) the addition and removal of new

characteristics referred as the evolution in attribute set and (iii) the change in175

the value of their characteristics referred as the evolution in attribute value. So

we model a temporal entity through two levels of abstraction: (i) the topology

level to capture the evolution in its topology and (ii) the state level to capture

its evolution in terms of attribute set or value.

Definition 3. A temporal relationship, called ri, is defined by180

〈lri , (sk, sj), Sri , T ri〉 where lri is the label of ri, (sk, sj) is the couple of

entity states ri links, Sri = {sri1 , ..., sriu } is the non-empty set of states of

ri and T ri is the valid time interval of ri. Each state srib ∈ Sri is defined

by 〈Asb , V sb , T sb〉 where Asb = {ari1 ; ...; ariw } is the set of attributes of srib ,

V sb = {v(ari1); ...; v(ariw)} is a set of attribute values and T sb is the valid time185

interval of srib . Each v(arid) ∈ V sb is the value of each attribute arid ∈ Asb .

Remark 1. The valid time interval of each state of a temporal relationship

srib ∈ Sri is defined by T sb ⊆ (T sk ∩ T sj) where T sk is the valid time of the

entity state sk and T sj is the valid time of the entity state sj. The valid time

interval of each temporal relationship ri is obtained by calculation:

T ri = ∪b=u
b=1T

sb where sb ∈ Sri (2)

A relationship between two objects of a business context does not have an in-

dependent existence. Its existence depends on the objects it links. We describe

a relationship between two objects with the concept of temporal relationship and

its descriptive characteristics with the concept of attributes. We consider that190

relationships can experience the same three types of evolution as objects. There-

fore, similar to a temporal entity, we model a temporal relationship through two

levels of abstraction.

Definition 4. L describes a finite set of labels. A label l ∈ L describes the

9

semantic of entities (or relationships). So a label groups an entity class (or195

relationship class). Conversely, an entity (or relationship) has an unique label.

Unlabeled entities (or relationships) are semantically indistinct.

As a result of the previous definitions, our temporal graph is defined as

follows:

Definition 5. A Temporal Graph, called G, is defined by 〈E,R, T, ρ, λ〉 where:200

• E = {e1, ..., eg} is a finite set of temporal entities;

• R = {r1, ..., rh} is a finite set of temporal relationships;

• T is the timeline of the temporal graph. It only depends on the valid time

intervals of temporal entities as they have an independent existence. So it

is obtained by calculation:205

T = ∪i=g
i=1T

ei where ei ∈ E (3)

• ρ : R→ (E×E) is a function that associates each state of each relationship

in R with a pair of entity states in E;

• λ : (E ∪ R) → SET+(L) is a function that associates each entity (or

relationship) in the temporal graph with a label from L.

Definition 6. The temporal graph schema is a tuple SC = (LE , LR, φ) where:210

• LE ⊂ L is a finite set of labels representing the semantic of entities;

• LR ⊂ L is a finite set of labels representing the semantic of relationships,

satisfying that LE and LR are disjoint;

• φ : (LE , LE) → SET+(LR) is a function that defines the finite and non-

empty subset of relationship labels from LR allowed between a given pair215

of entity labels.

We present the graphical notation of our modelling solution in Section 3.4.

10

3.3. Evolution management

As seen in the conceptual modelling above, we describe the evolution aspects

of objects and their relationships of a business context with the concept of220

evolution types: (i) the evolution in topology, (ii) the evolution in attribute set

and (iii) the evolution in attribute value. Moreover, in order to keep tracks of

these three evolution types, we attach a valid time interval at the topology and

state levels of a temporal entity (or relationship).

At the topology level, the presence and absence of a temporal entity (i.e.,225

the evolution in topology) is captured by the update of its valid time interval

T ei over time. When an entity ei is added for the first time in the modelled

business context, its valid time interval is T ei = [taddition,+∞) where taddition

is the time instant of the addition. Otherwise, its valid time interval is updated

to T ei = {[ts, te[, ..., [taddition,+∞)} each time it is added. When an entity230

ei is removed from the business context, its valid time interval is updated to

T ei = {[ts, te[, ..., [t′s, tremoval[} where tremoval is the time instant of the removal

and t′s < tremoval.

At the state level, a temporal entity evolves according to the addition and/or

removal of a new attribute (i.e., the evolution in attribute set) and/or the change235

in an attribute value (i.e., the evolution in attribute value). A state is related

to a set of states that belong to the same entity. Two states of the same entity

have different attribute set and/or attribute value. When a new attribute is

added/removed or an attribute value changes, a new state of the entity is created

instead of overwriting the old state version. The valid time interval of the old240

state version, sj , is updated to T sj = [ts, tchange[where tchange is the time

instant of the change and ts < tchange. The valid time interval of the new state

version, sj+1, is T sj+1 = [tchange,+∞).

Similar to temporal entities, temporal relationships can evolve in terms of

topology, attribute value or attribute set. So to capture the evolution of tem-245

poral relationships, we apply the same evolution management.

11

3.4. Example

For a decision maker, the difficulty of relying on a dataset with temporal

interconnected data is to follow how the different information changes over time

and how the different information relates to each other. To do so, such dataset250

can be ideally represented in a temporal graph with our conceptual modelling.

In the following, we present the modelling of a dataset of an e-commerce activity

into our temporal graph representation and compare its the advantage compared

to a snapshot-based representation.

In our business use case, customers view, add to cart and buy items on an255

e-commerce website. They can make a new action (i.e. view, add to cart and

buy) on items each minute. They can modify characteristics of their cart over

time by changing items’ quantity or by adding a discount code. The website

adds new items over time. Moreover, it adds new characteristics to items and

updates the value of characteristics over time.260

To model a temporal graph representing the e-commerce activity, we propose

a two-step approach. The first step consists of identifying the entities and rela-

tionships that model the business needs. In our conceptual model, each entity

and relationship classes of a business domain are modelled through the concept

of labels. The second step consists of identifying the evolution of the various265

components of the previous schema. In our conceptual model, each entity of

a business domain is modelled through the concept of temporal entity. Each

relationship of a business domain is modelled through the concept of temporal

relationship. All descriptive information of entities and relationships of a busi-

ness domain are modelled through the concept of attributes. We manage their270

evolution, in terms of topology - attribute set - attribute value, notably through

the concept of states.

In the first step, we identified two entity classes (customer and item) and

three relationship classes (view, add to cart and buy). So the formal description

of the temporal graph schema is given as follows:275

• LE = {CUSTOMER, ITEM}

12

Figure 2: Schema of the e-commerce dataset

• LR = {V IEW,ADDTOCART,BUY }

• φ(CUSTOMER, ITEM) = {V IEW,ADDTOCART,BUY }

In the second step, we understood that customers do not evolve over time

contrary to items. Items evolve over time in terms of their topology, attribute set280

and attribute value. Similarly, the relationships "add to cart" evolve over time

in terms of their topology, attribute set and attribute value. The relationships

"view" and "buy" evolve over time in terms of their topology only. We were

able to construct the structure of the dataset in Figure 2. According to our

conceptual modelling, customers and items become temporal entities. Actions of285

customers on items (view, add to cart and buy) become temporal relationships.

The characteristics of customer, items and carts are translated into attributes.

We illustrate in details the modelling of the evolution of these entities and

relationships through the following business scenarios in the dataset.

