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Abstract 17	

This paper introduces a novel bio-inspired meta-heuristic optimization algorithm, named termite 18	

life cycle optimizer (TLCO), which is based on both the life cycle of a termite colony and the 19	

modulation of movement strategies used by many animal species in nature. Termite colonies are 20	

comprised of three distinct castes: the workers, the soldiers and the reproductive termites. Each 21	

caste undertakes a set of specific tasks that ensure the growth and survival of the colony. TLCO 22	

mimics the activities of these three castes that are implemented in a mathematical model. The 23	

model is then used to find the global optimum in classic optimization problems. First, the 24	

behaviors of the workers, soldiers and reproductive termites are used to simulate a balance 25	

between the tasks of exploration and exploitation. Second, the initial population securely 26	

records the information obtained at each iteration and transmits it to workers and soldiers at the 27	

next iteration. This process is repeated until the global optimum is found with the smallest error. 28	

Besides, a new proposed function combined with Lévy flight is used to modulate the movement 29	

of termites that increases its flexibility. Thus, TLCO can cover both long distances during the 30	

first iterations to improve the convergence rate and shorter distances during the last iterations to 31	

enhance the level of accuracy. We then compare the performances of TLCO with other well-32	

known nature-inspired algorithms using 23 classical benchmark functions, CEC2005 33	

benchmark functions, and five real engineering design problems. The results demonstrate the 34	

effectiveness and reliability of TLCO in solving these optimization problems. Source codes of 35	

TLCO is publicly available at http://goldensolutionrs.com/termite-life-cycle-optimizer.html. 36	

Keyworks:	 CEC 2005, Optimal Engineering Design,	 Optimization, Termite Optimization 37	

Algorithm, Meta-heuristic, Stochastic optimization, Lévy flight. 38	



1 INTRODUCTION 1	

Optimization algorithms allow us to find solutions to optimization problems [1]. Depending on 2	

each problem, an objective function is first defined and then the maximum or minimum of the 3	

objective is determined by an optimization algorithm. An optimization problem can be defined 4	

in the following way: 5	

Given:  from a set A to a real number 6	

Sought:  such that  for all  (minimization) 7	

   such that  for all  (maximization) 8	

Besides using the approaches of mathematics and numerical analysis, meta-heuristic algorithm 9	

is considered an effective approach to solve optimization problems in various domains. Meta-10	

heuristic is designed for solving a problem more quickly when traditional methods are too slow, 11	

or for searching the best solution with an acceptable error when classic methods fail to find the 12	

exact solution. This is achieved by the repeat the process of “trial and error” continuously, the 13	

experiences gained from the “error” solutions at the previous iteration will be recorded to adjust 14	

for the next iteration in a way that is suitable for the situation. The main characteristics of the 15	

meta-heuristic technique can be summarized as follows [2]: 16	

• Metaheuristic are strategies that lead the search process “trial and error” 17	

• The goal is to explore the potential search space to find optimal solutions. 18	

• Techniques that constitute metaheuristic algorithms range from simple search 19	

procedures to complex learning processes. 20	

• Metaheuristic algorithms are approximate approach and are not problem-specific. 21	

The process of “trial and error” for finding the global optima is secured by the number of 22	

solution candidates that is improved during optimization (the number of iterations). Based on 23	

the number of solution, meta-heuristic optimization algorithms can be divided into two groups 24	

as single solution-based and population-based. There are several advantages and disadvantages 25	

for each groups. Single solution-based is less computationally costly but suffer from early 26	

convergence, thus the accuracy level is limited. On the contrary, population-based algorithms 27	

randomly generate a set of solution candidates  in search space at the first 28	

step. Then, these candidates are combined/updated to explore and exploit the new search space 29	

 through the process of repeat “trial and error”. This will increase the 30	

opportunity for reaching the global optima. This group registers a high ability to avoid local 31	

optima since a set of solutions is involved during optimization, especially, with the large search 32	

space [2-4]. In addition, information sharing between solution candidates in coordination are 33	

improved in comparison with the first group and assist them to overcome different difficulties 34	



of search spaces. In other words, the solutions created in the next step will be more advanced 1	

than those of the previous step because of the useful information recorded. Besides advantages, 2	

high computational cost and the need for more function evaluation are two major drawbacks of 3	

population-based algorithms.  4	

Many metaheuristic algorithms with different inspiration can be divided into three classes [5] 5	

such as: evolution-inspired [6, 7], physics-inspired [8] and biological swarm-inspired [9]. 6	

Evolution-inspired method is population-based approach and is inspired by the laws of 7	

biological systems [10, 11]. The advantages of these algorithms are that each solution candidate 8	

is be tied to the best solution found at the previous step. This allows the population to be 9	

optimized over the course of iterations. Genetic algorithm (GA) original version proposed by 10	

Holland [12] that simulates the Darwinian evolution. GA used techniques including mutation, 11	

crossover, to improve the solution candidate. The original version and its variants have widely 12	

applied to many real-world problems [13-15]. Other popular algorithms were presented 13	

including Evolution Strategy (ES) [16], Genetic Programming (GP) [17], Differential Evolution 14	

(DE) [18], Evolutionary Programming (EP) [19]. Biogeography-Based Optimization algorithm 15	

(BBO) [20].  16	

Physics-inspired method is inspired by physical phenomena in nature and is population-based 17	

approach. Simulated annealing (SA) algorithm [21]. At each step iteration, SA registers some 18	

neighboring state s* of the current state, and probabilistically decides between moving the 19	

system to state s* or staying in-state s. These probabilities ultimately lead the system to move to 20	

state of lower energy. Typically, this step is repeated until the system reaches a state that is good 21	

enough for the application. Recently, many novel physics-inspired algorithms have been 22	

proposed including Gravitational Local Search (GLSA) [22], Gravitational Search Algorithm 23	

(GSA) [23], Charged System Search (CSS) [24], Small-World Optimization Algorithm 24	

(SWOA) [25], Central Force Optimization (CFO) [26], Galaxy-based Search Algorithm (GbSA) 25	

[27],	 Black Hole [28], Ray Optimization (RO) [29], curved space optimization (CSO) [30], 26	

Atom search optimization (ASO) [31] and so on. 27	

The final class is Swarm-inspired algorithms. These algorithms mostly mimic the collective 28	

behavior of swarms of insects, herds of ungulates, flocks of birds, or schools of fish observed in 29	

nature [32, 33]. The mechanism is almost similar to physics-based algorithm, but the search is 30	

carried out by agents that navigate using the simulated collective intelligence specific to group-31	

living species [34-36]. These algorithms have become popular in solving optimization problems 32	

because of their strong global searching abilities. The background of these algorithms is based 33	

on simulating how to move, finding food, coordinating behavioral actions and sharing 34	

information among swarm particles. Hussain et al. [37] reported the trend preferred by 35	

researchers for designing new metaheuristic algorithms as shown in Fig. 1. Thus, the percentage 36	

of different animal groups used for simulating social characteristics, development and survival 37	



of swarms in nature amount to 48% in total including 23%, 16% and 9%. The popular 1	

algorithms that belong to these percentages are listed in Table 1. 2	

Table 1: Optimization algorithms inpired by the behaviors of biological collectives proposed in 3	
literature 4	

Algorithm Year of  
proposed 

1. Particle swarm optimization (PSO) [38] 1995 
2. Ant colony optimization (ACO) [39] 1996 
3. Bacterial foraging optimization (BFO) 2002 
4. Artificial bee colony algorithm (ABC) [40] 2005 
5. Termite Algorithm (TA) [41] 2005 
6. Glowworm swarm optimization (GSO) [42] 2005 
7. Shuffled frog leaping algorithm (SFLA) [43] 2006 
8. Cat Swarm Optimization (CAT) [44] 2006 
9. Bees algorithm  (BA) [45] 2006 
10. Wasp Swarm Algorithm (WSO) [46] 2007 
11. Monkey search (MA) [47] 2007 
12. Wolf pack search algorithm [48] 2007 
13. Bee Collecting Pollen Algorithm (BCPA) [49] 2008 
14. Cuckoo search (CS) [50] 2009 
15. Dolphin Partner Optimization (DPO) [51] 2009 
16. Bat algorithm (BA) [52] 2010 
17. Firefly Algorithm (FA) [53] 2010 
18. Hunting Search (HS) [54] 2010 
19. Bird Mating Optimizer (BMO) [55] 2012 
20. Krill Herd (KH) [56] 2012 
21. Fruit fly Optimization Algorithm (FOA) [57] 2012 
22. Dolphin Echolocation (DE) [58] 2013 
23. The Smell Detection Agent  (SDA) [58] 2014 
24. Grey Wolf optimizer (GWO) [59] 2014 
25. The ant lion optimizer (ALO) [60] 2015 
26. Dragonfly algorithm [61] 2016 
27. The Whale Optimization Algorithm (WOA) [62] 2016 
28. Killer Whale Algorithm [63] 2016 
29. Grasshopper optimization algorithm (GOA) [64] 2017 
30. Salp Swarm Algorithm (SSA) [65] 2017 
31. Emperor Penguins Colony (EPC) [66]  2019 
32. A mayfly optimization algorithm (MA) [67] 2020 
33. Jellyfish Search (JS) [68] 2021 



 1	

Fig. 1: Metaphors adopted by researchers for designing new metaheuristics 2	

It is clear that Swarm-inspired algorithms take an advantage when it is widely used for 3	

proposing a new algorithm as shown in Fig. 1. This is explained for the following reasons: (i) 4	

Simplicity is the primary advantage of Swarm-inspired algorithms, the majority of algorithms in 5	

this field follow a simple structure and have been inspired from simple concepts. This motivates 6	

a mathematical simulation to create different forms of swarm intelligence (SI) as given in Table 7	

1. (ii) Swarm-inspired algorithms are population-based algorithms whose background is 8	

stochastic optimization algorithm which is considered as black box [69]. This means that the 9	

process of derivation of the mathematical model is ignored. In another word, the optimization 10	

algorithms focus on changing the input and monitor the output for reaching the target (objective 11	

function).  12	

Particle swarm optimization (PSO) [38] is the most popular swarm intelligence algorithm to 13	

solve continuous optimization problems. The main concept in PSO includes two factors; the 14	

first is to create a balance between two important features such as exploitation and exploration. 15	

According to [39], exploration means the ability of the algorithm to find the new search space 16	

which is far from the current particle position. And exploitation means the ability of the 17	

algorithm to find the potential position near the best position recorded. The second is that the 18	

information in PSO will be recorded after each iteration. Thus, the global best solution and the 19	

local best solution obtained at the previous iteration will be transmitted to each particle at the 20	

next iteration. This information will guide each particle to improve itself over the course of 21	



iterations. In PSO, the velocity is used as a separate strategy to move to a new position between 1	

local optima and global optima. In the mathematical form of velocity, the balance is established 2	

through two random vectors used to provide diversity to particle’s movement and two 3	

parameters relative influence of the local best and global best. The new position of each particle 4	

will be updated by a combination between the current particle position and its velocity. This 5	

position will reach convergence when the number of iteration is sufficient. 6	

The concept in PSO can be perceived as originality and it is a rich source of inspiration for 7	

researchers to propose new algorithms in the past two decades. The new swarm algorithms 8	

almost are established by proposing the different approaches through simulating swarm 9	

intelligence by mathematical models. Grey Wolf optimizer (GWO) [59] proposed a new 10	

technique called “encircling” and “attacking” to simulate the ability of exploration and 11	

exploitation. These abilities were done by a skillful vector which was register either larger than 12	

one or smaller than one. Between each iteration, the shared information was secured by the 13	

updating three best solutions in GWO. The specificity of GWO was that the updating of the new 14	

positions oriented well (near the potential location of the best solution) and not too far from the 15	

best solution. This supports GWO to achieve a good convergence rate and a high accuracy level. 16	

Firefly Algorithm (FA) [53] proposed a new technique of connection between each particle in 17	

swarm. The position updating in FA was oriented by the other particle which was more 18	

attractive and a random vector drawn from a Gaussian distribution. In FA algorithm, the 19	

exploration ability was represented by a random vector, while the exploitation was controlled by 20	

the attraction of different fireflies and the attractiveness strength. Especially, in case the light 21	

absorption coefficient that controls the decrease of light intensity was more than infinity, the FA 22	

algorithm will become an accelerated version of PSO. Bat algorithm (BA) [45] simulated the 23	

movement of Bats to detect prey, avoid obstacles, and locate their roosting crevices in the dark. 24	

Two parameters called pulsed rate and loudness proposed to select the way of position updating. 25	

The balance between exploration and exploitation was skillfully solved by comparison these 26	

parameters with a random scalar registered in the range from 0 to 1. The process of the 27	

velocities and positions updating in BA can be perceived as the same process in the PSO [38]. 28	

