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LARGE TIME BEHAVIOR OF SOLUTIONS TO THE NONLINEAR HEAT

EQUATION WITH ABSORPTION WITH HIGHLY SINGULAR

ANTISYMMETRIC INITIAL VALUES

HATTAB MOUAJRIA, SLIM TAYACHI, AND FRED B. WEISSLER

Abstract. In this paper we study global well-posedness and long time asymptotic behavior of

solutions to the nonlinear heat equation with absorption, ut−∆u+|u|αu = 0, where u = u(t, x) ∈ R,
(t, x) ∈ (0,∞) × RN and α > 0. We focus particularly on highly singular initial values which are

antisymmetric with respect to the variables x1, x2, · · · , xm for some m ∈ {1, 2, · · · , N}, such as

u0 = (−1)m∂1∂2 · · · ∂m| · |−γ ∈ S ′(RN ), 0 < γ < N . In fact, we show global well-posedness for

initial data bounded in an appropriate sense by u0, for any α > 0.

Our approach is to study well-posedness and large time behavior on sectorial domains of the

form Ωm = {x ∈ RN : x1, · · · , xm > 0}, and then to extend the results by reflection to solutions on

RN which are antisymmetric. We show that the large time behavior depends on the relationship

between α and 2/(γ +m), and we consider all three cases, α equal to, greater than, and less than

2/(γ + m). Our results include, among others, new examples of self-similar and asymptotically

self-similar solutions.

1. Introduction

In this paper we study the long time behavior of solutions to the nonlinear heat equation with

absorption,

ut −∆u+ |u|αu = 0, (1.1)

where u = u(t, x) ∈ R, (t, x) ∈ (0,∞) × RN and α > 0, which are antisymmetric with respect to

the variables x1, x2, · · · , xm for some m ∈ {1, 2, · · · , N}. Our goal is to see how some well-known

results [1, 4, 5, 6] for the long time behavior of solutions to (1.1) carry over with the additional

hypothesis of antisymmetry. For example, some of the results in the cited works concern positive

solutions. We will see that these results have analogues for antisymmetric solutions which are

positive on an appropriate sector in RN . In particular, these solutions are not positive on RN .

Moreover, in many cases the range of allowable powers α > 0 will be larger with the additional

hypothesis of antisymmetry than without. Also, the condition of antisymmetry allows consideration

of a class of highly singular initial values.

Our previous paper [9] considered the linear heat equation on RN with antisymmetric solutions.

The results and the theoretical framework from [9] were applied to the nonlinear heat equation
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with source term

ut −∆u− |u|αu = 0, (1.2)

in [12]. In the current paper, these ideas are applied to (1.1). We mention that this approach

was earlier developed in [11] where solutions to (1.2) with antisymmetric initial values of the form

u0 = (−1)m∂1∂2 · · · ∂mδ were studied. In the current paper, as in [9, 12], initial values of the form

u0 = (−1)m∂1∂2 · · · ∂m| · |−γ , for some 0 < γ < N , are considered.

In order to state our results precisely, we begin by recalling the definition of an antisymmetric

function.

Definition 1.1. Let m ∈ {1, 2, · · · , N}. A function f : RN → R is antisymmetric with respect to

x1, · · · , xm if it satisfies

T1f = T2f = · · · = Tmf = −f, (1.3)

where Ti , i ∈ {1, 2, · · · , N}, denote the operator

[Tif ](x1, · · · , xi−1, xi, xi+1, · · · , xN ) = f(x1, · · · , xi−1,−xi, xi+1, · · · , xN ).

We denote the set of functions antisymmetric with respect to x1, · · · , xm by

A = Am = {f : RN → R; f satisfies (1.3)}. (1.4)

A function on RN which is antisymmetric with respect to x1, x2, · · · , xm, for some m ∈
{1, 2, · · · , N}, is determined by its values on Ωm, the sector of RN defined by

Ωm =
{

(x1, x2, · · · , xN ) ∈ RN ; x1 > 0, x2 > 0, · · · , xm > 0
}
. (1.5)

Note that by definition, an antisymmetric function must take the value 0 on the boundary ∂Ωm.

Since the operators Ti defined above commute with the operations in equation (1.1), the study of

antisymmetric solutions to (1.1) reduces to the study of solutions on Ωm with Dirichlet boundary

conditions. This point is discussed in detail in Section 3 of [12], and that discussion applies as

well to the heat equation with absorption. Moreover, as in [12], we will construct certain classes

of antisymmetric solutions to (1.1) on RN by constructing solutions on Ωm and extending them to

RN by antisymmetry.

Since both the present paper and [12] are based on the framework developed in [9], we need to

recall some definitions and notation used in [9]. Let ρm be the weight function defined on Ωm by

ρm(x) =
|x|γ+2m

x1 · · ·xm
, for all x ∈ Ωm,

where 0 < γ < N . We consider the Banach space

Xm,γ = {ψ : Ωm → R, ρmψ ∈ L∞(Ωm)} , (1.6)

endowed with the norm

‖ψ‖Xm,γ = ‖ρmψ‖L∞(Ωm) ,

for all ψ ∈ Xm,γ . The closed ball of radius M on Xm,γ is denoted by

Bm,γ,M = {ψ ∈ Xm,γ such that ‖ψ‖Xm,γ ≤M}. (1.7)
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As observed in [9, p. 344], B?m,γ,M the closed ball Bm,γ,M endowed with the weak? topology of

Xm,γ , is a compact metric space (hence complete and separable).

Let σ > 0. For each λ > 0, we let Dσ
λ denote the dilation operator defined by

Dσ
λu(x) = λσu(λx), (1.8)

where u is a function defined on Ωm, or on RN . A function ψ : Ωm → R is homogeneous of degree

−σ if Dσ
λψ = ψ for all λ > 0. The operators Dσ

λ , λ > 0, act on the spaces Xm,γ , but leave the norm

invariant, i.e. leave the ball Bm,γ,M invariant, if and only if σ = γ +m. In fact, we have

‖Dσ
λψ‖Xm,γ = λσ‖ρmψ(λ·)‖L∞(Ωm) = λσ−(γ+m)‖ρm(λ·)ψ(λ·)‖L∞(Ωm) = λσ−(γ+m)‖ψ‖Xm,γ , (1.9)

for all λ > 0 and ψ ∈ Xm,γ .

The function ψ0 defined on Ωm by

ψ0(x) = cm,γ (ρm(x))−1 = cm,γx1 · · ·xm|x|−γ−2m, x ∈ Ωm, (1.10)

where cm,γ = γ(γ+2) · · · (γ+2m−2), will play a central role. It is homogeneous of degree −(γ+m),

belongs to Xm,γ and satisfies ‖ψ0‖Xm,γ = cm,γ . Moreover,

Dσ
λψ0(x) = λσ−(γ+m)ψ0(x), (1.11)

for all σ, λ > 0, and so ‖Dσ
λψ0‖Xm,γ = λσ−(γ+m)cm,γ . Its interest lies in the fact that

ψ0(x) = (−1)m∂1∂2 · · · ∂m
(
|x|−γ

)
, x ∈ Ωm. (1.12)

The heat semigroup on Ωm, denoted et∆m , is given by

et∆mψ(x) =

∫
Ωm

Kt(x, y)ψ(y)dy , (1.13)

for all t > 0, where

Kt(x, y) = (4πt)−
N
2

N∏
j=m+1

e−
|xj−yj |

2

4t

m∏
i=1

[
e−
|xi−yi|

2

4t − e−
|xi+yi|

2

4t

]
. (1.14)

See, for example, [11, Proposition 3.1, p. 514]. It is well-known that et∆m is a C0 semigroup on

C0(Ωm), the space of continuous functions f : Ωm → R such that f ≡ 0 on the boundary ∂Ωm and

f(x) → 0 as |x| → ∞ in Ωm. It is also well defined on Xm,γ and et∆m : Xm,γ → C0(Ωm) ∩ Xm,γ is

continuous, for all t > 0. See [9, Theorem 1.1, p. 343]. We recall the commutation relation between

et∆m and the operators Dσ
λ ,

Dσ
λe
λ2t∆m = et∆mDσ

λ (1.15)

for all λ > 0 and σ > 0, and for future use we note the following identity, which is immediate to

verify, ∫
Ωm

Kt(x, y) y1 · · · ym dy = x1 · · ·xm, (1.16)

for all t > 0 and all x ∈ Ωm.

In terms of behavior on the sectors Ωm, our goal is to study the well-posedness of the equation

(1.1) on the space Xm,γ and to obtain results on the large time behavior of solutions in the three
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cases α = 2/(γ + m), α > 2/(γ + m) and α < 2/(γ + m). By interpreting these results for

antisymmetric solutions on RN , we will extend some know results, [4, Theorem 1.3, Theorem 1.4]

and [6], in the case m = 0. We now describe these results in detail.

In Section 2, we consider the Cauchy problem{
ut −∆u+ |u|αu = 0,

u(0) = u0 ∈ Xm,γ .
(1.17)

It is well known that, given any u0 ∈ C0(RN ) there exists a unique function u ∈ C([0,∞), C0(RN ))

which is a classical solution of (1.1) on RN for t > 0 and such that u(0) = u0, which we denote by

u(t) = S(t)u0, (1.18)

where u(t) = u(t, ·). Likewise, for any u0 ∈ C0(Ωm), there exists a unique function u ∈ C([0,∞), C0(Ωm))

which is a classical solution of (1.1) for t > 0 and such that u(0) = u0. This defines a global semi-

flow Sm(t) on C0(Ωm). In other words,

Sm(t)u0 = u(t), (1.19)

where u(t) = u(t, ·) is the solution of (1.1) with initial value u0 ∈ C0(Ωm). In fact, existence

and uniqueness of solutions in C0(Ωm) follows from the existence and uniqueness of solutions in

u0 ∈ C0(RN ) since S(t) preserves antisymmetry: it suffices to consider the anti-symmetric extension

of u0 ∈ C0(Ωm) to an element of C0(RN ) ∩ A.

Similarly, given any u0 ∈ Lq(Ωm), 1 ≤ q < ∞, we deduce by Kato’s parabolic inequality (see

Lemma 8.1 and Corollary 8.2 in the appendix) and the fact that D(Ωm) is dense in Lq(Ωm), that

there exists a unique u ∈ C([0,∞), Lq(Ωm)) which is a classical solution of (1.1) for t > 0 and such

that u(0) = u0. Alternatively, see [6, Proposition 1.1, p. 261] for a proof using accretive operators.

Again by preservation of antisymmetry, the result of [6], valid for RN , holds also on Ωm. Thus, the

semi-flow Sm(t) extends to Lq(Ωm) and formula (1.19) is valid also for u0 ∈ Lq(Ωm).

Here we consider initial data u0 ∈ Xm,γ . Our first main result is the following.

Theorem 1.2. Let m ∈ {1, 2, · · · , N}, 0 < γ < N and α > 0. If u0 ∈ Xm,γ, then there exists a

unique solution u ∈ C((0,∞), C0(Ωm)) of the equation (1.1) such that

(i) u(t)→ u0 in L1
loc(Ωm) as t→ 0 ;

(ii) there exists C > 0, independent of u0, such that ‖u(t)‖Xm,γ ≤ C‖u0‖Xm,γ for all t > 0.

In addition, the following properties hold.

(iii) For all v0 ∈ Xm,γ, |u(t)− v(t)| ≤ et∆m |u0− v0|, where v is the solution of (1.1) with initial

value v0 satisfying (i) and (ii).

(iv) There exists C > 0 such that |u(t, x)| ≤ C x1 · · ·xm
(
t+ |x|2

)− γ+2m
2 ‖u0‖Xm,γ for all t > 0

and for all u0 ∈ Xm,γ.

(v) The solution u(t) satisfies the integral equation

u(t) = et∆mu0 −
∫ t

0
e(t−s)∆m (|u(s)|αu(s)) ds, (1.20)
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for all t > 0, where the integrand is in L1((0, t);C0(Ωm)).

(vi) If v0 ∈ Xm,γ, v0 ≥ 0, and |u0| ≤ v0, then |u(t)| ≤ v(t), where v is the solution of (1.1) with

initial value v0 satisfying (i) and (ii).

In other words, the nonlinear operators Sm(t), t > 0, extend in a natural way to Xm,γ . We

remark that in the case α < 2/(γ+m), this well-posedness result was established in [12, Theorems

2.3 and 2.6] by a different method and with plus and minus sign in the term of the nonlinearity.

Furthermore, the analogous results on the whole space RN follows from [1, Theorem 8.8, p. 536].

Definition 1.3. Let m ∈ {1, 2, · · · , N}, 0 < γ < N and α > 0. Given u0 ∈ Xm,γ we set

Sm(t)u0 = u(t),

for all t > 0, where u ∈ C((0,∞), C0(Ωm)) is the unique solution of (1.1) satisfying (i) and (ii) of

the Theorem 1.2.

We also establish the continuous dependence properties of solutions of equation (1.1) with initial

values in Xm,γ .