A customer identified C1 and called "Smith" never experiences a change in290

its characteristics since the creation of its account. If we use snapshot-based

13

Figure 3: Management of temporal graph data of the example in Section 3.4 with the snapshot-

based solution.

approaches, we consider that data are captured at a regular time interval, for

instance each day. Therefore, the node representing the customer is repeated

at each snapshot as we can see in Figure 3. The advantage of our model is to

represent this customer by only one state, numbered 1 in Figure 4, with a start295

valid date corresponding to the creation date of its account and no ending date.

The formal description of this customer according to our conceptual model is

given as follows:

e1 = 〈CUSTOMER,C1, {s1}, [01/01/2021,+∞)〉

s1 = 〈{name}, {Smith}, [01/01/2021,+∞)〉300

The website adds new items over time. This concerns notably the item

"Color printer ink" identified as I1. At its publication on the website, the price

of I1 is 30. Two days after I1’s publication, its price has decreased. This refers

to the evolution in attribute value of I1. One day after, the website has added

a new descriptive information (special gift) to I1. This refers to the evolu-305

tion in attribute set of I1. With the snapshot-based approach in Figure 3, as

I1 does not change during two days, the initial state of I1 is repeated in two

14

snapshots. In our model, a state is generated at each change. The publication

of I1 generates the first state of I1 numbered 2 in Figure 4, with a valid time

interval beginning at the date of its publication. The change in I1’s attribute310

value results in the new state, numbered 3, with a valid time interval beginning

at the date of the price decrease. The change in I1’s attribute set results in the

new state numbered 4, with a valid time interval beginning at the date of the

attribute addition. Therefore, this produces only 3 nodes for I1 in our model

instead of 4 nodes in the snapshot-based approach. The formal description of315

this item according to our conceptual model is given as follows:

e2 = 〈ITEM, I1, {s2, s3, s4}, {[01/01/2021, 02/01/2021],

[03/01/2021, 03/01/2021], [04/01/2021,+∞)})〉

s2 = 〈{current_price, name}, {30, Color printer ink}, [01/01/2021, 02/01/2021]〉

s3 = 〈{current_price, name}, {25, Color printer ink}, [03/01/2021, 03/01/2021]〉320

s4 = 〈{current_price, name, special gift}, {25, Color printer ink,Black printer

ink}, [04/01/2021,+∞)〉

Customers can make a new action on items each minute. This refers to

the evolution in topology of relationships between customers and items. The

customer C1 viewed I1 once during the day 02/01/2021. During the day325

04/01/2021, the customer C1 viewed I1, added it to cart and then bought it. If

we would have adopt the snapshot-based approach, only the last state of data

during the day would be kept. As we can see in Figure 3, we lost information

about the actions that have been done during the day (view, add to cart). In

the contrary, our model keeps all information about the changes during the day.330

So the two actions V IEW and ADDTOCART are represented by temporal

relationships with at least one state in Figure 4.

The characteristics of customer actions can be updated. During the day

04/01/2021, the customer C1 has modified the quantity of the item I1 in his

cart following a discount code he received from the website. He has added335

his discount code to his cart. This refers respectively to the evolution in at-

tribute value and set of the relationship ADDTOCART between C1 and I1.

As said previously, these two pieces of information are lost in the snapshot-

15

Figure 4: Graphical notation of our temporal graph presented through the example in Sec-

tion 3.4.

16

based approach. In our model, the change in the attribute set and value of the

relationship ADDTOCART between C1 and I1 generates two states in Fig-340

ure 4: (i) a state numbered 7 which is the initial state of the relationship before

changes and (ii) a state numbered 8 with one more 1 unit of I1’s quantity and a

discount code. Then, the customer C1 bought the item I1. This generates the

state numbered 9.

The formal description of all customer actions represented is as follows:345

r1 = 〈V IEW, (s1, s2), {s5}, [02/01/2021 10 : 30, 02/01/2021 10 : 30]〉

r2 = 〈V IEW, (s1, s4), {s6}, [04/01/2021 10 : 30, 04/01/2021 10 : 30]〉

r3 = 〈ADDTOCART, (s1, s4), {s7, s8}, {[04/01/2021 10 : 33, 04/01/2021 10 :

33], [04/01/2021 10 : 37, 04/01/2021 10 : 37]}〉

r4 = 〈BUY, (s1, s4), {s9}, [04/01/2021 10 : 40, 04/01/2021 10 : 40]〉350

s5 = 〈∅, ∅, [02/01/2021 10 : 30, 02/01/2021 10 : 30]〉

s6 = 〈∅, ∅, [04/01/2021 10 : 30, 04/01/2021 10 : 30]〉

s7 = 〈{quantity}, {1}, [04/01/2021 10 : 33, 04/01/2021 10 : 33]〉

s8 = 〈{quantity, discount code}, {2, Summer}, [04/01/2021 10 : 37,

04/01/2021 10 : 37]〉355

s9 = 〈{quantity}, {2}, [04/01/2021 10 : 40, 04/01/2021 10 : 40]〉

Through this example, the following advantages of our conceptual model are

retained. First, our conceptual model provides a comprehensive overview on the

temporal evolution of a dataset for a decision maker. Indeed, it captures in a

finer way the evolution of entities and relationships at different levels: topology,360

attribute set and attribute value. Moreover, it provides a graphical notation

that allows for easily representing the topology of data (interconnections of

data), the data embedded within the topology and their temporal evolution.

Second, our conceptual model represents the temporal evolution of a dataset in

a synthetic manner. No information is lost or redundant after the modelling365

process. If we would have adopt the snapshot-based approach, we would have 4

more nodes than our model. Finally, our conceptual model is flexible in the way

of modelling business requirements. For instance, suppose now that the dataset

includes a customer that adds to cart the same item (same state of item) at

17

two different dates for two different orders. We can easily do that by adding370

an attribute "order" for each state of ADDTOCART relationship between the

same customer (same state of customer) and the same item (same state of item).

We illustrate this case in Figure 5.

Figure 5: Extended example.

4. Logical modelling

The objective of logical modelling is to take into account the type of data375

storage chosen for the implementation. In our case, we chose the logical property

graph model because most of graph-oriented NoSQL data stores, such as Neo4j,

are designed to store property graphs. Our objective is then to translate our

conceptual representation of temporal graph into a logical property graph.

According to [35], a property graph is defined as PG = 〈N,D, η,Λ,Σ〉 where380

N is a finite set of nodes (also called vertices), D is a finite set of edges, η :

D → (N ×N) is a function that associates each edge in D with a pair of nodes

in N , Λ : (N ∪ D) → SET+(L) is a function that associates a node/an edge

with a set of labels from L, and Σ : (N ∪D)×P → SET+(V) is a function that

associates nodes/edges with properties. Each property is a key-value pair (p, v)385

where p is the property name and v the property value.

We propose a transformation process between our conceptual temporal graph

18

Temporal graph Property graph

a state of a temporal entity sj a node

a state of a temporal relationship sb an edge

a valid time interval of an entity state T sj two properties∗

a valid time interval of a relationship state T sb two properties∗

a temporal entity ei a set of nodes (with different valid time intervals)

a temporal relationship ri a set of edges (with different valid time intervals)

a valid time interval of a temporal entity T ei by query

a valid time interval of a temporal relationship T ri by query

a label of a temporal entity lei a label

a label of a temporal relationship lri a label

a temporal entity’s identifier idei a property

an attribute of a temporal entity aeiq a property

an attribute of a temporal relationship arid a property

Table 3: Transformation rules of our conceptual model into the logical model of property

graph. ∗startvalidtime and endvalidtime.

and a logical property graph via a generic algorithm (Algorithm 1). The trans-

formation process receives our temporal graph G as input and returns the prop-

erty graph PG. For each state s of each temporal entity e in G, a node is created390

in PG with a label corresponding to the label of e and a set of properties cor-

responding to: the identifier of e, the attributes of s, the start and end instants

of the valid time interval of s. For each state s of each temporal relationship r

in G, an edge is created in PG by connecting the two nodes corresponding to

two states that r links, with a label corresponding to the label of r and a set395

of properties corresponding to: the attributes of s, the start and end instants

of the valid time interval of s. As a result of the Algorithm 1, we obtain the

transformation rules presented in Table 3.