To a degree, BA can be considered a balanced combination of PSO and the intensive local 29	

search controlled by the loudness and pulse rate. The other algorithms have PSO characteristics 30	

such as Bird Mating Optimizer (BMO) [48], Gravitational Search Algorithm (GSA) [23], 31	

Cuckoo search (CS) [50], Bacterial foraging optimization (BFO) [10] and so on. 32	

The development of social technologies opens new challenges dealing with a great number of 33	

optimization problems. Although a large of number optimization algorithms have introduced in 34	

the literature, new optimization algorithms are still being developed to solve emerging complex 35	

optimization problems to obtain a better scheme. No Free Lunch Theorem of Optimization [70] 36	

proved that there is no optimization algorithm performing the best overall different types of 37	

problems. It means the success of any algorithm in solving a particular problem does not 38	



guarantee that it can solve efficiently other classes of problems. This theory promotes and 1	

encourages scholars to develop new algorithms or improve the current ones for solving the set 2	

of problems in the different field  3	

In this paper, a novel Swarm-inspired algorithm is proposed for solving the optimization 4	

problem named termite life cycle optimizer (TLCO) based on the termites life cycle and the 5	

modulation of movement strategies in nature. To the best of our knowledge, there is no related 6	

research this study found in the literature.  7	

2 BIOLOGICAL INSPIRATION 8	

Termites are social insects, widely distributed on Earth, which have reached a high level of 9	

social organization. The termite life cycle shown in Fig. 2 is generally established by three 10	

groups of individuals: the worker caste, the soldier caste, and the reproductive caste [71]. Thus, 11	

each caste will take on tasks to maintain the development of a colony.	The life cycle is a typical 12	

of social insects allowing for proper division of labor. King and queen are only active 13	

reproductive individuals within a colony; they perform no other function. A queen can lay 14	

thousands of eggs each year. During the two-week incubation period, the termite worker take 15	

care of the eggs. The nymphs hatch directly from the egg and can become one of three castes: 16	

the worker caste, the soldier caste, and the reproductive caste that are in charged of the 17	

following tasks: 18	

Worker caste:  19	

Termite workers represent 70% to 80% of the total number of insects in the colony. 20	

Workers undertake most of the work within the colony, being responsible for foraging, 21	

food storage, and brood and nest maintenance [72]. 22	

Soldier caste:  23	

The soldiers account for 20% to 30% of the number of insects within the colony. Their 24	

sole purpose is to protect the colony and attack intruders if they feel threatened [73]. To 25	

perform this task, they stay close to the nest and do not move too far from their colony. 26	

Reproductive caste:  27	

There is only one pair of reproductive individuals in a colony, a fertile female and male, 28	

known as the queen and king. The queen is responsible for egg production for the colony 29	

and the king mates with her for life. The queen starts producing new reproductive 30	

termites at a certain time of the year, and huge swarms emerge from the colony when 31	

nuptial flight begins. When they find a partner, these reproductive termites will lose their 32	

wings and create a new colony [74]. 33	



 1	

Fig. 2: Life cycle of a Termite colony 2	

Communication between termites is considered to be crucial element for the coordination of 3	

individuals’ activities and the emergence of collective intelligence [75]. This characteristic is a 4	

significant factor for development and survival of the colony. Most termites are blind, so 5	

communication primarily occurs through chemical signals and mechanical cues. Termites use 6	

this communication to share the location of food sources and organize the traffic outside the 7	

nest. The termite workers always leave pheromones on the ways to orient the others to the food.  8	

The TLCO takes inspiration from the specific tasks carried out by workers, soldiers and 9	

reproductive termites to build mathematical models that can reach three significant factors: (i) 10	

guarantee the ability of exploration and exploitation of the algorithm, (ii) the ability to share 11	

information among each particle in swarm, (iii) the ability to improve the solution over course 12	

of iterations. The conversion from the terms of termite life cycle to TLCO is described in Table 13	

2. 14	

Table 2: The conversion from the terms of termite life cycle to TLCO algorithm 15	

Terms of Termite 
life cycle Task in colony Task converted to TLCO 

Queen Lay eggs and take care of the 
Nymph Global best solution 

Eggs and Nymph The source of development The number of particle in swarm 

Worker caste Find the new food of source, build 
the shelter tubes 

The particular particles which have 
the ability to explore the new 
search space 

Soldier caste Protect colony and attack the other 
intruders 

The particular particles which have 
the ability to exploit the search 
space around the current global best 



Reproductive caste Find a new food source to create a 
new colony. 

The ability to abandon the bad 
current solution and replace it with 
a new potential solution. 

Intelligent swam Communication of each termite in 
the colony 

The ability to store information at 
the current iteration and transmit it 
to the next iteration. 

3 TERMITE LIFE CYCLE OPTIMIZER 1	

This section provides the details of TLCO algorithm 2	

3.1 Random walk and Lévy flight 3	

In nature, some movements performed by animals are mostly random [76] . From a start point, 4	

the animal can move in any direction. For instance such movements can be observed during 5	

foraging activity. In mathematical terms, a path can be represented by a succession of random 6	

steps expressed in Eq. (1) 7	

 
 (1) 

Where denotes as a step length. There have been many attempts to convert the 8	

step length to the mathematical formulation of probability. Many methods can determine these 9	

features, but the simplest one is the well-known Mantegna algorithm for asymmetric and stable 10	

Lévy distribution [77]. If each step  in the random walk obeys a Lévy 11	

distribution, the random walk will become a Lévy flight [50]. According to Mantegna’s 12	

algorithm, the step length  is defined as Eq. (2) 13	

 
 

(2) 

Where  is the Lévy distribution index whose values are constrained as . 14	

 and   are drawn from normal distributions following Eq. (3) 15	

  (3) 

Where  and  are standard deviation given in Eq. (4) 16	

 
 

(4) 

 In Eq. (4) the Gamma function ! for an integer " is expressed as Eq. (5) 17	

 
 

(5) 



Each step length  can have both positive and negative values. Especially, a step length  can 1	

be achieved with either a long or a short distance depending on the parameter  as shown in 2	

Fig. 3a and Fig. 3b. Based on this feature, it is a robust method applied for the exploration a 3	

large search space and the exploitation near the best solution inn that space. These 4	

characteristics may provide some hints and insights into how and why metaheuristic algorithms 5	

behave.  6	

 7	

Fig. 3: Random walk in 2D dimension using Lévy flight in 200 steps length with different : 8	
(a) simulation over long distance, (b) simulation over short distance 9	

3.2 A proposed modulation of step length in termite life cycle optimizer 10	

The step length S in the original random walk is controlled by the parameter  whose value 11	

range is bounded from 1 to 2. Fig. 3a and Fig. 3b show that a long step length is decided by a 12	

small parameter value  and vice versa, with a large parameter value , a short step length is 13	

established. A successful optimization algorithm is to reach both conditions: (i) fast 14	

convergence rate and (ii) high accuracy level. These conditions require enough long movements 15	

to fast forward the best solution during the first iterations, and enough short movements to avoid 16	

the local optimal problem and to improve the accuracy level during the last iterations. In TLCO, 17	

this can be achieved by adjusting the value of parameter  at each iteration. As a result, the 18	

value of  is moving upwards over the course of iterations for improving convergence rate and 19	

accuracy level. To limit the search space during a few first iterations, the boundary condition of 20	

 value will be changed from range  to range  for improving convergence rate 21	

and given in Eq. (6) The effect of the values of  on step length at each iteration as shown in 22	

Fig. 4 23	

 

 (6) 

Where  is the current iteration and  is the maximum number of iterations. 24	

(a) (b) 



  1	

Fig. 4: Random walk in 2D dimension using Lévy flight in 20 steps length with proposed  	2	

3.3 The movement strategy of termite workers in the model 3	

In this paper, we assume that the number of termite workers accounts for 70 % of the total 4	

number of individual in the colony. Let's assume an initial population of termites in the colony 5	

of size N; thus, 	denotes the position of termite workers. The primary duties 6	

of termite workers are to explore the source of food and build the shelter tubes. In the 7	

mathematical model, the process of position updating between  and  iteration can be 8	

described as Eq. (7). 9	

 
 

(7) 

Where 	 is a scalar number whose value is limited in range . It uses to control the 10	

movement direction of 	 and makes the movement of termite workers become more 11	

flexible.	 Thus, at the step , 	 can randomly move in two directions, the first 12	

direction is secured if 	and the remaining direction if .	 13	

	is intelligent movement strategy of termite workers to explore the new search space at 14	

 iteration and is expressed in Eq. (8).   15	

 
 

(8) 

Long steps length 
during the first 
iterations 

Short steps 
length during the 
last iterations 



Where  is a scalar vector representing the change in the value of step length .1	

 is the best solution recorded at  iteration. The symbol  is a point-to-point 2	

multiplication. The term  is a scalar vector having its value within the range  3	

and having a dimension D.  is step length at iteration  given in Eq. (2) whose  4	

is calculated according to Eq. (6).  5	

To simplify, Eq. (8) is rewritten as Eq. (9) and the position updating process of each termite 6	

worker as shown in Fig. 5. 7	

 (9) 

 8	

Fig. 5: The movement of termite workers at iterations  and   9	

 is a vector to ensure the ability to expand the search space of termite workers. It is 10	

produced by a combination of two vectors. The first vector is 	 that called a 11	

fixed-component,	 and the second vector is  which is called a random 12	

component . It should be emphasized that the step length  will control the 13	

fluctuation of , Thus, If  creates a wide search space, it can induce many 14	

wasteful movements which is denoted as follows  , where  is 15	

the objective function. This will seriously affect the convergence rate of the algorithm. 16	

Otherwise, if creates a narrow search space, it will affect the accuracy level due to 17	

local optima problem. To overcome these problems, TLCO proposed a new step length  18	



controlled by the parameter  whose value increases from 1.5 to 2 over the course of iterations 1	

given in Eq. (6). As a result, the vector  can get either long enough 2	

(during the few first iterations) to improve the convergence rate or short enough (during a few 3	

last iterations) to improve the accuracy level. Fig. 5 illustrates the updating of the position of 4	

each termite worker at iterations  and ; because of the control of , the 5	

individual value  of step length S will gradually decreases as the number of 6	

iterations increases. Thus, 	 will have less fluctuation than , which will 7	

improve termite worker’s position over the course of iterations. Especially, at the final iteration 8	

, the step length S will approach an infinitesimal value and the direction movement 9	

of each termite worker will be the same of the vector 	 as shown in Fig. 6. 10	

Moreover, the movement direction of 	is decided by the value of . If the value of  is 11	

negative , 	undergoes a trend move forward to the potential search space. By 12	

contrast, if the value of  is positive , 	will move far from its current position. 13	

Because of these constraints, this makes the movement strategy of termite workers more 14	

flexible. 15	

 16	

Fig. 6: The movement trend of workers termite at the final iteration  17	

3.4 The movement strategy of reproductive termites in the model 18	

The primary task of reproductive termites is to create a new colony. In a mathematical model, 19	

this process can be achieved by evaluating the performance of the . If  performs 20	

wasteful movements too frequently over the course of iterations, the reproductive termites 21	

 will emerge to find the new potential search space. 22	

In TLCO, the timing of their appearance is determined by a control	parameter  called Limit. 23	

Thus, after each iteration if cannot explore a new better food source, i.e. if the condition 24	

 is not satisfied, these times will be recorded and counted through 25	

iterations by a pre-determined number called Trial. And if the condition  is satisfied, 26	

reproductive termites will appear to fly to a new potential region for establishing a new colony. 27	

This process is described in mathematical form as follows: 28	

Set:   29	



Where  is the parameter to specify when the reproductive termites will occur, and they can be 1	

adjusted by user for a particular structure. Especially, if = 1, reproductive termites will be 2	

ignored in TLCO. The position of the new colony explored by each reproductive termite is 3	

expressed in Eq. (10) 4	

 
 

(10) 

Based on the characteristics of the step length vector , the new position of each 5	

reproductive termite  can obtain both conditions; the first is far a way from  6	

during a few first iterations and the second is close to  in a few last iterations as shown in 7	

Fig. 7. Especially, if  is equal one, TLCO will ignore the reproductive termites phase.  8	

	 9	

Fig. 7:	The movement trend of reproductive termite at  iteration 10	

3.5 The movement strategy of termite soldiers in the model 11	

The number of termite soldiers represents about 30 % of the total number of individuals within 12	

a colony. Let’s 	 	be the position of a termite soldier.	The primary task of 13	

this caste is to protect the colony and attack the intruders. To complete the mission, the 14	

movement of termite soldiers remains close to their colony to protect the queen termite called15	

. In the model, the update of their position is expressed in Eq. (11) 16	

  (11) 

Where 	is the movement strategy of termite soldiers that controls their new positions.	To 17	

match their mission,  must be a vector to ensure the ability of exploitation of TLCO and is 18	

expressed in Eq. (12). 19	

 
 

(12) 

