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Abstract: This paper presents a data-driven control for a set of synchronous generators based
on the improved swing equation model by using the Koopman operator. First, the nonlinear
dynamic of the generators is represented by a linear model in lifted space using extended dynamic
mode decomposition (EDMD). Then, a linear predictor is built and used for the design of a model
predictive control following three strategies: decentralized, non-cooperative, and cooperative.
The Koopman representation of the generator is used to carry out an analysis, determining its
eigenvalues. Several interconnected generators are controlled showing the performance of the
interconnected system including voltage faults.
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1. INTRODUCTION

The reduction in the prices of renewable and diesel-based
sources has boosted the design and implementation of
small electrical systems. These elements are the foundation
for building the microgrid, which is a cyber-physical sys-
tem that gathers generators, loads, and storage devices ca-
pable of supplying demand even if it is disconnected from
the utility network. When the microgrid works in islanded
mode, the conditions for power-quality and availability are
guaranteed by the set of sources. Several MGs are inverter-
based, causing the MG to have a low-inertia, which is
critical when abrupt load changes occur, and provoking
changes in the frequency of the microgrid, degrading the
power-quality, and compromising the stability of the sys-
tem. In MGs with synchronous machines and inverters, the
inertia is dominated by synchronous generators because of
the fast response of inverters Tamrakar et al. (2020), this
makes the study of stability in synchronous generators a
paramount problem.

There are several control strategies for synchronous ma-
chines and microgrids; most of them are based on the swing
equation model that relates to electrical and mechanical
powers Bouzid et al. (2015). A linear swing equation is
used to simplify control design; however, this reduces the
accuracy of the control strategy. Zhou and Ohsawa (2008)
presents an improved swing nonlinear equation which is
used to analyze equilibrium points for a generator con-
nected to an infinite bus. Monshizadeh et al. (2016) uses
the nonlinear model of the swing equation to analyze the
domain of attraction when the synchronous generator is
connected to a constant load and to an infinite bus. In
addition, stability is proved by using a Lyapunov function.
Caliskan and Tabuada (2015) shows some problems of

using swing equation and prove stability even with small
oscillations. Finally, Vaidya et al. (1999) shows the exis-
tence of chaotic behavior in a three generator system using
swing equation.

The nonlinear model has some limitations when it is used
in traditional control techniques. The behavior of the sys-
tem might be unpredictable when generators work in a
networked form Vaidya et al. (1999). The frequency correc-
tion in a network with synchronous machines implies the
use of a large quantity of energy in a short time. Therefore,
the problem of reducing the control effort by determining
the optimal control signal is of relevant importance. Model
predictive control (MPC) is an alternative to overcome the
limitations of classical controllers, allowing the inclusion
of particular restrictions. MPC might use directly the
nonlinear model of the improved swing equation; however,
the nonlinear nature and the restrictions inherent to the
problem can be problematic to solve it on a finite horizon.

The Koopman operator allows to describe a dynamical
system as a linear one but of infinite dimension in a new
space known as the space of observables Budǐsić et al.
(2012). This representation is highly convenient for MPC
design, simplifying the optimization process by changing
the nonlinear model for a linear one in the space of
observables or lifted-space. The Koopman representation
can be determined by several algorithms; in particular,
data-based methods offer a considerable advantage due
to the availability of measurement from real sources or
detailed simulations. Among some of the data-based meth-
ods are the dynamic mode decomposition (DMD) Tu
et al. (2014), and extended dynamic mode decomposition
(EDMD) Williams et al. (2015). The last one uses a dic-
tionary of functions or bases to lift the set of measure-
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(e-mail: bwtorot@unal.edu.co, eamojican@unal.edu.co,

datellezc@unal.edu.co).
∗∗ IMT Atlantique Bretagne-Pays de la Loire, 44307 France (e-mail:

naly.rakoto@imt-atlantique.fr)

Abstract: This paper presents a data-driven control for a set of synchronous generators based
on the improved swing equation model by using the Koopman operator. First, the nonlinear
dynamic of the generators is represented by a linear model in lifted space using extended dynamic
mode decomposition (EDMD). Then, a linear predictor is built and used for the design of a model
predictive control following three strategies: decentralized, non-cooperative, and cooperative.
The Koopman representation of the generator is used to carry out an analysis, determining its
eigenvalues. Several interconnected generators are controlled showing the performance of the
interconnected system including voltage faults.