We graphically illustrate this transformation process through the mapping

of the temporal graph in Figure 4 into the property graph in Figure 6. The400

resulting property graph is composed of 4 nodes and 5 edges. We notice that for

the item in Figure 4, 3 nodes are needed to represent its changes. Similarly, we

observe that 2 edges are required to represent the changes of the ADDTOCART

relationship.

19

Algorithm 1: Mapping algorithm: from conceptual temporal graph

to logical property graph
Input: Temporal Graph: G = 〈E,R, T, ρ, λ〉

Output: Property Graph PG = 〈N,D, η,Λ,Σ〉

/* create the Property Graph */

1 N ← ∅

2 D ← ∅

3 foreach temporal entity ei ∈ E do

4 nodeLabel← getEntityLabel(ei)

5 pid ← createProperty(“id”, getEntityId(ei))

6 foreach state sj ∈ Sei do

7 nodeProperties← ∅

8 pTstart ←

createProperty(“startvalidtime”, getStartV alue(T sj))

9 pTend ← createProperty(“endvalidtime”, getEndV alue(T sj))

10 nodeProperties← nodeProperties ∪ {pid, pTstart, pTend}

11 foreach attribute a ∈ Asj do

12 patt ← createProperty(“a”, getAttributeV alue(a))

13 nodeProperties← nodeProperties ∪ {patt}

/* create a node with a set properties */

14 N ← N ∪ createNode(nodeLabel, nodeProperties)

15 foreach temporal relationship ri ∈ R do

16 edgeLabel← getRelationshipLabel(ri)

17 nodeStartLabel← getEntityLabel(sk)

18 nodeEndLabel← getEntityLabel(sj)

19 nodeStartProperties←

{(“id”, getEntityId(sk)), (“startvalidtime”, getStartV alue(sk)),

20 (“endvalidtime”, getEndV alue(sk))} ∪

getAllAttributeV aluePair(sk)

/* getAllAttributeValuePair() returns the set of all

attribute-value pairs of a state */

405

20

24

25 nodeEndProperties←

{(“id”, getEntityId(sj)), (“startvalidtime”, getStartV alue(sj)),

26 (“endvalidtime”, getEndV alue(sj))} ∪

getAllAttributeV aluePair(sj)

27 nodeStart←

matchNode(PG, nodeStartLabel, nodeStartProperties)

28 nodeEnd← matchNode(PG, nodeEndLabel, nodeEndProperties)

29 foreach state srib ∈ Sri do

30 edgeProperties← ∅

31 pTstart ←

createProperty(“startvalidtime”, getStartV alue(T sj))

32 pTend ← createProperty(“endvalidtime”, getEndV alue(T sj))

33 edgeProperties← edgeProperties ∪ {pTstart, pTend}

34 foreach attribute pair a ∈ Asb do

35 patt ← createProperty(“a”, getAttributeV alue(a))

36 edgeProperties← edgeProperties ∪ {patt}

/* create an edge with a set properties */

37 D ← D ∪

createEdge(nodeStart, nodeEnd, edgeLabel, edgeProperties)

5. Analysis of evolving data using temporal graph: a use case

After discussing the conceptual representation of temporal interconnected

data (Section 3) and the way to implement it (Section 4), we now present a case

study of its implementation in a graph-oriented NoSQL data store based on the410

dataset of Figure 4 to demonstrate its technical feasibility and usability.

To evaluate the technical feasibility of our conceptual model, we applied the

mapping process in Algorithm 1 to implement the dataset in Figure 4 in Neo4j

21

Figure 6: Translation of the conceptual temporal graph in Figure 4 into the logical property

graph.

3, a graph data store supporting the property graph model. Figure 7 presents

the result of this implementation.415

To evaluate the usability of our conceptual model, we identified the possi-

3https://neo4j.com/

22

https://neo4j.com/

Figure 7: Implementation of the dataset in Figure 4 in Neo4j.

ble analyses on our temporal graph representation. Capturing temporal data

evolution provides complementary viewpoints (or perspectives) to explain the

"why" underlying observed phenomena and behaviors. First, the user can make

a classic analysis according to the graph component only (e.g. entities and/or420

relationships) without temporal dimension. Second, the user can make an anal-

ysis according to time dimension (e.g. on continous or non continous periods

etc.). Third, the user can make an analysis according to the evolution type

(attribute set, attribute value or topology). The user can cross these different

23

analysis lines to obtain more valuable insights. In the following, we propose425

several cross-analyses of the e-commerce dataset.

Decision makers make a first business analysis (B1). The 4th january at

10:00, the e-commerce company announces a discount code on the website home-

page for a summer promotion. To evaluate the impact of this announcement,

they want to know if customers use the discount code in the hour following430

the announcement. This consists in analyzing the addition of the attribute

discount_code in the attribute set of the states of ADDTOCART relation-

ships during the hour. This is translated in Cypher, the language query of

Neo4j as follows:

MATCH (c:CUSTOMER)-[r:ADDTOCART]->(i:ITEM)

WHERE datetime(r.startvalidtime)< datetime("2021-01-04T12:00")

AND datetime(r.startvalidtime)>=datetime("2021-01-04T10:00")

RETURN c.id + "-"+ i.id as relationshipCUSTOMERITEM,

collect({time:datetime(r.startvalidtime),

attributeset:keys(r)}) as statesofADDTOCART

435

As a result of B1, we obtain in Figure 8 the attribute set of all states of

ADDTOCART relationships in the dataset for the period of interest. We ob-

serve that the customer identified C1 has used the discount code to buy the

item identified I1 at 10:37 after the announcement of the summer promotion.

Decision makers make a second business analysis (B2). To evaluate the440

impact of the previous announcement, they also want to know if the quantity

of items added by customers in their card has changed in the hour following the

announcement. This consists in analyzing the changes through time of the value

of the attribute quantity of the states of ADDTOCART relationships during

the hour. This is translated in Cypher as follows:445

24

Figure 8: Result of business analysis B1.

MATCH (c:CUSTOMER)-[r:ADDTOCART]->(i:ITEM)

WHERE datetime(r.startvalidtime)< datetime("2021-01-04T12:00")

AND datetime(r.startvalidtime)>=datetime("2021-01-04T10:00")

RETURN c.id + "-"+ i.id as relationshipCUSTOMERITEM,

collect({time:datetime(r.startvalidtime), quantity:r.quantity})

as statesofADDTOCART

As a result of B2, we obtain in Figure 9 the value of the attribute quantity

for each ADDTOCART relationship in the dataset for the period of interest.