Theorem 1.4. Let m ∈ {1, 2, · · · , N}, 0 < γ < N and M > 0. It follows that Sm(t) is continuous

B?m,γ,M → C0(Ωm), for all t > 0, where B?m,γ,M denotes the compact metric space topology induced

by the weak* topology on Bm,γ,M .

It is well-known that any solution u(t) of (1.1), for example as constructed in Theorem 1.2, is

always bounded by the spatially independent solution, more precisely

|u(t, x)| ≤
(

1

αt

) 1
α

(1.21)

for all t > 0, throughout the spatial domain of existence. See for example [6, page 261]. In addition,

it is clear from Theorem 1.2 that if u is the solution of (1.1) with positive initial data u0 ≥ 0 then

u(t) ≤ et∆mu0, (1.22)

for any t > 0. We have the following upper estimate for solutions of (1.1) which combines (1.22)

and (1.21) into one estimate which implies them both. Its proof is given in Section 3.

Proposition 1.5. Let N ≥ 1, m ∈ {1, · · · , N}, 0 < γ < N and α > 0. Let u0 ∈ Xm,γ, u0 ≥ 0.

Then the solution u of (1.1) with initial data u(0) = u0 satisfies the following upper estimate

u(t, x) ≤ et∆mu0(x)(
1 + αt (et∆mu0(x))α

) 1
α

(1.23)

for all t > 0, and all x ∈ Ωm.

After proving global well-posedness of the Cauchy problem (1.17), i.e. Theorems 1.2 and 1.4, we

seek to describe the large time behavior of solutions of (1.1) on Ωm with initial values in Xm,γ . Our

basic approach is to study the effect of certain space-time dilations on such a solution, and to relate
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the resulting behavior to the effect of related spatial dilations on the initial value. In particular we

consider the space-time dilation operators Γσλ, λ > 0, defined by

Γσλu(t, x) = λσu(λ2t, λx) = Dσ
λ [u(λ2t)](x), (1.24)

for all λ, σ > 0. If u ∈ C((0,∞), C0(Ωm)) is solution of the equation (1.1) then Γσλu is solution

of (1.1) if and only if σ = 2/α. Moreover, if a solution u has initial value u0, either in the sense

of C0(Ωm) or in some more general sense, then Γ
2/α
λ u has initial value D

2/α
λ u0. If u0 ∈ Xm,γ , the

function D
2/α
λ u0 belongs to Xm,γ , for all λ > 0, and the uniqueness of solutions of (1.1) implies

that Γ
2/α
λ u coincides with Sm(·)D2/α

λ u0. Thus, we have the following relation

Γ
2/α
λ [Sm(·)u0] = Sm(·)

[
D

2/α
λ u0

]
, (1.25)

for all u0 ∈ Xm,γ . We emphasize that at this point there is no assumed relationship between α and

m. Formula (1.25) holds for any semiflow generated by (1.1) in place of Sm(·), as long as the space

of initial values is invariant under the dilations D
2/α
λ and initial values give rise to unique solutions.

A solution u of (1.1) is self-similar if Γ
2/α
λ u = u, for all λ > 0, or equivalently if

u(t, x) = t−
1
α f(x/

√
t) = D

2/α
1√
t

f(x), (1.26)

where f(x) = u(1, x) is called the profile of u. It follows that if a self-similar solution u of (1.1)

has initial value u0, then D
2/α
λ u0 = u0, for all λ > 0, i.e. u0 is homogeneous of degree −2/α.

Conversely, if u0 is homogeneous of degree −2/α and u(t) is a solution with initial value u0 in some

appropriate sense, then Γ
2/α
λ u has the same initial value, for all λ > 0. Assuming that uniqueness

of solutions having a given initial value has been proved in the appropriate class of functions, one

then concludes that u = Γ
2/α
λ u, for all λ > 0, i.e. that u is a self-similar solution.

More generally, we say that a solution u of (1.1) is asymptotically self-similar if

lim
λ→∞

Γ
2/α
λ u = U, (1.27)

in some appropriate sense, and that U is also a solution to (1.1). If so, the limit is necessarily

a self-similar solution. See Section 3 of [5] for a discussion of several equivalent definitions of

asymptotically self-similar solutions. Formally, if we put t = 0 in (1.27), we obtain that

lim
λ→∞

D
2/α
λ u0 = ϕ, (1.28)

where ϕ = U(0) is homogeneous of degree −2/α. In the Section 4 we study the long time asymptotic

behavior of solutions to (1.1) with initial values in Xm,γ in the case α = 2/(γ+m). The first result

shows that (1.28) implies (1.27).

Theorem 1.6. Let m ∈ {1, 2, · · · , N}, 0 < γ < N and ψ ∈ Bm,γ,M . Let α > 0 be such that

α =
2

γ +m
.
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Suppose that there exists ϕ ∈ Bm,γ,M such that lim
λ→∞

Dγ+m
λ ψ = ϕ in B?m,γ,M . It follows that ϕ is

homogeneous of degree −(γ +m) and that the solution u(t) = Sm(t)ψ is asymptotically self-similar

to the self-similar solution U(t) = Sm(t)ϕ.

As is by now well established [3, 4, 5], the notion of asymptotically self-similar solution can

be naturally extended by allowing different limits in (1.28) and (1.27) along different sequences

(λn)n≥0, with λn →∞. The next step in our analysis it to generalize Theorem 1.6 in this fashion.

To accomplish this, for u0 ∈ Xm,γ and M ≥ ‖u0‖Xm,γ , we consider the set of all accumulation points

of Dγ+m
λ u0, as λ→∞, given by

Zγ(u0) =
{
z ∈ Bm,γ,M ; ∃ λn →∞ such that lim

n→∞
Dγ+m
λn

u0 = z in B?m,γ,M
}
. (1.29)

Since B?m,γ,M is a compact metric space, Zγ(u0) is nonempty compact subset, for all u0 ∈ Xm,γ , and

independent of M ≥ ‖u0‖Xm,γ by [9, Proposition 3.1, p. 356]. In particular, if u0 is homogeneous of

degree −(γ +m), then Zγ(u0) = {u0}. We set u(t) = Sm(t)u0 and we also define the omega-limit

set of all accumulation points of Γγ+m√
t
u(1, ·) = t

γ+m
2 u(t,

√
t ·), as t→∞, by

Qγ(u0) =
{
f ∈ C0(Ωm);∃tn →∞ such that lim

n→∞
‖Γγ+m√

tn
Sm(1)u0 − f‖L∞(Ωm) = 0

}
. (1.30)

The relation (1.25) and Theorem 1.4 are the essential elements needed to investigate the relationship

between Qγ(u0) and Zγ(u0), which is given by our next main result.

Theorem 1.7. Let m ∈ {1, 2, · · · , N}, 0 < γ < N and let α > 0 be such that

α =
2

γ +m
.

If u0 ∈ Xm,γ, then

Qγ(u0) = Sm(1)Zγ(u0).

In particular, Qγ(u0) ⊂ Sm(1)B?m,γ,M and is therefore a compact subset of C0(Ωm).

The last relation shows that in the case α = 2/(γ+m) the complexity in the large time behavior

of a solution, as expressed in Qγ(u0), is determined by the complexity in the spatial asymptotic

behavior of its initial value as expressed in Zγ(u0). Furthermore, Theorem 1.7 above is inspired

from [4, Theorem 1.3, p. 83] which requires α ≥ 2/N , and we observe that in Theorem 1.7, if

γ+m > N , then α < 2/N . Since B?m,γ,M is separable and Zγ(u0) can contain any countable subset

of B?m,γ,M , we show that Zγ(U0) = B?m,γ,M for some choice of U0 ∈ B?m,γ,M .

Using [9, Theorem 1.4, p. 345], we obtain the following result.

Corollary 1.8. Let m ∈ {1, 2, · · · , N}, 0 < γ < N and M > 0. Let α > 0 be such that

α =
2

γ +m
.

Then, there exists

U0 ∈ Bm,γ,M ∩ C∞(Ωm) ∩ C0(Ωm)
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such that

Qγ(U0) = Sm(1)Bm,γ,M .

Remark 1.9. If u0 belongs to Xm,γ ∩ Xm,γ′ with γ < γ′ < N , then Zγ(u0) = {0}. In fact, for all

λ > 0, ∣∣∣Dγ+m
λ u0(x)

∣∣∣ = λγ+m|u0(λx)| ≤ Cλγ−γ′ |x|−(γ′+m) → 0,

as λ → ∞ uniformly on {x ∈ Ωm; |x| ≥ ε}, for all ε > 0. Thus, Zγ(u0) = {0}. For example, if

α = 2/(γ + m) > 2/(γ′ + m), the function ϕ(x) = x1 · · ·xm|x|−γ
′−2m11{|x|>1} ∈ Xm,γ′ ∩ Xm,γ . It

follows, from Theorem 1.7, that Qγ(ϕ) = {0}. However, we might have Qγ′(ϕ) 6= {0}.

In Section 5 of this paper, we consider the case α > 2/(γ +m). Since α 6= 2/(γ +m) there is a

disconnect between the transformations which preserve the set of solutions to (1.1), i.e. Γ
2/α
λ , and

those which leave invariant the norm of the space Xm,γ where the solutions live, i.e. Γγ+m
λ . Indeed,

by (1.24) and (1.9) it follows that for u0 ∈ Xm,γ

‖ΓσλSm(t)u0‖Xm,γ = ‖Dσ
λSm(λ2t)u0‖Xm,γ = λσ−(γ+m)‖Sm(λ2t)u0‖Xm,γ . (1.31)

Since ‖Sm(λ2t)u0‖Xm,γ ≤ C‖u0‖Xm,γ , for some C > 0, by Theorem 1.2, it follows, setting σ = 2/α

in (1.31), that if 2/α < γ + m, then ‖Γ2/α
λ Sm(t)u0‖Xm,γ → 0 as λ → ∞, uniformly for all u0 in a

bounded set of Xm,γ and all t > 0.

It is clear from (1.31) that for u0 ∈ Xm,γ , the transformations most likely to yield some nontrivial

asymptotic behavior are Γγ+m
λ . In other words, we still need to study Qγ(u0) as given by (1.30),

and likewise Zγ(u0) as given by (1.29). However, we cannot expect the relationship between these

two objects to be given as in Theorem 1.7 since the transformations do not preserve solutions of

(1.1).

If u is a solution of (1.1) then v = Γγ+m
λ u is the solution of the equation

vt −∆v + λ2−(γ+m)α|v|αv = 0. (1.32)

If α > 2/(γ +m), it follows that as λ→∞, the function v satisfies an equation which approaches

the linear heat equation. Hence, we should not be surprised if in this case Qγ(u0) and Zγ(u0)

are related by the linear heat equation. The next theorem makes this idea precise, both in the

asymptotically self-similar case, and the more general case of arbitrary u0 ∈ Xm,γ . It is analogous

to [4, Lemma 5.1, p. 110].

Theorem 1.10. Let m ∈ {1, · · · , N}, 0 < γ < N and M > 0. Let α be such that

α >
2

γ +m
. (1.33)

We then have the following conclusions.

(i) If u0, ϕ ∈ Bm,γ,M is such that lim
λ→∞

Dγ+m
λ u0 = ϕ in B?m,γ,M , then ϕ is homogeneous of degree

−(γ +m) and u(t) = Sm(t)u0 is asymptotically self-similar to U(t) = et∆mϕ.

(ii) Qγ(u0) = e∆mZγ(u0), for all u0 ∈ Xm,γ.
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(iii) There exists U0 ∈ Bm,γ,M ∩ C∞(Ωm) ∩ C0(Ωm), such that Qγ(U0) = e∆mBm,γ,M .

In Section 6 of this paper, we consider the case α < 2/(γ +m). As in the case of Theorem 1.10,

the transformations which leave solutions invariant, i.e. Γ
2/α
λ , do not leave invariant the norm of

Xm,γ , which is the space where the solution lives. Nonetheless, unlike in the case α > 2/(γ + m),

the transformations Γ
2/α
λ reveal nontrivial asymptotic behavior. Because of (1.31), to study this

asymptotic behavior, we need to leave the context of the space Xm,γ .

This is best illustrated by the result of Gmira and Véron [6] in the case of RN . If we express the

upper bound (1.21) in terms more suggestive of the long-time asymptotic behavior of the solution,

we see that, considering only positive solutions,

(Γ
2/α√
t
u)(1, x) = t

1
αu(t, x

√
t) ≤

(
1

α

) 1
α

. (1.34)

The main result of [6] can be stated as follows. Suppose α < 2
N . Let u0 ∈ Lq(RN ) for some

1 ≤ q <∞, or C0(RN ), with u0 ≥ 0, be such that for every k > 0, there exists R0 > 0 such that

u0(x) ≥ k|x|−2/α, |x| ≥ R0, (1.35)

i.e. lim inf |x|→∞ |x|2/αu0(x) =∞. It follows that if u(t, x) is the resulting solution of (1.1), then

t
1
αu(t, x

√
t)→

(
1

α

) 1
α

(1.36)

uniformly on compact subsets of RN . In light of the upperbound (1.34), the result (1.36) is rather

sharp.

