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THRESHOLD SOLUTIONS IN THE FOCUSING 3D CUBIC NLS
EQUATION OUTSIDE A STRICTLY CONVEX OBSTACLE

THOMAS DUYCKAERTS, OUSSAMA LANDOULSI, AND SVETLANA ROUDENKO

ABSTRACT. We study the dynamics of the focusing 3d cubic nonlinear Schrédinger equation
in the exterior of a strictly convex obstacle at the mass-energy threshold, namely, when
Ealuo]Maluo] = Egs[Q]Mgs[Q] and HVUO||L2(Q) ||u0||L2(Q) < ||VQ||L2(1R3) ||Q||L2(R3) , where
uo € Hy (2) is the initial data, @ is the ground state on the Euclidean space, E is the energy
and M is the mass. In the whole Euclidean space Duyckaerts and Roudenko (following the
work of Duyckaerts and Merle on the energy-critical problem) have proved the existence of
a specific global solution that scatters for negative times and converges to the soliton in
positive times. We prove that these heteroclinic orbits do not exist for the problem in the
exterior domain and that all solutions at the threshold are globally defined and scatter. This
is the first step in the study of the global dynamics of the equation above the ground-state
threshold. The main difficulty is to control the position of the center of mass of the solution
for large time without the momentum conservation law and the Galilean transformation
which are not available for this equation.
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1. INTRODUCTION

We consider the focusing nonlinear Schréodinger equation in the exterior of a smooth compact
strictly convex obstacle © C R? with Dirichlet boundary conditions:

i0pu + Aqu = —|ul?u (t,xz) e R x Q,
(NLSq) u(to, ) = up(x) x €,
u(t,z) =0 (t,z) € R x 09,

where Q = R3\ ©, Aq is the Dirichlet Laplace operator on Q and ty € R is the initial time.
Here, u is a complex-valued function,

u:RxQ—C
(t,z) — u(t, x).
We take the initial data ug € Hg(Q2), where H}(€) is the Sobolev space
{u € L*(Q) such that |Vu| € L*(©2) and ujgq = 0}.

The NLSq equation is locally wellposed in HE(€2), see [1], [33], [16] and [3]. The solutions
of the NLSq equation satisfy the mass and energy conservation laws:

/!utw )|?dx = Mlug),
Folu(t)] = 2/ Vu(t, )| dx—/ lu(t, 2)[* dz = Elug].

Unlike the nonlinear Schrédinger equation NLSgs posed on the whole Euclidean space R3,
the NLSq equation does not have the momentum conservation.

The NLSps equation is invariant by the scaling transformation, that is,

u(t, ) — du(dz, \*t) for A > 0.

.1
This scaling identifies the critical Sobolev space Hz. Since the presence of an obstacle does
not change the intrinsic dimensionality of the problem, we regard the NLSq equation as having
the same criticality, and thus as an energy-subcritical, mass-supercritical equation.

In this paper, we study the global well-posedness and scattering of solutions to the NLSq
equation. We start recalling earlier results on global existence and scattering ([33], [21]): if u
has a finite Strichartz norm (Cf. Theorem 2.7), then u scatters in Hg(Q), i.e.,

1 : _ itAq —
Juy € Hy(2) such that tgr:rtloo |u(t) —e uiHH&(Q) 0.
This holds in particular if the initial data is sufficiently small in HE(€2).

Global existence and scattering for large data was studied for the NLSps equation, posed
on the whole Euclidean space R3, in several articles in different contexts. The NLSgs equation
has solutions of the form e"®z3Q, where @ solves the following nonlinear elliptic equation

-Q+AQ+|QFQ =0,
Q € H'(R?).

In this paper, we denote by @) the ground state solution, that is, the unique radial, vanishing
at infinity, positive solution of (1.1). Such @ is smooth, exponentially decaying at infinity, and

(1.1)
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characterized as the unique minimizer for the Gagliardo-Nirenberg inequality up to scaling,
space translation and phase shift, see [23].

In [14], the authors have studied the global existence and scattering' for large initial data
of the radial solutions of the cubic NLSgs equation on R3, below a threshold given by the
ground state. This result was later extended to the non-radial case in [6] and to arbitrary
space dimensions and focusing intercritical power nonlinearities in [10] and [13]. This was
generalized to the cubic NLSq equation outside a strictly convex obstacle in [21] (see also [37]
for 1 <p <5).

Theorem A. Let ug € HL(Q) satisfy

(1.2) [woll 20y IVuoll 20y < QN L2y V@Il 2(gs) -
(1.3) Mo [uo] Eqluo] < Mgs|Q]Egs[Q].

Then u scatters in HY(2), in both time directions.

Note that in the case 2 = R3, the criteria (1.2) and (1.3) are expressed in terms of the
scale-invariant quantities ||[Vug|| 2 ||uol| ;2 and M [uo] Efu).

The purpose of this paper is to study the behavior of solutions to the NLSq equation exactly
at the mass-energy threshold, i.e., when

(1.4) Eq[uo]Maluo] = Ers[Q)Mgs[Q),
(1.5) luoll L2q) Vuoll 2y < 1QN 2y IVQIl L2 (rs) -

In [8] T. Duyckaerts and S. Roudenko described the behavior of the solutions of the NLSgs
equation at the mass-energy threshold. At this mass-energy level, the NLSps equation has a
richer dynamics for the long time behavior of the solutions compared to the result mentioned
above. The authors proved the existence of special solutions, denoted by Q* and Q. These
special solutions have the same mass-energy of the soliton, Mgs [QT]Egs[Q*] = Mgs[Q]Ers[Q),
however, [VQ™ ()] pzqas) < V@ z2(as) and Q) ey > 9@ s » for all ¢ n the
interval of existence of Q*. Only the solution Q~ is relevant in the study of the global existence
and scattering. This solution )~ scatters for negative time and approach the soliton, up to
symmetries, for positive time direction: there exists ey > 0 such that

(1.6) HQ_ — eitQHHl(RS) <ce " fort>0.

Furthermore, if we consider initial data ug € H'(R?) such that (1.4) and (1.5) hold on R? then
the corresponding solution u(t) of the NLSgs equation is global and either scatters in H!(R3)
or u = @7, up to the symmetries.

Note that for the NLSq equation, there do not exist analogs of the solutions e*Q, Q= at
the threshold Mq[u]Eqlu] = Mps[Q]Egrs[Q]. Indeed there is no function ug € H () satisfy-
ing (1.4) and [[Vuol| p2(q) [[uoll 20y = V@l r2(ms) @l 2(rs) - By extending ug with 0 on the
obstacle, the solution ug must be equal to ), up to the symmetries, which would not satisfy
Dirichlet boundary conditions. Similarly, in the presence of the obstacle there is no function
in Hg(Q) such that (1.6) holds, since such a solution has to converge to @ for the sequence
of times t,, = 2mn, contradicting the fact that () does not satisfy Dirichlet boundary conditions.

lalso, blow-up, however, we do not need it in this paper
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We now state the main result of this paper.

Theorem 1. Let ug € H} () and let u(t) be the corresponding solution to (NLSq) such that
ug satisfy

(1.7) Molu] Eqlu] = Mygs|[Q] Egs[Q],
(1.8) luoll L2q) Vol 2y < |QN 2y IVQIl L2 (rs) -
Then u scatters in HY () in both time directions.

Remark 1.1. The ezistence of initial data that satisfy (1.7) and (1.8) can be obtained using
the wvariational characterization of the ground state Q. Indeed, let X > 0, ¢ € HE(Q)\{0}
and let uy(t) be the solution of the NLSq equation with initial data wuy(ty) := upr = M.
Then, there exists a unique Ay > 0, such that Mqlug,]|Eqluor,] = Mps[Q]ERrs[Q] and
Huo,)\lHLQ(Q) ||Vu0’>\1||L2(Q) <@l L2rs) V@ 2(rsy - (Cf. Appendiz A for more details).

The proof of Theorem 1 is based on the approach of the Euclidean setting results in [7] and
[8]. The first step is similar to the proof of the compactness of the critical solution developed
by C.Kenig and F. Merle in [18] in the energy-critical setting and adapted to the energy-
subcritical case in [14] and [6]. It uses a concentration-compactness argument that requires
a profile decomposition as in the works of F. Merle and L. Vega [29]|, P. Gérard [11], and
S. Keraani [19], adapted by R.Killip, M. Visan and X. Zhang for the problem in the exterior
of a convex obstacle in [22] (in the energy-critical case) and in [21] (in the energy-subcritical
case). The second step of the proof is a careful study of the space translation and phase
parameters for a solution of NLSq that is close to @, up to the transformations. The presence
of the obstacle brings significant difficulties. One of them (that we tackle with the techniques
developed in [25] by the second author) is that we must linearize around a space translation
of the solitary wave €@, which is not an exact solution of (NLSq). Another difficulty is the
fact that the momentum conservation law and Galilean transformation, which were used in [§]
to control the space translation of the solution, are not available for the equation outside an
obstacle. This control is achieved through a new intricate compactness argument for solutions
escaping at infinity, that relies among other things on the uniqueness theorem in [6].

In [24], the second author has proved that when the obstacle is the Euclidean ball of R3, solu-
tions such that Mo[u] Eolu] < Mg Q] s (@] and Juoll2(g) Vol () > 19 12qas) Qe
with a finite variance and a certain symmetry blow up in finite time. In view of the known
results on R?, one should expect blow-up in finite or infinite time for all solutions of this type,
however, the blow-up for the NLSq equation is a delicate issue. One of the difficulties is the
appearance of boundary terms with the wrong sign in the virial identity that is used to prove
blow-up on R3. Blow-up is also expected in the threshold case Mq[u]Eq[u] = Mgs[Q]Egs[Q]
and [luo|| 12(q) [Vuollp2) > 1@l 2(rs) V@Il L2(gs), which is an open question. Let us mention
however that linear scattering is precluded for these solutions. Indeed, if u is such a solution,
then by the bound [[u(t)|| 2y IVu(@®)|l2q) > @l r2ms) [VQI2(rsy (which is valid on the

domain of existence of u), we have
(1.9) tJinJfl(u) w172 () [ Vu(®) 17200y = Q722 [V QI T2 (re) = 6IQN7 213y Brs (Q)

(where we have used Pohozaev’s identity, see (2.4) below). However, if u is a scattering solution
with Mqu]Equ] = Mgs[Q]Egs[Q], we have T, (u) = +00 and (using the conservation of mass
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and that limy—eo [|u(t)|| a0y = 0),
T [u(t) ey [V(8) 320y = 2Mafu] Eafu] = 21Q 1% s Prs Q-
contradicting (1.9).

When = R3 K. Nakanishi and W. Schlag [32] described the dynamics of solutions
slightly above the mass-energy threshold, that is such that Eps|[Q]rs M [Q] < Egs|ug| Mgs[ug] <
ERs3[Qlrs M[Q] + € for a small ¢ > 0, showing that all 9 expected behaviors (any combination
of blow-up in finite time, linear scattering or scattering to the ground state solution) do indeed
occur. Some sufficient conditions for scattering and blow-up in this regime are given by the
first and third authors in [9]. The analog of the result in [32| outside of an obstacle is cur-
rently out of reach, due to insufficient understanding of blow-up in finite time. Let us mention
however that in this case, the soliton-like behavior is possible. Indeed, the second author in
[25] constructed a solution behaving as a travelling wave in R? for large ¢, moving away from
the obstacle with an arbitrary small speed v and such that E[ug]M[ug] = E[Q]M[Q)] + c|v|?
for a constant ¢ > 0. See also [26] for numerical investigations in this regime.