Keywords: Swing equation, model predictive control, Koopman operator, synchronous
generator, distributed control.

1. INTRODUCTION

The reduction in the prices of renewable and diesel-based
sources has boosted the design and implementation of
small electrical systems. These elements are the foundation
for building the microgrid, which is a cyber-physical sys-
tem that gathers generators, loads, and storage devices ca-
pable of supplying demand even if it is disconnected from
the utility network. When the microgrid works in islanded
mode, the conditions for power-quality and availability are
guaranteed by the set of sources. Several MGs are inverter-
based, causing the MG to have a low-inertia, which is
critical when abrupt load changes occur, and provoking
changes in the frequency of the microgrid, degrading the
power-quality, and compromising the stability of the sys-
tem. In MGs with synchronous machines and inverters, the
inertia is dominated by synchronous generators because of
the fast response of inverters Tamrakar et al. (2020), this
makes the study of stability in synchronous generators a
paramount problem.

There are several control strategies for synchronous ma-
chines and microgrids; most of them are based on the swing
equation model that relates to electrical and mechanical
powers Bouzid et al. (2015). A linear swing equation is
used to simplify control design; however, this reduces the
accuracy of the control strategy. Zhou and Ohsawa (2008)
presents an improved swing nonlinear equation which is
used to analyze equilibrium points for a generator con-
nected to an infinite bus. Monshizadeh et al. (2016) uses
the nonlinear model of the swing equation to analyze the
domain of attraction when the synchronous generator is
connected to a constant load and to an infinite bus. In
addition, stability is proved by using a Lyapunov function.
Caliskan and Tabuada (2015) shows some problems of

using swing equation and prove stability even with small
oscillations. Finally, Vaidya et al. (1999) shows the exis-
tence of chaotic behavior in a three generator system using
swing equation.

The nonlinear model has some limitations when it is used
in traditional control techniques. The behavior of the sys-
tem might be unpredictable when generators work in a
networked form Vaidya et al. (1999). The frequency correc-
tion in a network with synchronous machines implies the
use of a large quantity of energy in a short time. Therefore,
the problem of reducing the control effort by determining
the optimal control signal is of relevant importance. Model
predictive control (MPC) is an alternative to overcome the
limitations of classical controllers, allowing the inclusion
of particular restrictions. MPC might use directly the
nonlinear model of the improved swing equation; however,
the nonlinear nature and the restrictions inherent to the
problem can be problematic to solve it on a finite horizon.

The Koopman operator allows to describe a dynamical
system as a linear one but of infinite dimension in a new
space known as the space of observables Budǐsić et al.
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ments from the system and the least-squares minimization
method to get a matrix representation of the Koopman op-
erator. Several works have used the Koopman operator in
power systems defined by the swing equation. Korda et al.
(2018) uses EDMD to build a linear representation of a
set of generators described by the swing equation. There, a
centralized approach is used to control the set of machines.
A Koopman model to enhance the transient stability of a
power grid defined by the swing equation is presented by
Ping et al. (2021), the Koopman model is improved by
using neural networks to learn the basis function in the
EDMD algorithm; also they used a centralized approach
to improve the stability. King et al. (2021) uses the EDMD
algorithm to get a linear model of the power system; it is
used to solve an economic dispatch problem.

The main objective of this paper is to present a distributed
MPC control using a Koopman data-based approxima-
tion of a network of synchronous machines based on the
improved swing equation. The Koopman representation
is obtained using EDMD to construct a linear predictor
for distributed model predictive control (DMPC). The
DMPC is presented in two perspectives: non-cooperative
and a cooperative; both approaches are compared with the
decentralized one presented by Korda et al. (2018).

The rest of the paper is organized as follows: Section 2
presents the improved swing equation, and the form of
finding the Koopman operator using the EDMD algo-
rithm. In Section 3, it is shown the linear predictor design
based on the Koopman operator, and the distributed MPC
control design with a non-cooperative and cooperative
approach. Section 4 shows a case study for a networked
system simulated in Matlab for three scenarios. Finally,
conclusions are presented in Section 5.