In the case of the sector Ωm, we have the following result, where Cb,u0 (Ωm) denotes the space of

bounded uniformly continuous functions on Ωm which are zero on ∂Ωm.

Theorem 1.11. Let m ∈ {1, · · · , N}, 0 < γ < N and α > 0 be such that

α <
2

γ +m
. (1.37)

Let u0 ∈ Xm,γ with u0 ≥ 0, and let u(t) = Sm(t)u0 be the resulting solution of (1.1) as given by

Theorem 1.2. Suppose that there exist R0 > 0 and c0 > 0 such that

u0(x) ≥ c0ψ0(x), x ∈ Ωm, |x| ≥ R0, (1.38)

where ψ0 is given by (1.10). Then

lim
t→∞

t
1
αu(t, x

√
t) = g(x), (1.39)

uniformly on compact subsets of Ωm, where g ∈ Cb,u0 (Ωm) is the profile of the self-similar solution

of (1.1) given by Proposition 6.3.

Remark 1.12. The condition (1.38) implies that, for any c > 0,

lim
|x|→∞, x1···xm|x|−m≥c

|x|2/αu0(x) =∞,

since 2/α > γ +m.
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Remark 1.13. Using (6.15) below and (1.14), we have that g in (1.39) satisfies the explicit bound

α−1/αIm(1, x) ≤ g(x) ≤ (αε)−1/αIm
(
(1− ε), x

)
, x ∈ Ωm,

for all 0 < ε < 1, where

Im(δ, x) =

m∏
i=1

(
1√
π

∫ xi
2
√
δ

− xi
2
√
δ

e−y
2
dy

)
.

In the Section 7 of this paper, we reinterpret the results of the previous sections on the global

well-posedness and the asymptotic behavior of Sm(t)u0, u0 ∈ Xm,γ , in the case of antisymmetric

functions defined on the whole space RN . Recall that the heat semigroup on RN is given by

et∆ϕ = Gt ? ϕ, (1.40)

for all ϕ ∈ S ′(RN ), where Gt is the Gauss kernel on RN ,

Gt(x) = (4πt)−
N
2 e−

|x|2
4t , (1.41)

for all t > 0 and x ∈ RN . The heat semigroup et∆ was studied in [4] on the space

Wσ =
{
u ∈ L1

loc(RN\{0}); |x|σu(x) ∈ L∞(RN )
}
, (1.42)

with 0 < σ < N . It was observed in [9], that we can consider the case N ≤ σ < 2N for some class

of antisymmetric initial values in Wσ. See [9, Corollary 1.7, p. 346] and the discussion just after.

If ψ : Ωm → R, we denote by ψ̃ its pointwise extension to RN which is antisymmetric with

respect to x1, x2, · · · , xm. If ψ ∈ Xm,γ , ψ̃ has a natural interpretation as an element of S ′(RN ). See

[9, Definition 1.6, p. 346]. We also define the space

X̃m,γ =
{
ψ̃; ψ ∈ Xm,γ

}
⊂ S ′(RN ), (1.43)

with the norm ‖ϕ‖X̃m,γ = ‖ϕ|Ωm‖Xm,γ , for all ϕ ∈ X̃m,γ . We also consider,

B̃m,γ,M =
{
ψ̃; ψ ∈ Bm,γ,M

}
. (1.44)

We denote by B̃?m,γ,M the ball B̃m,γ,M endowed with the weak? topology. B̃?m,γ,M inherits the metric

space structure from B?m,γ,M . In addition, we observe that X̃m,γ ⊂ Wγ+m with continuous injection.

However the two norms are not equivalent. On the other hand, B̃?m,γ,M ⊂ (Bγ+m
M )? where (Bγ+m

M )?

denote the closed ball of radius M onWγ+m endowed with the weak? topology, but here the metric

on B̃?m,γ,M is equivalent to the one it inherits from the metric space (Bγ+m
M )?. See Proposition 7.1

below.

The heat semigroup et∆ is well-defined on X̃m,γ and

ẽt∆mψ = et∆ψ̃. (1.45)

See [9, Proposition 5.1, p. 361]. The last formula is the key to the study the equation (1.1) in the

space X̃m,γ . The following result is essentially a reformulation of Theorem 1.2 for antisymmetric

functions on RN .
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Theorem 1.14. Let m ∈ {1, 2, · · · , N}, 0 < γ < N and α > 0. If v0 ∈ X̃m,γ, there exists a unique

solution v ∈ C((0,∞), C0(RN ) ∩ A) of the equation (1.1) such that

(i) v(t)→ v0 in L1
loc(RN\{0}) as t→ 0 ;

(ii) there exists C > 0, independent of v0, such that ‖v(t)‖X̃m,γ ≤ C‖v0‖X̃m,γ for all t > 0.

In addition, the following properties hold.

(iii) For all w0 ∈ X̃m,γ, |v(t)−w(t)| ≤ et∆|v0−w0| ; where w is the solution of (1.1) with initial

value w0 satisfying (i) and (ii).

(iv) v(t) satisfies the integral equation

v(t) = et∆v0 −
∫ t

0
e(t−s)∆ (|v(s)|αv(s)) ds,

for all t > 0.

Since X̃m,γ ⊂ Wγ+m, where Wγ+m is given by (1.42), the last result gives a new class of initial

values for which we have global well-posedness of solutions in the case α < 2/N (when γ+m > N).

See [1] and [4, Section 4] for information about non-uniqueness of solutions in the case α < 2/N .

The semiflow S(t) defined by (1.18) extends to X̃m,γ as the following.

Definition 1.15. Let m ∈ {1, 2, · · · , N}, 0 < γ < N and α > 0. Given v0 ∈ X̃m,γ we set

S(t)v0 = v(t),

for all t > 0, where v ∈ C((0,∞), C0(RN ) ∩ A) is the unique solution of (1.1) given by Theorem

1.14.

From the construction in Theorem 1.14 and the uniqueness part we have the following formula

S(t)ũ0 = ˜Sm(t)u0 (1.46)

for all t > 0 and u0 ∈ Xm,γ . As in the case of the sectors Ωm, i.e. the flow S(t) depends continuously

on the initial values. The following is an adaptation of Theorem 1.4.

Theorem 1.16. Let m ∈ {1, 2, · · · , N}, 0 < γ < N and M > 0. Then, S(t) is continuous

B̃?m,γ,M → C0(RN ), for all t > 0.

We now consider the long-time asymptotic behavior of the solutions described in Theorem 1.14.

In analogy with (1.29) and (1.30) above, and using a notation consistent with formulas (1.17) and

(1.18) in [3] and [4, Definition 1.2], we make the following definitions. For v0 ∈ X̃m,γ we define the

ω-limit set of possible asymptotic forms of v0, by

Ωγ+m(v0) =
{
z ∈ B̃?m,γ,M ; ∃ λn →∞ such that lim

n→∞
Dγ+m
λn

v0 = z in B̃?m,γ,M
}
, (1.47)

and the ω-limit set of all limits of Γγ+m√
t
S(1)v0, as t→∞, by

ωγ+m(v0) = {f ∈ C0(RN );∃tn →∞ such that lim
n→∞

‖Γγ+m√
tn
S(1)v0 − f‖L∞(RN ) = 0}, (1.48)
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The following three theorems are reformulations of the results above on the asymptotic behavior

of solutions, adapted from the case of the sectors Ωm to the case of antisymmetric functions on

RN , in the three cases: α equals, is greater than, and is less than 2
γ+m .

Theorem 1.17. Let m ∈ {1, 2, · · · , N}, 0 < γ < N and M > 0. Let α > 0 be such that

α =
2

γ +m
.

It follows that

(i) if v0, ϕ ∈ B̃m,γ,M are such that lim
λ→∞

Dγ+m
λ v0 = ϕ in B̃?m,γ,M , then ϕ is homogeneous of

degree −(γ + m) and the solution v(t) = S(t)v0 of (1.1) is asymptotically self-similar to

U(t) = S(t)ϕ;

(ii) ωγ+m(v0) = S(1)Ωγ+m(v0), for all v0 ∈ X̃m,γ;

(iii) There exists V0 ∈ B̃m,γ,M ∩ C∞(RN ), such that ωγ+m(V0) = S(1)B̃m,γ,M .

Theorem 1.18. Let m ∈ {1, · · · , N}, 0 < γ < N and M > 0. Let α > 0 be such that

α >
2

γ +m
.

It follows that

(i) if v0, ϕ ∈ B̃m,γ,M are such that lim
λ→∞

Dγ+m
λ v0 = ϕ in B̃?m,γ,M , then ϕ is homogeneous of

degree −(γ + m) and the solution v(t) = S(t)v0 of (1.1) is asymptotic to the self-similar

solution of the linear heat equation U(t) = et∆ϕ;

(ii) ωγ+m(v0) = e∆Ωγ+m(v0), for all v0 ∈ B̃m,γ,M ;

(iii) there exists V0 ∈ B̃m,γ,M ∩ C∞(RN ), such that ωγ+m(V0) = e∆B̃m,γ,M .

Theorem 1.19. Let m ∈ {1, · · · , N}, 0 < γ < N and α > 0 be such that

α <
2

γ +m
.

Let v0 ∈ X̃m,γ with v0|Ωm ≥ 0, and let v(t) = S(t)v0 be the resulting solution of (1.1) as given by

Definition 1.15. Suppose that there exist R0 > 0 and c0 > 0 such that

v0(x) ≥ c0ψ0(x), x ∈ Ωm, |x| ≥ R0,

where ψ0 is given by (1.10). Then

lim
t→∞

t
1
α v(t, x

√
t) = g(x), (1.49)

uniformly on compact subsets of RN , where g ∈ Cb,u(RN ) is the antisymmetric (bounded, uniformly

continuous) profile of the self-similar solution of (1.1) given by Proposition 7.3.

Finally, in the appendix, for completeness we give a proof of Kato’s parabolic inequality and

the main application for which we use it. Also, we present some results which we found during

the course of research for this article, which we feel have some independent interest, but which

ultimately were not needed for the proofs of the main results. One of them concerns the lowest
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eigenvalue and corresponding eigenfunction for −∆ on B1 = {x ∈ Ωm : |x| < 1} with Dirichlet

boundary conditions.

The authors wish to thank Philippe Souplet for several very helpful remarks concerning this

research.

2. Existence and continuity properties of solutions

The purpose of this section is to study well-posedness of the equation (1.1) with initial values

in Xm,γ and to give the proofs of Theorem 1.2 and Theorem 1.4. For this purpose, we need

several results from [9], sometimes in a slightly stronger version. The first result below is a slight

improvement of [9, Proposition 2.5, p. 353].

Proposition 2.1. Let m ∈ {1, · · · , N}, 0 < γ < N and ψ ∈ Xm,γ. Then,

et∆mψ −→ ψ, as t→ 0 on L1
loc(Ωm).

In particular, the convergence is also in D′(Ωm).

Proof. Let ψ ∈ Xm,γ and K be a fixed compact in Ωm. Let ε = d(0,K) > 0 and η ∈ C∞(RN )

denote a radial cut-off function, satisfying:

(i) 0 ≤ η ≤ 1, for all x ∈ RN ,

(ii) η(x) = 1, for all x ∈ RN with |x| ≤ ε/4,

(iii) η(x) = 0, for all x ∈ RN with |x| ≥ ε/2.

We write

et∆mψ = et∆m [ηψ] + et∆m [(1− η)ψ]. (2.1)

Using the inequality

e−
(xi−yi)

2

4t − e−
(xi+yi)

2

4t = e−
x2
i

4t e−
y2
i

4t

∫ xiyi
2t

−xiyi
2t

esds ≤ xiyi
t

e−
(xi−yi)

2

4t

for all i ∈ {1, · · · ,m}, we deduce from (1.14) that for all x, y ∈ Ωm,

Kt(x, y) ≤ t−m
(

m∏
i=1

xiyi

)
Gt(x− y). (2.2)

Therefore,

|et∆m [ηψ](x)| ≤ C

∫
Ωm

Kt(x, y) y1 · · · ym η(y)|y|−γ−2mdy

≤ C t−m x1 · · ·xm
∫
|y|≤ε/2

Gt(x− y)|y|−γdy.

Since, for x ∈ K (hence |x| ≥ ε) and |y| ≤ ε/2, we have |x− y| ≥ |x| − |y| ≥ ε/2, it follows that

|et∆m [ηψ](x)| ≤ Cx1 · · ·xmt−(m+N/2)e−
ε2

16t

∫
|y|≤ε/2

|y|−γdy, ∀ x ∈ K.
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This implies that et∆m [ηψ] → 0, a.e. pointwise on K, as t → 0. Moreover, by Proposition [9,

Theorem 1.1 (i), p. 343], we have

|et∆m [ηψ]| ≤ Cψ0, ∀ t > 0.

Thus, by the dominated convergence theorem, et∆m [ηψ]→ 0 on L1(K), as t→ 0.