The study of the obstacle problem for dispersive equations, motivated by the understanding
of the influence of the underlying space geometry on the dynamics of the equation, started long
ago. Let us mention some of the works on a wave-type equation in the exterior of an obstacle
with Dirichlet or Neuman boundary conditions. In 1959, H. W. Calvin studied the rate of
decay of solutions to the linear wave equation outside of a sphere, see [36]. Later, Morawetz
extended this result to star-shaped obstacles, see [30] and, with Ralston and Strauss, to non-
trapping obstacles, see [31]. The Cauchy theory for the NLSq equation with initial data in
H} (), was initiated in 2004 by N. Burq, P. Gérard and N. Tzvetkov in [4]. Assuming that the
obstacle is non-trapping, the authors proved a local existence result for the 3d sub-cubic (i.e.,
p < 3) NLSq equation. This was later extended by R.Anton in [1] for the cubic nonlinear-
ity, by F. Planchon and L. Vega in [33] for the energy-subcritical NLSq equation in dimension
d =3 (i.e.,, 1 < p < 5) and by F.Planchon and O.Ivanovici in [17] for the energy-critical case
in dimension d = 3 (i.e, p = 5), see also [3] and [15], [16], [27] for convex obstacle. The local
well-posedness in the critical Sobolev space was first obtained in [17], for 3 4+ % <p<5.1In
[25], the second author extended this result for % < p < b, using the fractional chain rule in
the exterior of a compact convex obstacle from [20].

The paper is organized as follows: In Section 2, we recall known properties of the ground
state and coercivity property associated to the linearized operator under certain orthogonality
conditions. There, we also recall Strichartz estimates, stability theory and the profile decom-
position for the NLSq equation outside of a strictly convex obstacle. In Section 3, we discuss
modulation, in particular, in §3.2 we use the modulation in phase rotation and in space trans-
lation parameters near the truncated ground state solution, in order to obtain orthogonality
conditions. Section 4 is dedicated to the proof of the main theorem. In §4.1 we use the profile
decomposition to prove a compactness property, which yields the existence of a continuous
translation parameter x(t) such that the extension of a non-scattering solution w(t, x + z(t)),
that satisfy (1.7) and (1.8), is compact in H*(R3). In §4.2, we control the space translation
x(t) by approximating it by auxiliary translation parameter given by modulation on R3, in
[8]. Moreover, we use a local virial identity with estimates from previous sections on the
modulation parameter to prove that z(t) is bounded. In §4.3, we prove that the parameter
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o(t) = |[|VQ| ;2 — IVu|| ;2| converges to 0 in mean. Finally, we conclude the proof of Theo-
rem 1 using the compactness properties with the control of the space translation parameter
x(t) and the convergence in mean. In Appendix A, we prove the existence of an initial data
in H}(2) that satisfies the mass-energy threshold.

Acknowledgments. T.D. was partially supported by Institut Universitaire de France and
Labex MME-DII. Part of the research on this project was done while O.L. was visiting the
Department of Mathematics and Statistics at Florida International University, Miami, USA,
during his PhD training. He thanks the department and the university for hospitality and
support. S.R. was partially supported by the NSF grant DMS-1927258. Part of O.L.’s re-
search visit to FIU was funded by the same grant DMS-1927258 (PI: Roudenko).

Notation. Define U as a C'°° function such that

0 e
(1.10) U= neat &,
1 if x> 1.

We write a = O(b), when a and b are two quantities, and there exists a positive constant C
independent of parameters, such that |a| < C'b, and a ~ b, when a = O(b) and b = O(a).
For h € C, we denote hy = Reh and hy = Imh. Throughout this paper, C' denotes a large
positive constant and c is a small positive constant, that may change from line to line; both
do not depend on parameters. We denote by |-| the Euclidean norm on R3. For simplicity, we
write A = Aq. The real L?-scalar product (-,-) means

(f.9)=Re [ 15~ [RegRes+ [mgtmy.

2. PRELIMINARIES

2.1. Properties of the ground state. We recall here some well-known properties of the
ground state. We refer the reader to [35], [23] , [34, Appendix B| for a general setting and
[14] for the 3d cubic NLSgs case, for more details. Consider the following nonlinear elliptic
equation on R3

(2.1) - Q+AQ+|QPQ=0.
We are interested in a positive, decaying at infinity, solution @ € H'(R3). The ground state
solution is the unique positive, radial, vanishing at infinity, smooth solution of (2.1). It is also
(up to standard transformations) the unique minimizer of the Gagliardo-Nirenberg inequality:
if u e H'(R?), then
(22)  lullzagsy < Con IVullzas) lullp2@ey, 1074 = Con IVQIZa@ms) 1QN r2(es) -
Moreover,
(2:3)  Jullzagsy = Can [IVullfags) lull 2(gs)

— 3N € C,3pup € R, Fzp € R® : u(z) = AoQ(po(z + x0)).
We also have the Pohozhaev identities
(2.4) QN asy = 41QNIT2rsy  and  [[VQT2(gsy = 3[1QI72(as) -

As a consequence of (2.2), (2.3) and the concentration-compactness principle [28] one has
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Proposition 2.1. There ezists a function €(n), defined for smalln > 0, such that liH(l) e(n)=0
n—

and
(25) Vue H'(R?), ||ullpsqgs) — ”Q||L4(R3)|+‘Hu”L2(R3)_ Q] L2 (s

<n=d6y €R and Jxg eR?: HU—BMOQ(‘—

_|_

<em).

Next, we recall some known properties on the decay of @, see [12], [2] and [5, Chapter §].

||VUHL2(R3) - ”VQHL2(R3)

2

Proposition 2.2 (Exponential decay of Q). Let Q be the ground state solution of (2.1), then
there exist a,C > 0 such that for |z| > 1,

’Q(x) — %64‘”‘ <C

- ‘x|3/2'

e_‘xl

Moreover,

e_la:'

IVQ(z) + V*Q(z)| < C

|

Lemma 2.3. Let Q be the ground state solution of (2.1), M > 0 large, X € R? and let g be
an L'-function. Then for k > 0, we have

20 X|zar — [ (@ X)+VQG - X)) gla)d —0<€Mm)
| - el<ar TR

where O(-) depends on k, g and M.
Furthermore, there exists cpy > 0 such that
e_klx‘

k J—
(2.7) /m|§MQ (x —X)dx > ey X

Proof. First, note that

1
5 X <IX| =M <|o—X|, and |X| >2M.

This implies that, for | X| > 2M we have
1 1
2|z — X| ~ | X|

Using the exponential decay of @) from Proposition 2.2, we obtain,

Fo — X)g(a)de = O [ s for k>0
14<MQ(w— (e e =0 | ) for k>0

el Xl < eMe=IXl and

Similarly, we get
—k|X]

/ IVQ(z — X)|F g(z) dz = O (ek> ., for k> 0.

jel<M X

The proof of (2.7) is similar by applying again Proposition 2.2 and we omit it. O
Let u € H}(2) and define u € H'(R?) such that

2 = L
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Remark 2.4. We denote by Mps[u] = ||@||§2(R3) and Egs[u] = 3 ||wuig(R3) p+1 [ e (R?) -

Note that, we have Mq[u] = Mgs[u] and Equ] = Es[u]. To simplify notations in what follows
we drop the index € in the mass and the energy of the NLSq equation, so that we just write
M(u] and E|u] instead of Mq[u] and Eq[u].

Assume that u satisfies the left-hand side of (2.5). Then there exists 79 € R? and 6y € R
such that

Ju=e™QC -0, . <<

H(R3)
which yields, by Proposition 2.2 and (2.7),

1 e~ leol

(29) & oo < 100~ 20)in oy < (o).

This implies that |zg| is large when 7 is small.

2.2. Coercivity property. We next recall some known properties of the linearized operator
on R3. Consider a solution u of NLSgs close to €@ and write u(t) as

u(t,z) = e (Q(x) + h(t, x)) .
Note that A is the solution of the equation
Oh + Lh = R(h), Lh=—L_hy+1L;Nhy,
where

Lol = —Ahy + hy — 3Q%h,
L_hy = —Ahy + hy — Q%ho,
R(h) = iQ(2|h|* + h?) + i|h[*h.

Define ®(h), a linearized energy on R3, by

(2.10) ®(h) :—1/ ]h!2+/ 1yvm2—1/ Q*(3h3 + h3).
2 R3 R32 2 R3

We next define a subspace of H!(R3), on which ® is positive

Gie {he (R |/RS 0y, Qhy = 0’/R3 Qhiy =0, j = 1,2,3}.
Then by [8], there exists ¢ > 0 such that
(2.11) VheG, ®(h) > c|hlings)-
Let h € H'(R?). Define
(2.12) / |Vh? — / Q*W?(- + X)(3h? + h3) + / 2,

where W is defined in (1.10).
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Lemma 2.5. There exist ¢ > 0 such that for all h € H'(R3), if the following orthogonality
relations hold for all X € R® with | X| large

(2.13) Re [ AQ@)¥(z+ X)h(z+X)dz =0, Im [ Q)¥(z+ X)h(z+ X)dz =0,
R3

R3
(2.14) Re [ 0,(Qu@)¥(o + X)h(e +X)dz =0, k=123,
then
(2.15) Ox (h(-+ X)) > cl|hll7 @) -

Proof. Define

_ 13y . _ _ — _
A—{fEH (R®) : Re/R3AQf—Im/RBQf—Re/Rg@szf—O, k—1,2,3},
B = span {iQ, AQ, 0, Q, 02,Q, 0z, Q},
then we write h(- + X) = h(- 4+ X) + (- + X) with A(- + X) € A and 7(- + X) € B.

By (2.10) and (2.11), we have
®(h(- + X)) 2 cllhl|F (gay-
Since r(- + X) € B, we can write r as
3
r(- 4 X) =) ard,Q + BiQ + 7AQ.
k=1

Taking the real L2-scalar product in R? of r with iQ) and using the fact that Q is radial, we
get

1 1 -
B=—a—(r(-+X),iQ) = ——5——((h(- + X) = h(- + X),iQ
= % <Im/ hiz+ X)Q(z)dx —Im [ h(z+ X)Q(z) d:z:) )
HQHL2(R3) R3 R3

By the definition of &, we have Im J h(x 4+ X)Q(x)dx = 0. Using the orthogonality conditions
in Lemma 2.5 and the exponential decay of ) from Lemma 2.3, we obtain

1
B = 5 Im [ h(z+ X)Q(z)dx
1@l egsy e
1
Tz !
1Qlz= /s
1
- Im/ h(zx + X)Q(z)(¥(z+ X) — 1)dx
1Rz sy Jrs

= O(e™ X |1hll 1 sy

Similarly, by taking the scalar product of r with AQ and 0,, Q) and using the fact that @ is

radial, the orthogonality condition in Lemma 2.5 and the exponential decay of () from Lemma
2.3, we obtain 7 = aj, = O(e” X! 12 gsy)-

hz+ X)Q(z)¥(x + X) dx
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Thus,
7 1 sy < Ce XA g sy
|Dx (r(- + X))| < e X AlfF sy -
We now have
O (h(-+ X)) = x(h(- + X)) + Sx(r(- + X)) + 2Bx (h(- + X),r(- + X)),

where the bilinear form By is defined as
Bx(f.g) = % / (Vfl (2)Vgi(z) + fi(2) g1(z) — 3Q*(2)¥*(x + X) fi(z) g1 (w)) da
+5 [ (TA@VRE + fo)nl) - Q¥+ ) h) ) ) dr
Note that
B (b + X), 7+ X0)| < e ¥ ] g1 gy -

Then,

Ox(h(-+ X)) = @(h(-+ X)) + O (67|X‘ Hh||H1(R3)) > c||hll3 @) -
This implies that there exists ¢, R > 0 such that for | X| > R

Ox (h(-+ X)) > cl|hll7 @) -

O

2.3. Cauchy theory and profile decomposition. Next, we review tools needed in Sec-
tion 4.1 to prove the compactness property, up to space translation, of a critical solution of
the NLSq equation, using a profile decomposition. We use the same notations as in [21].
Without loss of generality, we assume that 0 € © = Q¢ and © C B(0,1). We define x to be a

smooth cutoff function in R?

x(z) =
0 lz| > 5.