The term 	where  is a point-to-point multiplication creates the trend 20	

of movement towards the high-density region defined by . The term  is 21	



added in Eq. (12) as the primary vector for exploiting the new search space around .  is 1	

a parameter to adjust the attack direction of each soldier termite. Resembling to  mentioned in 2	

Eq. (7), it can have either negative or positive values. 	3	

To simplify, Eq. (12) is rewritten as Eq. (13). 4	

  (13) 

Eq. (13) fully simulates the behavior of termite soldiers. Even if a new best solution is found at 5	

each iteration, this equation ensures that each termite soldier will always find a flexible way to 6	

move close the new best exploited solution. We assume that at  iteration, the best solution is 7	

 and the best solution is updated at  iteration called . The update of the 8	

position of each soldier termite at iterations  and  is illustrated in Fig. 8. 9	

 10	

Fig. 8: The movement trend of soldier termite at iterations  and  11	

3.6 Schematic representation of termite life cycle optimizer (TLCO) 12	

According to the descriptions of TLCO in the previous sections, some primary characteristics 13	

can be summarized to show how TLCO can be effective for solving optimization problems: 14	

• TLCO includes a modulation of step length  which is controlled by parameter  15	

whose value increases from 1.5 to 2 over the course of iterations. This ensures that 16	

TLCO covers (1) long distance during a few first iterations so as to improve the 17	

convergence rate and (2) enough short distance during the a few last iterations to 18	

enhance the level of accuracy. 19	



• TLCO has the ability to exploit and explore the new search space in a complete way in 1	

comparison with other optimization algorithms inpired by the behaviors of biological 2	

collectives shown in Table 1. For the first time, in accordance with the relative 3	

proportion of termite workers and soldiers found in a colony, TLCO includes a number 4	

of particles whose 70% are devoted to exploration and 30% to exploitation of termite 5	

soldiers. 6	

• The space of exploration or exploitation is controlled by the value of the step length  7	

and two parameters  and  whose values are in the range . Based on these 8	

parameters, the movement direction in TLCO becomes more flexible to escape from 9	

local optima. 10	

• TLCO allows the user to decide when the reproductive termites will emerge through the 11	

value of the  parameter. Note that if  equal one, TLCO will ignore the reproductive 12	

termites phase. 13	

The proposed TLCO algorithm is outlined below: 14	

Algorithm 1: The implementation process of TLCO to find the best solution 
1. Initialize the termite population ; 

2. Calculate the objective function of each termite ; 

3. Update the best solution  and the best objective function ; 

4. Initialize the value of the Limit ; 
5. For  k =1: Kmax 
6. Calculate the parameter  at each iteration using Eq. (6); 
7. Calculate the step length  at each iteration using Eq. (2); 
8. --------------------------------------------------------------------------------------------------------- 
9. % % Start the tasks of termite workers and reproductive termites 
10.     For each termite worker  
11.            Update the position of each termite worker using Eq. (7); 
12.            Calculate the objective function of each termite work ; 

13.              If   < ; 

14.                   Update the best solution  and the best objective function ; 

15.              Else 
16.                   Trial(i) = Trial(i) +1; 
17.              End If  
18.              If Trial(i)  Limit  
19.                   Reproductive termites will occur according to Eq. (10); 
20.                   Calculate the objective function of reproductive termite; 
21.                   Update the best solution  and the best objective function ; 



22.                   Trial(i) = 0; 
23.              End If 
24.       End For     
25.  % % Stop the tasks of termite workers and reproductive termites 
26. --------------------------------------------------------------------------------------------------------- 
27. % %  Start the task of termite soldiers  
28.        For each termite soldier ; 
29.             Update the position of each termite soldier using Eq. (11); 
30.             Calculate the objective function of each termite soldier ; 

31.             Update the best solution  and the best objective function ; 

32.        End For  
33. % % Stop the task of termite soldiers 
34. ---------------------------------------------------------------------------------------------------------       
35. End      

4 Numerical examples 1	

4.1 Classical benchmark functions 2	

To demonstrate the effectiveness and reliability of TLCO in solving optimization problems, we 3	

have tested 23 classical benchmark functions investigated in previous studies [59, 78, 79]. The 4	

first family test functions (F1-F7) shown in Table 3 has only one global optimum with no local 5	

optima. These functions are employed to test the abilities of convergence rate and exploitation. 6	

The second group (F8-F13) shown in Table 4 has multiple local solutions in addition to a global 7	

optimum. These functions are employed to test the ability of the algorithm to escape from local 8	

optima and explore the new search space. The final group gathers fixed-dimensional multi-9	

modal functions (F14-F23) shown in Table 5. Note that the difference between the groups (F8-10	

F13) and (F14-F23) lies in the ability to define the desired number of design variables. The 11	

characteristic of fixed-dimensional test functions is not to allow changes in the number of 12	

design variables, but they provide different search space in comparison with multi-modal test 13	

functions (F8-F13).  14	

The performance of TLCO will be evaluated through different metrics . Six metrics are used to 15	

describe the performance of TLCO including convergence rate, search history of the 1st termite 16	

termite worker , the 1st reproductive termite in case it happens , and 17	

the 1st termite soldier  in 2D dimension, and trajectory curve of the first two 18	

variables  of the best solution  found at each iteration, whose 19	

results  show in Fig. 8 with some typical functions (F1, F4, F6, F7, F9, F10, F14, F17, F19, 20	

F23). TLCO uses a number of termites N = 30 during 1000 iterations. The number of termites is 21	



divided in two groups the workers the soldiers:  and 1	

, respectively. 2	

Table 3: Description of uni-modal benchmark functions. 3	

Function Solution space 
(S) 

fmin 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

Table 4: Description of multi modal benchmark functions. 4	

Function Solution space 
(S) 

fmin 

  
 

  0 

  0 

  0 



 
 0 

  0 

Table 5: Description of fixed-dimension multi-modal benchmark functions. 1	

Function Solution space 
(S) 

fmin 

  1 

  0.0003 

  -1.0316 

  0.398 

 

 3 

  -3.86 

  -3.32 

  -10.1532 

  -10.4028 

  -10.5363 



4.2 The performance of TLCO  1	

The balance between exploration and exploitation is the primary factor for the successful 2	

algorithm. TLCO clearly assign these two skills to termite soldiers and termite workers in the 3	

colony, respectively. In addition, reproductive termites will occur when the termite worker have 4	

difficulties to find a new food source to establish a new colony. These are the regulation of 5	

TLCO to solve optimization problems. Exploration in TLCO is shown in Fig. 9 (the third 6	

column at the first row). It can be noticed that the movement strategy of termite workers covers 7	

a wide space during the early iterations. This trend is more evident in the case of functions 8	

characterized by multimodality (F7, F17, F19), when the density of the termite workers is 9	

almost spread across the whole search space. Based on this wide distribution, TLCO reaches 10	

many opportunities to find the new best solutions for improving the convergence rate and 11	

escape from local optima. As the number of iterations increases, the search spaces are shrinking 12	

gradually because of the control of the step length S. A a consequence, the positions of termite 13	

workers become monotonous and gradually tend to stabilize to the global optimum in the later 14	

iterations. With a flexible movement of termite worker collaborate with the update the 15	

information of the best solution  exploited at the previous iteration. Thus, the current best 16	

solution  will always orient the expansion of the search space of each termite worker at 17	

the next iterations. 18	

The ability of exploitation in the TLCO is guaranteed by the termite soldiers as shown in the 19	

second column at the second row in Fig. 9. Note that the processes of exploitation and 20	

exploration in TLCO are secured to make a parallel structure at each iteration. Based on the 21	

information storage capacity of the best solution in previous iterations, the constraints between 22	

the two processes are always established.	These constraints will create two trends. The first 23	

trend is shown in the case of functions F1, F4, F6, F7, F9, F10 in which the best solution is 24	

found after the first few iterations. This trend is reflected by the process of finding positions that 25	

are close to the current best solution with short distances whose values are controlled by step 26	

length S. And the second trend is illustrated in the case of functions F14, F17, F19, F23 in 27	

which the best solution is found with much effort. To put it another way, the probability 28	

distribution of the best solution in these functions is circumscribed in a wider region. Thus, the 29	

exploitation space of termites is likely to expand and more positions are spread over every best 30	

solution found at each iteration. The combination of soldier and termite workers in these 31	

functions shows the ability of TLCO to escape from local optima.  32	

The ability of finding the new colony of reproductive termites is shown in the first column at the 33	

second row in Fig. 8. These termites appear to increase the opportunity of exploring new food 34	

sources and their effectiveness aren't appreciated in comparison with the worker and termite 35	

soldiers. Moreover, they can be ignored in the TLCO by the user through the value of the 36	

parameter  37	



The trajectory of the first two variables  of the best solution (shown in the third column 1	

at the second row in Fig. 9) is one of the most important metrics used to evaluate the skill of 2	

exploration and exploitation in TLCO.	All trajectory curves show frequent large fluctuations in 3	

the early iterations and reach the stabilization during the later iterations. Evidently, the large 4	

fluctuations in the former iterations perform the explorative search for the global space, and the 5	

small fluctuations during the latter iterations perform the exploitative search for the local space. 6	

TLCO achieves an early convergence rate and acceptable accuracy level in almost all functions. 7	

Especially, in functions F1, F4, F9, F19, TLCO just need a few first iterations to find the best 8	

solution with a high level of accuracy.  9	

The convergence curve (shown in the second column at the first row in Fig. 9) is used to 10	

evaluate the convergence performance of the TLCO. The convergence curves of F1, F4, F9, 11	

F10, F19 functions are very smooth and dropped rapidly, demonstrating that the skill of 12	

exploitation is more biased than the skill of exploration. In contrast, in the case of the remaining 13	

functions, whose curves are very rough and drop slowly, the skill of exploration is more biased 14	

than the skill of exploitation. Finally, the convergence curves can all accurately approximate the 15	

global optimum in the final iterations. 16	

 17	

		18	



 1	

 2	

 3	

 4	



 1	

 2	

 3	

 4	



Fig. 9: Quantitative results of TLCO for three groups of typical functions.  1	

4.3 The comparison between TLCO with other algorithms 2	

An efficient algorithm must demonstrate its ability to find the best solution in search spaces of 3	

different dimension, especially, with large-scale dimension problems. Therefore, in this work, 4	

the first 13 benchmark functions (F1-F13) including uni-modal benchmark functions and multi-5	

modal benchmark functions have been selected with search space of dimensions D = 30, D = 50 6	

and D = 100. In the case of functions (F14-F23), the dimensions are fixed as shown in Table 5. 7	

Fig. 10. shows the results obtained by TLCO compared to 8 well-known algorithms: PSO [38], 8	

GA [12], GSA [23], (FA) [53], DE [18], (ASO) [31], (GWO) [59], and (CS) [50]. For a fair 9	

comparison, all algorithms mentioned above have been tested with the same initial conditions 10	

including the dimension of the search space D = 50, the number of particles N = 30 and the total 11	

number of iterations 1000. Then, the values of four items including the best values, the worst 12	

value, the mean values, the standard deviation values obtained for each algorithm are presented.. 13	

Table 6, Table 7 and  14	

Table 8, show the results obtained with 30 dimensions, 50 dimensions and 100 dimensions, 15	

respectively.  16	

The necessary parameters of all considered algorithms are set as follows: 17	

• In TLCO, the parameter used to specify the time when reproductive termites emerge is 18	

 19	

• In PSO, the values of cognitive and social parameters were  and , respectively, 20	

and the inertia weight  increased from 0.4 to 0.9. 21	

• In GA, we used the parameters of crossover were  = 0.8, and mutation m = 0.4 22	

• In GSA, we used a gravitational constant G = 100 and a decreasing coefficient  = 20.  23	

• In FA, we used a light absorption coefficient 0.1 and an attraction coefficient base 24	

value  0.2,  25	

• In DE, we used a mutation factor CR = 0.9 and a crossover probability F = 0.5   26	

• In ASO, we used a depth weigh = 50 and a multiplier weight = 0.2. 27	

• For GWO and CS we used default parameters of the original versions [59], [50] 28	

Although the results shown in Fig. 9 reveal that TLCO has good results, to get a more 29	

exhaustive view, Fig. 10 shows the convergence curve of each algorithm in the same figure. 30	

The convergence curve is one of the most significant evaluations that effectively quantify the 31	

exploration and exploitation abilities of each algorithm.  32	

For the functions (F1-F13), these figures show that TLCO	reaches a fast convergence rate and 33	

that it is successful in finding and exploiting the global optimum in almost all functions. The 34	

modulation of the movement strategy implemented in TLCO provides powerful advantages to 35	



exploit the best solution. The processes of exploitation and exploration in TLCO are secured in 1	

parallel through the control of step length S. As a result, TLCO shows better performances in 2	

convergence rate compared to other algorithms in the case of functions F1, F2, F3, F4, F5, F7, 3	

F9, F10, F11 because of the long movements performed in the first few iterations. However, 4	