On the other hand, since (1 − η)ψ ∈ Lp(Ωm) for p > max{1, N/(γ + m)}, it follows that

et∆m [(1 − η)ψ] → (1 − η)ψ in Lp(Ωm), as t → 0. In particular, since K ⊂ Ωm is compact,

et∆m [(1 − η)ψ] → ψ in L1(K), as t → 0. Using (2.1), we obtain that et∆mψ → ψ in L1
loc(Ωm), as

t→ 0. This completes the proof. �

We also need to use a stronger version of [9, Lemma 2.6, p. 355], as follows.

Lemma 2.2. Let m ∈ {1, .., N} and 0 < γ < N . There exists C > 0 such that

|et∆mψ(x)| ≤ Cx1 · · ·xm
(
t+ |x|2

)− γ+2m
2 ‖ψ‖Xm,γ , (2.3)

for all t > 0, x ∈ Ωm and ψ ∈ Xm,γ.

Proof. It suffices to prove the Lemma for ψ = ψ0. Since ψ0 is homogeneous, we know that et∆mψ0

is self similar and so

et∆mψ0(x) = t−
γ+m

2 f

(
x√
t

)
, (2.4)

where f := e∆mψ0. By [9, Propostion 2.2, p. 349], we have

f(x) = e∆mψ0(x) ≤ Cψ0(x) ≤ Cx1 · · ·xm|x|−γ−2m

for all x ∈ Ωm. Therefore, there exists C > 0 such that

f(x) ≤ Cx1 · · ·xm(1 + |x|2)−
γ+2m

2 ,

for |x| ≥ 1. On the other hand, for all x ∈ Ωm, we have

f(x) =

∫
Ωm

K1(x, y) ψ0(y) dy.

Using the inequality (2.2), we obtain that

f(x) ≤ Cx1 · · ·xm
∫

Ωm

G1(x− y) y2
1 · · · y2

m|y|−γ−2m dy

≤ C x1 · · ·xm
∫
RN

e−
|x−y|2

4 |y|−γdy

≤ C x1 · · ·xm
(
e∆| · |−γ

)
(x)

≤ C x1 · · ·xm (1 + |x|2)−
γ
2 ,

by [1, Corollary 8.3, p. 531]. Hence, for |x| ≤ 1, we have

f(x) ≤ C x1 · · ·xm (1 + |x|2)−
γ+2m

2 .

Therefore, there exists C > 0 such that

f(x) ≤ C x1 · · ·xm (1 + |x|2)−
γ+2m

2 ,
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for all x ∈ Ωm. Using the relation (2.4), we deduce that

et∆mψ0(x) ≤ C x1 · · ·xm
(
t+ |x|2

)− γ+2m
2 .

This proves the result.

�

The following is a version of [1, Corollary 8.3, p. 531] adapted from RN to Ωm.

Corollary 2.3. Let m ∈ {1, · · · , N}, 0 < γ < N and A > 0. There exists C > 0 such that if τ ≥ 0

and u0 ∈ Xm,γ is such that |u0(x)| ≤ Ax1 · · ·xm (τ + |x|2)−
γ+2m

2 for x ∈ Ωm, then∣∣et∆mu0(x)
∣∣ ≤ C x1 · · ·xm (τ + t+ |x|2)−

γ+2m
2 ,

for all t > 0 and all x ∈ Ωm.

Proof. From Lemma 2.2, the result is true for τ = 0. Next, we consider the case τ = 1. We put

g(x) = x1 · · ·xm (1 + |x|2)−
γ+2m

2 . Using (2.2), we obtain that

et∆mg(x) ≤ t−m x1 · · ·xm
∫
RN

Gt(x− y) y2
1 · · · y2

m

(
1 + |y|2

)− γ+2m
2 dy

≤ t−m x1 · · ·xm
∫
RN

Gt(x− y)
(
1 + |y|2

)− γ
2 dy.

By [1, Corollary 8.3, p. 531], we have

et∆mg(x) ≤ C x1 · · ·xm t−m
(
1 + t+ |x|2

)− γ
2

≤ C x1 · · ·xm
(
1 + t+ |x|2

)− γ+2m
2 ,

for t ≥ 1 + |x|2, so that (2t)−m ≤
(
1 + t+ |x|2

)−m
.

If t ≤ 1 + |x|2, we have
(
1 + |x|2

)− γ+2m
2 ≤ C

(
1 + t+ |x|2

)− γ+2m
2 , so it suffices to prove that

et∆mg(x) ≤ C x1 · · ·xm
(
1 + |x|2

)− γ+2m
2 .

Using (1.16), we obtain that

et∆mg(x) =

∫
Ωm

Kt(x, y) y1 · · · ym
(
1 + |y|2

)− γ+2m
2 dy ≤ x1 · · ·xm.

Hence for |x| ≤ 1,

et∆mg(x) ≤ C x1 · · ·xm
(
1 + |x|2

)− γ+2m
2 .

In addition, g ∈ Xm,γ so by [9, Theorem 1.1 (i), p. 343],

et∆mg(x) ≤ Cψ0(x) ≤ C x1 · · ·xm |x|−γ−2m.

Therefore, if |x| > 1, so that
(
1 + |x|2

) γ+2m
2 ≤ (2|x|)γ+2m, we have

et∆mg(x) ≤ C x1 · · ·xm
(
1 + |x|2

)− γ+2m
2 .

It follows that ∣∣et∆mu0(x)
∣∣ ≤ et∆mg(x) ≤ C x1 · · ·xm

(
1 + t+ |x|2

)− γ+2m
2 , (2.5)
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for all x ∈ Ωm and all t > 0. This proves the result for τ = 1.

For the general case, we proceed by scaling and observe that

Dγ+m
1√
τ

g(x) = x1 · · ·xm (τ + |x|2)−
γ+2m

2 .

Using formula (1.15) and the inequality (2.5), we obtain∣∣et∆mu0(x)
∣∣ ≤ et∆m [Dγ+m

1√
τ

g](x) = Dγ+m
1√
τ

[e
t
τ

∆mg](x) ≤ C x1 · · ·xm (τ + t+ |x|2)−
γ+2m

2 .

This completes the proof. �

We will also use the following lemma, which gives a property of convergence in L1
loc(Ωm) which

is not shared by convergence in D′(Ωm).

Lemma 2.4. Let (wk)k≥1 ⊂ Bm,γ,M and w ∈ Bm,γ,M be such that wk −→
k→∞

w in L1
loc(Ωm). Then

et∆m |wk| −→
k→∞

et∆m |w| in C0(Ωm).

Proof. Since wk → w in L1
loc(Ωm), then |wk| → |w| in L1

loc(Ωm) hence |wk| → |w| in D′(Ωm). From

[9, Proposition 3.1 (i), p. 356], and since (|wk|)k≥1, |w| ⊂ Bm,γ,M we deduce that |wk| → |w| in

B?m,γ,M . Since by [9, Proposition 4.1 (ii), p. 359], et∆m : B?m,γ,M → C0(Ωm) is continuous, it follows

that et∆m |wk| → et∆m |w| on C0(Ωm), as k →∞. �

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let u0 ∈ Xm,γ and let (Kn)n≥1 be the sequence of nondecreasing com-

pacts in Ωm defined by:

Kn =

{
x ∈ Ωm, such that d(x, ∂Ωm) ≥ 1

n
and |x| ≤ n

}
.

We consider the function

u0,n = ξnu0,

where ξn is a cut-off function satisfying

(i) ξn ∈ C∞(Ωm),

(ii) 0 ≤ ξn ≤ 1, for all x ∈ Ωm,

(iii) ξn(x) = 1, for all x ∈ Kn,

(iv) ξn(x) = 0, for all x ∈ Ωm\Kn+1.

Note that, u0,n ∈ Xm,γ , for all n ≥ 1, and

• ‖u0,n‖Xm,γ ≤ ‖u0,n+1‖Xm,γ ≤ ‖u0‖Xm,γ ;

• u0,n → u0 pointwise and in L1
loc(Ωm) (hence in D′(Ωm)) as n→∞ ;

• for a fixed compact K on Ωm, then there exist n0 such that u0,n = u0 on K, for all n ≥ n0.
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Existence: The proof is motivated by the proof of [1, Theorem 8.8, p. 536]. Since u0,n ∈
Lp(Ωm), 1 ≤ p <∞, we consider the unique solution un ∈ C([0,∞), Lp(Ωm)) ∩C((0,∞), C0(Ωm))

of (1.1) with initial value u0,n ∈ Lp(Ωm). It follows from Kato’s parabolic inequality (see Corollary

8.2 in the appendix) that, ∀n, ` ∈ N?,

|un(t)− u`(t)| ≤ et∆m |u0,n − u0,`|, ∀ t > 0. (2.6)

Since |u0,n − u0,`| ≤ |u0,n − u0|, for all ` > n, we have that

|un(t)− u`(t)| ≤ et∆m |u0,n − u0|, (2.7)

for all t > 0 and ` > n. In addition, ‖u0,n − u0‖Xm,γ ≤ 2‖u0‖Xm,γ , ∀n ≥ 1, and (u0,n − u0) → 0

in L1
loc(Ωm) as n→∞, and so it follows from Lemma 2.4 that et∆m |u0,n − u0| → 0 on C0(Ωm), as

n → ∞. Therefore, from (2.7), un(t) is a Cauchy sequence in C0(Ωm), for all t > 0, and so there

exists a function u(t) such that un(t) converge to u(t) in C0(Ωm). Furthermore, by letting `→∞
in (2.6), we obtain that

|un(t)− u(t)| ≤ e(t−ε)∆m
[
eε∆m |u0,n − u0|

]
for all t > ε > 0. Since eε∆m |u0,n − u0| → 0 in C0(Ωm), as n→∞, and e(t−ε)∆m is C0 contraction

on C0(Ωm), we deduce that un converges to u on L∞([ε,∞), C0(Ωm)), for all ε > 0. The limit

function u ∈ C((0,∞), C0(Ωm)) is clearly a solution of (1.1).

Again by Corollary 8.2, we have that

|un(t)| ≤ et∆m |u0,n| ≤ et∆m |u0| ∈ Xm,γ ,

for all n ≥ 1. In addition, by letting n→∞, we obtain that

|u(t)| ≤ et∆m |u0|, (2.8)

and so, by [9, Theorem 1.1 (i), p. 343], we deduce that

‖u(t)‖Xm,γ ≤ C‖u0‖Xm,γ , (2.9)

for all t > 0. This proves (ii).

It remain now to show that u(t)→ u0 on L1
loc(Ωm), as t→ 0. We fix a compact subset K ⊂ Ωm

and n such that u0,n = u0 on K. Thus,∫
K
|u(t)− u0| =

∫
K
|u(t)− u0,n| ≤

∫
K
|u(t)− un(t)|+

∫
K
|un(t)− u0,n|.

By letting `→∞ in (2.6), we have that

|un(t)− u(t)| ≤ et∆m |u0,n − u0|.

The Proposition 2.1 shows that et∆m |u0,n − u0| → |u0,n − u0| on L1
loc(Ωm), as t→ 0. Therefore,∫

K
et∆m |u0,n − u0| −→

t→0

∫
K
|u0,n − u0| = 0,
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and so
∫
K |u(t) − un(t)| → 0, as t → 0. Since un ∈ C([0,∞), Lp(Ωm)), we have un(t) → u0,n on

Lp(Ωm), as t→ 0, so that ∫
K
|un(t)− u0,n| → 0, as t→ 0.

This proves that u(t) converges to u0 on L1
loc(Ωm), as t→ 0, and so (i) is proved.

Uniqueness: Let s > 0 and u, v two solutions of (1.1) satisfying (i) and (ii). We have that

|u(t+ s)− v(t+ s)| ≤ et∆m |u(s)− v(s)| ≤ et∆m |u(s)− u0|+ et∆m |v(s)− u0| ,

for all t > s > 0. Let M ≥ C‖u0‖Xm,γ . Since u(s), v(s) ∈ B?m,γ,M for all s > 0 and u(s), v(s)→ u0

in L1
loc(Ωm), as s→ 0, it follows from the Lemma 2.4 that the right hand side of the last inequality

tends to 0 in C0(Ωm), as s → 0. This gives that |u(t+ s)− v(t+ s)| → 0, as s → 0. But since

u, v ∈ C((0,∞), C0(Ωm)) we deduce that |u(t+ s)− v(t+ s)| → |u(t)− v(t)|, as s → 0, for every

fixed t > 0. By uniqueness of the limit, we have u(t) = v(t), for all t > 0.

Additional properties: We next give the proof of the statements (iii), (iv) and (vi). In fact,

by (2.8), we have

|u(t)| ≤ et∆m |u0|,

and so, from Lemma 2.2, we obtain

|u(t, x)| ≤ C x1 · · ·xm (t+ |x|2)−
γ+2m

2 ‖u0‖Xm,γ ,

for all t > 0 and x ∈ Ωm. In addition, if u0, v0 ∈ Xm,γ , we denote u(t) and v(t) the corresponding

solutions. For all n ≥ 1, we let u0,n = u0ξn and v0,n = v0ξn where ξn is the cut-off function defined

by (2). Then, for all n ≥ 1,

|un(t)− vn(t)| ≤ et∆m |u0,n − v0,n|.