We define spaces S*(I), k = 0,1, as follows

5 30
SO = L¥L2(I x Q) NL2L,T (I x Q),
SYI)={u:1xQ— C| uand (—Ag)zu € SO(I)}.

Remark 2.6. In order to avoid the endpoints in Strichartz estimates for an exterior domain,

5 30

see Theorem 2.7 below, we take a specific pair (3 7), for simplicity. However, one could use

2
6(2+¢)
24-3e

another pair (p,q) with p = 2+ ¢ and q =
enough.

207

By interpolation,
2 3 3 .. 5
lull gy < lullso,  forall 4 &= with 5 < g < co.

30

instead of (3,32), where ¢ > 0 is small

Similar estimates hold for S'(I). We will, in particular, use (q,7) equal to (5,3Y) and (oo, 2).

11
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One particular Strichartz space we use is

30
XY(I) = LEH, T (I % Q).
Note that, S'(I) ¢ X'(I) and by Sobolev embedding, there exists C' > 0 such that
1z ) < ClFllxaqy
We next define N°(I) as the corresponding dual of S°(I) and
(2.16) NYI)={u:IxQ—C| uand (~Ag)zu € NO(I)}.

Then, we have

2 3 3 )
@17l S Ml forall S5 = Fwith §<g<on,
1 1 1 1
where —+—-=1 and -+ —=1.
qa 4 r
In particular, we will use (¢/,7') = (%, 3—3) the Holder dual to the Strichartz pair (¢,r) =
(3, 3—70) One can get a similar estimate to (2.17) for N!(I) using the same pair, see Theorem 2.7.

Next, we state the Strichartz estimates using the above pairs and other necessary results
from [21].

Theorem 2.7 (Strichartz estimates, [16]). Let I be a time interval and ty € I. Letug € HE(Q),
then there exists a constant C' > 0 such that the solution u(t,z) to the nonlinear Schrédinger
equation on R x Q with Dirichlet boundary condition

iu+ Agu=Ff onRxQ
u(0,x) = up(x)

ujpn =0
satisfies
lullgoqry < € (ol agey + I llvoqry ) »
and
(2.18) lullsiy < € (Ilwollggy + 1 ) -

In particular,
lullcsaen < € (ollngeoy + 161, a8 1)

Proposition 2.8 (Local smoothing, [22, Corollary 2.14] ). Given wo € H}(S2), we have

HVeltAQon RaoTo

1tA
LY (jt—r|<T, |z—2|<R) = QWOHL5 (Rx) HWO”HI J

uniformly in wo and the parameters R,T > 0, z € R? and 7 € R.

Lemma 2.9 (Stability,[21]). Let I C R be a time interval and let @ be an approzimate solution
to (NLSq) on I x Q in the sense that

10yt + Aqit = — |a|* @ + e for some function e.

Assume that
@l ooy (1) < € and [tz 110y < L
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for some positive constants € and L. Let to € I and ug € HE(Q) and assume the smallness
conditions
[a(to) = uollpy(o) <€ and |lellyry < e

for some 0 < e < ey =¢1(E,L). Then there exists a unique solutzon u:IxQ— Cto (NLSq)
with initial data u(ty) = uo satisfying

lu =l x1(7 10y < C(E, L)e.
Theorem 2.10 (Linear profile decomposition in H{(€2), [21, Theorem 3.2]). Let {fn} be a

bounded sequence in Ho( ). After passing to a subsequence, there exist J* € {0,1,2,....,00},
{¢7, }‘]*1 C HF(Q)\ {0}, {t }‘]*1 C R such that, for each j either t}, = 0 or t}, — oo and

{xn} _1 C Q conforming to one of the following two cases for each j :

Case 1: xn‘: 0 and there exists ¢/ € HE(Q) so that ¢l = eitnBagi,
Case 2: |z}| — oo and there exists ¢ € HY(R3) so that

8= B2 ()~ al)] with x(x) = x <w> .
n
Moreover, for any finite 0 < J < J* we have the decomposition
J .
Jn= Z o7, + w;{
j=1

with the remainder w;] € H}(Q) satisfying

(2.19) Jlgnﬁ hrILILsupHeztAngHLs ®xQ) = =0,
J
. J _
(2.20) vJ > 1, JE{;{ [fa] = > M4, n]}_ ,
7=1
J
(2.21) vJ > 1, nlggo{ [l = > Eld) ]}—o
7=1
(2.22) lim |z) — 2| + |t] —tF| =

Theorem 2.11 (|21, Theorem 4.1]). Let {t,} C R be such that t,, = 0 or t, — +oo. Let
{x,} C Q be such that |x,| tends to 0o, as n goes to co. Assume ¢ € H'(R3) satisfies

(2:23) VOl L2ms) |91l 2msy < IVQIl r2(rsy 1@l L2 (msy »
(2.24) Mpgs[¢] Egs[¢] < Mps[Q]ERs[Q]-
Define

b 1= €09 () (& — 20)] with X () :=x("’”>.

|n|
Then, for n sufficiently large, there ezists a global solution v, to (NLSq) with initial data
vn(0) := ¢y, which satisfies

an”ng(RxQ) < C(”¢HH1(R3))-
Furthermore, for any e > 0 there exists N € N and 1. € C.(R x R3) such that, for alln > N.,
(225) ||Qn(t - tnax + $n) T/Ja(t x)”L5H1 1 RX]RS) <e€
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Remark 2.12. Note that, we have made a slight modification in the notation of the above
Theorem 2.11, in order to keep the consistent notation in this paper. We denote v,, the ex-
tension of the solution v, by 0 on Q¢ such that v, € H'(R3). Let us mention that ¢, is well
defined in HE(Q). Indeed, by the definition of xn and as |x,| — oo, we have

r€ed) = xu(x)=0 asn— +oo.

Moreover, one can check that the energy-mass assumption (2.24) is equivalent to the one
given in [21, Theorem 4.1| using the following identity:

{uo € HY(R?) : Egs[ug| Mgs[uo] < Frs[Q]Mpgs [Q]}

.y {quH1<R3>:ERs[uo]HMRs[uo]<2¢AER3[@}MR3[Q]},

0<A<o0

which follows by computing the minimum, of A\ — Egs[ug] + AMgs[ug] — 24/ AErs[Q] Mps[Q].

3. MODULATION

st = | [ war = [ v

In this section and the next one, we will consider a solution u such that M [u|E[u] = Mps|Q]ERrs[Q].
We first rescale the solution and the obstacle, letting @(t,z) = Au(A\*t, A\z) and Q = A71Q

with A = Mold — Pesl@ - pyen g is solution of (NLSg) and satisfies Mg[u] = Mps[Q),

Let u € H}(2) and define

MgslQ] —  Eqpu
Eglul = Bus[Q. i
Replacing u by @ and Q by 2, we conclude that can assume without loss of generality
(3.1) Mu] = Mps[Q] and Efu] = Eps[Q].

Lemma 3.1. Let u € H}(Q) satisfying (3.1) and 5(u) small enough. Then there exists Xo €
R3 large and 0y € R such that

(32) e () = Qa — Xo)¥(x) + h(z)
with ||h||H3(Q) < E(0(u)), where E(6(u)) — 0 as §(u) — 0.

Proof. Let u € H*(R?) be defined as above in (2.8) and observe that §(u) = §(u). By Propo-
sition 2.1, since

(3.3) Mu] = Mpgslu] = Mgs[Q], E[u] = Es[u] = Eps3[Q],

and 6(u) being small enough, there exist §p € R and Xy € R? such that
e Mu(x) = Q(z — Xo) + h(x)

with ||il||H1(R3) < &(d(u)), where £(0(u)) — 0 as d(u) — 0.

Moreover, if x € Q€ then u(z) = 0, which implies that

(3.4) reQ = Qz— Xo)+h(z)=0,
and for §(u) small enough, by (2.9), | Xo| is large such that
e_|X0|
< CE(3(u).

| Xo|
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We write,
e 0u(z) = Q(z — Xo)¥(x) + (1 — ¥(2)Q(x — Xo)) + h(x)
= Q(z — X0)¥(z) + h(z).

Using the fact that (1 — ¥) has a compact support, @ having an exponential decay, |Xo| being
large, and Lemma 2.3, we get

1Pl 1 (rsy < €(6(w)) +C

By (3.4) and the definition of ¥ in (1.10), we have
h(z)=0, if =€ Q°.
Thus, h(z) = 0 on 9Q and h(x) € H}(Q), which concludes the proof. O

Lemma 3.2. There exists 5o > 0 and a positive function £(3) defined for 0 < § < ¢, which
tends to 0 when & — 0, such that for any u € H}(Q) satisfying (3.1) and §(u) < &, there
exists a couple (p, X) € R x R® such that the following holds

(3.5) |u(z) — Q(z — X)¥(x) WHHl < e(9),

(3.6) Re/ u(z) O, (Q(z — X)U(x))e #dr =0, k=1,2,3,
Q

(3.7) Im/ﬂu(m) Q(z — X)¥(x)e *dx = 0.

The parameters p and X are unique in R/7Z x R® and the mapping u — (u, X) is CL.

Proof. Let
®: HY} Q) xR xR — R?

(u, X\ p)— (Pr(u, X, 1)1 <pes s
where

O (u, X, p) := Re/ u(x) Oz, (Q(z — X)W(x))e #dr, k =1,2,3,
Dy(u, X, ) —Im/ X)U(x)e *dx.
Let Xo € R3. Note that ®(Q(- — Xo)¥, Xo,0) = 0. Indeed, integrating by parts, we get
BQL — Xo)¥, X0,0) = Re [ Qe — Xo)W(@)0s, (Qla — Xo) V(o) do
3R [ 00,((Q — X0)¥(a)) da =0,
Bo(Q(- ~ Xo) ¥, X0, 0) = Tn [ Qar ~ X0)U(w)? di =0,
e Step 1: Computation of d(X,M)i);:.]

We have
0

5o, Pu( X, = —Re /Q ¢ ()0, (0, Qx — X)U(2)) da.
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Integrating by parts, we obtain

%@k@(- _ Xo)¥, Xo,0) = Re/ B, Q — Xo) ¥ (2)s, (Q(z — Xo)U(x)) da.
J Q
If k = j, we have
94 (Q(- — X0)¥, Xo,0) —Re/(a Q(x — Xo))? da
X, k 0)¥, Xo0,0) = (O 0

+ Re/ﬂ@jQ(m ~ X)2(U(@)? — 1) da
+ Re /Q Qe — X0)0s, Q — Xo)¥(2)0y, ¥ (x) do.