TLCO fails to achieve the best convergence performance the case of functions F6, F8, F12, F13. 5	

However, TLCO still performs better than PSO, GA, GSA, GWO, CS for F3, PSO, GSA, DE, 6	

ASO, GWO, CS for F6, PSO, GA, GSA, DE, ASO, GWO, CS for F12 and F13. 7	

The common feature of functions F14-F23 which are multi-modal functions with low-8	

dimension and a few local optima is that almost all algorithms can find and exploit the best 9	

solution. However, the convergence rate of TLCO reaches stability faster in almost functions 10	

compared to other algorithms with the exception of functions 21, 22 and 23. Especially as 11	

regards the functions F14, F15, F16, F17, F18, F19 and F20, TLCO only requires a few 12	

iterations to achieve the stability. This proves that the TLCO’s ability to escape local optima is 13	

better than other algorithms that need more iterations to achieve the necessary stability. 14	

	 	 	

	 	 	

	 	 	

	 	 	



	 	 	

	 	 	

	 	 	

	 	

	

Fig. 10: Convergence trends of the 23 benchmark functions with different algorithms 1	

Table 6 summarizes the results obtained for the different tested algorithms with dimension D = 2	

30. One can notice that TLCO performs better than other algorithms in the case of functions F1, 3	

F2, F3, F4, F7, F9, F10 and F11. Even the worst value obtained with TLCO is better than the 4	

best value obtained with other algorithms. As regards function F5 for which the best 5	

performance is obtained with FA, the performance of TLCO is still better than the one obtained 6	

with other algorithms in terms of the worst value, the mean value and the standard deviation. 7	

The results obtained with a search space of dimension D = 50 are reported in Table 7 and show 8	

a similar trend to the one observed in a search space of dimension D = 30. It can be observed 9	

that TLCO reaches a robust enhancement as regard function F12. In the case of dimension D = 10	

30, TLCO fails to achieve the best performance for this function, however, in a higher 11	

dimension (when D = 50),	TLCO improves its rankings: it ranks third in term of the best value, 12	

behind FA, DE and ASO algorithms.  13	



For even higher dimension of the search space, when D = 100, a common characteristic can be 1	

observed when the total number of iterations is set to 1000; in that case, the number of iterations 2	

is not large enough for algorithms to find the best global value with the exception of TLCO 3	

whose performance is once again better. The results obtained using TLCO still achieve an 4	

acceptable accuracy.	Meanwhile, most of the other algorithms fail to reach the best global value. 5	

TLCO marks a big improvement in finding the best solution in high-dimensional search space. 6	

The best value using TLCO is ranked first for the functions F1, F2, F4, F7, F8, F9, F10, F11, 7	

F12 and F13. Especially, TLCO's ranking continues to improve for the functions F12 and F13 to 8	

reach the first ranking. It appears clearly that TLCO is efficient in high-dimension of case 9	

studies. Usually, the algorithms will have difficulty in high-dimension search space because 10	

position updating does not guarantee a flexible movement. 11	

As regards the functions with fixed variables (F14-F23) whose main characteristic is that the 12	

number of variables is limited with low-dimension, it can be seen that all algorithms can find 13	

the best value within 1000 iterations. Not a single algorithm really performs better than the 14	

others in this case and TLCO still finds the best value along with other algorithms. The only 15	

difference is that the convergence rate of the TLCO is better in some	particular functions as 16	

shown in Fig. 10. 17	

 18	

 19	

 20	

 21	



Table 6: Comparison results of the first 13 benchmark functions (F1-F13) with dimension D = 30, where the best performance for each 
algorithm is highlighted in red 

Different Algorithms Function   TLCO PSO GA GSA FA DE ASO GWO CS 
Best 0.000E+00 3.215E-05 2.861E-06 5.017E-17 1.173E-16 7.525E-13 2.478E-22 7.186E-62 2.378E-04 
Worst 0.000E+00 4.391E-03 1.691E-04 2.004E-16 2.036E-16 1.283E-11 3.027E-18 4.633E-58 1.060E-03 
Mean 0.000E+00 6.460E-04 3.947E-05 1.181E-16 1.749E-16 3.051E-12 1.083E-19 6.592E-59 4.401E-04 F1 

S. Deviation 0.000E+00 8.505E-04 3.191E-05 5.379E-17 2.326E-17 2.320E-12 5.513E-19 1.428E-58 2.550E-04 
Best 0.000E+00 7.552E-03 1.973E-03 4.039E-08 4.744E-08 3.390E-07 1.092E-10 2.980E-34 9.097E+01 
Worst 2.516E-294 2.624E+02 1.600E-01 1.113E-07 6.102E-08 1.182E-06 6.002E+01 4.868E-33 1.682E+02 
Mean 2.516E-295 1.744E+01 3.310E-02 5.808E-08 5.628E-08 6.449E-07 1.562E+01 1.410E-33 1.241E+02 F2 

S. Deviation 0.000E+00 6.612E+01 3.697E-02 2.126E-08 4.401E-09 2.195E-07 1.643E+01 1.474E-33 2.734E+01 
Best 0.000E+00 1.230E+02 4.541E+02 1.915E+02 9.354E-12 1.932E+04 1.095E+02 4.876E-20 4.631E+02 
Worst 0.000E+00 8.147E+02 5.392E+03 6.384E+02 8.217E-09 3.195E+04 7.519E+02 4.800E-14 7.539E+02 
Mean 0.000E+00 4.076E+02 1.905E+03 4.563E+02 1.712E-09 2.503E+04 2.862E+02 7.784E-15 5.933E+02 F3 

S. Deviation 0.000E+00 1.532E+02 1.190E+03 1.453E+02 2.006E-09 3.474E+03 1.728E+02 1.584E-14 9.156E+01 
Best 1.164E-306 2.865E+00 3.000E+01 1.336E-08 5.540E-09 1.039E+00 2.611E-03 2.174E-15 3.699E+00 
Worst 2.236E-286 6.180E+00 7.803E+01 5.543E+00 6.605E+00 3.667E+00 7.677E-01 3.204E-14 1.262E+01 
Mean 3.387E-287 4.239E+00 6.043E+01 1.046E+00 1.830E+00 2.057E+00 3.081E-01 1.238E-14 5.805E+00 F4 

S. Deviation 0.000E+00 7.716E-01 1.025E+01 1.770E+00 1.978E+00 4.932E-01 2.410E-01 9.993E-15 2.528E+00 
Best 2.589E+01 1.808E+01 1.694E+01 2.588E+01 1.393E+01 2.614E+01 2.446E+01 2.598E+01 2.365E+01 
Worst 2.705E+01 2.164E+02 4.355E+02 1.247E+02 8.135E+01 1.097E+02 1.852E+02 2.720E+01 1.165E+02 
Mean 2.657E+01 7.740E+01 8.604E+01 5.115E+01 2.744E+01 4.696E+01 5.526E+01 2.685E+01 4.176E+01 F5 

S. Deviation 4.221E-01 5.493E+01 8.675E+01 4.113E+01 1.848E+01 2.523E+01 4.425E+01 4.954E-01 3.230E+01 
Best 4.072E-02 3.753E-05 3.651E-06 0.000E+00 1.404E-16 6.054E-13 2.722E-22 2.483E-01 2.139E-04 
Worst 3.362E-01 1.429E-03 4.037E-04 0.000E+00 2.187E-16 1.171E-11 6.251E-20 1.002E+00 1.434E-03 
Mean 1.489E-01 4.705E-04 5.228E-05 0.000E+00 1.780E-16 3.292E-12 6.183E-21 5.184E-01 6.312E-04 F6 

S. Deviation 1.098E-01 4.422E-04 7.751E-05 0.000E+00 2.301E-17 2.293E-12 1.231E-20 2.434E-01 3.353E-04 
Best 1.813E-05 6.218E-03 2.051E-02 5.691E-02 7.652E-04 1.594E-02 3.597E-02 5.903E-04 1.762E-02 
Worst 3.338E-04 3.705E-02 9.104E-02 2.563E-01 5.384E-03 4.174E-02 1.416E-01 1.371E-03 3.942E-02 
Mean 1.661E-04 1.970E-02 4.914E-02 1.414E-01 2.351E-03 2.635E-02 8.634E-02 1.026E-03 2.451E-02 F7 

S. Deviation 1.117E-04 8.768E-03 1.755E-02 5.724E-02 1.122E-03 6.223E-03 2.473E-02 2.637E-04 6.951E-03 
Best -1.233E+04 -8.085E+03 -9.883E+03 -1.774E+03 -1.042E+04 -1.257E+04 -8.463E+03 -6.379E+03 -7.018E+03 
Worst -8.874E+03 -4.594E+03 -7.124E+03 -1.134E+03 -7.829E+03 -1.221E+04 -4.238E+03 -5.525E+03 -5.771E+03 
Mean -1.044E+04 -6.312E+03 -8.283E+03 -1.342E+03 -9.107E+03 -1.245E+04 -6.512E+03 -6.020E+03 -6.443E+03 F8 

S. Deviation 1.061E+03 8.596E+02 6.341E+02 1.821E+02 6.211E+02 1.260E+02 1.105E+03 3.312E+02 4.293E+02 
Best 0.000E+00 1.995E+01 7.263E+01 1.890E+01 7.462E+01 4.706E+01 1.592E+01 0.000E+00 3.569E+01 
Worst 0.000E+00 8.265E+01 2.627E+02 4.477E+01 2.189E+02 7.102E+01 4.378E+01 5.684E-14 6.262E+01 

F9 

Mean 0.000E+00 4.019E+01 1.648E+02 3.283E+01 1.446E+02 6.066E+01 2.511E+01 1.137E-14 4.713E+01 



 S. Deviation 0.000E+00 1.335E+01 4.671E+01 8.311E+00 3.508E+01 6.063E+00 6.706E+00 2.397E-14 8.572E+00 
Best 8.882E-16 1.680E-03 2.678E-03 6.770E-09 2.635E-09 2.650E-07 4.953E-12 1.155E-14 1.531E-01 
Worst 8.882E-16 1.043E+00 1.996E+01 9.404E-09 3.489E-09 1.125E-06 1.340E+00 2.220E-14 2.880E+00 
Mean 8.882E-16 6.574E-02 1.495E+01 8.032E-09 3.150E-09 4.968E-07 4.468E-02 1.759E-14 1.363E+00 F10 

S. Deviation 0.000E+00 1.946E-01 8.394E+00 8.795E-10 2.392E-10 1.974E-07 2.447E-01 4.119E-15 8.256E-01 
Best 0.000E+00 1.637E-04 2.522E-06 3.420E+00 0.000E+00 3.796E-12 0.000E+00 0.000E+00 4.235E-03 
Worst 0.000E+00 9.909E-02 3.923E-02 1.285E+01 1.477E-02 2.566E-10 8.532E-02 1.393E-02 2.026E-01 
Mean 0.000E+00 1.681E-02 1.033E-02 8.656E+00 3.080E-03 5.186E-11 9.737E-03 2.738E-03 6.491E-02 F11 

S. Deviation 0.000E+00 2.253E-02 1.063E-02 3.341E+00 5.172E-03 6.806E-11 1.836E-02 5.774E-03 6.877E-02 
Best 1.176E-03 2.221E-07 2.273E-05 4.464E-19 4.298E-19 8.692E-14 1.097E-24 2.043E-02 9.128E-03 
Worst 2.174E-02 2.075E-01 2.385E+00 2.073E-01 4.147E-01 8.620E-13 2.073E-01 8.563E-02 1.832E+00 
Mean 6.952E-03 3.729E-02 4.121E-01 5.976E-02 6.220E-02 2.757E-13 6.911E-03 4.451E-02 1.006E+00 F12 

S. Deviation 6.377E-03 6.211E-02 5.652E-01 6.905E-02 1.085E-01 1.578E-13 3.785E-02 1.992E-02 6.624E-01 
Best 4.535E-02 1.140E-05 7.026E-06 6.383E-18 5.663E-18 3.876E-13 1.100E-23 1.141E-01 1.695E-02 
Worst 3.431E-01 1.218E-02 3.598E+00 6.664E-01 1.099E-02 6.130E-12 9.737E-02 7.351E-01 2.278E+00 
Mean 1.243E-01 3.458E-03 3.585E-01 6.664E-02 5.494E-04 1.745E-12 7.274E-03 3.897E-01 9.159E-01 F13 

S. Deviation 9.182E-02 5.018E-03 8.760E-01 2.107E-01 2.457E-03 1.331E-12 1.918E-02 1.840E-01 8.425E-01 
 

Table 7: Comparison results of the first 13 benchmark functions (F1-F13) with dimension D = 50, where the best performance for each 
algorithm is highlighted in red 