Letting n→∞ and using Lemma 2.4, we deduce that

|u(t)− v(t)| ≤ et∆m |u0 − v0|.

Finally, assertion (vi) is true since, under the same conditions, |un(t)| ≤ vn(t), by well-known

comparison results.

Integral equation: Since u0,n ∈ Lp(Ωm), for all p > max[1, Nα/2], the corresponding solution

un(t) satisfies the integral equation

un(t) = et∆mu0,n −
∫ t

0
e(t−s)∆m (|un(s)|αun(s)) ds

for all t > 0, where each term is in C([0,∞);Lp(Ωm)).

Since u0,n → u0 in B?m,γ,M as n → ∞, we know, for example by Lemma 2.4, that et∆mu0,n →
et∆mu0 on C0(Ωm) as n→∞, for all t > 0. On the other hand, for all 0 < s < t,

e(t−s)∆m (|un(s)|αun(s))→ e(t−s)∆m (|u(s)|αu(s))

on C0(Ωm), as n→∞. From property (iii) above and [6, Inequality (1.8), p. 261], we have

|un(s)| ≤ C x1 · · ·xm (s+ |x|2)−
γ+2m

2 and |un(s)| ≤ (αs)−1/α ,
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for all s > 0. Therefore, for all 0 < ε < 1,

|un(s)|α+1 = |un(s)|α(1−ε)|un(s)|1+αε

≤ C|un(s)|α(1−ε)(ω(x))1+αε(s+ |x|2)−
(γ+m)

2
(1+αε)

≤ C

s1−εω(x)(s+ |x|2)−
(γ+m)

2
(1+αε).

where ω(x) = x1 · · ·xm (s+ |x|2)−
m
2 ≤ 1. We then take ε < N−γ

α(γ+m) so that (γ+m)(1+αε) = γ′+m

with 0 < γ′ < N , and 0 < γ < γ′. It follows that,

|un(s)|α+1 ≤ C

s1−εx1 · · ·xm (s+ |x|2)−
γ′+2m

2 . (2.10)

We deduce by Corollary 2.3, that

e(t−s)∆m |un(s)|α+1 ≤ C

s1−ε x1 · · ·xm (t+ |x|2)−
γ′+2m

2 ,

for all t > s > 0. Likewise, since un(s)→ u(s) in C0(Ωm),

e(t−s)∆m |u(s)|α+1 ≤ C

s1−ε x1 · · ·xm (t+ |x|2)−
γ′+2m

2 , (2.11)

for all t > s > 0, so that s→ e(t−s)∆m |u(s)|α+1 is in L1((0, t);C0(Ωm)).

We deduce, using the dominated convergence theorem,∫ t

0
e(t−s)∆m (|un(s)|αun(s)) ds→

∫ t

0
e(t−s)∆m (|u(s)|αu(s)) ds,

as n→∞ and so that the solution u(t) satisfies:

u(t) = et∆mu0 −
∫ t

0
e(t−s)∆m (|u(s)|αu(s)) ds.

This proves (v).

Note that (2.11) implies that

|
∫ t

0
e(t−s)∆m (|u(s)|αu(s)) ds| ≤ Ctεx1x2 · · ·xm (t+ |x|2)−

γ′+2m
2 , (2.12)

with ε and γ′ as above.

�

The following lemma is needed to establish Theorem 1.4.

Lemma 2.5. Let (un)n≥0 be a sequence of solutions of (1.1), un ∈ C((0,∞), C0(Ωm)), satisfying

|un(t, x)| ≤ Cx1 · · ·xm (t+ |x|2)−
γ+2m

2 , ∀x ∈ Ωm, ∀ t > 0. (2.13)

There exists a subsequence (unk)k≥0 and a solution g ∈ C((0,∞), C0(Ωm)) of (1.1) such that

unk → g, as k →∞, in C([τ,∞), C0(Ωm)), for every τ > 0.
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Proof. Fix τ > 0. Using (2.13) with t = τ/2, we deduce that the set {un(τ/2), n ≥ 1} is bounded in

Lp(Ωm), for all p satisfying max (1, N/(γ +m)) < p ≤ ∞. By standard smoothing effects, we see

that the un(τ) = Sm(τ/2)un(τ/2) are uniformly bounded in W 1,∞(Ωm). Thus, {un(τ)} is relatively

compact in C(ΩR
m) for all R > 1, where ΩR

m = {x ∈ Ωm; |x| ≤ R}. Using the decay estimate (2.13),

{un(τ)} is also relatively compact on C0(Ωm). By continuous dependence in C0(Ωm) of (1.1) it

follows that {un(·), n ≥ 1} is relatively compact in C([τ, T ], C0(Ωm)), for all T > τ , the limit points

being solutions of (1.1). Since, by (2.13), ‖un(t)‖L∞ → 0 as t → ∞, uniformly in n ≥ 1, we may

let T = ∞ in the previous property. By letting τ → 0 and using a diagonal procedure, we see

that there exists a solution g ∈ C((0,∞), C0(Ωm)) of (1.1) and a subsequence (unk)k≥0 such that

unk → g, as k →∞, in C([τ,∞), C0(Ωm)), for every τ > 0. �

Proof of Theorem 1.4. Let (u0,n)n≥0 ⊂ Bm,γ,M and u0 ∈ Bm,γ,M such that u0,n → u0 on B?m,γ,M ,

as n→∞. Let u(t) = Sm(t)u0 and un(t) = Sm(t)u0,n, for all t > 0 be the corresponding solutions

of (1.1) as in Definition 1.3. By Theorem 1.2 (iv), we have

|un(t, x)| ≤ Cx1 · · ·xm (t+ |x|2)−
γ+2m

2 , (2.14)

for all x ∈ Ωm and t > 0. It follows from the Lemma 2.5 that there exists a solution g ∈
C((0,∞), C0(Ωm)) of (1.1) and a subsequence (unk)k≥0 such that unk → g, as k → ∞, in

C([τ,∞), C0(Ωm)), for every τ > 0. To see that g(t) → u0 in L1
loc(Ωm) as t → 0, we consider

a compact K ⊂ Ωm and let O be an open, bounded and regular subset of Ωm with K ⊂ O. By

(2.14), we have that |un(t, x)| ≤ C for all x ∈ O, t > 0 and n ≥ 0. Since u0, (u0,n)n≥0 ⊂ B?m,γ,M
and u0,n → u0 on B?m,γ,M , as n→∞, we have by [9, Proposition 3.1 (i), p. 356] that u0,n → u0 in

D′(Ωm), we conclude using [4, Lemma 2.6, p. 89] that g(t) → u0 in L1(O), as t → 0. Therefore,

g(t)→ u0 in L1
loc(Ωm) as t→ 0, and from uniqueness of solutions of (1.1) we have g ≡ u so that the

limit g is determined by u0. In particular, it does not depend on the subsequence (unk)k≥0, so that

the whole sequence (un)n≥0 converges to u in C([τ,∞), C0(Ωm)), for every τ > 0. This completes

the proof. �

3. An upper bound on solutions

In this section we prove Proposition 1.5. This proposition is stated for solutions on the domain

Ωm, but in fact is valid for solutions of (1.1), or rather the associated integral equation, on any

domain Ω. Accordingly, we state here the more general version. Both the statement and proof are

inspired by the statement and proof of [13, Theorem 1]. Moreover, we introduce some notation

which will be used solely in this section.

Let Ω ⊂ RN be a domain, not necessarily bounded, and let C0(Ω) be the space of continuous

functions f : Ω→ R such that f ≡ 0 on the boundary ∂Ω and f(x)→ 0 as |x| → ∞ in Ω. Let et∆

be the heat semigroup on C0(Ω), given by a kernel kt = kΩ
t as follows;

et∆f(x) =

∫
Ω
kt(x, y)f(y)dy. (3.1)

In particular, if f ∈ L1
loc(Ω), f ≥ 0, then et∆f is likewise defined by formula (3.1).
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Theorem 3.1. Fix α > 0. Let u0 ∈ L1
loc(Ω), u0 ≥ 0, and suppose that the continuous function

u : (0, T )→ C0(Ω) is a nonnegative solution of the integral equation

u(t) = et∆u0 −
∫ t

0
e(t−s)∆ (u(s)α+1

)
ds. (3.2)

It follows that

u(t, x) ≤
((
et∆u0(x)

)−α
+ αt

)−1/α
=

et∆u0(x)(
1 + αt (et∆u0(x))α

)1/α (3.3)

for all 0 < t < T and all x ∈ Ω.

Proof. Fix 0 < τ < T , and set

G(t) = e(τ−t)∆u(t) = eτ∆u0 −
∫ t

0
e(τ−s)∆ (u(s)α+1

)
ds (3.4)

for all 0 ≤ t ≤ τ . It is clear from the integral expression in (3.4) that G : [0, τ ] → C0(Ω) is a

continuous, decreasing function, with G(0) = eτ∆u0 and G(τ) = u(τ). Furthermore, G : (0, τ ] →
C0(Ω) is continuously differentiable, and

G′(t) = −e(τ−t)∆ (u(t)α+1
)

= −
∫

Ω
kτ−t(·, y)u(t, y)α+1dy.

Since for all x ∈ Ω the measure kτ−t(x, y)dy on Ω, has total mass less than or equal to 1, Jensen’s

inequality implies that

G′(t) = −
∫

Ω
kτ−t(·, y)u(t, y)α+1dy

≤ −
(∫

Ω
kτ−t(·, y)u(t, y)dy

)α+1

= −
(
e(τ−t)∆u(t)

)α+1

= −G(t)α+1.

Integrating this last differential inequality on [0, t] we obtain

G(t) ≤ 1

(G(0)−α + αt)1/α
,

which is the same as

e(τ−t)∆u(t) ≤ 1(
(eτ∆u0)−α + αt

)1/α
.

This is true for 0 < τ < T and 0 ≤ t ≤ τ . The result follows by setting t = τ > 0. �

Remark 3.2. Using an argument similar to the above, one can obtain an analogous estimate for

positive solutions of the more general equation

ut = ∆u− f(u),
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where f is a positive, convex, increasing C2 function in (0,∞) such that F (s) =
∫∞
s

1
f(σ)dσ < ∞

for all s > 0. Precisely, we have

u(t) ≤ F−1
(
F (et∆u0) + t

)
,

where F−1 is the inverse function of F.

4. Self-similar asymptotic behavior on sectors

In this section we consider equation (1.1) in the case 2/α = γ + m. Let u0 ∈ Xm,γ and set

u(t) = Sm(t)u0. Using (1.25) we can re-write the definition (1.30) of the ω-limits set Qγ(u0) in the

following equivalent form,

Qγ(u0) =
{
f ∈ C0(Ωm); ∃λn →∞ such that lim

n→∞
‖Sm(1)D

2/α
λn

u0 − f‖L∞(Ωm) = 0
}
. (4.1)

We begin by proving the Theorem 1.6 which corresponds to the particular case when Qγ(u0)

contains one nontrivial element.

Proof of Theorem 1.6. Using limits in the sense of D′(Ωm), we have

Dγ+m
µ ϕ = Dγ+m

µ ( lim
λ→∞

Dγ+m
λ ψ) = lim

λ→∞
Dγ+m
µ Dγ+m

λ ψ = lim
λ→∞

Dγ+m
µλ ψ = ϕ,

for all µ > 0. It follows that ϕ is homogeneous of degree −(γ +m). By uniqueness of solutions of

(1.1), we deduce that the corresponding solution U(t) = Sm(t)ϕ is self-similar. By Theorem 1.4,

we have

lim
λ→∞

Sm(t)Dγ+m
λ ψ = Sm(t)ϕ,

in C0(Ωm), for all t > 0. From (1.25), and Theorem 1.2(iii), we obtain

lim
λ→∞

Γγ+m
λ Sm(·)ψ = U(·),

in C([τ, t];C0(Ωm), for all 0 < τ < t, so that Sm(t)ψ is asymptotically self-similar to the self-similar

solution U(t). �

We give now the proof of Theorem 1.7.

Proof of Theorem 1.7. Let u0 ∈ Xm,γ and M > 0 be such that M > ‖u0‖Xm,γ . If f ∈
Sm(1)Zγ(u0), there exists z ∈ Zγ(u0) such that f = Sm(1)z. Since z ∈ Zγ(u0), there exists λn →∞
such that Dγ+m

λn
u0 → z in B?m,γ,M . We deduce, by Theorem 1.4, that Sm(1)Dγ+m

λn
u0 → Sm(1)z = f

in C0(Ωm). Then f ∈ Qγ(u0) and so Sm(1)Zγ(u0) ⊂ Qγ(u0).

Conversely, if f ∈ Qγ(u0), then there exists λn → ∞ such that Sm(1)Dγ+m
λn

u0 → f on C0(Ωm).

Since B?m,γ,M is compact, there exist a subsequence (λnk)k≥1 such that Dγ+m
λnk

u0 → w on B?m,γ,M .