Since 0,,; ¥ and (U2 — 1) have a compact support and @ has an exponential decay, we
deduce

9
a—ij(Q(. — X0)¥, X0,0) = |02, Q|2 zs) + Oe™*)
1
= 3 IVQIIZ2(es) + O(e7?¥).
If k # 4, then
o B — X0) 0. X0,0) = Re [ 0,,Q( — X0)¥(2)01, (Q(x — Xo) U(w)) do
J Q

~ Re /Q B, Q — Xo)Pa, Qx — Xo)da
4 Re /Q 0, QU — Xo)0a Q — Xo) (¥(x)? — 1)da
+ Re /Q 0z,Q(z — Xo)¥(2)Q(x — X0)0z,, ¥(z)dz.
Using the same argument as before and the fact that @ is radial ([ 0r,Q0:,Q = 0, if

k # j), we obtain

88Xj(I>k(Q(- — X0)¥, X0,0) = O(e—Q\XO\)'

Next, we compute %@k(u,X, ):

;}L(I)k(u,X, W) = Re/ —ie” " u(2) 0y, (Q(x — X)WU(x))dz,
Q

0

a@;ﬁ(Q(‘ — X))V, X0,0) = Im/Q Q(zr — X0)¥(2)0z, (Q(z — X0)¥(x)) dx = 0.

e Step 2: Computation of d(x ,)P4.

We have

88Xj<1>4(u,x, p) = —Im /Q eV u(@)(9; Q(x — X) ¥ (x)) e,
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and thus,
a§<@4<¢?<' — X0)¥, Xo,0) = —Tm / Qa — X0) ¥ ()0, (Q(x — Xo)¥(x)) dz = 0.
Q
Also,
38Nq) (u, X, ) Im/ —ie wu( 1Q(x — X)¥(z) dx,
0
5@ = X0, X0,0) = - [ QLo — XoPWa)? =~ @l aqes) + O )

e Step 3: Conclusion.

Combining Step 1 and Step 2, we get

FIVQlwy 0 0 0
0 HIVQI T2 s 0 0
dix y®(Q(- — Xo)W, X, 0) = A
x.) 2(Q( 0)¥, Xo,0) 0 0 %HVQH%%RS) 0
0 0 0 — Q72 ms)
+ O(eleo‘)-

We can deduce that dx ,)® is invertible at (Q(-—Xo)¥(-), Xo, 0), if | Xo| is large. Then,
by the implicit function theorem there exists €p, 79 > 0 such that for u € HJ (), we
have

[u() = Q- = X)) < 0 — A(Xop) s |l + X — Xo| <o and B(u, X, ) = 0.
U
Let u(t) be a solution of (NLSq) satisfying (3.1). In the sequel we write

3(t) = d(u(t)).

Let Ds, = {t € I : 6(t) < dp}, where I is the maximal time interval of existence of w.
By Lemma 3.2, we can define C! functions X (¢) and pu(t) for t € Ds,. We now work with the
parameter 0(t) = u(t) — t. Write

(3.5) ety (1, ) = (14 p(1)Q(x — X (1)U (x) + h(t, 2),
where h(z) € H(Q) and define

o0t ztfv< X(t))\If(x)> - Vu(t, z)dx

t) = Re — 1.
A [1V(Qz — X(1)¥(x))|? do
This implies that
(3.9) e POyt 4+ X (1) = (14 p(1))Q(2)W(x + X (1) + Atz + X (1)),
where h(z) € H'(R?) is defined by
At ) = {h(t,x) Vo €Q,
0 Vo € Q°.
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One can see that p(t) is chosen such that h satisfies the orthogonality condition
(3.10) Re/ AQ(x — X (1)¥(z))h(t,x) dx
Q

_ Re/A(Q(x)\I/(:c + X(0)h(t, + X(()) da = 0.
By Lemma 3.2, h also satisfies the orthogonality conditions
(3.11) Im/ h(t,z)Q(x — X (¢))¥(z)dx = Im/h(t, x4+ X()Q(z)¥(x + X(t)) dx =0,
Q

and
(312) Re / h(t,2)00, (Q(z — X (1)U () d
Q

- Re/h(t,x + X (6)0s, (Q(2)U(x + X (1)) dv =0, k=1,2,3.

In the following lemma, to simplify notation, we denote f(-+ X) by f, () for any function
f. If f is a complex function, then we denote by fi, (-) the real part of f, and by fa, () the
imaginary part.

Proposition 3.3. Let u(t) be a solution of (NLSq) satisfying (3.1). Then the following esti-

mates hold for t € Ds,
(3.13) |p(t)| +O (m) '/Q\If hy dz| + O <62|X(2> ~6(t)+ O <e2|)((2|>
X(0)P X)) X))
~ 1(8) | g0y + O (ew> -
50

Proof. Let 0(t) = |p(t)| + ||kl ;1 +3(t), which is small, if §(t) is small By the expansion of u in
(3.9) we have e~y (t 2 + X (t)) = (14 p(t))Q(2) ¥, (x) + ( ,x), thus, if x + X (¢t) € Q,
then u(t,z + X (t)) = u(t,x + X(t)), otherwise u(t, z + X(t))

e Step 1: Approximation of |p| using the mass conservation.
Since M[u] = Mps[u] = Mgs[QV, + pQWV + h ] = Mgs[Q], we have,

310 [ (@ -1+ 20 Q"B + 20 QU D, + PR 4200l + I o =0,

Using (3.14) and Lemma 2.3, we obtain

2|p|1/ Qru? ] Javam, + [@@2-nr2 [Quan, + 57 [ Qv+
_2‘/@1/ hy, +0(52+|_X2|(X)’>,

which yields
- —2|X (1)
+0 (52 +S ) :
| X ()]

(3.15) ol =
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e Step 2: Approximation of |p| in terms of 4.

By the definition of §(t), we have

= ’/\V(Q\IJX + pQV +hx)\2dx—/|VQy2dx

_ ] [V QU +20[V(@U )P + 2 [V(@QU )P +207(Qu,) - Ty,

+2V(QU,) - Vhy, +|Vh,|* -

Using integration by parts and the orthogonality condition (3.10), we get

= ’/|VQ|2 (V2 —1)+2VQ V¥, Q¥, +Q*|VY,|?

L@t ) / VQUP +

Using the fact that (U2 —1) and V¥ have compact supports and applying Lemma 2.3,
we get

5 L, e 2X)
(3.16) pl= ———5—+0( 8+ -
2|VQII 72 (ms) | X ()]

e Step 3: Energy and Mass conservation.

We define: g = pQW, + h . Since Eps[u] = Egs[QV , + g] = Egs[Q], we have

(3.17)
1 2 1 2 1 47,4 1 4 313
5 [ Iv@uae-3 [1ver-; [ewi+g [ot+ [v@uy)-va - [@wly
(3.18) - % / Vgl* - ;/Qz‘l’i(i’wf +93) — /Q‘I/X\g\le - i\g\“ =0.

First, we estimate (3.17). For that we denote

5 [Iv@uor-3 [Ivar - [etel+ ] [ Q!

_ /v@%) Vo~ [ @¥a

In this step, we estimate Ag and Ay (g). Using the fact that V¥, (U2 —1) and (¥* —1)
have compact supports and Lemma 2.3, we have

21X ()|
3.19 Ag=0 — | .
(319) ’ <|X<t>|2>
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Next, we show that

(3.20) Ar(g /\g|2—2/vc2 VU, g1 — /QA\I/X g1 — /Q3 U2 —1)g
o <6—2X(t>|>
+ .
X ()]

[v@uo Vo=~ [a@uon = - [8Qug -2 [vQ Vo - [Qavq,

- [ @B = [Qva - [ Q@ -1

Using the equation (2.1) for @, we deduce

Integrating by parts, we obtain

Aulg) =~ [ Qo -2 [VQ- VUi - [Qav g~ [ Qw3 -1

Since M[u] = M[u] = M[QY , + g] = M[Q], we have

[@w-v+2 [aua+ [1oP =0,
- [Quea=3 [1oP+ < _Q'X)(rQ)').

This implies (3.20).
e Step 4: Approximation of HhHHé(Q)

Recall that g = pQV  + h . In this step we prove

3, el

Summing up all terms (3.18), (3.19) and (3.20), we obtain
1
5 [ 10Quc P2 [VQ VUL QU i) - @AV QU+,
1 1
- /Q?)\le(qli - 1)(:0Q\IJX +ﬁ1x) + 5 / ‘V(pQ\I}x +QX)}2 - 2/Q2\Pi(3(PQ\PX +ﬁ1x)2 +ﬁgx)

1 —2[X (%)
- [QUAp QU+ QU+ 1)~ 5 [ 0QU 1 [ =0 (|X<t>|)
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Denote

But) = -2 [ VQIV QU + 1) - [ QAV(pQU, + 1)

- / QUL (V2 — 1)(pQU + by ).

Bl (h /\pczw ChP /\w@wx Th)f
BIQVL(Q) = _5 /Q2\Ili (3(pQ\I]X +hlx)2 +h§x) - /Q\Ijx|pQ\IIX +hx’2(pQ\I]X +hlx)

1
-1 [Ie@ueent

Next, we estimate each term. Using the fact that V¥, AW and (U2 —1) have compact
supports and Lemma 2.3, we obtain

Bi(h) = — / (2VQ - VU, + QAT )(pQU, +hy ) - / QU (V2 — 1)(pQ, +hy )
o O ol IXOL X0
=0 (I * Ty Ml ) +0 (14 g + 12l S )

Using the orthogonality condition (3.10), we get

Buw=" [0 vp [Quen ) [0, 42 [wQuor+p [viQu,) vn,

1 1
+5 [0 =p [ Quehiy 45 [ 1P+ [ 1987 +0(10P)
B2, ()= / Q202 (312, / bt p / QU |h, Phy, / QU | I’y

-2 [ @, / QQ\PQI Pz fewn g [,
3 2

By the equation (1.1) and using again the orthogonality condition (3.10), we have

3p / QU by = —3p / QU by, —3p / (Q— AQ) W2 (W, — 1)hy, — 6p / VQ.VU, by,
— Sp/A\I/XQhIX

—sp [ou n 40 (1)
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Using the facts that
3
p [ QUilny iy, = 0ol 1),
2
p
O @uien, 1130 -0 [ @I -2 [ QPR = OUsP I + ol 1),

g / QU by — 3 / Q¥ hy . = O il e + 10l? 1l g0),

and
4
p
= e - [ate -2 [ Qe = o + 1),

we obtain
1 1
By=-3 / QMW (31E, +13,) - / QU Py~ [l =30 [ Quoh,

Xl )

Thus,
1
(321) Bp(h) + By(h) + Bl (h) / nP -t / Q0 (313, +13,) + 2 / VAP
- it fQun P, -2 [ QU

—2|X ()] —|X (1)
—0<|p|||h||H1+rp12 ¢ ¢ )

+ Al
X)) X
Recall that, from (2.12) we have

/\vm? /Q2\I/2 (3hT + h3) + /hP

By (3.21), one can see that,

1
he) =17 / [Bf* + / QU " +2p / QWxly

+0 (ol I+ [of2 + o e
PR T IPE T e ™ X

Thus,

B (h)| < c( 1 + 210 \ v,

, e 2AXOL X0
+ [p|” +

X X 2l

) |

L e—IX@)
22 = = :
(3.22) 1Al 0y = Iall 1 sy (‘pH X )

By the coercivity property (2.15), we obtain

- —[X(®)
2]l = O (Ipl +03 4+ ‘/Q‘I’ hy

By (3.15), we deduce
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and thus, by (3.16), we get

i—o(1 o 1X ()]
=0 lpl + :
| X (t)]

which implies (3.13) and concludes the proof of Proposition 3.3.