Different Algorithms Function   TLCO PSO GA GSA FA DE ASO GWO CS 
Best 0.000E+00 3.321E-01 1.116E-01 3.222E-16 7.061E-16 1.172E-05 1.189E-17 4.466E-45 1.035E+00 
Worst 0.000E+00 5.644E+00 5.551E+00 1.671E-15 1.152E-15 3.837E-05 2.356E-01 2.385E-42 7.607E+00 
Mean 0.000E+00 1.502E+00 1.109E+00 6.121E-16 8.856E-16 2.009E-05 1.263E-02 1.837E-43 2.971E+00 F1 

S. Deviation 0.000E+00 2.616E+02 5.213E+01 5.872E-01 1.020E-16 2.685E-03 5.897E+01 3.409E-25 4.120E+01 
Best 0.000E+00 3.205E+00 3.587E+00 1.475E-07 1.396E-07 5.899E-03 5.725E+01 1.377E-25 2.324E+02 
Worst 8.768E-297 8.775E+02 1.401E+02 2.628E+00 1.714E-07 1.602E-02 2.832E+02 1.508E-24 3.646E+02 
Mean 4.386E-298 1.133E+02 4.311E+01 1.750E-01 1.562E-07 9.739E-03 1.477E+02 4.516E-25 3.087E+02 F2 

S. Deviation 0.000E+00 1.513E+03 6.399E+03 4.640E+02 9.684E-09 1.140E+04 5.103E+02 6.506E-06 1.031E+03 
Best 0.000E+00 2.114E+03 1.158E+04 1.263E+03 8.733E-02 6.404E+04 1.435E+03 7.760E-11 3.576E+03 
Worst 0.000E+00 8.328E+03 3.343E+04 3.300E+03 5.158E+00 1.074E+05 3.338E+03 2.443E-05 7.022E+03 
Mean 0.000E+00 4.273E+03 2.436E+04 1.883E+03 9.552E-01 9.251E+04 2.279E+03 2.634E-06 5.047E+03 F3 

S. Deviation 0.000E+00 1.171E+00 5.051E+00 1.918E+00 1.097E+00 2.286E+00 2.206E+00 1.943E-09 2.492E+00 
Best 2.838E-302 7.467E+00 6.188E+01 5.404E+00 1.734E+01 1.771E+01 3.608E+00 1.467E-10 9.041E+00 
Worst 4.098E-284 1.262E+01 8.352E+01 1.345E+01 5.001E+01 2.579E+01 1.153E+01 7.431E-09 1.799E+01 
Mean 2.056E-285 9.908E+00 7.657E+01 8.616E+00 3.139E+01 2.102E+01 7.272E+00 1.934E-09 1.336E+01 F4 

S. Deviation 0.000E+00 1.254E+02 6.949E+02 5.414E+01 7.401E+00 8.003E+01 9.015E+01 8.012E-01 1.344E+02 



Best 4.615E+01 1.756E+02 2.512E+02 4.675E+01 2.192E+01 4.798E+01 4.652E+01 4.584E+01 5.891E+01 
Worst 4.838E+01 6.232E+02 3.141E+03 2.154E+02 1.093E+02 3.248E+02 4.230E+02 4.862E+01 6.293E+02 
Mean 4.714E+01 3.797E+02 7.199E+02 1.078E+02 5.420E+01 1.681E+02 1.100E+02 4.685E+01 2.277E+02 F5 

S. Deviation 8.344E-01 1.254E+02 6.949E+02 5.414E+01 2.768E+01 8.003E+01 9.015E+01 8.012E-01 1.344E+02 
Best 5.086E-01 2.110E-01 1.503E-01 3.000E+00 6.624E-16 7.458E-06 4.275E-18 1.252E+00 9.741E-01 
Worst 2.225E+00 7.052E+00 4.943E+00 1.920E+02 1.008E-15 4.299E-05 2.744E-02 3.763E+00 6.168E+00 
Mean 1.153E+00 2.033E+00 9.016E-01 3.155E+01 8.251E-16 2.377E-05 2.240E-03 2.496E+00 2.354E+00 F6 

S. Deviation 4.787E-01 1.762E+00 1.187E+00 4.289E+01 1.087E-16 1.106E-05 6.855E-03 7.533E-01 1.265E+00 
Best 1.952E-05 4.265E-02 1.019E-01 9.584E-02 5.430E-03 5.220E-02 1.226E-01 4.518E-04 3.277E-02 
Worst 3.297E-04 8.665E-02 3.284E-01 5.029E-01 2.236E-02 1.133E-01 2.455E-01 4.009E-03 1.248E-01 
Mean 1.369E-04 6.287E-02 2.089E-01 2.735E-01 1.110E-02 7.969E-02 1.794E-01 1.414E-03 8.290E-02 F7 

S. Deviation 1.093E-04 1.376E-02 5.613E-02 1.067E-01 4.187E-03 1.419E-02 3.718E-02 9.303E-04 2.533E-02 
Best -2.091E+04 -1.228E+04 -1.452E+04 -2.266E+03 -1.579E+04 -1.525E+04 -1.328E+04 -1.092E+04 -9.681E+03 
Worst -1.302E+04 -8.345E+03 -1.208E+04 -1.027E+03 -1.214E+04 -1.296E+04 -8.049E+03 -7.861E+03 -7.593E+03 
Mean -1.730E+04 -1.010E+04 -1.360E+04 -1.599E+03 -1.415E+04 -1.399E+04 -1.055E+04 -8.981E+03 -8.494E+03 F8 

S. Deviation 2.733E+03 1.201E+03 5.705E+02 2.882E+02 9.367E+02 5.778E+02 1.317E+03 8.705E+02 5.273E+02 
Best 0.000E+00 3.831E+01 2.043E+02 2.985E+01 6.766E+01 1.586E+02 3.184E+01 0.000E+00 7.368E+01 
Worst 0.000E+00 1.094E+02 4.698E+02 7.860E+01 2.328E+02 2.165E+02 6.368E+01 1.027E+01 1.376E+02 
Mean 0.000E+00 6.410E+01 3.239E+02 5.199E+01 1.303E+02 1.963E+02 4.826E+01 1.591E+00 1.027E+02 F9 

S. Deviation 0.000E+00 1.819E+01 7.062E+01 1.339E+01 4.040E+01 1.401E+01 6.330E+00 3.096E+00 1.725E+01 
Best 8.882E-16 3.337E-01 2.119E+00 1.090E-08 4.835E-09 6.920E-04 2.898E-01 2.576E-14 2.671E+00 
Worst 8.882E-16 2.116E+00 1.996E+01 1.270E+00 5.789E-09 1.175E-03 2.013E+00 3.997E-14 5.646E+00 
Mean 8.882E-16 1.432E+00 1.869E+01 2.380E-01 5.308E-09 9.375E-04 1.478E+00 3.269E-14 3.964E+00 F10 

S. Deviation 0.000E+00 5.499E-01 3.948E+00 4.595E-01 2.572E-10 1.332E-04 4.615E-01 3.356E-15 8.352E-01 
Best 0.000E+00 1.597E-01 1.265E-01 2.145E+01 1.110E-16 1.190E-05 1.867E-04 0.000E+00 9.920E-01 
Worst 0.000E+00 9.962E-01 1.043E+00 5.314E+01 7.396E-03 6.503E-04 1.088E+00 2.673E-02 1.099E+00 
Mean 0.000E+00 6.324E-01 5.926E-01 3.373E+01 3.698E-04 6.473E-05 4.038E-01 2.404E-03 1.048E+00 F11 

S. Deviation 0.000E+00 2.117E-01 2.915E-01 8.189E+00 1.654E-03 1.385E-04 3.707E-01 6.604E-03 2.677E-02 
Best 7.470E-03 1.297E-02 1.034E+00 6.715E-01 9.564E-19 3.909E-06 7.512E-05 4.952E-02 2.089E+00 
Worst 6.901E-02 1.231E+00 1.767E+01 3.144E+00 1.811E+00 3.128E-05 6.501E-01 1.725E-01 5.999E+00 
Mean 2.586E-02 4.695E-01 5.950E+00 1.686E+00 4.029E-01 1.034E-05 1.305E-01 8.878E-02 3.756E+00 F12 

S. Deviation 1.635E-02 3.859E-01 4.254E+00 7.847E-01 5.441E-01 6.659E-06 1.577E-01 3.142E-02 1.080E+00 
Best 2.497E-01 9.478E-01 6.154E+00 1.251E+00 2.862E-17 2.968E-05 1.660E-18 1.026E+00 2.044E+01 
Worst 5.793E-01 3.425E+00 4.175E+01 3.932E+01 1.099E-02 1.976E-04 1.038E+00 2.754E+00 5.317E+01 
Mean 3.920E-01 1.931E+00 2.008E+01 1.816E+01 3.846E-03 6.232E-05 1.881E-01 1.958E+00 3.566E+01 F13 

S. Deviation 1.021E-01 6.578E-01 9.549E+00 9.889E+00 5.377E-03 3.884E-05 2.955E-01 4.549E-01 9.471E+00 
 



Table 8: Comparison results of the first 13 benchmark functions (F1-F13) with dimension D = 100, where the best performance for each 
algorithm is highlighted in red 

Different Algorithms Function   TLCO PSO GA GSA FA DE ASO GWO CS 
Best 0.000E+00 1.316E+02 1.730E+03 2.192E+02 9.762E-15 9.175E+00 1.633E+02 1.571E-30 3.441E+02 
Worst 0.000E+00 5.016E+02 5.369E+03 1.364E+03 1.843E-14 1.612E+01 1.027E+03 5.983E-29 8.367E+02 
Mean 0.000E+00 2.610E+02 3.057E+03 6.298E+02 1.372E-14 1.237E+01 4.229E+02 1.779E-29 5.945E+02 F1 

S. Deviation 0.000E+00 8.514E+01 7.801E+02 3.099E+02 2.476E-15 2.008E+00 1.827E+02 1.445E-29 1.430E+02 
Best 0.000E+00 2.230E+02 1.081E+03 3.645E+00 6.460E-07 6.851E+01 6.881E+02 2.345E-17 7.975E+02 
Worst 1.234E-295 1.485E+03 2.752E+03 9.345E+00 3.057E-02 1.584E+02 1.058E+03 1.311E-16 1.025E+03 
Mean 6.465E-297 5.111E+02 1.631E+03 5.880E+00 1.574E-03 1.048E+02 9.067E+02 6.963E-17 8.884E+02 F2 

S. Deviation 0.000E+00 3.350E+02 3.814E+02 1.871E+00 6.829E-03 2.338E+01 1.090E+02 3.278E-17 6.027E+01 
Best 0.000E+00 1.759E+04 1.006E+05 5.572E+03 2.566E+03 3.214E+05 1.153E+04 7.289E-03 2.581E+04 
Worst 2.382E-255 4.868E+04 2.241E+05 1.116E+04 6.668E+03 4.432E+05 2.900E+04 1.577E+01 5.287E+04 
Mean 1.191E-256 2.967E+04 1.480E+05 8.092E+03 4.469E+03 3.982E+05 1.792E+04 2.409E+00 3.948E+04 F3 

S. Deviation 0.000E+00 8.044E+03 3.199E+04 1.454E+03 1.082E+03 2.800E+04 4.652E+03 4.119E+00 7.443E+03 
Best 4.293E-300 1.899E+01 7.977E+01 1.200E+01 6.641E+01 7.944E+01 1.372E+01 2.659E-05 1.683E+01 
Worst 1.870E-281 2.536E+01 9.263E+01 1.969E+01 9.762E+01 8.653E+01 2.321E+01 2.509E-02 2.737E+01 
Mean 9.632E-283 2.120E+01 8.705E+01 1.589E+01 8.547E+01 8.307E+01 1.967E+01 3.235E-03 2.198E+01 F4 

S. Deviation 0.000E+00 1.686E+00 3.139E+00 1.978E+00 7.125E+00 2.174E+00 2.466E+00 5.764E-03 2.522E+00 
Best 9.653E+01 1.148E+04 4.558E+05 3.684E+03 1.022E+02 9.576E+03 8.933E+02 9.602E+01 7.843E+03 
Worst 9.841E+01 3.256E+04 3.363E+06 3.627E+04 3.181E+02 3.143E+04 5.231E+03 9.845E+01 5.217E+04 
Mean 9.754E+01 1.862E+04 1.188E+06 1.201E+04 1.978E+02 1.747E+04 2.243E+03 9.768E+01 2.297E+04 F5 

S. Deviation 6.695E-01 5.400E+03 6.283E+05 7.878E+03 5.174E+01 6.443E+03 9.826E+02 6.465E-01 1.045E+04 
Best 3.290E+00 6.780E-05 4.378E-06 7.770E+02 9.691E-15 1.032E-12 8.035E-23 2.501E-01 1.422E-04 
Worst 8.422E+00 2.889E-03 1.454E-04 2.487E+03 1.763E-14 8.023E-12 8.789E-20 1.248E+00 8.980E-04 
Mean 5.981E+00 4.703E-04 4.827E-05 1.425E+03 1.273E-14 2.848E-12 1.008E-20 6.229E-01 5.849E-04 F6 