Again by Theorem 1.4, Sm(1)Dγ+m
λnk

u0 → Sm(1)w on C0(Ωm), as k →∞. Therefore f = Sm(1)w ∈
Sm(1)Zγ(u0). This proves the result. �

Proof of Corollary 1.8. This follows immediately from [9, Theorem 1.4, p. 345] and Theorem

1.7. �
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5. Linear asymptotic behavior on sectors

In this section, we study the long-time asymptotic behavior of solutions to (1.1) in the case

2/α < γ + m. The key point is that under the dilations Dγ+m√
t

, which preserve the norm of Xm,γ ,

the integral term in (1.1) decays faster than the difference between the two other terms. This is

the content of the next proposition.

Proposition 5.1. Let m ∈ {1, · · · , N}, 0 < γ < N and let α > 0 be such that

α >
2

γ +m
.

Let u0 ∈ Xm,γ and u(t) = Sm(t)u0. It follows that

Dγ+m√
t

(
u(t)− et∆mu0

)
→ 0,

in C0(Ωm), as t→∞.

Proof. We know that, for all t > 0,

u(t)− et∆mu0 = −
∫ t

0
e(t−s)∆m (|u(s)|αu(s)) ds = −t

∫ 1

0
et(1−σ)∆m (|u(σt)|αu(σt)) dσ.

Therefore, using (1.15), we have

Dγ+m√
t

(
u(t)− et∆mu0

)
= −t

∫ 1

0
Dγ+m√

t
et(1−σ)∆m (|u(σt)|αu(σt)) dσ

= −t
∫ 1

0
e(1−σ)∆m

(
Dγ+m√

t
|u(σt)|αu(σt)

)
dσ.

On the other hand, estimating as in (2.10), we see that

|u(σt)|α+1 ≤ C

(σt)1−εx1 · · ·xm (σt+ |x|2)−
γ′+2m

2 ,

for all 0 < ε < min
(

1, N−γ
α(γ+m)

)
, where γ < γ′ < N satisfies γ − γ′ = −αε(γ +m). Therefore,

Dγ+m√
t
|u(σt)|α+1 = t

γ+m
2 |u(σt,

√
tx)|α+1 ≤ C

(σt)1−ε t
γ−γ′

2 x1 · · ·xm (σ + |x|2)−
γ′+2m

2 .

By Corollary 2.3, we deduce that

e(1−σ)∆m

(
Dγ+m√

t
|u(σt)|α+1

)
≤ C

(σt)1−ε t
γ−γ′

2 x1 · · ·xm (1 + |x|2)−
γ′+2m

2 ≤ C

(σt)1−ε t
γ−γ′

2 .

It follows that ∣∣∣Dγ+m√
t

(
u(t)− et∆mu0

)∣∣∣ ≤ t ∫ 1

0
e(1−σ)∆m

(
Dγ+m√

t
|u(σt)|α+1

)
dσ

≤ Ct
γ−γ′

2
+ε

∫ 1

0

dσ

σ1−ε

≤ Ctε
(

1−α(γ+m)
2

)
.
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Since α(γ +m) > 2, we see that

Dγ+m√
t

(
u(t)− et∆mu0

)
→ 0

in C0(Ωm) as t→∞. This proves the result. �

Proof of Theorem 1.10. The three statements in this theorem follow from Proposition 5.1 and,

respectively, Corollary 4.2, p. 360, Corollary 1.3, p. 345 and Theorem 1.4, p. 345 in [9]. �

6. Nonlinear asymptotic behavior on sectors

In this section we consider the equation (1.1) with non-negative initial value u0 ∈ Xm,γ in the

case α < 2/(γ + m), and our goal is to prove Theorem 1.11. First however, we need to show that

the hypothesis on the initial condition u0, which gives a lower bound for large |x|, implies a lower

bound on the resulting solution at any fixed positive time. The key point is the behavior near the

boundary. We prove the following result.

Proposition 6.1. Let u0 ∈ Xm,γ, with u0 ≥ 0, and suppose that there exist ρ > 0 and c > 0 such

that for all x ∈ Ωm with |x| ≥ ρ,

u0(x) ≥ cψ0(x), (6.1)

where ψ0 is given by (1.10). Let u(t, ·) = u(t) = Sm(t)u0 be the resulting solution of (1.1) as given

by Theorem 1.2, and fix any t0 > 0. It follow that v0 ≡ Sm(t0)u0 verifies the condition

v0(x) ≥

c′x1x2 · · ·xm, 0 < |x| ≤ 1;

c′x1x2 · · ·xm|x|−(γ+2m), |x| ≥ 1,
(6.2)

for some c′ > 0, where the constant c′ may depend on t0.

We refer the reader to [8] for results of this type on a general domain. The present situation

differs from that in [8] in that the sector Ωm does not have the required regularity, and also that

here we include the possibility that u0 could be identically zero on a bounded subset of Ωm. Unlike

[8], our proof makes use of the explicit form of the kernel for the heat semigroup on Ωm.

Proof. We first note that it suffices by comparison to prove this for the specific initial value

u0(x) =

0, x ∈ Ωm, |x| < ρ;

cψ0(x), x ∈ Ωm, |x| ≥ ρ,
(6.3)

where ψ0 is given by (1.10), and ρ > 0 is arbitrary. To accomplish this, we first prove that for any

fixed t0 > 0, v0 = et0∆mu0 verifies (6.2), where u0 is given by (6.3). For this purpose, since the

estimate is linear, the value of c > 0 in (6.3) is of no importance.

Thus, we consider et∆mu0 on Ωm given by (1.13) and (1.14), where u0 is given by (6.3). Using

the fact that es − e−s ≥ 2s for all s ≥ 0, we see that if x, y ∈ Ωm and 1 ≤ i ≤ m (so that xi ≥ 0
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and yi ≥ 0), then

e−
|xi−yi|

2

4t − e−
|xi+yi|

2

4t = e−
|xi|

2

4t e−
|yi|

2

4t

[
e
xiyi
2t − e−

xiyi
2t

]
≥
[xiyi
t

]
e−
|xi|

2

4t e−
|yi|

2

4t ≥
[xiyi
t

]
e−
|xi|

2

2t e−
|yi|

2

2t

(6.4)

In addition, for m+ 1 ≤ j ≤ N , we have (since (s− r)2 ≤ 2s2 + 2r2),

e−
|xj−yj |

2

4t ≥ e−
|xj |

2

2t e−
|yj |

2

2t .

It follows that

et∆mu0(x) =

∫
Ωm

Kt(x, y)u0(y)dy

= (4πt)−
N
2

∫
Ωm

N∏
j=m+1

e−
|xj−yj |

2

4t

m∏
i=1

[
e−
|xi−yi|

2

4t − e−
|xi+yi|

2

4t

]
u0(y)dy

≥ cx1x2 · · ·xmt−m(4πt)−
N
2 e−

|x|2
2t

∫
Ωm

y1y2 · · · yme−
|y|2
2t u0(y)dy

= cx1x2 · · ·xmt−m(4πt)−
N
2 e−

|x|2
2t

∫
y∈Ωm
|y|≥ρ

y2
1y

2
2 · · · y2

me
− |y|

2

2t |y|−γ−2mdy. (6.5)

This shows in particular that for any t > 0, et∆mu0 satisfies (6.2), but only on any give bounded

set in Ωm.

We turn our attention to the case where |x| is large.

For x ∈ Ωm, let

Ωm(x) = {y ∈ Ωm : 0 < xi ≤ yi ≤ max[2xi, 2], 1 ≤ i ≤ m, 0 < |xi| ≤ |yi| ≤ max[2|xi|, 2],m < i ≤ N}.
(6.6)

If y ∈ Ωm(x), then

|y|2 =

N∑
i=1

y2
i ≤

N∑
i=1

max[2|xi|, 2]2 ≤
N∑
i=1

(4x2
i + 4) = 4|x|2 + 4N.

Since this calculation is for large |x| we may suppose that

|x|2 ≥ N, (6.7)

and so we see that

y ∈ Ωm(x) =⇒ |y| ≤ 2
√

2|x| ≤ 4|x|. (6.8)

Also, we want to use the specific formula in (6.3), so we impose

|x| ≥ ρ, (6.9)

where ρ is as in (6.3). Hence

y ∈ Ωm(x) =⇒ |y| ≥ ρ. (6.10)
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We can now calculate.

et∆mu0(x) =

∫
Ωm

Kt(x, y)u0(y)dy ≥
∫

Ωm(x)
Kt(x, y)u0(y)dy

=

∫
Ωm(x)

Kt(x, y)y1y2 · · · ym|y|−γ−2mdy

≥ 4−γ−2m|x|−γ−2m

∫
Ωm(x)

Kt(x, y)y1y2 · · · ymdy

= 4−γ−2m|x|−γ−2m(4πt)−
N
2

(
m∏
i=1

∫ max[2xi,2]

xi

[
e−
|xi−yi|

2

4t − e−
|xi+yi|

2

4t

]
yidyi

)

×

(
N∏

i=1+m

∫
|xi|≤|yi|≤max[2|xi|,2]

e−
|xi−yi|

2

4t dyi

)

= 4−γ−2m|x|−γ−2m(4πt)−
N
2

(
m∏
i=1

∫ max[2xi,2]

xi

[
e−
|xi−yi|

2

4t − e−
|xi+yi|

2

4t

]
yidyi

)
(6.11)

×

(
N∏

i=1+m

∫ max[2|xi|,2]

|xi|

[
e−
|xi−yi|

2

4t + e−
|xi+yi|

2

4t

]
dyi

)
.

We first need to examine the integral

∫ max[2xi,2]

xi

[
e−
|xi−yi|

2

4t − e−
|xi+yi|

2

4t

]
yidyi

for 1 ≤ i ≤ m, under two different circumstances, 0 < xi < 1 and xi ≥ 1. Consider first the case

xi ≥ 1. We have, since yi ≥ xi,

∫ max[2xi,2]

xi

[
e−
|xi−yi|

2

4t − e−
|xi+yi|

2

4t

]
yidyi ≥ xi

∫ 2xi

xi

[
e−
|xi−yi|

2

4t − e−
|xi+yi|

2

4t

]
dyi

= xi

∫ xi

0

[
e−
|yi|

2

4t − e−
|2xi+yi|

2

4t

]
dyi

≥ xi
∫ xi

0

[
e−
|yi|

2

4t − e−
|2xi|

2

4t e−
|yi|

2

4t

]
dyi

= xi

∫ xi

0
e−
|yi|

2

4t

[
1− e−

|2xi|
2

4t

]
dyi

≥ xi
[
1− e−

1
t

] ∫ 1

0
e−
|yi|

2

4t dyi

= C1
t xi.
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We next consider the case xi ≤ 1. We have, by (6.4),

∫ max[2xi,2]

xi

[
e−
|xi−yi|

2

4t − e−
|xi+yi|

2

4t

]
yidyi ≥

∫ 2

1

[xiyi
t

]
e−
|xi|

2

2t e−
|yi|

2

2t yidyi

= xie
− |xi|

2

2t

∫ 2

1

[
y2
i

t

]
e−
|yi|

2

2t dyi

≥ xie−
1
2t

∫ 2

1

[
y2
i

t

]
e−
|yi|

2

2t dyi

= C2
t xi.

We second need to examine the integral

∫ max[2|xi|,2]

|xi|

[
e−
|xi−yi|

2

4t + e−
|xi+yi|

2

4t

]
dyi

for m+ 1 ≤ i ≤ N, under two different circumstances, 0 < |xi| < 1 and |xi| ≥ 1.

Consider first the case |xi| ≥ 1. We have, if in addition xi < 0, that is −xi ≥ 1,

∫ max[2|xi|,2]

|xi|

[
e−
|xi−yi|

2

4t + e−
|xi+yi|

2

4t

]
dyi =

∫ −2xi

−xi

[
e−
|xi−yi|

2

4t + e−
|xi+yi|

2

4t

]
dyi

≥
∫ −2xi

−xi

[
e−
|xi+yi|

2

4t

]
dyi

=

∫ −xi
0

e−
|yi|

2

4t dyi

≥
∫ 1

0
e−
|yi|

2

4t dyi

= C3
t .

We have, if in addition xi > 0, that is xi ≥ 1,

∫ max[2|xi|,2]

|xi|

[
e−
|xi−yi|

2

4t + e−
|xi+yi|

2

4t

]
dyi =

∫ 2xi

xi

[
e−
|xi−yi|

2

4t + e−
|xi+yi|

2

4t

]
dyi

≥
∫ 2xi

xi

[
e−
|xi−yi|

2

4t

]
dyi

=

∫ xi

0
e−
|yi|

2

4t dyi

≥
∫ 1

0
e−
|yi|

2

4t dyi

= C3
t .
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We next consider the case |xi| ≤ 1. By the inequality, e−
|xj−yj |

2

4t ≥ e−
|xj |

2

2t e−
|yj |

2

2t , we have∫ max[2|xi|,2]

|xi|

[
e−
|xi−yi|

2

4t + e−
|xi+yi|

2

4t

]
dyi ≥

∫ 2

1

[
e−
|xi−yi|

2

4t

]
dyi

≥
∫ 2

1
e−
|xi|

2

2t e−
|yi|

2

2t dyi

≥ e−
1
2t

∫ 2

1
e−
|yi|

2

2t dyi

= C4
t .