O
Lemma 3.4. Under the assumptions of Proposition 5.3, for allt € Ds,, we have
(3.23) PO+ X0+ 10(1) =0 | 0+ "
| X ()]

Proof. Let §*(t) := d(t) + |p'(t)] + |X'(t)| + |¢'(t)|. Using the NLSq equation, Lemma 2.3,
Proposition 3.3 and the Sobolev embedding H} () C L8(12), we obtain

(3.24) iOth+ AR +ipQ_ ¥ —iX'-VQ_, ¥V —-0Q_,¥

ols e~ 1X(®)] 55 e—IX(t)I) 12
= + +0%(0 + in L~
| X ()] | X ()]

By the orthogonality conditions (3.10), (3.11), (3.12) and Proposition 3.3, we have

, e—IX ()
(3.25) Im/ﬂ@thQ_X\Ifdm:Im/QhX VQ_ Wdr=0 (5*(5+ 5501 )),
3
(3.26) Re /Q 8th8$k(QX\I/)d;c:j§Re /Q h X (02, (02,QW)) dz
—0 (5*(5+6X(t)|)> k=1,2,3,
| X ()]

3 / e IX )
(3.27) Re/Q&gh AQ_ W)dx = ZRe/QhXjA(ﬁij_X\I’)dx -0 (5*(5+ \X(t)l)> .

j=1
Multiplying (3.24) by @ _, ¥, integrating the real part, using (3.25) and then integrating by
parts, we get

(3.28) & =0 (s e~ 1X (@) 55 el

. = + o 00+ :
[ X(2)] | X (2)]

Similarly, multiplying (3.24) by 0., (Q_,¥), j € 1,2,3, integrating the imaginary part, using

(3.26) and Proposition 3.3, we obtain

(3.29) IXi(1)] = O (5 RGN 5 (5 + 6_|X(t)l)> j=1,2,3.
! | X(#)] X °)” o
Multiplying (3.24) by A(Q_, V), integrating the imaginary part, and using (3.27) and
Proposition 3.3, we get
e~ 1X @) e~ IX@) >
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Summing up (3.28), (3.29) and (3.30), we obtain

s —ols e~ 1X®) 5*(5 67|X(t>|)
t= + +6°(6 + ;
[ X ()] [ X(0)]

which concludes the proof by choosing §g sufficiently small. O

4. SCATTERING

In this section, we prove Theorem 1. We start by proving, in §4.1, that the extension u of
a non-scattering solution u(t) to the NLSq equation, satisfying (1.2) and (1.3), is compact in
H(R3), up to a spatial translation parameter z(¢). In §4.2, we prove that x(t) is bounded using
an auxiliary translation parameter (obtained by ignoring the obstacle), a local virial identity
and the estimates from Section 3 for the modulation parameters. In §4.3, we prove that the
parameter §(t) converges to 0 in mean. Finally, combining the compactness properties with
the control of the space translation parameter x(¢) and the convergence in mean, we obtain
a contradiction from the existence of a non-scattering solution, thus, concluding the proof of
Theorem 1.

4.1. Compactness properties.
Proposition 4.1. Let u(t) be a solution of (NLSq) such that
(4.1) Mu] = Mgs[Q], Efu] = Egs[Q] and [luoll 120y < IVQI L2(gs)

which does not scatters in positive time. Then there exists a continuous function x(t) such
that

(4.2) K = {u(z+z(t),t), t € [0,400)}
has a compact closure in H'(R3).

Proof. We first recall that it is sufficient to show that for every sequence of time 7,, > 0, there
exists (extracting if necessary) a sequence (z,,), such that u(z + z,, 7,,) has a limit in HE(Q).
This fact is proved in the case = R3 in the appendix of [6]. We give a proof in Appendix B
for the sake of completeness.

By the profile decomposition in Theorem 2.10, we have

J
(4.3) Un = (@, ) = > ¢l (x) + wy (x),
j=1

where ¢/, are defined in Theorem 2.10, and w? satisfies (2.19). We need to show that J* =

Lwr — 0in H}(Q), and t4 = 0. By the Pythagorean expansion properties of the profile

decomposition we have

J
(4.4) lim M[¢] + lim Mw;] = lim Mlu,] = M[Q),
j=1
J
(4.5) lim Bl¢)] + lim Blw;] = lim Elu] = E[Q].
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We consider two possibilities.
Scenario I: More than one profile are nonzero, i.e., J* > 2. Thus, there exists an € > 0 such
that for all j,

(4.6) MI)E[$]] < Mps[Q)Ers[Q] €,

(4.7) H(MIHL%Q) HV(Z)ZLHB(Q) <Rl 2rs IVQIl L2gsy — -
Recall that by [21, Theorem 3.2, if vg € Hg(Q) satisfies

(4.8) lvoll 2@y IVvoll L2 ) < QN L2 gesy IVQl L2 sy -

(4.9) M vo] Elvo] < Mps|Q] Egs[Q);

then the corresponding solution v(t) of (NLSgq) scatters in both time directions.

e Suppose j is as in Case 1 (Theorem 2.10), i.e., 2) =0 for all n :
When #, = 0, we define v’ as the solution to (NLSq) with initial data v7(0) = ¢/.
When #}, — 400, we define 17 as the solution to (NLSgq), which scatters to e?*2¢J ast — o0 :

i 0= 206y, =0
In both cases, we have
(4.10) Jim |7 (t],) — W\Hg(m = 0.

Thus, by (4.6) and (4.7), v/ satisfies (4.8) and (4.9), and we see that v/ is a global solution
with finite scattering size. Therefore, we can approximate v/ in L° H LIt (RxQ) by C(RxR3)
functions. More precisely, for any € > 0, there exists 1 € C2°(R x R?) such that

. . £
Il e
v waHﬁHl%(RxQ) < 2

Let v%(t,x) = vI(t + t%,x). Then from above v}, is a global and scattering solution and by
changing variables in time, for any ¢ > 0, there exists ¢Z € C°(R x R?) such that, for n
sufficiently large, we have

(4.11) v (t,z) — it + ], )| < e.

L EY T (RxQ)
e Suppose j is as in Case 2 (Theorem 2.10):

We apply Theorem 2.11 to obtain a global solution vl with U%(O) = QSZL Furthermore, this
solution has finite scattering size and satisfies, for n sufficiently large,

(4.12) HQZL(t, z) =Lt + b,z — xgz)Hle»%(RxRB) <€

In all cases, we can find wg € C2* such that (4.12) holds, and there exists C; > 0, indepen-
dent of n, such that

(4.13) vl x1 mxe) < Cj -

Note that for large j, by the small data theory, we have HU%”Xl(RXQ) < Hgb%HHé(Q).
Combining this with (4.4), (4.5), we deduce

J
(4.14) lim Supz Hv%Hil(RXQ) < C  uniformly for finite J < J*.
=1

n—-+oo
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We first prove the asymptotic decoupling of the nonlinear profile, using the orthogonality
properties (2.22).

Lemma 4.2 (Decoupling of nonlinear profiles). For k # j, we have

415)  lim ||vlof Hv ivek| |
(4.15) n—too || VN L%Hé’%(RxQ) YRV L3 LT (RxQ)
—1—‘@] K —I—Hijvk =0.
L3 LT (RxQ) LS L (RxQ)
k ok
Proof. We only prove ||vlvk|| i # @) + ||v HLQLT?(RXQ) on(1). The other proofs are

analogous. Recall that by (4.12), for any & > 0, there exists N, € N and ¢, F € C°(R x R?)
such that for all n > N, we have

(4.16)  [uh(t,2) = (e + th, @ — ob)

30
L5HY 1T (RxR3)

+uh (tx) = WLt + th, 2 — ad)| <e

st i (RxR3)

Using (2.22), one can see that the supports of 1! (¢, z) and YEC+th —td .~k + ) are
disjoint for n sufficiently large ( if j, k as in Case 1, then ¢Z(-,-) and ¥¥(- + t* —¢},,-) have
disjoint time supports), and similarly, for the derivatives. Hence,

. j k. k_ 45 . _ .k J =

(417) nll)l}_loo % (t7 .’E) % ( + tn tn’ Ty + $n) L3 Hl (]RXR5) -
. i k k j k ]

(4.18) nllg_loo s(t7 ﬂf) ws ( + tn - tz?’ CT :C%) L%Hl’%(RXRg’) -

Combining (4.16), (4.17) and (4.13), we have

k k
n |vnll

v S =L+, — )

J
viusll s
H "ILS E) T (RXQ)

30 30
LS HY 1T (RxR3) | LSHYTI (RxR3)

+ [l

U — Y+ 2, - — k)

L3HY T (RxRY) LsEb T (RxR3)

< Ce,

€(t7m)w5('+tfz_t‘qu'_xfz—i_xzz)

5 15
L2 HY1I (RxR3)

provided n is large enough, since the last term goes to 0 as n goes to infinity.
J

Next, we estimate anvfb 5 30 as follows
L2 LT7 (RXQ)
J ok J Il .l k
‘ UpUn L%L%(RxQ < Hyn ¢5( + tnv J"”)HL?@(RXH@) ||vn||L5L%(R><R3)
k k k

+ 2| 5, QI -
. A i . A .
s(t7 l’) ws ( + tn - tgzv T Iy + xgz) 3 Hl 30 (RXR3)

Using (4.16), (4.18) and (4.13) and Sobolev embedding ||HL? <C ||-\|L5H173T(% , we obtain that,
for large n, ’

Uj vk < Ck,

L3 L (RxQ)

provided n is large enough, which concludes the proof of Lemma 4.2. O
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We return to the proof of Proposition 4.1. As a consequence of the asymptotic decoupling
of the nonlinear profile in Lemma 4.2, we have

J
(4.19) limsup | Y vl x1@xa) < C
n—oo
j=1
uniformly for finite J < J*. Indeed, by (4.14) and (4.15) we obtain
J . 2 J .
U1 I [
j=1 15

30 j— 5
LALTI (Rx) J=1 L2 LTI (RxQ)

J
7.k
SZ‘ HLS 1(R><Q +C Z‘vnn % %RXQ)
J=1 J#k
< C+ op(1).
Similarly,
J | 2 J | 2
> S [P%RZ!
j=1 5L (RxQ) j=1 L3t rxQ)

5 15 S C
L3 LTI (RxQ)

j k
[Ven HL5L%(RxQ) +C() ) HVU%V%
Jj=1 J#k
This completes the proof of (4.19). Using similar argument, one can check that for given
n > 0, there exists J := J'(n) such that

Mg

<

(4.20) v >J, lim sup | Z 9| @xq) < 7
For each n and J, we define an approximate solution u; to (NLSgq) by
J . .
(4.21) ul = Z vl 4 ittt

Before continuing with the rest of the proof of Proposition 4.1, we claim that the following
statements hold true.

Claim 4.3.
A [[120) = un(0) [ 1y ) = 0
Claim 4.4.
3C' > 0, VJ, limsup Huinl(RxQ) <C.
n—oo
Claim 4.5.

=0,

. . . J J J12.J
lim limsup Hzatun + Aqu;, + }Un‘ U, NL(R)

J=J* nooo

with N1 defined in (2.16).
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Applying Lemma 2.9, we get that u, is a global solution with finite scattering size, which
yields a contradiction by showing that there is only one profile. Hence, Scenario I cannot occur.