We observe that the customer C1 has updated the quantity of item I1 in his

25

Figure 9: Result of business analysis B2.

cart at 10:37 after the announcement of the summer promotion.450

Decision makers make a third business analysis (B3). The e-commerce web-

site records the highest number of sales on item I1. They want to know if this

increase in I1’s sales is due to changes in its characteristics (new price, offer or

picture etc.). This consists in analyzing the changes that occurred between the

states of the temporal entity I1. This is translated in Cypher as follows:455

MATCH (i:ITEM)

WHERE i.id="I1"

WITH collect(i) as lists

UNWIND range(0,(size(lists)-2)) as j

RETURN "state at " + lists[j].startvalidtime+" AND "

+ "state at " +lists[j+1].startvalidtime as states,

apoc.diff.nodes(lists[j], lists[j+1]) as changesbetweenstates

As a result of B3, we obtain in Figure 10 the changes that occur between

26

Figure 10: Result of business analysis B3.

I1’s states in terms of attribute set and value. For instance, we observe that

the price of I1 has changed from the 1st january to the 3rd january. Then, from

the 3rd january to the 4th january, the attribute special_gift has been added460

to I1.

Decision makers make a fourth business analysis (B4). They want to know

the time period in which customers are active on the website each day. It

27

Figure 11: Result of business analysis B4.

contributes to customer profiling to make more adapted policies in the future.

This consists in analyzing the addition and removal of temporal entities and465

relationships to see when they are connected and disconnected from the website.

This is translated in Cypher as follows:

MATCH (c:CUSTOMER)-[r]->(i:ITEM)

RETURN date(r.startvalidtime) as day,

min(time(r.startvalidtime)) as mintime,

max(time(r.endvalidtime)) as maxtime

As a result of B4, we obtain in Figure 11 for each day, the minimum start

valid time and the maximum end valid time at which customers connect to the470

website.

To sum up, our solution facilitates the exploration of temporal graph data

through our conceptual model. Indeed, we identify directly in the implemen-

tation of our temporal graph all change data (Figure 7). Moreover, our solu-

tion provides a straightforward data restitution without introducing modelling-475

related concepts in the analysis results visualization (Figures 8, 9 and 10, 11). In

this way, this solution makes the technical complexity transparent to non-expert

users.

28

6. Experimental evaluation

6.1. Protocol480

6.1.1. Objectives

We run two series of experiments with the two following objectives:

• to evaluate the efficiency of our proposed temporal graph model by com-

paring its storage and query performance to the snapshot-based temporal

graph.485

• to evaluate the scalability of our proposed model by comparing its query

performance on different data volumes (Section 6.3).

6.1.2. Methods

To avoid any bias in datasets, we need to include both benchmark and real

datasets. These datasets should provide different scale factors in order to mea-490

sure scalability. Moreover, we need benchmark queries with a complete coverage

of different analysis types (see Section 6.1.4): temporal analysis (according to

different time granularity), graph scope (from subgraph to entire graph) and

evolution analysis (according to attribute value, attribute set or topology).

For our two specific objectives (Section 6.1.1), we conducted two series of495

experiments according to the following methods. The first series consists of

a comparative study of their storage and query performance through the size,

creation time and query execution times (see Section 6.2). We implemented two

snapshot-based approaches to compare our model performance. The second

series consists of evaluating the scalability of our model during querying real-500

world datasets (see Section 6.3).

6.1.3. Datasets

TPC-DS datasets. Temporal evolutions exist in a reference benchmark available

online, namely TPC-DS benchmark4. This benchmark is based on transaction

4http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf

29

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf

data of a retail company. It allows us to find all the three types of evolution:505

(i) attribute value, (ii) attribute set and (iii) topology. We used the dataset

from this benchmark to answer the objective of evaluating the efficiency of our

model compared to the snapshot-based model. To do so, we transformed the

generated dataset from the benchmark into three datasets having our temporal

graph, a classic snapshots and an optimized snapshots representations. All510

transformation details of the TPC-DS dataset into the three representations are

available on the website https://gitlab.com/2573869/dke_temporal_graph_

experiments. In Table 4, we present the results of the transformation steps: the

number of nodes/edges/snapshots and the evolution types of the three TPC-DS

datasets.515

E-commerce dataset. The E-commerce dataset has been collected from a real-

world ecommerce website by RetailRocket company. It is available on Kaggle
5. It is about customers’ activity on the website (views, add to cart and trans-

actions). The dataset includes changes over time: (i) on item characteristics

with the addition of new attributes over time and the change in attribute value520

but also (ii) on the interactions between customers and items like clicks, add to

carts and transactions. We used this dataset to answer the objective of evalu-

ating the scalability of our model. To do so, we transformed the E-commerce

dataset into our temporal graph representation. All transformation details are

available on the website https://gitlab.com/2573869/dke_temporal_graph_525

experiments. In Table 4, we present the result of the transformation steps: the

number of nodes/edges and the evolution types of E-commerce dataset.

Social experiment dataset. The Social experiment dataset has been collected

from a social experiment on students from MIT who lived in dormitory [36]. It

is available online at Reality Commons website6. This dataset includes changes530

5https://www.kaggle.com/retailrocket/ecommerce-dataset?select=item_properties_

part2.csv)
6http://realitycommons.media.mit.edu/socialevolution.html

30

https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://www.kaggle.com/retailrocket/ecommerce-dataset?select=item_properties_part2.csv
https://www.kaggle.com/retailrocket/ecommerce-dataset?select=item_properties_part2.csv
http://realitycommons.media.mit.edu/socialevolution.html

over time: (i) on the value of the symptoms of students and (ii) on the in-

teractions between students. We used this dataset to answer the objective of

evaluating the scalability of our model. To do so, we transformed the Social

experiment dataset into our temporal graph representation. All transforma-

tion details are available on the website https://gitlab.com/2573869/dke_535

temporal_graph_experiments. In Table 4, we present the result of the trans-

formation steps: the number of nodes/edges and the evolution types of Social

experiment dataset.

Citibike dataset. The Citibike dataset is provided by the company Citibike. The

Citibike company collects data about their bicycle rentals since the year 2013540

in New York City and makes them avalaible online7. This dataset includes bike

stations and trips between these stations. We identified that the attribute set

describing trips between stations has changed since May 2021. Moreover, the

value of the attributes describing trips changes over time. We used this dataset

to answer the objective of evaluating the scalability of our model. To do so,545

we transformed the Citibike dataset into our temporal graph representation.

All transformation details are available on the website https://gitlab.com/

2573869/dke_temporal_graph_experiments. In Table 4, we present the result

of the transformation steps: the number of nodes/edges and the evolution types

of Citibike dataset.550

6.1.4. Benchmark queries

To conduct our two series of experiments, we used the same benchmark

queries to evaluate the query performance. To do so, we identified the possible

query types according all analysis axes and sub-axes that a decision-maker could

have when querying temporal graph data [26, 37]. The first analysis axis is the555

graph component to evaluate the cost of querying data at the level of a single

entity (SE) or a set of related entities (SU) or the entire graph (G). The second

analysis axis is the evolution type to evaluate the cost of querying changes in

7https://www.citibikenyc.com/system-data

31

https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://www.citibikenyc.com/system-data

Implementation TPC-DS:

Temporal

graph

TPC-DS:

Classic

snapshots

TPC-DS:

Optimized

snapshots

E-

commerce

Social

experiment

Citibike

Objective of efficiency evaluation Y Y Y N N N

Objective of scalability evaluation N N N Y Y Y

Nodes 112 897 7 405 461 5 347 477 4 821 694 33 934 2 861

Edges 1 693 623 4 207 657 4 044 481 5 222 996 2 168 270 27 561 618

Snapshots N/A 60 53 N/A N/A N/A

Evolution types of entities AV, AS, T AV, AS, T AV, AS, T AV, AS, T AV, T ∅

Evolution types of relationships AV, AS, T AV, AS, T AV, AS, T T T AV, AS, T

Table 4: Characteristics of datasets. Y= Yes, N= No, AV = Attribute Value, AS = Attribute

Set, T = Topology.

data in terms of: attribute set (AS), attribute value (AS) or topology (T). The

third analysis axis is the time scope to evaluate the cost of querying data at the560

level of a single time point (SP), a single interval (SI), multiple time points (MP)

or multiple time intervals (MI). The fourth analysis axis is the operation type

used: (i) comparison aiming at evaluating how does a graph component change

over time with respect to a temporal evolution type (C) and (ii) aggregation

aiming at evaluating an aggregate function (A).565

Then, we created benchmark queries in Table 5 by crossing the different

sub-axes of analysis to distribute possible query scenarios in a balanced way.