Notation Throughout this paper, || · ||2Q denotes the
product between the Euclidean norm of · and matrix Q. L
denotes the Laplacian matrix, Y the admittance matrix,
and Ni denotes the set of neighbors of the ith agent.

2. IMPROVED SWING EQUATION AND KOOPMAN
OPERATOR

In this Section, it is shown the improved swing equation,
and after the generalities of the Koopman operator and
EDMD algorithm.

2.1 Improved swing equation

The improved swing equation is presented by Zhou and
Ohsawa (2008); the angular frequency ω0 is used to deter-
mine the rotor angular displacement θ by a fixed reference
axis fixed at an infinite bus. The displacement is given as
θ = ω0t+ δ, t > t0, where t0 is the initial time, and δ is
the rotor angular displacement regarding the synchronous
reference axis.

The mathematical model in per unit for a network with
N interconnected synchronous generators, including the
impedance between lines, is given by the nonlinear swing
equation Ping et al. (2021) of the form

dδi
dt

= ωi − ωs

2Hi

ωs

dωi

dt
+

Di

ωs
ωi = Pm,i −

N∑
j=1

|EiEj |Bij sin(δi − δj)

−
N∑
j=1

|EiEj |Gij cos(δi − δj)− E2
i GiiPm,i + ui,

(1)

where Hi represents the inertia, Di is the damping con-
stant, ωs is the frequency of reference, δi is the rotor
angle, Pm,i is the mechanical power input, Ei is the voltage
measured at the ith generator, ui is the control input, the
matrix of admittance between generators is given by Y ,
whose elements are given by Yid = Gid + jBid, and Gii is
the self-conductance.

2.2 Koopman operator and EDMD

Consider a nonlinear discrete-time dynamical system de-
fined by

xk+1 = f(xk) (2)

that represents the dynamics of the synchronous generator,
with f : M → M being the space of evolution of the
system.

The Koopman operator is a linear but infinite dimensional
operator K : F → F where F is an invariant subspace
spanned by a set of observables ψ ∈ F , and ψ : M → C.

The composition operator is given by

Kψ(xk) = ψ(f(xk)) = ψ(xk+1), (3)

and maps the value of the observable function one step
further. As the Koopman operator is linear, a set of
eigenfunctions and eigenvalues is defined

Kφl = λlφl(xk) (4)

where φl are the eigenfunctions corresponding to the ob-
servable function, and λl are the corresponding eigenvalues
of K.

The observable function ψ can be written as

ψ(xk+1) = Kψ(x1) =

∞∑
l=1

λlφl(x1)vl (5)

where vl is known as the Koopman mode. Instead of
calculating the infinite sum of (5), ψ can be approximated
by a data-based technique, such as DMD and its extension
EDMD.

EDMD is a data-driven technique based on DMD. First,
a set of Nk observables is defined

D = {ψ1 ψ2 . . . ψNk} .

From a dynamic system given by yi = F (xi), two sets of
data are generated as

X = [x1 x2 . . . xM ], Y = [y1 y2 . . . yM ]

where Y is a shifted version of X.

Then, it is defined the vector value function

Ψ(x) = [ψ1(x) ψ2(x) . . . ψNk(x)].
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ments from the system and the least-squares minimization
method to get a matrix representation of the Koopman op-
erator. Several works have used the Koopman operator in
power systems defined by the swing equation. Korda et al.
(2018) uses EDMD to build a linear representation of a
set of generators described by the swing equation. There, a
centralized approach is used to control the set of machines.
A Koopman model to enhance the transient stability of a
power grid defined by the swing equation is presented by
Ping et al. (2021), the Koopman model is improved by
using neural networks to learn the basis function in the
EDMD algorithm; also they used a centralized approach
to improve the stability. King et al. (2021) uses the EDMD
algorithm to get a linear model of the power system; it is
used to solve an economic dispatch problem.

The main objective of this paper is to present a distributed
MPC control using a Koopman data-based approxima-
tion of a network of synchronous machines based on the
improved swing equation. The Koopman representation
is obtained using EDMD to construct a linear predictor
for distributed model predictive control (DMPC). The
DMPC is presented in two perspectives: non-cooperative
and a cooperative; both approaches are compared with the
decentralized one presented by Korda et al. (2018).