Proof of Claim /.3 . Using (4.10), if j is as in Case 1, or the fact that v%(O) — ¢J if j is as in
Case 2, together with the decomposition of u, in (4.3) and u; in (4.21), we obtain

J
(4.22) |u(0) — un(O)HHé(Q) <> |lvi(0) - W\HS(Q) — 0 as n — oco.
H
Proof of Claim 4.4 . Using (4.19), Strichartz estimate (2.18) with (2.19), we obtain
J
s 1] . < s |3 vl + s g <
j=1
H
Proof of Claim 4.5 . Let F(z) = —|z|?2, recall Z vn =) — P9yt and write
J .
(0 + Ag)ul — F(u) = 3" F(uh) — F(u)
j=1
=D F(uh) = F(Q_vh) + Fluy — ¢"20w))) — F(uy).
j=1 =1
We have
(4.23) SF@) —FO v <0 [l k.
i=1 i=1 7k
Taking the derivatives, we get
J . J '
v{ S ) - P | < c T Ivalldli] + ¢ i FIeedl
=1 =1 7k 7k
which yields
J J
: , :

D Fh) = F(_vh) O\ D Wil g, ook, 5,0 |-

J=1 Jj=1 L%[/%—g J#k

J . . . .

A PIREIESOIEY! IRETIOY FEACTRWED ol T
=1 j=1 15,8 ik 7k
: C% HU%HL?Z (HVv%vn L3t UnVn L%L%?) ’
J

which goes to 0 as n — o0, in view of Lemma 4.2 and (4.13).
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In addition,

(424)  |[F@l - é*ow)) — Fd) 50

We estimate the differences as

‘F(u;{ _ eitAng) _ F(u;{)} <C (‘eitAQw;”? ‘eitAQw;ﬂ + ‘u;ﬂQ ‘eitAanJD ,
A% {F(u] - elthayly — F(u;l])}} < C< ‘eim”wif ‘Veim“wg‘ + ‘Vui‘ |u;ﬂ ‘eim“wg‘
|| [VetBaud P+ ul P [Veitoeu| >

Using Claim 4.4, Holder and Sobolev inequalities, we get

(129) < [0 o [l
t,x

all g ey, + lle@oer]

g 200 5 |

< fle2owi] gy [l + 0w 3 ] + e 27, flull

L5LT

< CHGitAQWT{HLgJ

which converges to 0 as n — oo and J — oco. Similarly,

(4.25) < HVu ”HLzLi(% HeztAQwJHLs 4 HV“JHL5L11 |€itAsz‘2

3
Lt,z

5 +Hu;{bHL§ HuiVeitAQw,{H 5 30
T

+ HV(eitAﬂw;{)H 30 ok, 38

L5LTT

itAq wi ‘

e
<1Vl (sl e oeillly o+ e aedlZs |

B P e Y [ A e

L5LTI L?LT’? ’

Thus, it remains to show that

(4.26) lim lim sup HuJVe’tA“w‘]H = 0.

Recall that u;] = Zj:l vl + €947 Then

J

Z v%veitAQwT{ + HeltAQvaeltAQwJH % 37

Hu‘]VeztAQwJ H 5,80
L2 17 17

| /\

J=1 L3
J . . B .
< ZUZLVe’tAQw;{ +He”AQwiHL? HV@”AQwh]H
T

J=1 L%LT?

it

Hence, Claim 4.5 holds if

lim lim sup
J—=00 n—oco
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From (4.20), we have Vn > 0,3J" = J'(n) such that

J
/ . .
vJ >J, limsup Z vl <.
n—oo . /
Jj=J X1
Thus, we have
lim sup Z vl | Velthay! < lim sup vl HVeimen s <,
n—00 — 30 n—00 . b
Jj=J L3 j=J' x1

where 7 is arbitrary and J = J'(5) as in (4.20). Thus, to prove (4.26) it suffices to show that
(4.27) lim lim sup Hv]Ve”A“w;{HL%L%g =0 foralll1<j<J.

J—=00 n—oo

We approximate v?, by C°(RxR3) functions 1 obeying (4.12) with support in [T, T x {|z| <
R}. From Proposition 2.8 and (2.19), we deduce

lohvet2awilll 5 g0 < llod — 920+t —ad) gy [[Ve 2w

L2L17 L5L11

+ stHLoo HveltAQwJHLjLT?(ﬂtKT |z|<R})

< Ce+ CR®TS HeltAQw;{Hg? Hw;{HE]é(Q)
By taking the limit and choosing ¢ small, we obtain (4.26). Hence, Claim 4.5 holds. O

Returning to the proof of the Proposition 4.1, we consider the other possibility.
Scenario II: Only one nonzero profile. By (4.3)

Up = u(z, ) = (ZS%L + w}”
with
(4.28) lim ||w

n—oo

nHH&(Q) =0.
If not, there exists € > 0 such that Vn,
El¢,]M[6,] < Bgs[QMps[Q) — ¢,
and one can show by the previous argument that u scatters in H}(Q).

It remains to show that t} is bounded and this will prove the convergence, up to a subse-
quence.

o If tL — +o00 (similarly, tL — —o0) and ¢} conforms to Case 1, i.e., gL = eitnBag!,

HelmﬂunHLs ([0,400)xQ) — Heimﬂ‘mll + eitAQw}lHL?,x([O#OO)XQ)
= ‘ e L ([0,400) %) HW}LHH(%(Q)
< HeltA“d’IHLs ([th +00)xQ) T H‘”}%HH&(Q)’

which goes to 0 as n goes to co, showing that w,, scatters for positive (similarly negative)
time, a contradiction.
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o If tL — +oco (similarly, t1 — —oc0) and ¢, conforms to Case 2, i.e.,
o = (ol o, where 1= x ()

We first prove that '

(4.29) lim [’ "2 (xp ') — €55 (xp01))|

n—+400

0,

L} ,((0,400)xR3) —

where Q,, := Q — {z,}. Indeed, by a density argument, for any ¢ > 0, there exist
Y. € C°(R?) such that

1 €
(4'30) H¢ - waHH1(R3) S 1
By the definition of x,, as |z,| — 400, for any € > 0 there exists V. € N such that
€
(4.31) Vn > N, HX%&Z)I - ¢1HH1(R3) < 1
Using (4.30) and (4.31), we have
€

1,1
Vn > N, HXnd) _¢8|’H1(R3) < 9
Combining this with the Strichartz inequality, we obtain for large n
tA 1,1 tAgs (1 41 €
(4.32) [e"n (xno' — wE)HLgm((o,Jroo)xn@) + e (x0" - ¢s)||LgI((o,+oo)xR3) = 9
From [21, Proposition 2.13], as |z,| — 400, we have for large n

i i €
(4.33) [l tAR%EHng((o,oo)xR?)) <5

which yields (4.29). We now have

“eitAQUnHL?,z [0,400)x ) HeitAQ(b}z + eitAQw’l"bHL?,z [0,400)x€2)

A2 (6 (@ — )

<]

1
Lgﬂ([o,-l-oo)x(l) + HwnHHé(Q)
< HeitAfz(XiLtﬁl)(l’ — xi)HLf,m([t;HJFOO)XQ) + Hw}lHHé(Q)

< Hez tAan (X}zd)l) — i tAw3 (X}z(bl) Hsz((t}L,—&—oo)xR?’)

1164 08N 1. en ooy + lonll iy

which goes to 0 as n goes to oo, by (4.29) and the monotone convergence theorem,
showing that u, scatters for positive (respectively, negative) time, a contradiction.
This completes the proof of Proposition 4.1.

O

Corollary 4.6. Let u be as in Proposition 4.1. Then one can choose the continuous function
z(t) such that X (t) = x(t) for all t € Ds,, and the set K has a compact closure in H'(R?).

Proof. Recall that by the definition of Dj,, the modulation parameters X (¢),6(¢) and a(t) are
well defined for all ¢ € Ds,. Let z(t) be the translation parameter given by Proposition 4.1.
Let Ry > 0. Then by the decomposition of u in (3.9), Proposition 3.3 and the fact U(z) =1
for |x| large, there exists C, > 0 such that

. e 1X () )
vVt € Ds,, / IVQ|” +|Q|° — Cx | 9(t) + o < / [Vau|” + |ul*.
l2|<Ro | X ()] |~ X (t)|<Ro
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Taking &g small if necessary, there exists g > 0 such that

Vt € Ds,, |Vu(t,z + a:(t))|2 + |u(t,x + Jc(t))]2 > g9 > 0.

/ﬁﬂ(t)X(t)ISRo

Using the fact that K has a compact closure in H!(R?), we get that |z(t) — X ()| is bounded.
Thus, one can modify z(¢) such that K remains compact and for all ¢ in Ds,, z(t) = X (¢). O

4.2. Control of the translation parameters.

Proposition 4.7. Consider a solution u of (NLSq) such that

(4.34) Mu] = Mgs[Q], Elu] = Egs[Q], [[Vuoll 2q) < [VQI 2@
and
(4.35) K = {u(t,z + x(t));t > 0}

has a compact closure in H'(R3). Then x(t) is bounded.
We start with the following lemma.

Lemma 4.8. Let u be as in the Proposition J.7. Let {t,} be a sequence of time, such that
tn, — +00. Then |x(t,)] — 400 as n — 400, if and only if 6(t,) — 0 as n goes to +oo.

Proof. We first prove that d(t,) — 0 implies that |z(¢,)| — +o00 as n — +o0. If not, ()
converges (after extraction) to 7o in R3. By the compactness of the closure of K, u(t,, -+x(t,))
converges in H'(R3) to some vy(- — 7o) € H'(R?). By the assumption (4.34) and the fact
that (S(tn) — 0, ERS [’U()] = ERS [Q],MR3 [’Uo] = MRS(Q) and HVUOHLQ(R:‘) - ||VQ||L2(R3) . By
Proposition 2.1, there exist 6y € R and xo € R? such that vy = €®Q(- — 2(). On the other
hand, if x + x(t,,) € Q, then u(t,, z + x(t,)) converges in Hg (), as Hi () is a close subspace
of H'(R?). Thus, the restriction of vo(- — 7o) to © belongs to H}(£2), which contradicts the
fact that e?0Q(- + oo — z0) & HE(Q).

Next, we prove that |z(t,)| — 400 as n — +oo implies that §(¢,) — 0 as n goes to +oo.
We argue by contradiction, assuming (after extraction) that

By the continuity of z(t), using |z(t,)| — +00, we must have to, € {£o0}.
Assume, say, too = 400, and let ¢o, = liI+Il w(tn,  + 2(t,)) in HY(R3) (after extraction).
n—-+0oo

We have
Brolpw] = EwolQ) Muslowl = MaslQ), [ Vil = [ [VQE =6 < [ [VQL.

Let ¢ be the solution of (NLSgs) with the initial datum ¢ at t = 0. By [8], ¢ is global and
one of the following holds:

(1) ¢ scatters in both time directions. '
(2) 37,0 € R and € € {£1} such that p(t) = e’U_(et + 1), where U_(t) —— @Q and

t——+00
U_ scatters for negative time.

In case (1) or in the case (2) with € = —1, one can prove by approximation, following the
proof of Theorem 4.1 in [21], that u scatters for positive time.
In case (2) with € = +1, we obtain for large n, with the same argument

[ulls—ootn) < C NU-llg(—cot)» Where C'is a fixed constant.
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Letting n go to +00, we see that u has a finite Strichartz norm, thus, u scatters also in both
time directions, which contradicts the fact that u satisfies (4.35) and (4.34). O

Lemma 4.9. Let X(t) be as in (3.8). Taking a smaller § if necessary, there exists C > 0
such that
e_lx(t)l

X@ =

(4.36) Co(t) for any t € Dy,.