Each benchmark query represents a possible combination of analysis sub-axes.

As a result, we obtained 28 queries. Finally, we translated these benchmark

queries in the native query language of Neo4j: Cypher.570

6.1.5. Technical environment

We used the same hardware configuration for the two experiments. It is as

follows: PowerEdge R630, 16 CPUs x Intel(R) Xeon(R) CPU E5-2630 v3 @

2.40Ghz, 63.91 GB. One virtual machine is installed on this hardware. This

virtual machine has 6GB in terms of RAM and 100GB in terms of disk size.575

We installed on this virtual machine Neo4j (community version 4.1.3) as data

store for our datasets. To avoid any bias in the disk management and query

performance, we did not use any customized optimization techniques but relied

32

G
r
a
p
h
c
o
m
p
o
n
e
n
t

E
v
o
lu
ti
o
n
ty
p
e

T
im

e
sc
o
p
e

O
p
e
r
a
ti
o
n
ty
p
e

Q1 The descriptive attributes of an entity at X SE AS SP

Q2 The descriptive attributes of an entity at X and Y SE AS MP

Q3 The changes that occurred on the descriptive attributes of an entity between X and Y SE AS MP C

Q4 The descriptive attributes of an entity from X to Y SE AS SI

Q5 The descriptive attributes of an entity at a regular period SE AS MI

Q6 The changes that occurred on descriptive attributes of an entity from X to Y SE AS SI C

Q7 The value of of an entity attribute at X SE AV SP

Q8 The value of an entity attribute at X and Y SE AV MP

Q9 The change in the value of an entity attribute between X and Y SE AV MP C

Q10 The value of an entity attribute from X to Y SE AV SI

Q11 Aggregation on the value of an entity attribute at a regular period SE AV MI A

Q12 A subgraph at X SU T SP

Q13 A subgraph at X and Y SU T MP

Q14 Aggregation on a subgraph at X SU T SP A

Q15 Aggregation on a subgraph at X and Y SU T MP A

Q16 A subgraph from X to Y SU T SI

Q17 A subgraph at a regular period SU T MI

Q18 Aggregation on a subgraph at a regular period SU T MI A

Q19 The descriptive attributes of a relationship at X SU AS SP

Q20 The descriptive attributes of a relationship at X and Y SU AS MP

Q21 The changes that occurred on the descriptive characteristics of a relationship between X and Y SU AS MP C

Q22 The descriptive attributes of a relationship from X to Y SU AS SI

Q23 The changes that occurred on the descriptive characteristics of a relationship from X to Y SU AS SI C

Q24 The value of a relationship attribute at X SU AV SP

Q25 The value of a relationship attribute at X and Y SU AV MP

Q26 The value of a relationship attribute from X to Y SU AV SI

Q27 Aggregation on the the value of a relationship attribute at a regular period SU AV MI A

Q28 The state of the entire graph at X G SP

Table 5: Benchmark queries. X and Y describe time points defined on a time unit. SE

= Single Entity, SU = Subgraph, G = Entire Graph, AS = Attribute Set, AV = Attribute

Value, T = Topology, SP = Single Point, MP = Multiple Points, SI = Single Interval, MI

= Multiple Intervals, C = Comparison, A = Aggregation.

33

on default tuning of Neo4j.

6.1.6. Summary580

Regarding the first series of experiments, we created, for each of the three

benchmark datasets (TPC-DS), 28 queries according to the query types we set in

Section 6.1.4. We run each query ten times and took the mean time of all runs as

final execution time. This makes a total of 84 queries (28 queries × 3 datasets)

and 840 executions (28 queries × 3 datasets × 10 times).585

Regarding the second series of experiments, we have three scale factors from

0.3GB to 6.7GB. We created a total of 44 queries adapted to the business con-

texts of the three real datasets (E-commerce, Social experiment and Citibike).

We run each query ten times and took the mean time of all runs as final execu-

tion time. This makes a total of 440 executions (44 queries× 10 times).590

6.2. Results of the efficiency evaluation of our model

For this first series of experiments, we used the three TPC-DS datasets

having respectively our temporal graph, classic and optimized snapshots rep-

resentations (Section 6.1.3). The classic snapshots consists in sampling graph

data at a regular time period (here we chose a month). Our optimized snapshots595

approach consists in creating a snapshot only if it includes a change compared

to a previous snapshot. We compared the storage and query performance of our

temporal graph implementation to classic and optimized snapshot-based imple-

mentations through the size, creation time and query execution times in Neo4j.

The query execution time is the elapsed time in seconds for processing the query.600

We run the 28 benchmark queries for each implementation (Section 6.1.6).

Observations of storage performance. In Table 6, we observe that our

model reduces respectively by 12 times and 9 times the size of database instance

storing classic snapshots and optimized snapshots. Moreover, the datasets based

on snapshot approaches require more time to be imported since they contain605

more nodes and edges than our model.

34

Implementation TPC-DS :

Temporal

graph

TPC-DS:

classic snap-

shots

TPC-DS:

Optimized

snapshots

Size (in GB) 0,3 3,7 2,8

Creation time (in sec) 15,795 56,529 45,827

Table 6: Size and creation time of graph database instances in Neo4j based on benchmark

datasets.

Observations of query performance. In Figure 12, we observe the execu-

tion times for processing each benchmark query in Table 5. Queries Q1-Q6

are instantaneous (close to 0) for the three implementations. Q17-Q21 and Q27

record execution spikes for the classic and optimized snapshots implementations.610

The execution time of Q28 explodes for the classic snapshots and temporal graph

implementations. Q28 runs out of memory for the optimized snapshots imple-

mentation. The rest of benchmark queries (Q7-Q16 and Q22-Q26) does not

exceed 6 seconds for the three approaches. Overall, the execution query times

of the temporal graph are lower than both snapshot-based approaches.615

In Figure 13, we observe the average gain in execution times of the temporal

graph implementation over both snapshots implementations by query types.

First, we analyze the query performance of our temporal graph according to the

graph component, that is requesting information at the level of a single entity

(SE), a subgraph (SU) or the entire graph (G). We observe that the temporal620

graph implementation outperforms both snapshots approaches by saving 92%-

93% of their average execution times on querying a single entity or subgraph.

The gain of the temporal graph over the classic snapshots on querying the entire

graph is smaller accounting for 35%.