The rest of the paper is organized as follows: Section 2
presents the improved swing equation, and the form of
finding the Koopman operator using the EDMD algo-
rithm. In Section 3, it is shown the linear predictor design
based on the Koopman operator, and the distributed MPC
control design with a non-cooperative and cooperative
approach. Section 4 shows a case study for a networked
system simulated in Matlab for three scenarios. Finally,
conclusions are presented in Section 5.
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product between the Euclidean norm of · and matrix Q. L
denotes the Laplacian matrix, Y the admittance matrix,
and Ni denotes the set of neighbors of the ith agent.
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the self-conductance.
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Consider a nonlinear discrete-time dynamical system de-
fined by

xk+1 = f(xk) (2)

that represents the dynamics of the synchronous generator,
with f : M → M being the space of evolution of the
system.

The Koopman operator is a linear but infinite dimensional
operator K : F → F where F is an invariant subspace
spanned by a set of observables ψ ∈ F , and ψ : M → C.

The composition operator is given by

Kψ(xk) = ψ(f(xk)) = ψ(xk+1), (3)

and maps the value of the observable function one step
further. As the Koopman operator is linear, a set of
eigenfunctions and eigenvalues is defined

Kφl = λlφl(xk) (4)

where φl are the eigenfunctions corresponding to the ob-
servable function, and λl are the corresponding eigenvalues
of K.

The observable function ψ can be written as

ψ(xk+1) = Kψ(x1) =

∞∑
l=1

λlφl(x1)vl (5)

where vl is known as the Koopman mode. Instead of
calculating the infinite sum of (5), ψ can be approximated
by a data-based technique, such as DMD and its extension
EDMD.

EDMD is a data-driven technique based on DMD. First,
a set of Nk observables is defined

D = {ψ1 ψ2 . . . ψNk} .

From a dynamic system given by yi = F (xi), two sets of
data are generated as

X = [x1 x2 . . . xM ], Y = [y1 y2 . . . yM ]

where Y is a shifted version of X.

Then, it is defined the vector value function

Ψ(x) = [ψ1(x) ψ2(x) . . . ψNk(x)].

Two square matrices are defined as follows:

G =
1

M

M
m=1

Ψ(xm)∗Ψ(xm)

A =
1

M

M
m=1

Ψ(xm)∗Ψ(ym)

where, * denotes the transpose, then the Koopman matrix
K is calculated by

K = G†A

where † denotes the pseudo-inverse.

In the next section, the EDMD algorithm is used to
generate a linear predictor of the networked synchronous
generator system, and the distributed MPC approaches
are presented.

3. LIFTED SPACE DESIGN AND DISTRIBUTED
MPC

This section presents the design of a linear predictor for the
networked generators system. Then, it is shown the design
of the distributed model predictive control to regulate the
frequency of the system.

3.1 Linear Predictor and Distributed Model Predictive
Control

Linear predictors for nonlinear systems are designed by
using the Koopman representation of the system Mauroy
et al. (2020). For a Koopman matrix A withNk eigenvalues
of the form λ1, . . . , λNk, and a vector of observables ϕ, the
next linear predictor is defined

ż = Az +Bu

z0 = ϕ(x0)

y = Cz

(6)

where

A =



λ1

. . .
λNk


 ϕ =




ϕ1

...
ϕNk




The dynamic of each generator is represented by selecting
the set of functions or dictionary to find the Koopman
operator. However, the coupling between generators im-
plies that changes over one generator affect the dynamics
of the whole interconnected system. Several approaches to
deal with coupling have been proposed, among them the
non-cooperative and the cooperative control Stewart et al.
(2010).

A general schematic for distributed MPC control is shown
in Fig. 1. The optimization process depends on the linear
representation of each system, and the Laplacian matrix
representing the connections among generators.

3.2 Non-cooperative distributed MPC

This approach includes a matrix for the consensus among
the frequency values coming from each agent Lij , the cost
functions are the same as the decentralized approach and
are local. The non-cooperative distributed control based
on the linear predictor defined in (6) is defined as follows

Fig. 1. Linear Koopman Predictor

min
ui

Vi = min
ui

Hp−1
k=0

||ωi
k − ωref,i

k ||2Q + ||ui
k||2R (7)

s.t ωi
k+1 = Aiω

i
k + Biu

i
k +


j∈Ni

Lijω̂k (8)

where Hp is the prediction horizon, the vector with the
values from the neighbors is ω̂ = [ω1 . . . ωi ωN ]⊤,
and Q and R are the constants for the error and control
actions, respectively.