S. Deviation 1.432E+00 6.305E-04 4.544E-05 5.252E+02 1.644E-15 1.615E-12 2.383E-20 2.853E-01 1.831E-04 
Best 1.801E-05 2.553E-01 1.114E+00 9.608E-01 5.184E-02 4.007E-01 3.760E-01 7.718E-04 2.371E-01 
Worst 1.168E-03 5.535E-01 3.010E+00 4.405E+00 1.236E-01 6.798E-01 1.021E+00 5.751E-03 3.812E-01 
Mean 2.203E-04 4.185E-01 1.843E+00 2.436E+00 8.036E-02 5.389E-01 6.678E-01 2.799E-03 3.037E-01 F7 

S. Deviation 2.751E-04 8.604E-02 4.346E-01 9.753E-01 2.051E-02 5.739E-02 1.541E-01 1.243E-03 3.928E-02 
Best -4.165E+04 -2.356E+04 -2.892E+04 -1.383E+03 -2.872E+04 -1.986E+04 -2.214E+04 -1.766E+04 -1.347E+04 
Worst -2.481E+04 -1.511E+04 -2.467E+04 -3.425E+02 -2.098E+04 -1.771E+04 -1.390E+04 -6.888E+03 -1.078E+04 
Mean -3.687E+04 -1.935E+04 -2.663E+04 -9.862E+02 -2.589E+04 -1.846E+04 -1.870E+04 -1.587E+04 -1.217E+04 F8 

S. Deviation 5.266E+03 2.307E+03 1.134E+03 2.998E+02 1.769E+03 5.990E+02 2.194E+03 2.278E+03 6.987E+02 
Best 0.000E+00 1.168E+02 6.273E+02 7.875E+01 2.438E+02 6.493E+02 8.230E+01 1.137E-13 2.118E+02 
Worst 0.000E+00 2.529E+02 9.607E+02 1.671E+02 4.806E+02 7.199E+02 1.638E+02 8.867E+00 3.518E+02 

F9 

Mean 0.000E+00 1.620E+02 7.578E+02 1.393E+02 3.800E+02 6.902E+02 1.207E+02 6.693E-01 2.705E+02 



 S. Deviation 0.000E+00 3.349E+01 9.407E+01 2.209E+01 6.158E+01 2.276E+01 2.115E+01 2.051E+00 3.302E+01 
Best 8.882E-16 3.244E+00 1.933E+01 2.038E+00 1.436E-08 1.078E+00 3.520E+00 9.326E-14 6.392E+00 
Worst 8.882E-16 4.810E+00 1.994E+01 4.849E+00 3.297E+00 1.537E+00 5.447E+00 1.359E-13 1.001E+01 
Mean 8.882E-16 3.771E+00 1.979E+01 2.891E+00 1.969E+00 1.344E+00 4.283E+00 1.105E-13 7.696E+00 F10 

S. Deviation 0.000E+00 3.755E-01 2.030E-01 6.188E-01 6.592E-01 1.383E-01 4.353E-01 1.007E-14 9.098E-01 
Best 0.000E+00 1.995E+00 1.457E+01 7.577E+01 6.439E-15 1.018E+00 3.718E+00 0.000E+00 4.373E+00 
Worst 0.000E+00 4.653E+00 1.004E+02 1.407E+02 1.478E-02 1.105E+00 1.290E+01 1.305E-02 1.010E+01 
Mean 0.000E+00 2.599E+00 4.241E+01 9.876E+01 2.957E-03 1.074E+00 7.647E+00 6.522E-04 6.941E+00 F11 

S. Deviation 0.000E+00 5.600E-01 2.424E+01 1.853E+01 4.902E-03 2.411E-02 2.442E+00 2.917E-03 1.440E+00 
Best 4.530E-02 2.441E+00 1.372E+03 3.294E+00 5.369E-02 1.630E+01 2.379E+00 1.780E-01 7.268E+00 
Worst 1.939E-01 1.401E+01 1.128E+06 8.943E+00 4.600E+00 4.376E+01 6.232E+00 4.148E-01 2.069E+01 
Mean 9.344E-02 6.613E+00 2.655E+05 4.901E+00 1.571E+00 2.591E+01 3.814E+00 2.642E-01 1.265E+01 F12 

S. Deviation 3.797E-02 2.464E+00 3.345E+05 1.416E+00 1.350E+00 7.307E+00 1.055E+00 5.458E-02 3.638E+00 
Best 1.031E-01 1.245E+02 1.466E+05 8.801E+01 1.084E-01 1.369E+02 5.219E+01 5.767E+00 1.315E+02 
Worst 1.947E+00 5.621E+02 1.252E+07 3.489E+02 8.077E+00 5.095E+03 1.416E+02 6.827E+00 9.108E+03 
Mean 1.418E+00 2.277E+02 2.403E+06 1.455E+02 2.518E+00 9.882E+02 1.004E+02 6.284E+00 9.780E+02 F13 

S. Deviation 2.868E-01 9.803E+01 2.987E+06 5.668E+01 1.720E+00 1.078E+03 2.583E+01 3.174E-01 2.018E+03 
 Table 9: Comparison results of the first 13 benchmark functions (F14-F23) with fixed-dimension, where the best performance for each 
algorithm is highlighted in red 

Different Algorithms Function   TLCO PSO GA GSA FA DE ASO GWO CS 
Best 0.998 0.998 0.998 5.929 0.998 0.998 1.992 0.998 0.998 
Worst 0.998 11.719 14.563 22.901 0.998 7.874 12.936 12.671 0.998 
Mean 0.998 3.898 4.724 15.159 0.998 1.342 6.943 4.527 0.998 F14 

S. Deviation 3.222E-16 3.301E+00 3.946E+00 5.688E+00 2.926E-16 1.538E+00 3.609E+00 4.026E+00 7.204E-17 
Best 0.000308 0.000307 0.000592 0.002028 0.000307 0.000398 0.000695 0.000307 0.000307 
Worst 0.001 0.020 0.020 0.024 0.001 0.001 0.002 0.020 0.001 
Mean 0.000 0.001 0.003 0.010 0.000 0.001 0.001 0.005 0.000 F15 

S. Deviation 2.251E-04 4.470E-03 6.019E-03 9.731E-03 2.817E-04 1.762E-04 2.445E-04 8.881E-03 9.131E-05 
Best -1.031600 -1.031600 -1.031600 -1.031600 -1.031600 -1.031600 -1.031600 -1.031600 -1.031600 
Worst -1.032 -1.032 -1.032 -1.032 -1.032 -1.032 -1.032 -1.032 -1.032 
Mean -1.032 -1.032 -1.032 -1.032 -1.032 -1.032 -1.032 -1.032 -1.032 F16 

S. Deviation 1.441E-16 2.278E-16 2.278E-16 8.823E-17 5.094E-17 2.278E-16 2.161E-16 6.541E-09 1.837E-16 
Best 0.397890 0.397890 0.397890 0.397890 0.397890 0.397890 0.397890 0.397890 0.397890 
Worst 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 
Mean 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 F17 

S. Deviation 7.945E-16 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.398E-06 8.514E-09 
Best 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000 F18 
Worst 3.000 3.000 30.000 3.000 3.000 3.000 3.000 84.000 3.000 



Mean 3.000 3.000 4.350 3.000 3.000 3.000 3.000 7.050 3.000  
S. Deviation 3.007E-15 5.391E-16 6.037E+00 1.098E-14 6.681E-16 2.038E-16 1.805E-15 1.811E+01 9.772E-16 
Best -3.862800 -3.862800 -3.862800 -3.862800 -3.862800 -3.862800 -3.862800 -3.862800 -3.862800 
Worst -3.863 -3.863 -3.863 -3.863 -3.863 -3.863 -3.557 -3.855 -3.863 
Mean -3.863 -3.863 -3.863 -3.863 -3.863 -3.863 -3.848 -3.862 -3.863 F19 

S. Deviation 1.920E-15 2.278E-15 2.278E-15 1.726E-15 1.699E-15 2.278E-15 6.845E-02 2.675E-03 6.612E-07 
Best -3.322000 -3.322000 -3.322000 -3.322000 -3.322000 -3.322000 -3.322000 -3.322000 -3.322000 
Worst -3.138 -3.203 -3.203 -3.322 -3.203 -3.319 -3.203 -3.080 -3.322 
Mean -3.271 -3.292 -3.257 -3.322 -3.269 -3.322 -3.316 -3.277 -3.322 F20 

S. Deviation 6.605E-02 5.282E-02 6.069E-02 2.278E-16 6.069E-02 6.605E-04 2.659E-02 7.540E-02 2.437E-05 
Best -10.153000 -10.153000 -10.153000 -10.153000 -10.153000 -10.153000 -10.153000 -10.153000 -10.153000 
Worst -8.865 -2.631 -2.631 -2.631 -2.683 -5.097 -2.683 -5.055 -5.101 
Mean -9.957 -5.395 -5.271 -7.536 -9.272 -9.895 -6.907 -9.140 -7.122 F21 

S. Deviation 3.298E-01 3.332E+00 3.389E+00 3.659E+00 2.198E+00 1.130E+00 3.716E+00 2.078E+00 2.539E+00 
Best -10.403000 -10.403000 -10.403000 -10.403000 -10.403000 -10.403000 -10.403000 -10.403000 -10.403000 
Worst -1.838 -1.838 -2.752 -10.403 -3.724 -10.300 -2.752 -5.088 -5.129 
Mean -9.367 -5.126 -8.014 -10.403 -10.069 -10.397 -8.785 -10.137 -8.821 F22 

S. Deviation 2.407E+00 3.250E+00 3.487E+00 2.734E-15 1.493E+00 2.309E-02 2.760E+00 1.188E+00 2.480E+00 
Best -10.536000 -10.536000 -10.536000 -10.536000 -10.536000 -10.536000 -10.536000 -10.536000 -10.536000 
Worst -3.835 -2.422 -2.422 -3.835 -2.871 -10.536 -2.871 -5.129 -5.176 
Mean -9.917 -6.504 -7.813 -10.201 -10.153 -10.536 -9.003 -10.265 -7.856 F23 

S. Deviation 1.871E+00 3.795E+00 3.820E+00 1.498E+00 1.714E+00 1.482E-09 3.146E+00 1.209E+00 2.750E+00 

 

 
	



5 CEC 2005 benchmark functions 

In this section, we check the effectiveness of the TLCO algorithm in solving high-complex 
problems. Seven benchmark functions representing different properties in CEC 2005 [80] are 
used to evaluate the performance of TLCO. The properties of these functions range from simple 
to complex; they are summarized in Erreur ! Référence non valide pour un signet., and Fig. 
11 shows a 3D representation. 

Table 10: Descriptions of 7 benchmark functions in CEC2005  

Functions Description Properties Dimension Solution 
space 

Multimodal functions 
CF7 Shifted Rotated Griewank’s Function 

without Bounds 
M, R, S*, N, S, N*   

Expanded functions 
CF13 Shifted Expanded Griewank’s plus 

Rosenbrock’s Function  
M, S, N, S*   

CF14 shifted Rotated Expanded Scaffer’s 
CF6 Function 

M, S, N, S*   

Hybrid composite functions 
CF16 Rotated Version of Hybrid 

Composition Function CF15 
M, R, S, A, D, S**   

CF18 Rotated Hybrid Composition Function M, R, N, S   
CF20 Rotated Hybrid Composition Function 

with Global Optimum on the Bounds 
M, N, S, A, D, S**, 
A*, G 

D  

CF25 Rotated Hybrid Composition Function 
without bounds 

M, N, S, A, D, U, 
G, N* 

D  

Note that: M: multi-modal, N: non-separable, S: scalable, S*: Shifted, R:	 rotated,  A: a huge 
number of local optima, D: different function’s properties are mixed together, S**: sphere 
Functions give two flat areas for the function, A*: a local optimum is set on the origin, G:	global 
optimum is on the bound, N*: non-continuous, U: uni-modal functions give flat areas for the 
function, N* : no bounds.  

  



  

  

 

 

Fig. 11: 3D visualization of functions CF20-CF25 

These benchmark functions are really high level in comparison with the classical benchmark 
functions mentioned in the previous section because of their various complex properties and 
huge numbers of local optimal. A typical characteristic of almost optimization algorithms is that 
they are easy to get stuck at the local optima because the movement strategy is not flexible 
enough to approach the search space having a global optimum. Fig. 12 shows the ability of 
TLCO to escape from local optima for the functions CF16 with dimension D = 2. TLCO fails to 
reach global optimal with 30, 50 and 100 iterations as shown in Fig. 12a, Fig. 12b, Fig. 12c. 
However, with the increasing of the iterations, this ability of TLCO is improved and TLCO can 
find the best global with acceptance error with 500 iterations as shown in Fig. 12d.  