Second, we analyze the query performance of our temporal graph according625

to the evolution type, that is requesting information at the level of attribute

set (AS), attribute value (AV) or topology (T). We observe that the gain of

the temporal graph implementation is the highest (99%) on querying attribute

35

Figure 12: Execution times of 28 benchmark queries. *ROM = Run Out of Memory.

set over both snapshot-based implementations. Regarding queries on attribute

value, the temporal graph allows us to save 94% of average execution times over630

both snapshot-based implementations. The execution times gain of the temporal

graph over both snapshots implementation is smaller on querying topology: 77%

over classic snapshots and 81% over optimized snapshots.

Third, we analyze the query performance of our temporal graph according to

the time scope, that is requesting information at the level of a single time point635

(SP), multiple time points (MP), a single interval (SI), or multiple time intervals

(MI). We observe that there is no big difference of execution times gain of the

temporal graph implementation between querying a single time point, multiple

time points or single interval. The temporal graph saves from 94% to 97% of the

average query execution times of snapshot-based implementations. However, the640

temporal graph saves less execution times on querying multiple intervals (89%).

Last but not least, we focus on the query performance of our temporal graph

according to the operation type, that is comparison (C) or aggregation (A). We

36

Figure 13: Average execution times gain (in %) of our temporal graph over classic and opti-

mized snapshots by query types. *We do not take into account the execution time of Q28 in

the computation of average execution time of SP queries because it explodes or runs out of

memory for each implementation. SE = Single Entity, SU = Subgraph, G = Entire Graph,

AS = Attribute Set, AV = Attribute Value, T = Topology, SP = Single Point, MP = Multiple

Points, SI = Single Interval, MI = Multiple Intervals, C = Comparison, A = Aggregation. .

observe that the temporal graph saves more execution times of both snapshots

implementations for processing comparison (98%) than aggregation operations645

(91%).

Discussion. The gap in the query performance between the temporal graph

and the two snapshots based implementations is partly due to difference of the

data volume involved in queries. The two snapshots approaches use a different

time management method than our model. This leads to larger use of disk650

space (Table 6) and more time to process during querying (Figure 12). Across

all query types, the temporal graph implementation always outperforms both

snapshot-based implementations (Figure 13). Though the optimized snapshots

implementation consumes less disk space than classic snapshots implementation,

our temporal graph saves almost the same average query execution times over655

both snapshot-based implementations. Indeed, as time is managed differently

in the two snapshot-based models, it is also queried differently. Conditions on

time for classic snapshots are translated in Cypher by simple time predicates.

37

Conversely, conditions on time in queries for the optimized snapshots are trans-

lated in Cypher by a sub-query to search for the snapshot that is the closest a660

requested time. So this is why the query performance of the optimized snap-

shots implementation reaches execution times almost equal or higher (e.g. Q13,

Q14 or Q21) than the classic snapshots implementation.

Implications. The choice of a data model to manage evolving data impacts

significantly the storage and querying efficiency. Our model has a double ad-665

vantage. First, it allows to get rid of data redundancy. So it saves a significant

amount of space on the disk compared to snapshots. Second, it supports effi-

ciently a wide range of queries while keeping average execution times low. The

implementation with our model allows to save up to 99% of execution times

compared to both snapshot-based implementations.670

6.3. Results of the scalability evaluation of our model

For this second series of experiments, we used three real datasets (Social Ex-

periment, E-commerce and Citibike) representing three different scales of data

volume and having our temporal graph representation (Section 6.1.3). We com-

pared the query performance of the three implementation according to their675

scale factors: the size, number of nodes and edges. More precisely, we analyzed

(i) the execution times of queries involving only entities (SE) at three different

scales of the number of nodes and (ii) the execution times of queries involving

relationships (SU) at three different scales of the number of edges. These two

analyses allow us to get an idea of the impact of the growing size and intercon-680

nectivity of a dataset. We were not able to run the 28 benchmark queries for

each implementation because the three real datasets do not embed all evolution

types.

Observations. Regarding the size of each implementation, we observe in Ta-

ble 7 that Social Experiment implementation has the smallest database instance685

size while Citibike has the highest one. Regarding the number of nodes and

edges, we observe that E-commerce implementation is composed of the highest

38

Implementation Social

Experiment

E-commerce Citibike

Size (in GB) 0,3 3,6 6,7

Table 7: Size of graph database instances in Neo4j based on real datasets.

number of nodes (Table 8) while Citibike implementation is composed of the

highest number of edges (Table 9). Regarding the average execution time of

queries involving entities (SE) (Figure 14), the Social experiment implementa-690

tion records instantaneous one. On the contrary, the average execution time

of queries on entities for the E-commerce implementation explodes (>30s). No

queries on entities were run on the Citibike implementation. Finally, regarding

the average execution time of queries involving relationships (SU) (Figure 15),

we observe that it is globally low (at most 2s) that for the three implemen-695

tations. Citibike implementation records the higher average execution time of

queries involving relationships.

Discussion. Regarding queries on entities (SE) (Figure 14), the gap of exe-

cution times between the E-commerce and Social experiment implementations

is partly due to the difference in the number of nodes involved in queries. As700

queries on entities involve conditions on nodes, they involve a higher number

of nodes during processing for the E-commerce implementation than the Social

experiment implementation. So they require more execution times to process

for the E-commerce implementation. The Social experiment implementation

reduces by 99% the average execution time (of SE queries) of the E-commerce705

implementation. Proportionally, Social experiment implementation has 99%

less nodes than the E-commerce implementation.

Regarding queries on relationships (Figure 15), the gap of execution times

between the three implementations is partly due to the difference in the number

of edges involved in queries. As queries on relationships involve conditions on710

edges, they involve a higher number of edges during processing for the Citibike

39

Implementation Social

Experiment

E-commerce Citibike

Scale factor 2 3 1

Number of nodes 33 934 4 821 694 2 861

Table 8: Number of nodes and scale factors of graph database instances in Neo4j based on

real datasets.

Figure 14: Average execution times of SE queries according to three scale factors. SE= Single

Entity.

implementation than the Social experiment and E-commerce implementations.

So they require more execution times to process for the Citibike implementation.

The Social experiment implementation has 92% less edges than the Citibike

implementation. It saves 80% of the average execution time (of SU queries)715

of the Citibike implementation. The E-commerce implementation has 81% less

edges than the Citibike implementation. It saves 26% of the average execution

time (of SU queries) of the Citibike implementation.

Implications. Query execution times do not depend directly on the size of the

implementation but specifically on the number of nodes and edges implemented720

40

Implementation Social

Experiment

E-commerce Citibike

Scale factor 1 2 3

Number of edges 2 168 270 5 222 996 27 561 618

Table 9: Number of edges and scale factors of graph database instances in Neo4j based on

real datasets.

Figure 15: Average execution times of SU queries according to three scale factors. SU=

Subgraph.

in Neo4j. Indeed, query execution times explode with the increase in the number

of nodes while stay quite low with the increase in the number of edges (i.e. the

interconnectivity) in a dataset. As Neo4j is a graph-based data store, queries

involving conditions on edges are more scalable compared to queries involving

conditions on nodes [38].725

7. Conclusion and future work

This paper has presented a complete solution to manage temporal graph

data. The power of our solution lies on the proposition of a conceptual mod-

elling, translation rules of the latter for its implementation, and experimental

41

assessments to illustrate its feasibility, usability, efficiency and scalability.730

We proposed a conceptual modelling of temporal graphs to represent graph

data that evolve over time. The advantage of our model compared to exist-

ing approaches is first to be business-oriented. It provides to non-expert user

a comprehensive overview of data and their changing components. Second, it

is generic in terms of representing different types of changes of graph data:735

topology, attribute set and attribute value. Finally, it represents the tempo-

ral evolution of data without losing information and redundancy contrary to

snapshot-based models.