In all cases, we have ∫ max[2xi,2]

xi

[
e−
|xi−yi|

2

4t − e−
|xi+yi|

2

4t

]
yidyi ≥ Ctxi (6.12)

for 1 ≤ i ≤ m and ∫ max[2|xi|,2]

|xi|

[
e−
|xi−yi|

2

4t + e−
|xi+yi|

2

4t

]
dyi ≥ Ct (6.13)

for m+ 1 ≤ i ≤ N, whenever x ∈ Ωm.

It therefore follows from (6.11), (6.12), (6.13) that, if x ∈ Ωm, then

et∆mu0(x) ≥ Ctx1x2 · · ·xm|x|−γ−2m, |x| ≥ max[
√
N, ρ]. (6.14)

Combining (6.5) and (6.14), we obtain that for any fixed t > 0, et∆mu0 satisfies (6.2).

We next show the same result for u(t, ·) = u(t) = Sm(t)u0 be the resulting solution of (1.1),

where u0 is given by (6.3). To do so, set w(t) = eµtu(t), where µ = [cργ+m]α ≥ ‖u0‖αL∞(Ωm). Since

u(t) ≤ ‖u0‖L∞(Ωm) for all t > 0, we have u(t)α ≤ µ for all t > 0. It follows that

w′(t) = eµtu′(t) + eµtµu(t) ≥ eµtu′(t) + eµtu(t)αu(t) = eµt∆u(t) = ∆w(t).

Hence w(t) ≥ et∆mw(0) = et∆mu0. In other words u(t) ≥ e−µtet∆mu0, which implies the desired

result. �

Remark 6.2. In addition to being well-posed in C0(Ωm), in Lq(Ωm) for 1 ≤ q <∞, as noted in the

introduction, and in Xm,γ , as per Theorem 1.2, equation (1.1) is globally well-posed in L∞(Ωm) in

the following sense. For every u0 ∈ L∞(Ωm), there is a unique solution u ∈ C((0,∞);Cb,u0 (Ωm)) of

the integral equation (1.20), where Cb,u0 (Ωm) denotes the closed subspace of L∞(Ωm) of bounded,

uniformly continuous functions on Ωm which are zero on ∂Ωm, but not necessarily as |x| → ∞.

This solution has the following additional properties: the function u is a classical solution of (1.1)

on (0,∞)×Ωm, ‖u(t)− et∆mu0‖L∞(Ωm) → 0 as t→ 0, and |u(t)| ≤ (αt)1/α, for all t > 0. One way

to see this is first to establish the corresponding result on L∞(RN ), but of course with Cb,u(RN )

instead of Cb,u0 (Ωm), and then to restrict to anti-symmetric functions on RN . The result on RN

follows from standard arguments, i.e. contraction mapping, parabolic regularity, and comparison.

We refer the reader to Appendices B and C of [2] for detailed information about et∆ on Cb,u(RN ). In

particular, [2, Lemma B.1] establishes that et∆h ∈ Cb,u(RN ) for all h ∈ L∞(RN ) and [2, Theorem
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C.1], which still valid for the nonlinear heat equation with absorption, establishes the necessary

regularity.

Proposition 6.3. Let m ∈ {1, 2, · · · , N} and α > 0. There exists a self-similar solution V (t, x) =

t−1/αg( x√
t
) of equation (1.1) such that g ∈ Cb,u0 (Ωm), the space of bounded uniformly continuous

functions on Ωm which are zero on ∂Ωm, g ≥ 0, and

α−1/αe∆mh ≤ g ≤ (αε)−1/αe(1−ε)∆mh (6.15)

for all 0 < ε < 1, where h(x) = 1 is the constant function on Ωm.

The self-similar solution V is characterized by

V = lim
λ→∞

Γ
2/α
λ v (6.16)

where v is the solution to (1.1) with initial value v0 = h, as described in Remark 6.2, the dilations

Γ
2/α
λ are defined by (1.24), and where the limit (6.16) is uniform on compact subsets of (0,∞)×Ωm.

We observe that in the case m = 0, the corresponding self-similar solution is (αt)−1/α.

Proof. Throughout this proof, we let h ∈ L∞(Ωm) denote the specific function

h(x) = 1, x ∈ Ωm. (6.17)

It follows from (1.15) that

(eλ
2t∆mh)(λx) = (et∆mh)(x) (6.18)

Next we let v = v(t, x) be the global solution of (1.1) or (1.20) with initial value v0 = h, i.e.

v0(x) = v(0, x) = 1, for all x ∈ Ωm, as described in Remark 6.2. For all λ > 0,

vλ(t, x) = λ2/αv(λ2t, λx)

is likewise a solution of (1.1) or (1.20), but with initial value

v0,λ(x) = vλ(0, x) = λ2/αv0(λx) = λ2/α (6.19)

for all x ∈ Ωm. Since λ → v0,λ is an increasing function, by comparison so must be λ → vλ.

Moreover, we know that

vλ(t, x) ≤ (αt)−1/α, (6.20)

so that the vλ must converge to some function

V (t, x) ≤ (αt)−1/α,

and in particular V (t) ∈ L∞(Ωm) for t > 0. Since each vλ is a solution of the integral equation

(1.20) on every interval [ε, T ] ⊂ (0,∞), the same must be true for V , by the monotone convergence

theorem. Hence V is a solution of (1.1) and V ∈ C((0,∞);Cb,u0 (Ωm)) since initial values in L∞(Ωm)

give rise to solutions of (1.20) in C((0,∞);Cb,u0 (Ωm)) as per Remark 6.2. Note that by parabolic

regularity and standard compactness arguments, the convergence of the vλ to V is uniform on
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compact subsets of (0,∞)×Ωm. Moreover, V a self-similar solution, being the limit of the dilated

solutions vλ. Thus we can write

V (t, x) = t−1/αg(
x√
t
), (6.21)

where g = V (1) ∈ Cb,u0 (Ωm) is the profile of V .

As for the behavior of g we first observe that, for t > 0 and ε > 0, by (6.20),

vλ(t+ ε, ·) ≤ et∆m(vλ(ε)) ≤ (αε)−1/αet∆mh.

Letting λ→∞, we see that for t > 0 and ε > 0,

V (t+ ε) ≤ et∆mV (ε) ≤ (αε)−1/αet∆mh,

so that

g = V (1) ≤ (αε)−1/αe(1−ε)∆mh (6.22)

for all small 0 < ε < 1. Also

V (2t) ≤ (αt)−1/αet∆mh. (6.23)

On the other hand, we claim that for all t > 0

V (t) ≥ (αt)−1/αet∆mh. (6.24)

To see this, we first show that

v(t) ≥ (1 + αt)−1/αet∆mh. (6.25)

Indeed, if we set w(t) = (1 + αt)1/αv(t), so that w(0) = v(0) = h, then since v(t) ≤ (1 + αt)−1/α,

(which follows in particular from Proposition 1.5 since |et∆mv0| ≤ 1) we get that

w′(t) = (1 + αt)
1
α
−1v(t) + (1 + αt)1/αv′(t)

≥ (1 + αt)1/αv(t)α+1 + (1 + αt)1/αv′(t)

= ∆w(t),

which implies that w(t) ≥ et∆mw(0) = et∆mh. This proves (6.25). By (6.18), it follow that

vλ(t, x) ≥ λ2/α(1 + αλ2t)−1/α(etλ
2∆mh)(λx) = (λ−2 + αt)−1/αet∆mh. (6.26)

The lower bound (6.24) now follows by letting λ→∞ in (6.26). Hence

g = V (1) ≥ α−1/αe∆mh. (6.27)

Finally, we note the perhaps curious result that

V (2t) ≤ (αt)−1/αet∆mh ≤ V (t) (6.28)

for all t > 0.

�
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Proof of Theorem 1.11. By the hypotheses on u0 and by Proposition 6.1, we have that for t0 > 0,

u(t0, x) ≥ cx1 · · ·xm min[1, |x|−γ−2m], (6.29)

on Ωm and we know that u(t0) ∈ C0(Ωm). Up to a translation in time and since we are concerned

with the large time behavior, we may suppose that u0 ∈ Xm,γ ∩C0(Ωm), u0 ≥ 0 and verifies (6.29).

In fact, it suffices to assume

u0(x) = cx1 · · ·xm min[1, |x|−γ−2m]. (6.30)

Indeed, suppose u0(x) = cx1 · · ·xm min[1, |x|−γ−2m] ≤ v0(x) ≤ c′ for some c′ > c, and that u(t, x),

v(t, x) and w(t, x) are the solutions of (1.1) with initial values respectively u0, v0 and w0 ≡ c′. We

know by comparison that

t
1
αu(t, x

√
t) ≤ t

1
α v(t, x

√
t) ≤ t

1
αw(t, x

√
t). (6.31)

Hence if we prove that

lim
t→∞

t
1
αu(t, x

√
t) = g(x)

uniformly on compact subsets of Ωm, then clearly, since by Proposition 6.3

lim
t→∞

t
1
αw(t, x

√
t) = g(x)

also uniformly on compact subsets of Ωm, it follows that

lim
t→∞

t
1
α v(t, x

√
t) = g(x)

uniformly on compact subsets of Ωm. Thus, we now assume the initial value u0 ∈ Xm,γ is given by

(6.30), and we denote by u(t) = Sm(t)u0 be the resulting solution of (1.1) given by Theorem 1.2.

We use a method introduced in [7]. Consider the space-time dilations functions defined by (1.24)

with σ = 2/α:

uλ(t, x) = Γ
2/α
λ u(t, x) = λ2/αu(λ2t, λx), λ > 0, t > 0, x ∈ Ωm. (6.32)

In particular, uλ is the solution of (1.1) with initial data

u0,λ(x) = D
2/α
λ u0(x) = λ2/αu0(λx) = cλ2/αx1 · · ·xm min[λm, λ−γ−m|x|−γ−2m], x ∈ Ωm. (6.33)

Since 2
α > γ + m, it follows that u0,λ(x) is an increasing function in λ > 0, for all x ∈ Ωm. (It’s

the minimum of two functions which are obviously increasing in λ.) Consequently, the solutions

uλ(t, x) are likewise increasing in λ > 0. We note also that the solutions wλ(t, x) are increasing in

λ > 0 (as in the proof of Proposition 6.3), where w is the solution with initial value w0 ≡ c′ as

above.

Since

uλ(t, x) ≤ wλ(t, x) ≤ V (t, x), in (0,∞)× Ωm,

where V is the self-similar solution of Proposition 6.3, it follows that the following limit

lim
λ→∞

uλ(t, x) = U(t, x) ≤ V (t, x), (6.34)
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exists and

uλ(t, x) ≤ U(t, x), (6.35)

for all λ > 0. Moreover, by parabolic regularity and standard compactness arguments, the limit

(6.34) is uniform on compact subsets of (0,∞)× Ωm.

We next wish to show that

U(t, x) = V (t, x) (6.36)

on (0,∞)× Ωm. For this we need to obtain a lower bound for U.

Let A > 0, and consider the family of truncated initial values

uA0,λ(x) = min[u0,λ(x), A], x ∈ Ωm.

Let zAλ be the solution of (1.1) with initial data uA0,λ. By comparison principle and (6.35)

zAλ (t, x) ≤ uλ(t, x) ≤ U(t, x), in [0,∞)× Ωm, (6.37)

for every λ > 0 and A > 0. Moreover, it is clear from (6.33) that for each fixed A > 0, the initial

values uA0,λ(x) are an increasing function of λ > 0, and so therefore must be the solutions zAλ (t, x).

Furthermore, the initial values satisfy the monotone limit

lim
λ→∞

uA0,λ(x) = A, (6.38)

and the corresponding solutions converge in a monotone fashion to some function

lim
λ→∞

zAλ (t, x) = ZA(t, x) ≤ U(t, x). (6.39)

We next consider the integral equation satisfied by zAλ (t), i.e. equation (1.20) with initial value

uA0,λ. Using (6.38) and (6.39) along with the monotone convergence theorem, we see that ZA(t)

satisfies

ZA(t) = et∆mA−
∫ t

0
e(t−s)∆m (|ZA(s)|αZA(s)) ds, (6.40)

i.e. ZA is the solution of (1.20) with initial value ZA(0) ≡ A on Ωm.

We know by (the proof of) Proposition 6.3 that

lim
A→∞

ZA(t) = V (t),

which implies, along with (6.39), that V (t, x) ≤ U(t, x). Thus by (6.34), V (t, x) = U(t, x).

Thus we have shown that

lim
λ→∞

uλ(t, x) = lim
λ→∞

λ2/αu(λ2t, λx) = V (t, x) = t−1/αg(
x√
t
), (6.41)

where the limit is uniform on compact subsets of (0,∞) × Ωm. The result now follows first by

setting t = 1 in (6.41), and then by replacing λ2 by τ .