 

	

Fig. 12: The ability of escaping local optimal of TLCO in different iteration: (a) with 30 
iteration, (b) with 50 iteration, (c) with 100 iteration, (d) with 500 iterations 

To evaluate the performance of algorithms for solving these benchmark functions in a large 
scale dimension, TLCO and other algorithms are set with the same dimension D = 100, the 
number of particles are N = 30 and the total number of iterations (1000). Four metrics including 
best value, the worst value, the mean value and the standard deviation are computed for each 
algorithm with 50 independent runs as shown in Erreur ! Référence non valide pour un 
signet.. Once again, TLCO still proves its reliability and effectiveness in solving high 
complexity functions. TLCO still achieves the best performance in the case of functions CF7, 
CF18, CF20 and CF25 in comparison with other algorithms.  

(a) (b) 

(c) (d) 



Table 11:	Comparison results of 7 CEC 2005 benchmark functions where the best performance for each algorithm is highlighted in red	

Different Algorithms Function 
  TLCO PSO GA GSA FA DE ASO GWO CS 
Best 4516.289 4516.289 4516.289 9867.524 4516.289 4516.289 4516.289 4516.331 10622.544 
Worst 4516.289 4571.513 4516.289 12043.814 4516.289 4544.741 4544.741 4516.358 12233.661 
Mean 4516.289 4527.333 4516.289 11305.698 4516.289 4521.979 4521.979 4516.346 11588.736 

CF7 

S. Deviation 6.431E-13 2.470E+01 6.431E-13 9.106E+02 1.676E-09 1.272E+01 1.272E+01 1.214E-02 6.340E+02 
Best -126.848 -127.549 -127.291 -124.866 -127.880 -122.083 -127.509 -125.984 -121.192 
Worst -123.927 -124.175 -123.543 -123.616 -124.907 -119.581 -125.962 -122.652 -116.985 
Mean -124.977 -126.199 -124.796 -124.347 -126.687 -120.870 -126.744 -124.511 -119.397 

CF13 

S. Deviation 1.120E+00 1.403E+00 1.583E+00 4.534E-01 1.112E+00 9.257E-01 7.149E-01 1.291E+00 1.844E+00 
Best -287.395 -287.655 -286.419 -286.489 -290.228 -286.499 -286.363 -288.180 -287.333 
Worst -286.523 -286.882 -285.893 -285.822 -287.988 -286.306 -285.884 -287.294 -286.843 
Mean -286.940 -287.290 -286.206 -286.165 -289.114 -286.402 -286.126 -287.799 -287.108 

CF14 

S. Deviation 3.521E-01 3.351E-01 2.661E-01 2.684E-01 9.620E-01 7.899E-02 1.753E-01 3.356E-01 1.794E-01 
Best 246.587 250.426 274.287 442.789 170.555 369.153 169.764 200.225 264.791 
Worst 534.907 674.587 521.204 620.000 196.831 441.102 666.821 673.053 307.399 
Mean 374.691 586.873 356.006 539.980 186.054 406.019 542.575 397.424 287.827 

CF16 

S. Deviation 1.049E+02 1.881E+02 9.881E+01 2.124E+02 9.604E+00 2.974E+01 2.133E+02 2.125E+02 1.783E+01 
Best 910.000 922.563 913.824 1059.984 913.916 917.425 910.000 945.205 919.390 
Worst 910.000 926.631 918.241 1170.991 917.741 918.556 910.000 961.522 921.142 
Mean 910.000 925.099 915.301 1065.116 915.764 918.037 910.000 953.343 920.287 

CF18 

S. Deviation 8.212E+00 1.542E+00 1.741E+00 4.615E+00 1.630E+00 4.995E-01 1.150E-12 5.803E+00 6.732E-01 
Best 910.000 923.640 916.519 1051.377 914.884 916.467 910.000 950.380 918.365 
Worst 910.000 1135.349 926.263 1169.942 922.263 918.174 910.000 975.032 920.530 
Mean 910.000 996.210 922.505 1067.591 917.751 917.531 910.000 961.727 919.631 

CF20 

S. Deviation 0.000E+00 8.627E+01 3.922E+00 1.924E+00 2.745E+00 6.504E-01 1.189E-11 1.074E+01 8.400E-01 
Best 1871.753 1936.635 1960.826 1915.139 1947.123 1887.181 1875.231 1893.870 2103.599 
Worst 1891.198 2009.479 1984.600 1964.213 1957.460 1892.065 1893.584 1906.951 2165.611 
Mean 1884.510 1973.677 1971.156 1830.685 1852.531 1889.341 1884.694 1898.332 2141.866 

CF25 

S. Deviation 3.917E+00 3.348E+01 9.167E+00 1.331E+02 4.957E+00 2.000E+00 8.217E+00 5.557E+00 2.343E+01 
	

	



6 Engineering design problems 

This section illustrates the reliability of TLCO to solve real-world problems, in the case of well-

known engineering design problems including tension/compression spring, pressure vessel 

design, welded beam design and speed reducer problem, and structural optimization design 

problems of	 a	72-bar space truss design. These problems are used to test the performance of 

TLCO when there are many constraint conditions. The dead penalty function approach is used to 

solve the conditional constraints. To solve these problems, a set of 30 particles and 2000 

iterations are used with 50 independence runs to report the best solution. The obtained results 

are compared with several similar techniques published in the literature. 

6.1 Tension/compression spring 

Solving this problem requires to find the minimum weight of spring whose three changeable 

 and P including	wire diameter (d), mean coil diameter (D), and the number of active coils 

(P) as shown in Fig. 13. The mathematical formulation of this problem is expressed as follows: 

Give design variables:  

Minimize: 

 

Subject to: 

 

 

Where 

 

 

 



 

Fig. 13: Tension/compression spring design problem where the design variables	are active coils 
(P), mean coil diameter (D), and wire diameter (d)  

Erreur ! Référence non valide pour un signet. shows the best result obtained using TLCO 
with the corresponding values of constrained functions from  to . The comparison 

results between TLCO and other methods including 11 well-known optimization algorithms, and 
mathematical technique, which are published in the literature as shown in Table 13. CSA [81] 
gets the best performance with f(x) = 0.01266523. This result is still exploited again by TLCO 
with f(x) = 0.01266523447265. It can be seen that the best optimal result using TLCO is very 
competitive in comparison with those reported by CSA and better than the remaining ones.  

Table 12: The best result obtained obtained using TLCO for tension/compression spring design 

x1 x2 x3  Variables 
0.05169867161112 0.35694898786358 11.275421263651  

g1 g2 g3 g4 The value of 
constrained functions 0.00E+00 0.00E+00 -4.047044892 -0.72756822 

The best result  f(x) 0.01266523447265     		

Table 13: Comparison of the best solution for welded beam design problem by different 
methods	

Optimum variables Optimum weight Different 
Algorithms x1 x2 x3                   f(x) 

PSO [82] 0.05172800 0.35764400 11.24454300 0.01267470 
ES [83] 0.355360 0.051643 11.397926 0.012698 
GA [84] 0.05148000 0.35166100 11.63220100 0.01270480 
GWO [59] 0.05169 0.356737 11.28885 0.0126660 
BMO [55] 0.05165974 0.35601249 11.33044295 0.012665264 
ABC [85] 0.05174900 0.35817900 11.20376300 0.01266500 

RO [86] 0.051370 0.349096 11.762790 0.012679 
CSA [81] 0.05168903 0.35671695 11.28901180 0.01266523 

WOA  [62] 0.051207 0.345215 12.004032 0.012676 
DE [87] 0.05160900 0.35471400 11.41083100 0.01267020 
HS [88] 0.051154 0.349871 12.076432 0.012671 
Constraint 

correction [89]   

0.05000000 0.31590000 14.25000000 0.01283340 

In this research 
TLCO 0.05169867161112 0.35694898786358 11.275421263651 0.01266523447265 



6.2 The problem of pressure vessel design optimization 

The primary objective is to minimize the overall cost with four optimization variables including 
material, forming, and welding of a cylindrical vessel as shown in The best result gained by 
TLCO as shown in Erreur ! Référence non valide pour un signet.; Table 15 shows its 
comparison with other optimization methods found in the literature. The current best result 
belong to BMO [55] with  f(x) = 5887.097014; The best optimal result obtained with other 
algorithms fluctuate around f(x) = 6059. Here again TLCO appears to be the best algorithm in 
comparison with other algorithms with the best results reported for f(x) = 5885.3327736165. It 
is streets ahead of all the other algorithms on this problem. The superiority of TLCO in solving 
this problem illustrates the efficiency of a new technique for movement updating in TLCO. 
TLCO can find a suitable movement by the proposed step length S which is short enough during 
the last few iterations to enhance the level of accuracy. According to our statistics, the results 
reported in Erreur ! Référence non valide pour un signet. may be regarded as a new record for 
solving this problem. 

Table 14. There are four linear and nonlinear constraints affecting the design of pressure vessel. 
Ts, Th are the thickness of shell and the thickness of  the head, respectively. The inner radius R, 
and the length of the cylindrical section without considering the head L.  

The mathematical formulation of this problem was expressed as follows: 

Give design variables		 	

Minimize 

	

Subject to 

	

Where	

	



	

Fig. 14: Pressure vessel design problem where the design variables	are inner radius R, the length 
L, thickness shell Ts and thickness of the head Th 

The best result gained by TLCO as shown in Erreur ! Référence non valide pour un signet.; 
Table 15 shows its comparison with other optimization methods found in the literature. The 
current best result belong to BMO [55] with  f(x) = 5887.097014; The best optimal result 
obtained with other algorithms fluctuate around f(x) = 6059. Here again TLCO appears to be the 
best algorithm in comparison with other algorithms with the best results reported for f(x) = 
5885.3327736165. It is streets ahead of all the other algorithms on this problem. The superiority 
of TLCO in solving this problem illustrates the efficiency of a new technique for movement 
updating in TLCO. TLCO can find a suitable movement by the proposed step length S which is 
short enough during the last few iterations to enhance the level of accuracy. According to our 
statistics, the results reported in Erreur ! Référence non valide pour un signet. may be 
regarded as a new record for solving this problem. 

Table 14: The best result obtained using TLCO for pressure vessel 

x1 x2 x3 x4 Variables 
0.77816864137511 0.384649162627902 40.3196187240987 200 

g1 g2 g3 g4 The value of 
constrained functions -1.1102E-16 -2.22E-16 -2.33E-10 -40 

The best result  f(x) 5885.3327736165     		

Table 15: Comparison of the best optimal results for pressure vessel design problem by 
different methods  

Optimum variables Optimum cost Different 
Algorithms x1 x2 x3 x4 f(x) 

PSO [82] 0.812500 0.437500 42.091266 176.7465 6061.0777 
ES [83] 0.812500 0.437500 42.098087 176.640518 6059.745605 
GA [84]  0.812500 0.437500 40.3239 200.000000 6288.7445 
GWO [59] 0.812500 0.434500 42.089181 176.758731 6051.5639 



ABC [85] 0.812500 0.437500 42.098446 176.636596 6059.714339 
CSA [81] 0.812500 0.437500 42.09844539 176.6365986 6059.714363 
WOA  [62] 0.812500 0.437500 42.0982699 176.638998 6059.7410 
HS [88] 1.125000 0.625000 58.29015 43.69268 7197.730 
DE [87] 0.812500 0.437500 42.098411 176.637690 6059.7340 
ACO [90]  0.812500 0.437500 42.103624 176.572656 6059.0888 
MVO [91] 0.8125 0.4375 42.090738 176.73869 6060.8066 
BMO [55] 0.7789243362 0.3850096372 40.35569043 199.5028780967 5887.097014 

In this research 
TLCO(*) 0.778168641 0.384649162 40.319618724 200 5885.3327736165 

Note that: subscript (*) is the best solution for pressure vessel problem register in the literature 

6.3 Welded beam design 

The objective is to minimize the total cost of a welded beam as given in Fig. 15. There are four 
optimization variables including the thickness of weld , the length of weld , the thickness 

of bar  and the height of bar . This problem is designed with 7 constraint equations whose 

variables are shear stress , bending stress in beam , buckling load on bar  and the 

deflection . 

The mathematical formulation and the boundary constraints are provided as follows: 

Given the design variables	 	

Minimize:  

Subject to: 

 

 

 

 

 

 

 

Where 

 



 

 

 

	

Fig. 15: Structure of Welded beam design. There are four optimization variables including the 
thickness of weld , the length of weld , the thickness of bar  and the height of bar  

. This problem is designed with 7 constraint equations whose variables are shear stress  , 

bending stress in beam , buckling load on bar  and the deflection . 

The best results obtained with TLCO for solving this problem are given in Erreur ! Référence 
non valide pour un signet.. And the comparison between TLCO and other algorithms is shown 
in Table 17. It can be noticed that almost algorithms can find the best results with an acceptable 
error except HS [79]. The best results in this problem are found to be around f(x) = 1.72. The 
best total cost exploited by TLCO is still better in comparison with other algorithms and a litter 
bit lower than that of ACO [90] which gives the best performance.	