To use our conceptual model in real business analyses, it must be transformed

into a logical model before being implemented in a specific technical environ-740

ment. To do so, we proposed standard translation rules between our model and

the property graph, which is commonly used in graph-oriented NoSQL store.

The advantage of our translation rules is that our model is directly convertible

into the property graph without any specific developments. We verified the fea-

sibility of our model by implementing an example dataset using our translation745

rules in Neo4j. Then, we verified its usability by running business analyses on

evolution aspects.

To highlight the efficiency of our model, we made a comparative study of

its implementation in Neo4j with the traditional sequence of snapshots and an

optimized version of snapshots based on the same dataset. We observed that750

our model performs better than the sequence of snapshots by reducing 12 times

disk usage and by saving up to 99% of query execution times. In comparison to

the optimized sequence of snapshots, our model reduces 9 times disk usage and

saves until 99% of query execution times. In a nusthell, our model is an efficient

solution for storing and querying a dataset with temporal evolution.755

To evaluate the scalability of our model, we made a comparative study

of three temporal graph implementations in Neo4j based on three real-world

datasets with different scales. We observe that execution times of queries in-

volving mainly conditions on nodes explode (>30s) when the number of nodes

increases. Conversely, execution times of queries mainly involving conditions on760

42

edges stay low (at most 2s) when the number of edges increases. In short, our

model has a better scalability for queries involving conditions on edges in Neo4j.

In our analyses, we have made data-oriented restitution but we can make

restitution oriented to changes: for instance, if the decision maker wants to visu-

alize the changes of a specific component in terms of attributes. We are currently765

working on an exploration tool of our temporal graph with a graphical interface.

This first prototype includes functionalities to visualize the different evolution

types in our model. Indeed, we have seen that Neo4j does not provide an ex-

pressive visualization of our concepts. It is due to the fact that Neo4j is initially

designed for static graphs. It is also the case for other commercialized graph770

data stores. In parallel, we are working on the proposition of algebraic operators

to make the technical complexity transparent to users. These operators have

been proposed in an international paper in progress. The next step is to make a

survey to identify (i) the Artificial Intelligence (AI) algorithms that are directly

compatible with our temporal graph model and (ii) the required extensions for775

non-compatible AI algorithms.

8. Funding acknowledgment

This work was supported by Activus Group (https://www.activus-group.fr/),

IRIT (https://www.irit.fr/) and ANRT (http://www.anrt.asso.fr/fr) with the

reference number 2019/0969.780

References

[1] V. C. Storey, I.-Y. Song, Big data technologies and management: What

conceptual modeling can do, Data & Knowledge Engineering 108 (2017)

50–67.

[2] R. Angles, C. Gutierrez, An introduction to Graph Data Management,785

arXiv:1801.00036 [cs] (2018) 1–32ArXiv: 1801.00036. doi:10.1007/

978-3-319-96193-4_1.

43

http://dx.doi.org/10.1007/978-3-319-96193-4_1
http://dx.doi.org/10.1007/978-3-319-96193-4_1
http://dx.doi.org/10.1007/978-3-319-96193-4_1

[3] B. Bbel, J. Eder, C. Koncilia, T. Morzy, R. Wrembel, Creation and man-

agement of versions in multiversion data warehouse, in: Proceedings of

the 2004 ACM symposium on Applied computing - SAC ’04, ACM Press,790

Nicosia, Cyprus, 2004, p. 717. doi:10.1145/967900.968049.

[4] P. Holme, J. Saramäki, Temporal networks, Physics reports 519 (3) (2012)

97–125, publisher: Elsevier.

[5] M. H. Böhlen, A. Dignös, J. Gamper, C. S. Jensen, Temporal Data Man-

agement – An Overview, in: E. Zimányi (Ed.), Business Intelligence and795

Big Data, Vol. 324, Springer International Publishing, Cham, 2018, pp.

51–83, series Title: Lecture Notes in Business Information Processing.

doi:10.1007/978-3-319-96655-7_3.

[6] T. Johnston, R. Weis, A Brief History of Temporal Data Management,

in: Managing Time in Relational Databases, Elsevier, 2010, pp. 11–25.800

doi:10.1016/B978-0-12-375041-9.00001-7.

[7] M. Bohlen, R. Busatto, C. Jensen, Point-versus interval-based tempo-

ral data models, in: Proceedings 14th International Conference on Data

Engineering, IEEE Comput. Soc, Orlando, FL, USA, 1998, pp. 192–200.

doi:10.1109/ICDE.1998.655777.805

[8] A. Zaki, M. Attia, D. Hegazy, S. Amin, Comprehensive Survey on Dynamic

Graph Models, International Journal of Advanced Computer Science and

Applications 7 (2). doi:10.14569/IJACSA.2016.070273.

[9] A. Debrouvier, E. Parodi, M. Perazzo, V. Soliani, A. Vaisman, A model and

query language for temporal graph databases, The VLDB Journal 30 (5)810

(2021) 825–858. doi:10.1007/s00778-021-00675-4.

[10] V. Z. Moffitt, J. Stoyanovich, Towards sequenced semantics for evolving

graphs., in: EDBT, 2017, pp. 446–449.

[11] A. Kosmatopoulos, K. Giannakopoulou, A. N. Papadopoulos, K. Tsich-

las, An Overview of Methods for Handling Evolving Graph Sequences, in:815

44

http://dx.doi.org/10.1145/967900.968049
http://dx.doi.org/10.1007/978-3-319-96655-7_3
http://dx.doi.org/10.1016/B978-0-12-375041-9.00001-7
http://dx.doi.org/10.1109/ICDE.1998.655777
http://dx.doi.org/10.14569/IJACSA.2016.070273
http://dx.doi.org/10.1007/s00778-021-00675-4

I. Karydis, S. Sioutas, P. Triantafillou, D. Tsoumakos (Eds.), Algorithmic

Aspects of Cloud Computing, Vol. 9511, Springer International Publishing,

2016, pp. 181–192. doi:10.1007/978-3-319-29919-8_14.

[12] C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, R. T. Snodgrass, A glossary

of temporal database concepts, ACM SIGMOD Record 21 (3) (1992) 35–43.820

doi:10.1145/140979.140996.

[13] S. Ji, S. Pan, E. Cambria, P. Marttinen, P. S. Yu, A Survey on Knowledge

Graphs: Representation, Acquisition and Applications, IEEE Transactions

on Neural Networks and Learning Systems (2021) 1–21ArXiv: 2002.00388.

doi:10.1109/TNNLS.2021.3070843.825

[14] Y. Yang, J. X. Yu, H. Gao, J. Pei, J. Li, Mining most frequently changing

component in evolving graphs, World Wide Web 17 (3) (2014) 351–376.

[15] R. A. Rossi, B. Gallagher, J. Neville, K. Henderson, Modeling dynamic

behavior in large evolving graphs, in: Proceedings of the sixth ACM inter-

national conference on Web search and data mining - WSDM ’13, ACM830

Press, 2013, pp. 667–676.

[16] C. Aslay, M. A. U. Nasir, G. De Francisci Morales, A. Gionis, Mining Fre-

quent Patterns in Evolving Graphs, in: Proceedings of the 27th ACM In-

ternational Conference on Information and Knowledge Management, ACM,

2018, pp. 923–932.835

[17] M. Latapy, T. Viard, C. Magnien, Stream Graphs and Link Streams for the

Modeling of Interactions over Time, Social Networks Analysis and Mining

8 (1) (2018) 61:1–61:29. doi:10.1007/s13278-018-0537-7.