�
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7. Case of RN

In this section, we consider the extension of the results in the previous section on the sectors

Ωm to the case of antisymmetric functions on RN . Recall that if ψ : Ωm → R, then ψ̃ denotes

its pointwise extension to RN which is antisymmetric with respect to x1, x2, · · · , xm. Similarly, if

K ⊂ Ωm, then K̃ ⊂ RN denotes its antisymmetric extension. Similar notation is used for spaces of

functions, etc.

The following two results show the equivalence of various kinds of convergence on Ωm to the

corresponding convergence on RN .

Proposition 7.1. Let m ∈ {1, · · · , N}, 0 < γ < N and M > 0. Let (ψk)k≥1 ⊂ Bm,γ,M and

ψ ∈ Bm,γ,M . The following are equivalent:

(i) ψk → ψ in B?m,γ,M as k →∞;

(ii) ψk → ψ in D′(Ωm) as k →∞;

(iii) ψ̃k → ψ̃ in S ′(RN ) as k →∞;

(iv) ψ̃k → ψ̃ in B̃?m,γ,M as k →∞;

(v) ψ̃k → ψ̃ in D′(RN\{0}) as k →∞;

(vi) ψ̃k → ψ̃ in (Bγ+m
M )? as k →∞.

Proof. From [9, Proposition 3.1 (i), p. 356] and [9, Proposition 5.1, p. 361] the statements (i),

(ii), (iii) and (iv) are equivalent. From [3, Proposition 2.1 (i), p. 1110] we have (v) and (vi) are

equivalent. It is clear that (v) implies (ii) and (iii) implies (v). This proves the result. �

Proposition 7.2. Let m ∈ {1, · · · , N}, 0 < γ < N and M > 0. Let (ψk)k≥1 ⊂ Bm,γ,M and

ψ ∈ Bm,γ,M . The two following statement are equivalent:

(i) ψk → ψ in L1
loc(Ωm) as k →∞;

(ii) ψ̃k → ψ̃ in L1
loc(RN\{0}) as k →∞.

Proof. (i) ⇒ (ii). It suffices to show that
∫
ρ≤|x|≤R |ψ̃k − ψ̃|dx → 0 for all 0 < ρ < R < ∞. We

know by assumption (i) that for every δ > 0,
∫
K̃δ
|ψ̃k − ψ̃|dx = 2m

∫
Kδ
|ψk − ψ|dx → 0 as k → ∞,

where Kδ = {x ∈ Ωm : ρ ≤ |x| ≤ R, dist(x, ∂Ωm) ≥ δ}. On the other hand,
∫
Kc
δ
|ψk − ψ|dx ≤

2M
∫
Kc
δ
ψ0dx → 0 as δ → 0, where Kc

δ = {x ∈ Ωm : ρ ≤ |x| ≤ R, dist(x, ∂Ωm) ≤ δ}. Thus, given

ε > 0, fix δ > 0 so that
∫
Kc
δ
|ψk − ψ|dx ≤ ε

2m+1 for all k ≥ 1 and then choose k0 > 0 so that∫
Kδ
|ψk − ψ|dx ≤ ε

2m+1 for all k ≥ k0.

(ii) ⇒ (i). Let K be a compact of Ωm. Then by continuity of the reflection function, K̃ is a

compact of RN\{0} and
∫
K |ψk − ψ|dx = 2−m

∫
K̃
|ψ̃k − ψ̃|dx→ 0 as k →∞. Hence (i) holds. This

establishes the result. �

In light of Propositions 7.1 and 7.2, Theorems 1.14, 1.16, 1.17, 1.18, and 1.19 are now immediate

consequences of the analogous results on the sector Ωm, either by re-interpretation as results about

antisymmetric functions on RN as described in [12, Section 3], or by simply re-doing the proofs
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essentially line for line but considering the antisymmetric extension to RN of all the functions

defined on Ωm.

We wish, however, to specifically identify the self-similar solution on RN which is the antisym-

metric extension of the self-similar solution constructed in Proposition 6.3, as we think it is of

sufficient independent interest.

Proposition 7.3. Let m ∈ {1, 2, · · · , N} and α > 0. There exists a self-similar solution V (t, x) =

t−1/αg( x√
t
) of equation (1.1) such that g ∈ Cb,u(RN ), the space of bounded uniformly continuous

functions on RN , g is anti-symmetric in x1, x2, · · · , xm, and

α−1/αe∆h(x) ≤ g(x) ≤ (αε)−1/αe(1−ε)∆h(x), x ∈ Ωm, (7.1)

for all 0 < ε < 1, where h ∈ L∞(RN ) is the antisymmetric function such that h(x) = 1, x ∈ Ωm.

The self-similar solution V is characterized by

V = lim
λ→∞

Γ
2/α
λ v (7.2)

where v is the solution to (1.1) on RN with initial value v0 = h, as described in Remark 6.2, the

dilations Γ
2/α
λ are defined by (1.24), and where the limit (6.16) is uniform on compact subsets of

(0,∞)× RN .

8. Appendix

We give here the proof of the parabolic version of the Kato’s inequality, and we use it to establish

a basic estimation used to prove Theorem 1.1. See also [10, Lemma A.1, p. 570].

Lemma 8.1. (Kato’s parabolic inequality) Let Q ⊂ R × RN be any open set. Let u ∈ L1
loc(Q) be

such that:

ut −∆u = f in D′(Q);

with f ∈ L1
loc(Q), then

|u|t −∆|u| ≤ sign(u)f in D′(Q).

where

sign(u) =


1 if u > 0,

−1 if u < 0,

0 if u = 0.

Proof. If F : R→ R is a C2 convex function and z : Q→ R a C2 function, then

(∂t −∆)F (z) = F ′(z)∂tz −
[
F ′(z)∆z + F ′′(z)|∇z|2

]
= F ′(z)(∂t −∆)z − F ′′(z)|∇z|2

≤ F ′(z)(∂t −∆)z.

Mollify u to uk = ρk ? u such that uk ∈ C∞(Q), where ρk is a sequence of mollifiers. Note that

uk → u and (∂t −∆)uk → (∂t −∆)u in L1
loc(Q) as k →∞. It follows that

(∂t −∆)F (uk) ≤ F ′(uk)(∂t −∆)uk.
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We set F (z) =
√
ε2 + z2. We obtain then

(∂t −∆)F (uk) ≤
uk

F (uk)
(∂t −∆)uk. (8.1)

By a simple calculation, we have

|F (uk)− F (u)| ≤
∣∣|uk| − |u|∣∣ ≤ |uk − u|

then F (uk) → F (u), as k → ∞, in L1
loc(Q) as well as pointwise a.e. and (∂t − ∆)F (uk) →

(∂t − ∆)F (u), as k → ∞, in D′(Q). Since
∣∣∣ uk
F (uk)

∣∣∣ ≤ 1 then the dominated convergence theorem

implies that uk
F (uk) →

u
F (u) , as k →∞, in L1

loc(Q) . Letting k →∞ in (8.1), we obtain that

(∂t −∆)F (u) ≤ u

F (u)
(∂t −∆)u =

u

F (u)
f. (8.2)

Since F (u) → |u| uniformly, as ε → 0, such that (∂t − ∆)F (u) → (∂t − ∆)|u| in D′(Q). Also
u

F (u) →
u
|u| in L1

loc(Q) (again by the dominated convergence theorem). By letting ε → 0 in (8.2),

we obtain that

(∂t −∆)|u| ≤ sign(u)f.

This completes the proof. �

We have the following result, which is an application of Kato’s inequality.

Corollary 8.2. Let X = C0(Ωm) or Lp(Ωm) for some 1 ≤ p <∞. Let u, v ∈ C((0,∞), X) be two

solutions of the equation (1.1) with initial values respectively u0, v0 ∈ X. Then

|u(t)− v(t)| ≤ et∆m |u0 − v0|,

for all t > 0.

Proof. Denote by w the unique solution with initial value w0 = |u0−v0|
2 ∈ X.

Let z = |u − v|. Applying Lemma 8.1 with Q = (0,∞) × Ωm and f = |v|αv − |u|αu ∈ C(Q), we

have that

zt −∆z + ||u|αu− |v|αv| ≤ 0.

Since, ||u|αu− |v|αv| ≥ 2−α|u− v|α+1 = 2−αzα+1, we deduce that

zt −∆z + 2−αzα+1 ≤ 0.

Let z = z
2 . Then

zt −∆z + zα+1 ≤ 0 = wt −∆w + wα+1.

Since z(0) = w(0), it follows from the comparison principle, that z ≤ w. Since

w(t) = et∆mw0 −
∫ t

0
e(t−s)∆m

(
w(s)α+1

)
ds ≤ et∆mw0,

the result follows. �
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Finally, we give two results which we found during our research for this article, and which we

believe have an independent interest, but which ultimately were not needed for the proofs of the

main results.

Consider the eigenvalue problem, on some domain B ⊂ RN

−∆H = ΛH (8.3)

where Λ ∈ R. We look for a solution of the form

H(x) = x1x2 · · ·xmQ(r) (8.4)

where r = (x2
1 + x2

2 + · · ·+ x2
N )1/2. We note that for 1 ≤ i ≤ m,

∂iH(x) = x1x2 · · · x̂i · · ·xmQ(r) + x1x2 · · ·xmQ′(r)
∂r

∂xi

= x1x2 · · · x̂i · · ·xmQ(r) + x1x2 · · ·xmQ′(r)
xi
r
,

where x̂i means that xi is missing from the product, and

∂2
iH(x) = 2x1x2 · · · x̂i · · ·xmQ′(r)

xi
r

+ x1x2 · · ·xm
[
Q′′(r)

(xi
r

)2
+Q′(r)

r2 − x2
i

r3

]
= 2x1x2 · · ·xm

Q′(r)

r
+ x1x2 · · ·xm

[
Q′′(r)

(xi
r

)2
+Q′(r)

r2 − x2
i

r3

]
,

and if m < i ≤ N , then

∂2
iH(x) = x1x2 · · ·xm

[
Q′′(r)

(xi
r

)2
+Q′(r)

r2 − x2
i

r3

]
,

It follows that

∆H(x) =
N∑
i=1

∂2
iH(x) = x1x2 · · ·xm

[
2m

r
Q′(r) +Q′′(r) +

N − 1

r
Q′(r)

]
= x1x2 · · ·xm

[
Q′′(r) +

N + 2m− 1

r
Q′(r)

]
. (8.5)

Proposition 8.3. Let B1 = {x ∈ Ωm : |x| < 1} ⊂ RN , and let Λ > 0 be the lowest eigenvalue of

−∆ on B1 with Dirichlet boundary conditions. It follows that there exists an eigenfunction H1 :

B1 → [0,∞) of the form (8.4) where Q : [0, 1]→ [0,∞) is decreasing with Q(0) = 1 and Q(1) = 0

and r = (x2
1+x2

2+· · ·+x2
N )1/2. Moreover, the value of Λ > 0 is precisely the lowest eigenvalue of −∆

on the unit ball in RN+2m with Dirichlet boundary conditions, and its corresponding eigenfunction

is precisely Q(r′) where r′ = (x2
1 + x2

2 + · · ·+ x2
N+2m)1/2.

Proof. Let Q(r′), where r′ = (x2
1 + x2

2 + · · · + x2
N+2m)1/2, denote the radially symmetric, radially

decreasing, nonnegative eigenfunction of −∆ on the unit ball in RN+2m, [normalized so that Q(0) =



THE NONLINEAR HEAT EQUATION WITH ABSORPTION 37

1], with eigenvalue Λ > 0. In particular, the function Q : [0, 1] → [0,∞) satisfies the differential

equation

−
[
Q′′(s) +

N + 2m− 1

s
Q′(s)

]
= ΛQ(s), 0 < s ≤ 1. (8.6)

Let H : B1 → R+ be given by (8.4), where r = (x2
1 + x2

2 + · · · + x2
N )1/2. It follows from (8.5) and

(8.6) that −∆H = ΛH on B1 and that H(x) = 0 for all x ∈ ∂B1. Since H(x) > 0 for all x ∈ B1,

it follows that Λ is the lowest eigenvalue of −∆ on B1. �

Let us now give a remark about the elliptic equation verified by ψ0.

Remark 8.4. Let N ≥ 1, m ∈ {0, 1, · · · , N}, 0 < γ < N and ψ0 be given by (1.10). Then

−∆ψ0 = (γ + 2m)(N − 2− γ)
ψ0

|x|2
, (8.7)

for all x ∈ Ωm.

Proof. By (1.10) the function ψ0 can be written in the form (8.4), that is

ψ0(x) = x1 · · ·xmQ(r),

with Q(r) = cm,γr
−γ−2m, r = (x2

1 + · · ·+x2
m + · · ·+x2

N )1/2, where cm,γ = γ(γ+ 2) · · · (γ+ 2m− 2).

For such a Q we have

Q′′(r) +
N + 2m− 1

r
Q′(r) = cm,γ(γ + 2m)[γ + 2m+ 1− (N + 2m− 1)]r−γ−2m−2

= cm,γ(γ + 2m)(γ + 2−N)r−γ−2m−2.

The result follows then by (8.5). �
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