Proof. Note that, by Proposition 4.1, taking a smaller dy if necessary, we can assume | X (t)| >
C for an arbitrarily large constant C' > 0. The proof consists of 3 steps.

e Step 1: The estimate of §(¢) with respect to an auxiliary modulation parameter X (t)
on R3. Let u(t) € H'(R3) be the extension of u to R? defined as in (2.8), we then have

(4.37) Mya[u] = Mgs[Q),  Easlu] = Egs[Q],  and / IV / vQP.

Arguing as in Section 3, but on the whole space R3, see [8, Lemma 4.1 and 4.2], there
exist 01 () and Xi(t), C! functions of ¢, such that

(4.38) e~ =iyt 2+ X1 (1) = (1+ pu(8)Q(x) + h(t, z),
where
—i601—1
(4.39) o(t) = Re e b fes Vul(t, x;— X1(1)).VQ(x)dx _1,
IVQI|72(rs)
(4.40) lp1(t)| =~ '/RS Qhdx| ~ HhHHl(RS) ~ I(t).
In this step we prove
Ll e |X1(t)| Os(s
A oy =<
By (4.38), € Q¢ implies (1 + p1(£))Q(z — X1(t)) + h(t,z — X1(t)) = 0, i.e.,
(L4 p)Q = X1(0) + Btz = X0, . =0
By (4.40), we have
(4.42) / 0 — X1(8))2 dz < C 512
QC

By (2.9), one can see that | X1 (¢)] is large. For x € Q¢, we have
1
SIXd) <z = X1 (@) < 21%(9)].

From Lemma 2.2, we have

— x|

Q) = !

(a +0(— )>, for some a > 0.

|| |z|2

Using (4.42), we obtain (4.41).



3D NLS OUTSIDE A STRICTLY CONVEX OBSTACLE 33
e Step 2: Comparison of X (t) and X;(¢).

We prove that there exists C' > 0 such that
(4.43) | X(t) — X1(t)| < C Vte Ds,.
We fix t € Ds,. We can assume
(4.44) | X(t) — X1(t)| > 1,

or else we are done.
Let z € Q, by (4.38) and (3.9), we have

u(t,z) = DT 4 p())Q(x — X (1)U () + DHn(t, )
= MO 4 o (1))Q(x — X1 (t)) + MO R(t, 2).

Using (4.40) and Proposition 3.3 , we have

o 0 (]2 ) e 21X ()]
/ Q@ — X P — Qe — X110 < (R0 + G |-
X (t)|<1 | X (1)
Recall that | X (¢)| and | X (¢)| are large and ¥(z) =1 for large |x|.

21X ()]

2dx < C -X 2dx + 062 C-—
/lml<l|c2<x>| vsef Qe K@)+ 00+ C g

</ e 2la—X1(t)| dz + C8(t) + O e 21X @)

< e da + C8*(t) + O s

le—x()<1 |z — X1(t)]? | X (®)]?

Using the fact that |z — X1 (¢)| > | X(¢) — X1(¢)| — |z — X ()| > | X(t) — X1(¢)| — 1, in
the support of the integral in the last line, we obtain

/ 10 )|2d <C e 21X (t)=X1(2)] 052( e e 21X (1)
x r < + t)+C —5.
e <1 | X(t) — X1(t)[? [ X(1)[?

—2|X(¢)]

Recall that, by Lemma 4.8 if | X (¢)| is large, then 6(¢) and W are small. By
(4.44), we get

1/ Q(z)|*dx < C e X4 < Ce2X(M)=Xa1(1)]
~ xr T =~ < e ’
2 Jjz|<1 | X (t) — X1 (t)]2

which yields

| X (t) — X1(t)| < C —log (;/|

z|<1

Q)] dw) :
Thus, | X (¢) — X1(¢)| is bounded.

e Step 3: Conclusion of the proof.
From Step 2 we have | X (¢) — X1(¢)| < C, and since [ X (t)| is large, we have

(4.45) %IX(t)I < [X@O] = 1X(#) = X ()] < [Xa ()] < [Xa(t) = X (@) + | X (1) < 2[X(@)].
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By Step 1, we get 62(t) > C EIXL(l)(\tQ)" which implies
52(t) > C 72”“;',
| X ()]

concluding the proof of Lemma 4.9.
O

Lemma 4.10. Let u be a solution of (NLSq) satisfying the assumptions of the Proposition
4.7. Then there exists a constant C' > 0 such that if 0 <o <7

(4.46) / st <c

t€lo,T]

14+ sup |ZL‘(t)|] (6(o) +0(1)).

Proof. Let ¢ be a smooth radial function such that

z? if |z <1,
90(36):2{”. =

0 if |z[>2.

Consider the localized variance,

(4.47) / R%p |u (t,z)* dz,

where R is large positive constant, to be spemﬁed later. Then,

(4.48) Vi(t) = 2RIm/Qqu0 (%) Vudz, |Vi(t)|<CR.
Furthermore,

() :8/ IVul? da:—ﬁ/ |u|* dx + Ag(u(t)) —2/ \Vul? z - 7 do(x),
Q Q o0N

where 71 is the outward normal vector and

B 8u ou 0%p rx 2
(4.49) An(u 42/ 81‘]8$k 8x] dxy, 4;/9 (8m§ (E) a 2) [0,
x
- kAt (5) - /Q (2 (%) - 6) lul*

As 0L is convex and 0 € €2, one can see that z -7 <0, for all z € 9€). Thus,
_2/ YVl 2 -7 do(z) = 2/ Vul? |- 7] do(z).
o0 o0

Using the fact |Q|74 = 3 |Vul32 and E[u] = Egs[Q], we have 8||Vul[22 — 6 ||ull1s = 46(2),
which yields

(4.50) V(1) = 46(t) + A(u ())+2[99!Vu\2\x-ﬁ| do ().
e Step 1: Bound on Ag.

In this step we prove: for € > 0, there exists a constant R. > 0 such that
(4.51) Vit >0, R> R(1+ |z(t)]) = |Ar(u(t))] < ed(t).

We distinguish two cases: § small or not. In the first case, we will use the estimate
on the modulation parameters in Section 3. Consider dy > 0, as in the previous
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Section, such that the modulation parameters, O(t), X (¢), p(t) are well defined for all
t € Ds,. Let 61 to be specified later such that 0 < §; < dg. Assume that ¢ € Ds,. Let
g_x = pQ_, ¥ + h, then from Proposition 3.3 with Lemma 4.9 and (3.8), we have
(452) u(t,) = POHQw — X(0)W(a) + gtz — X ()P O and gl oy < CO0).
We claim that for large R,
(4.53) Voo € R, Vap € B3, Ap (e”OQ(~ + xo)) —0

Indeed, fix R > 0 large enough so that ¢(z/R) = |z|? if  is in a neighborhood of the
obstacle ©. Consider the solution U(t,z) = ¢*+%)Q(x 4 x0) of (NLS)gs. We note
that for this solution,

2, (% 27, 2 (T 2
Vt € R, /R?)R v (R) U (t, 2)|2dx = /R?)R ¢ (R) 1Q()2da
(which is independent of ¢), and

8|VU ()72 = 61U (#)llz4 = 0.

By the same explicit computation as the one leading to (4.50), but on the whole space
R3, we obtain
d? x
0=2_ [ R? (f) Ut 2)2 = Ap(U(1)),
% | B (5) W) = Axw ()
which proves (4.53). Note that we have used that by our assumption on R, all the
integrands in the definition (4.49) of Ar are zero in a neighborhood of the obstacle ©.
Using the change of variable y =  — X (¢) in (4.49), we get

[An(u®)] = |Ar(u(t) = Ar(* Q@ - X (1)

<C (IVQ(y)HVg(y)\ + [Vg)I? + 1RW)Ilgw)| + 1QW)llg(y)?
ly+X (1) >R

)P + |g<y>\4)dy

(e_ly
wtx @R \ Y]
By (4.52), we have HgHH%(Q) < C4(t), which yields

<C

(Vg + L9 + l9w)P) + [Vg@) P + l9(v)* + Ig(y)|4> dy.

R > R+ |X(t)] = |Ar(u(t))| < C [eT0(8(t) + 8(1)°) + 6(t)* + 6(t)*
< Cle o+ e o51)? +0(t) + 0()%] 6(¢)
< &d(t),
provided Ry > 0 is such that Ce 0 < 5 and 47 is such that Ce Ro5? 151 +63 < 5.

Since 0 < d1 < dp and z(t) = X () on Ds,, we obtain (4.51) for §(¢) < d;.
Now consider the second case, i.e., §(t) > d1. By (4.49), we have

[Ar(u(®))] < C IVu®)? + [u)[* + [u(t)Pdz.
lz—z(t)|=R—|2(t)]
By the compactness of K, there exists Ry > 0 such that
(4.54) R > |z(t)] + Ry and §(t) > 61 = |Ar(u(t))| < edy < ed(t),
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which concludes the proof of (4.51) and completes Step 1.

e Step 2: Conclusion of the proof.
By (4.50) and (4.51), we get that there exists Ro > 0 such that,

R> Ro(1+ |z(t) ] ]>25

Let R = Ra(1 + sup,<;<, |z(t)]). Then

(4.55) /5 dt</ Vi(t)dt < V(1) — Vr(o).

If 6(t) < do, then by Step 1, changing the variable y = z — X (¢) and since ¥(z) = 1
for large |z|, we obtain

Vi(t) = QRIm/g(y) Ve (y +g(t)

) Y (QUy) Uy + X (1)

+ 2RIm/Q(y)‘P(y + X(1))Ve <3J+g(t)> -Vg(y) dy

_ + X (¢
wortn [ g9 (25 Vo
which yields

Yr(h)] < CR(() + 8(t)?) < CRa(t).

This inequality is also valid for §(t) > dp, by straightforward estimates. Using (4.55),
we obtain

/T 5(t)dt < C R(6(c) + (7))

<Cn, <1+ sup rmw) (6(0) + 5(r).

o<t<rt

This concludes the proof of Lemma 4.10.

O
Lemma 4.11. There exists a constant C' > 0 such that
(4.56) Vo, 7>0 with c+1<7, |z(r)—z(0) < C’/T o(t)dt
Proof. Let §p > 0 be as in Section 3. Let us first show that there exists ; > 0 such that,
(4.57) V7 >0 inf 0(t)>d1 or sup d(t) < do.
telr,m+2] ter,m+2]

If not, there exist t,, ¢, > 0 such that

(4.58) 0(tn) 0, 0(tn) = do, [tn —tn| <2,

extracting a subsequence if necessary, we may assume

(4.59) lim t,—t,=7¢€[-2,2]

n—-+00
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Note that if ¢/, goes to 400, then |z(t,)| converges (after extraction) to a limit Xq € R3. If
not |x(t),)| — +oc0 and by Lemma 4.8, 6(¢/,) — 0, which contradicts (4.58).
By the compactness of K, we have

’ / 13

Denote vg(z) = wo(x — Xo). We have

(4.60) u(th,+ 2(ty)) ——— vo(- + Xo) € H'(RY).
Thus,
u(th) ——— vg € HY(R).

n—>-+o0o

In particular, vg = 0 on ¢ and we obtain,

(4.61) u(t],) ——— vg € HJ(Q).