Table 16:	The best result obtained using TLCO for welded beam design	

x1 x2 x3 x4 Variables 
0.20570987476921 3.470985710499610 9.0364379313505 0.205738108120211 

g1 g2 g3 g4 

-3.6380E-12 -2.22E-16 -2.33E-10 -40 

g5 g6 g7   

The value of 
constrained functions 

-8.0710E-02 -2.36E-01 -6.60E-01   
The best result  f(x) 1.7249209835     		

 Table 17:	Comparison of the best solution for welded beam design problem by different 
methods 

Optimum variables Optimum cost 
 Different Algorithms 

x1 x2 x3 x4 f(x) 



ACO [90] 0.2057 3.471131 9.036683 0.205731 1.724918 
GA [92] 0.205986 3.471328 9.020224 0.20648 1.728226 
ES [93] 0.20573 3.470489 9.036624 0.205729 1.724852 
ABC [85]  0.20573 3.470489 9.036624 0.20573 1.724852 
DE [87] 0.203137 3.542998 9.033498 0.206179 1.733462 
PSO [82] 0.202369 3.544214 9.04821 0.205723 1.728024 
GWO [59] 0.205676 3.478377 9.03681 0.205778 1.72624 
MVO [91] 0.205463 3.473193 9.044502 0.205695 1.72645 
RO [86] 0.203687 3.528467 9.004233 0.207241 1.735344 
HS [88] 0.2442 6.2231 8.2915 0.2400 2.3807 
DE [87] 0.203137 3.542998 9.033498 0.206179 1.733462 

In this research 

TLCO 0.20570987 3.47098571 9.03643793 0.20573810 1.72492098 

6.4 Speed reducer design problem 

The objective is to minimize the total weight of a speed reducer while satisfying eleven 
constraints in total. This is considered as a more challenging benchmark because it has seven 
design variables as shown in Fig. 16. The variables of this problem include: the face with (x1), 
the module of the teeth (x2), the number of teeth on pinion (x3), the length of the first shaft 
between bearings (x4), the length of the first shaft between bearings (x5), the diameter of the first 
shaft (x6), and the diameter of the second shaft (x7).  

The mathematical formulation and the boundary constraints are provided as follows: 

Minimize: 

 

Subject to: 

    

    

  

 

    



     

 

 

Fig. 16: A schematic of the speed reducer design  

Table 18 and Table 19, respectively, the best result achieved by TLCO and its comparison with 
other algorithms.	According to the statistical figures for this problem, PSO-DE [85] has the best 
performance with f(x) = 2996.348100 while the best results of the other algorithms fluctuated 
between 2996 to 3010. FA [86] fails to solve this problem when there is a big difference in 
comparison with the other algorithms. It can be seen that TLCO emerges as a unique algorithm 
that can provide a new level of accuracy. The best value exploited by TLCO streets ahead of all 
the other algorithms and sets a new performance record for solving this problem. The error in 
constraints of TLCO can be as smaller 10-15 as given in condition of  as shown in Table 

18. This proves that TLCO can achieve a flexible movement which is small enough during the 
last few iterations to exploit new search spaces where current algorithms cannot approach 
because their movement strategy is not yet perfect.  

Table 18:	Best solution obtained using TLCO for speed reducer design	

x1 x2 x3   Variables 

3.50000000000001   0.7  17    



x4 x5 x6 x7  

7.3  7.71531991150231 3.35021466609744 5.28665446498023 

g1 g2 g3   

-0.07391528 -0.197998527 -0.499172248   

g4 g5 g6 g7 

-0.904643905 -8.87E-13 -1.33E-15 -0.7025  

g8 g9 g10 g11 

The value of 
constrained functions 

-1.89E-15 -0.583333333 -0.051325754 -3.12E-12 

The best result  f(x)  2994.47106614761     		

Table 19:	Comparison of the best solution for speed reducer design problem by different 
methods 

Best solution Optimum weight Different 
Algorithms x1 x2 x3 x4 x5 x6 x7 f(x) 
AAO  [94] 3.499000 0.699900 17.000000 7.300000 7.800000 3.350200 5.287200 2996.783000 
GWO [59] 3.501000 0.700000 17.000000 7.300000 7.811013 3.350704 5.287411 2997.819650 
CS [50] 3.501500 0.700000 17.000000 7.605000 7.818100 3.352000 5.287500 3000.981000 
WSA  [95] 3.500000 0.700000 17.000000 7.300000 7.800000 3.350215 5.286683 2996.348225 
MFO  [96] 3.497455 0.700000 17.000000 7.827750 7.712457 3.351787 5.286352 2998.940830 
SCA  [78] 3.521000 0.700000 17.000000 8.300000 7.923351 3.355911 5.300734 3026.837720 
AOA [97] 3.503840 0.700000 17.000000 7.300000 7.729330 3.356490 5.286700 2997.915700 
LGSI4 [95]  3.501000 0.700000 17.000000 7.300000 7.800000 3.350214 5.286683 2996.348205 
PSO-DE[98]  3.500000 0.700000 17.000000 7.300000 7.800000 3.350210 5.286680 2996.348100 
LGSI2 [95] 3.500000 0.700000 17.000000 7.300000 7.800000 3.350215 5.286683 2996.348166 
FA [99] 3.507495 0.700100 17.000000 7.719674 8.080854 3.351512 5.287051 3010.137492 

In this research 
TLCO(*) 3.50000 

 

0.70000000 

 

17.00000000 

 

7.30000000 

 

7.71531991 

 

3.35021467 

 

5.28665446 

 

 2994.47106 

 Note that: subscript (*) is the best solution for speed reducer design register in the literature 

6.5 Continuous 72-bar space truss design problem  

The last engineering problem involved the 72-bar space truss structure which is shown in Fig. 
17. The truss has 72 bars and 20 nodes. The primary objective is to minimize the total weight of 
this structure. The model of this structure is implemented in MATLAB using one-dimensional 
element, thus, during each iteration of TLCO, all stresses in 72 bars as well as all displacements 
at the 20 nodes are calculated by the finite element method (FEM); these results are then 
transmitted to TLCO to update the objective function. This process will continue until the best 
value is founded with the acceptable or reaching the number of desired iterations. The cross-
sectional areas are classified into 16 groups, in each of 16 groups have the same value as 
following: 

Group 1: A1 – A4; Group 2: A5 – A12; Group 3: A13 – A16; Group 4: A17 – A18; Group 5: A19 – A22; 
Group 6: A23 – A30; Group 7: A31 – A34; Group 8: A35 – A36; Group 9: A37 – A40; Group 10: A41 – 
A48; Group 11: A49 – A52; Group 12: A53 – A54; Group 13: A55 – A58; Group 14: A59 – A66; Group 
15: A67 – A70; Group 16: A71 – A72; 

The mathematical formulation and the boundary constraints are provided as follows: 



Minimize:  

Subject to: 

 

 

Where 

= , -25000 ksi, 25000 ksi, -0.25 in, 0.25 in, 

 

Fig. 17: 72-bar space truss design problem: (a) 3D model, (b) dimension and node, (c) element 
numbering pattern for first story.  

Two cases of load distribution on different nodes for the 72-bar space truss structure are listed as 
shown in Table 20 

Table 20: Load cases distribution on different nodes for the 72-bar space truss structure 

Load case 1 (kips) Load case 2 (kips) 
Nodes 

Px Py Pz Px Py Pz 
17 5.0 5.0 -5.0 0.0 0.0 -5.0 
18 0.0 0.0 0.0 0.0 0.0 -5.0 
19 0.0 0.0 0.0 0.0 0.0 -5.0 
20 0.0 0.0 0.0 0.0 0.0 -5.0 

Table 21 shows that GGP [100] gets the best performance with f(x) = 379.31. TLCO and HBB-
BC [101] both rank 2nd with f(x) = 379.66. Although TLCO fails to achieve the best results with 
this problem, it can be seen that its accuracy level is only slightly lower than that of GGP [91] 

(a) 

(b) 

(c) 



and still performs better than other algorithms. Especially, TLCO demonstrates its superiority 
compared to three algorithms including GA [102], ACO [103]  and  PSO [104]. 

Table 21: Comparison between TLCO and optimization methods in the literature for 72-bar space 
truss design 

  
Groups Members TLCO 

 
GGP 
[100]  

GA  
[102] 

ACO 
[103]  

PSO 
[104]  

BB-
BC 
[105]  

HBB-BC 
[101] 

  1 1–4 1.8911732 2.0259 1.8562 1.9480 1.7427 1.8577 1.9042 
 2 5–12 0.5128193 0.5332 0.4933 0.5080 0.5185 0.5059 0.5162 
 3 13–16 0.1000000 0.1000 0.1000 0.1010 0.1000 0.1000 0.1000 
 4 17,18 0.1000000 0.1000 0.1000 0.1020 0.1000 0.1000 0.1000 
 5 19–22 1.2740327 1.1567 1.2830 1.3030 1.3079 1.2476 1.2582 
 6 23–30 0.5206884 0.5689 0.5028 0.5110 0.5193 0.5269 0.5035 
 7 31–34 0.1000000 0.1000 0.1000 0.1010 0.1000 0.1000 0.1000 
 8 35,36 0.1000000 0.1000 0.1000 0.1000 0.1000 0.1012 0.1000 
 9 37–40 0.5118870 0.5137 0.5177 0.5610 0.5142 0.5209 0.5178 
 10 41–48 0.5151597 0.4791 0.5227 0.4920 0.5464 0.5172 0.5214 
 11 49–52 0.1000000 0.1000 0.1000 0.1000 0.1000 0.1004 0.1000 
 12 53,54 0.1000008 0.1000 0.1049 0.1070 0.1095 0.1005 0.1007 
 13 55–58 0.1569718 0.1579 0.1557 0.1560 0.1615 0.1565 0.1566 
 14 59–66 0.5365165 0.5501 0.5501 0.5500 0.5092 0.5507 0.5421 
 15 67–70 0.4183381 0.3449 0.3981 0.3900 0.4967 0.3922 0.4132 
 16 71,72 0.5649648 0.4984 0.6749 0.5920 0.5619 0.5922 0.5756 
  Weight 

(lb) 
  379.661117 379.31 380.32 380.24 381.91 379.85 379.66 

7 CONCLUSION 

The paper presented a novel metaheuristic optimization algorithm based on the concept of the 
life cycle of a termite colony and modulation of movement strategy. TLCO proposes a parallel 
structure for finding the best global optimization. This has been achieved through the specific 
task assignments of termite workers and soldiers. Thus, the termite workers in TLCO perform 
the exploration and the soldiers ensure the exploitation. This ensures at each iteration a balance 
between the exploration and the exploitation. Besides, a connection and interdependence 
between workers and soldiers is created by shared information of the best solution found at the 
previous iteration. Thus, when the best solution value is updated, this information is transmitted 
to each worker and soldier in the next iteration to adjust its movements. As a result, the 
movement strategy in TLCO is always clearly oriented and termite soldiers reach the potential 
search space around the best solution, Meanwhile, termite workers are secured for expanding the 
new search space.  

The step length S plays a key factor to establish the space of exploration or the space of 
exploitation. By introducing a linear function to control the step length S, the movement strategy 
in TLCO always ensures two important properties (1) reaching a long movement during the few 
first iterations to improve the convergence rate and (2) reaching a short movement in later 



iterations to enhance the level of accuracy. Moreover, in order to make the movement more 
flexible, TLCO uses parameters to create two random movement directions, these parameters 
being bounded in [-1, 1] and it can randomly receive negative or positive values	 during the 
process of position updating. If the parameters are negative values, the next position will move 
forward to potential search space around the current best solution, otherwise, the next position 
will move far away from the best solution. This will improve the exploration or exploitation in 
each termite worker and soldier.  

Through various numerical examples, we have shown that TLCO performs better in comparison 
with other algorithms for a wide range from optimization problems and when applied to real 
engineering design problems. Especially, in high-dimension search space, TLCO still shows its 
power to find the best value with the smallest acceptable error, while other algorithms fail to 
find global optimum due to the local optima problem. The ability of TLCO to escape local 
optima is also demonstrated by solving highly complex functions in CEC2005 whose many local 
optimal are present. With large enough iterations, TLCO can still find the best value. Five 
engineering problems were also used to evaluate the reliability and the effectiveness of TLCO. 
The statistical results show that TLCO is the best algorithm in 3 engineering problems, 
Especially, for pressure vessel design problem and speed reducer design problem, the results 
reported using TLCO can be considered as the a new record in this field. And for the remaining 
engineering problems, TLCO still reaches values that are close to the best optimal results 
obtained by other algorithms.  

In conclusion, TLCO has proven highly reliable in solving optimization problems. It can be seen 
as a robust algorithm for solving real problems in many fields. 
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