[18] E. Desmier, M. Plantevit, C. Robardet, J.-F. Boulicaut, Cohesive co-

evolution patterns in dynamic attributed graphs, in: International Con-840

ference on Discovery Science, Springer, 2012, pp. 110–124.

45

http://dx.doi.org/10.1007/978-3-319-29919-8_14
http://dx.doi.org/10.1145/140979.140996
http://dx.doi.org/10.1109/TNNLS.2021.3070843
http://dx.doi.org/10.1007/s13278-018-0537-7

[19] A. Zhao, G. Liu, B. Zheng, Y. Zhao, K. Zheng, Temporal paths discovery

with multiple constraints in attributed dynamic graphs, World Wide Web

23 (1) (2020) 313–336. doi:10.1007/s11280-019-00670-4.

[20] A. Campos, J. Mozzino, A. Vaisman, Towards Temporal Graph Databases,845

arXiv:1604.08568 [cs]ArXiv: 1604.08568.

URL http://arxiv.org/abs/1604.08568

[21] L. Xiangyu, L. Yingxiao, G. Xiaolin, Y. Zhenhua, An Efficient Snap-

shot Strategy for Dynamic Graph Storage Systems to Support Historical

Queries, IEEE Access 8 (2020) 90838–90846. doi:10.1109/ACCESS.2020.850

2994242.

[22] U. Khurana, A. Deshpande, Efficient snapshot retrieval over historical

graph data, in: 2013 IEEE 29th International Conference on Data En-

gineering (ICDE), IEEE, 2013, pp. 997–1008. doi:10.1109/ICDE.2013.

6544892.855

[23] C. Ren, E. Lo, B. Kao, X. Zhu, R. Cheng, On querying historical evolving

graph sequences, Proceedings of the VLDB Endowment 4 (11) (2011) 726–

737.

[24] S. Gandhi, Y. Simmhan, An Interval-centric Model for Distributed Com-

puting over Temporal Graphs, in: 2020 IEEE 36th International Con-860

ference on Data Engineering (ICDE), IEEE, 2020, pp. 1129–1140. doi:

10.1109/ICDE48307.2020.00102.

[25] S. Ramesh, A. Baranawal, Y. Simmhan, A Distributed Path Query Engine

for Temporal Property Graphs, in: 2020 20th IEEE/ACM International

Symposium on Cluster, Cloud and Internet Computing (CCGRID), IEEE,865

2020, pp. 499–508. doi:10.1109/CCGrid49817.2020.00-43.

[26] U. Khurana, A. Deshpande, Storing and Analyzing Historical Graph Data

at Scale, in: EDBT, 2016.

46

http://dx.doi.org/10.1007/s11280-019-00670-4
http://arxiv.org/abs/1604.08568
http://arxiv.org/abs/1604.08568
http://dx.doi.org/10.1109/ACCESS.2020.2994242
http://dx.doi.org/10.1109/ACCESS.2020.2994242
http://dx.doi.org/10.1109/ACCESS.2020.2994242
http://dx.doi.org/10.1109/ICDE.2013.6544892
http://dx.doi.org/10.1109/ICDE.2013.6544892
http://dx.doi.org/10.1109/ICDE.2013.6544892
http://dx.doi.org/10.1109/ICDE48307.2020.00102
http://dx.doi.org/10.1109/ICDE48307.2020.00102
http://dx.doi.org/10.1109/ICDE48307.2020.00102
http://dx.doi.org/10.1109/CCGrid49817.2020.00-43

[27] C. Cattuto, M. Quaggiotto, A. Panisson, A. Averbuch, Time-varying so-

cial networks in a graph database: a Neo4j use case, in: First Inter-870

national Workshop on Graph Data Management Experiences and Sys-

tems, GRADES ’13, Association for Computing Machinery, 2013, pp. 1–6.

doi:10.1145/2484425.2484442.

[28] H. Huang, J. Song, X. Lin, S. Ma, J. Huai, TGraph: A Temporal Graph

Data Management System, in: Proceedings of the 25th ACM International875

on Conference on Information and Knowledge Management, ACM, 2016,

pp. 2469–2472.

[29] Y. Roussakis, I. Chrysakis, K. Stefanidis, G. Flouris, Y. Stavrakas, A flex-

ible framework for understanding the dynamics of evolving RDF datasets,

in: International Semantic Web Conference, Springer, 2015, pp. 495–512.880

[30] N. Pernelle, F. Saïs, D. Mercier, S. Thuraisamy, RDF data evolution: effi-

cient detection and semantic representation of changes, Semantic Systems-

SEMANTiCS2016 (2016) 4.

[31] F. Ravat, J. Song, O. Teste, C. Trojahn, Improving the performance of

querying multidimensional RDF data using aggregates, in: Proceedings885

of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19,

Association for Computing Machinery, 2019, pp. 2275–2284.

[32] X. S. Wang, S. Jajodia, V. Subrahmanian, Temporal modules: An approach

toward federated temporal databases, in: Proceedings of the 1993 ACM

SIGMOD international conference on Management of data, 1993, pp. 227–890

236.

[33] J. F. Allen, Maintaining knowledge about temporal intervals, Communica-

tions of the ACM 26 (11) (1983) 832–843. doi:10.1145/182.358434.

[34] L. Andriamampianina, F. Ravat, J. Song, N. Vallès-Parlangeau, Towards

an Efficient Approach to Manage Graph Data Evolution: Conceptual Mod-895

elling and Experimental Assessments, in: S. Cherfi, A. Perini, S. Nurcan

47

http://dx.doi.org/10.1145/2484425.2484442
http://dx.doi.org/10.1145/182.358434

(Eds.), Research Challenges in Information Science, Springer International

Publishing, 2021, pp. 471–488.

[35] R. Angles, The Property Graph Database Model, in: AMW, 2018.

[36] A. Madan, M. Cebrian, S. Moturu, K. Farrahi, A. S. Pentland, Sensing the900

"Health State" of a Community, IEEE Pervasive Computing 11 (4) (2012)

36–45. doi:10.1109/MPRV.2011.79.

[37] G. Koloniari, D. Souravlias, E. Pitoura, On Graph Deltas for Historical

Queries, CoRR abs/1302.5549.

[38] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, D. Wilkins, A com-905

parison of a graph database and a relational database: a data prove-

nance perspective, in: Proceedings of the 48th Annual Southeast Re-

gional Conference on - ACM SE ’10, ACM Press, 2010, p. 1. doi:

10.1145/1900008.1900067.

48

http://dx.doi.org/10.1109/MPRV.2011.79
http://dx.doi.org/10.1145/1900008.1900067
http://dx.doi.org/10.1145/1900008.1900067
http://dx.doi.org/10.1145/1900008.1900067

	Introduction
	Related Work
	Temporal data management
	Graph data management

	Conceptual modelling
	Time
	Temporal Graph
	Evolution management
	Example

	Logical modelling
	Analysis of evolving data using temporal graph: a use case
	Experimental evaluation
	Protocol
	Objectives
	Methods
	Datasets
	Benchmark queries
	Technical environment
	Summary

	Results of the efficiency evaluation of our model
	Results of the scalability evaluation of our model

	Conclusion and future work
	Funding acknowledgment