" p—s4oo
Since 8(t,) = [ |VQI* — [ |Vu(th, -+ z(t,))|* > & > 0, we have
Vol 2y < IVQIl p2gs) -

Let v(t) be a solution of (NLSq) with initial data vy at t = 0 and maximal time of existence I.
Then by continuity of the flow of the NLSq equation, we have for all t € I,

(4.62) Vo)l L2y < IVQl 12 (rs) -

As a consequence, I = R and by continuity of the flow of the NLSq equation, (4.59) and
(4.61), we have

u(ty) — v(T) € HA Q).

Since §(tn) = 0, |[Vo(T)|12(q) = IVQ|| f2(gs) , which contradicts (4.62).

Now, we prove (4.56) with an additional condition that 7 < o42. By (4.57), we may assume
that

inf §(t) >61 or  sup 4(t) < do.
t€fo,7] t€(o,7]

In the first case, we have fJT d(t) > 61 and by a straightforward consequence of the compactness
of K and the continuity of the flow of (NLSq) equation, we have

3C >0, Vi, s > 0, |t—s|gzz>|X(t)—X(s)|g§/ 5(t)dt.
1Jo

In the second case, by Corollary 4.6 we have, V¢t € Ds,, z(t) = X(¢), and from Lemmas 3.4
and 4.9, we have

(4.63) | X'(t)| < C(t).

Thus, (4.56) follows from the time integration of (4.63) for 7 < o + 2.

To conclude the proof of Lemma 4.11, we divide [o, 7] into intervals of length at least 1 and
at most 2 and combine together the previous inequalities to get (4.56). O
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Proof of the Proposition 4.7. We argue by contradiction. Assume that there exists 7, — 400
such that |z(7,)| — +oo and |z(7,)| = supye(o ] [#(¢)]. By Lemma 4.8, §(7y) P 0.
n—-—+0o0

Let Ny be such that Cd(7,) < ﬁ for all n > Ny. By Lemmas 4.10 and 4.11 we have

lz(7) — TNO\<C/ o(t
<CQ + |2(70) ) (0(7vg) + (7)),

hence,
()| < Cla(r, )l

which gives a contradiction. This concludes the proof of Proposition 4.7. U
4.3. Convergence in mean.

Lemma 4.12. Consider a solution u(t) of (NLSq) satisfying assumptions of Proposition J.7.
Then

(4'64) Tl—lg-loo T / 6

Corollary 4.13. Under the assumptions of Proposition 4.7, there exists a sequence of times
t, such that t, — 400 and
lim 4(t,) = 0.

n—-+00

Proof of Lemma 4.12. Consider the localized variance defined in (4.47) and recall that from
the proof of Lemma 4.10, we have

(4.65) V() = <w+AR<<>»+2L;|vm2x~ﬁwa@x

where 7 is outward normal vector and Ap is defined in (4.49).
If ly| < 1, (A%p)(y) = 0,0 ¢(y) = 2 and Ap(y) = 6. Thus,
1
(4.66) [Ar(u(®))| < C Vul® + ful* + 2 |ul®.
lz|=R

Let x(t) be as in Corollary 4.6 and K be defined by (4.2). Let € > 0. By the compactness of
K and Proposition 4.7, there exists Ry(g) > 0 such that

(4.67) vt >0, / IVl + [ul? + [ul* < e.
lz—X ()= Ro(e)

Furthermore, z(t) is bounded, and thus, ( ) P 0. There exists to(e) such that
t—~4o00

Yt > to(e), |x(t)] < et.

Let
T >to(e), R=eT+ Ro(e) +1 for t € [to(e), T].
Next, we use the fact that |x(t)| < eT and Ry(e) + T < R, to get

1 1
<m&h/ WW+M“—IW§/ IVl + ul* +
e[>R R? o~ (t) | +|2(8) >R R?

1
< / Vul? + [ul* + —; Juf® <e.
R
|z—=(t)|=Ro(e)
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By (4.48), we have

Vilt)dt < [Va(T)] + [Vrto(e))| < O R

to(E)
From (4.65), (4.66) and (4.68) we have

T
/ 5(t)dt < C(R + Te) < CRo(e) + T + 1,
t()(f;‘)

where C > 0, independent of T" and e.
This yields
! T6 d ! t0(6)5 d CR H+C
- < = — :
T/o (t)t_T/O (t) t+T( o(e) +1)+Ce
Taking first limsup as T' — 400, and letting ¢ tend to 0, we obtain (4.64). O
Proposition 4.14. Let u be a solution of (NLSq) such that
(4.69) Mlu] = Mgs[Q], Elu] = Egs[Q], [[Vuoll 120y < [IVQ|l12(gs)
and K = {u(t);t > 0} has a compact closure in H} (). Then u = 0.

Proof. If not, there exists a solution u # 0 such that the assumptions of this Proposition are
satisfied. From Lemma 4.12, there exists ¢, such that t, — +oo and §(t,) tends to 0. By
the compactness of the closure of K, u(t,) converges in H}(f2) to some vy € Hg(Q) and the
fact that 6(tn) tends to 0 implies that Efvo] = Ers[Q], M[vo] = Mgs[Q] and [[Vvol| 2y =

V@I 2(rs). Thus, vo = e0Q(x — x0) ¢ HL(Q), for some parameters g € R and xg € R3,
which contradicts the fact that vo € H(Q). O

APPENDIX A. PROOF OF THE EXISTENCE OF INITIAL DATA COVERED BY THEOREM 1
In this appendix, we prove the existence of initial data ug € H&(Q) that satisfy
A1) Ma[uo] Eqaluo] = Mps[Q] Egs[Q)]
(A.2) l[uoll 20y 1Vuoll 2y < QN L2y IVQIl L2(gs) -
Let A > 0, ¢ € H}(Q)\{0} and let uy(¢) be a solution of the NLSg, equation with initial data
ux(to) :== upr = A € HF(Q). Let us assume, without loss of generality, Mq[p] = Mgs3[Q)].
We have

4 6
Bl Mofus] = MyslQUF(V), where 7= 5 [ 1Vl = [ ol

4[|Vl

1

2
. ) L F' (A\)>0if A< Xgand F'(\) <0
3 [ el

One can see that F'()\) = 0 for \g := (
if A > Xo.

Let us recall that we can extend the function ¢ € HE(Q) by 0 on the obstacle and it can
be identified to an element of H!(R3), which we have denoted by . Thus, we can apply the
Gagliardo-Nirenberg inequality (2.2) to .
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Using (2.2) with the sharp constant Can =
Mpgs[p] = Mgs[Q], we have

4 Pyp—
QT 2, VQT g, 20 the fact that Mofp] =

(A:3) el < é%
| Plipars) = 3 IVQIl 2 (rs)’

which yields

( \W}
Flho) = 5 > 5 vl = Ewal
T ([lel)
Thus, there exists a unique A1, Ao > 0 such that A\; < Ao < A2 and Egs[Q] = F(A\1) = F(A2),
i.e., Eqlugx, ,|Maluopy, ,] = Ers[Q]Mps[Q]. It remains to prove that ug ), satisfies (A.2) and
ug, ), satisfies ||u07)\2||L2(Q) ||Vuo,,\2||L2(Q) > HQ||L2(R3) ”VQ||L2(R3)'

4[|vgl|’
3/lg|"

/3 VQP® < )\3/3 Vel
R R

Thus, there exists A3 > 0 such that A3 < A, and )\é/ ‘V@‘Q = / |VQ\2. Next, we show
R3S R3
that A\; < Az or equivalently that F(\;) < F(A3). Using (A.3), we obtain

2
Using (A.3) and the fact that A\§ [ ‘ng = < > i }ng, we have

3

eqe -1 Ue")
Sk

vel?)
Since A1 < A3, we have

Ai‘/ \wfzx%/\wr%/ VP,
R3 Q R3

which implies that ug ), satisfies (A.2) using that Mq[p] = Mpgs[Q)]. Similarly, we obtain
2
[var <t [ Vel =at [ vel.
R3 R3 Q

HUO,A2HL2(Q) HVUO,AQHL2(Q) > HQHL2(R3) HVQHL2(R3) :
Then, there exists a unique A; > 0, such that ug ), satisfy (A.1) and (A.2).

/R3 ‘9‘4 > Eps[Q] = F(A1).

(SIS

Hence,

APPENDIX B. EXISTENCE OF A CONTINUOUS TRANSLATION PARAMETER

In this appendix, we prove:

Lemma B.1. Let u(t) be a solution of (NLSq) defined fort > 0. Assume that for all sequence
of times t,, > 0, there exists a sequence x, € R® such that (g(tn,x + xn))n has a subsequence
that converges in H'(R®). Then there exists a continuous function z(t) such that

(B.1) K ={u(zx +z(t),t), t € [0,400)}

has a compact closure in H'(R3).
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Proof. We can of course assume that w is not identically 0. We let x be a nonincreasing radial
cutoff function such that x(x) = 1 if |z| < 1/4 and x(z) = 0 if || > 1/2. We let, for ¢t > 0,
R >0,

A(t,R) = sup /X <H> lu(t, z)|*dx.
y€R3 R

At fixed t, R — A(t, R) is a nondecreasing continuous function such that limp_g A(t,R) =0
and limp_, o0 A(t, R) = |lug|72. We choose R(t) > 0 such that

T

-8

e Step 1. In this step, we prove that R(t) is uniformly bounded for ¢ > 0. We argue by
contradiction, assuming that there exists a sequence (t,), such

(B.2) nlgglo R(t,) = oc.

At R(1) =  lluol 7.

By the assumptions of the lemma, there exists a sequence x, € R?, and ¢ € H'(R3)
such that (after extraction)

lim ||lu(t, -+ xn) — @|lgr = 0.
n—oo

Since [j¢[|72 = |lugll7, there exists p > 0 such that H(pH%Q(B(O’p)) > 8|lug|[2,. This

implies that liminf,, ||g(tn)||%2(3( > Sluo||22, and thus, for large n, that p >
R(ty), a contradiction.

e Step 2. By Step 1, taking R = sup;>q R(t) < oo, we have

l'nvp)

wzasw/xc‘ﬂmmm%eﬂm@.
y€R3 R 8

For ¢ > 0, we fix y(t) such that

—y(t 4
(B.3) [ (52 lutes e > Sl
R 5
We claim that there exists § > 0 such that
—y(t 3
B vszo fesi<o— [ (T eaPds >
(.5) Vs >0, - s <8 = [y(t) — y(s)] < R.
Indeed
d x—y(t) S | x—y(t) _
15 X< 7 ) lu(s, z)|*de = QJR/VX 7 Vu(s,z)u(s,z)dx

and (B.4) follows the fact that u is bounded in H'(R?) by the assumptions of the
lemma. By (B.4), and the definition of y(s),

[ () s + (T4 s )P > Gl = 5 luto)e

and (B.5) follows from the fact that x — x((x — y(¢t))/R) and =z — x((x — y(s))/R)
have disjoint support if |y(¢) — y(s)| > R.
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e Step 3. We define x(¢) as the function such that for all integer n > 0, z(nd) = y(nd)
and z is affine on (nd, (n+1)§). We claim that K defined by (B.1) has compact closure

in H'(R3). Indeed, using (B.3) and the assumptions of the lemma, it is easy to see
that

K = {u(z +y(t),1), t € [0,+00)}

has compact closure in H!(R3). Noting that (B.5) and the definition of x(¢) implies
that |x(t) — y(t)| < 2R for all t > 0, we see that K has compact closure, concluding
the proof.

0
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