3.3 Cooperative distributed MPC

This approach includes the coupling between agents given
by the consensus between states represented by the Lapla-
cian matrix L. There is a global cost function V given by
the weighted sum of the local cost functions Vi coming
from the set of neighbors of the ith agent Chen et al.
(2020). The global cost is given by

V =

N
i∈Ni

ρiVi =

Hp−1
k=0

||ωk − ωref
k ||2Q + ||uk||2R (9)

s.t ωi
k+1 = ωi

k +Aiω
i
k + Biuk +


j∈Ni

Lijω̂k (10)

where ω̂ = [ω1 . . . ωi ωN ]⊤, ρi is the weight factor
for the ith cost function, and u = [u1 . . . ui uN ]⊤.

3.4 Function Selection for the Koopman Representation

The approximated Koopman representation of the net-
worked system is calculated using the dictionary or base
functions used in Mauroy et al. (2020), which is a more
specific case of the bases used in Korda and Mezic (2020).
The constant value, the frequency, and the sin and cos
functions of the phase differences between generators are
used as base functions. For the networked system with N
synchronous generators, the vector of observers for the ith

generator is defined as

ψi = [1 ωi cos(δi − δj) sin(δi − δj)], (11)

where i = 1, . . . , N with i ̸= j. Thus, we can find a
Koopman representation for each generator that also de-
pends on the connection between them. The simulations to
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generate the trajectories and collect the data are presented
in the next Section.

4. CASE OF STUDY

In this section, a five-generator interconnected system in
a per unit model, as it is shown in Fig. 2 is simulated. The
parameters of the system are presented in TABLE 1, the
Laplacian matrix L that defines the connections among
generators is given by

L =




1 −1 0 0 0
−1 2 −1 0 0
0 −1 3 −1 −1
0 0 −1 1 0
0 0 −1 0 1




Fig. 2. Network of SGs

Table 1. Generator’s Parameters

Parameter H D ω E

SG1 0.10 0.80 1 1.00
SG2 0.20 0.70 1 1.00
SG3 0.30 0.60 1 1.00
SG4 0.35 0.65 1 1.00
SG5 0.40 0.69 1 1.00
Frequency 60Hz - 1.0 p.u

Line Yij

Y12 = 0.0142− 0.3765i G11 = 10
Y23 = 0.4531− 0.6009i G22 = 10
Y34 = 0.3641− 0.5019i G22 = 10
Y35 = 0.1271− 0.2849i G22 = 10

4.1 Koopman and EDMD Simulations

Based on (1), a discretized model using Euler is simulated
in Simulink to generate the data to find the Koopman
representation and the set to verify the Koopman approx-
imation for each generator. Measurements of the phase and
angular frequency from each generator are collected with
a sample time Ts = 0.1s, varying the initial condition for
frequency ω(0) each 10s; also the mechanical power and
the voltage values vary each 23s. The mechanical power is
selected to be used as a control input. The total time of
simulation is 1000s; collecting a series of data M = 10000
and 1000 samples to verify the Koopman approximation

The results for the Koopman approximations of (1) are
shown in Fig. 3. The approximation is better at the
beginning and starts to be badder when time passes.
However, for the use of MPC, we are interested in a short
time.

Fig. 3. Koopman representation and values measurement
at generator two

Fig. 4. Eigenvalues of Koopman Matrix for generator one

It is also possible to determine the set of eigenvalues of A1

for the set of 16-based functions, which is plotted in the
unit circle as shown in Fig. 4. Most of the eigenvalues are
close together and around (0, 1). This is very practical for
dimension reduction of the system. In this case, eigenvalues
close to zero can be omitted.

4.2 Decentralized and Distributed MPC Simulations

In this section it is shown the performance of the proposed
algorithms. The five generators are interconnected through
transmission lines. The predictive control performance
is evaluated first for frequency regulation and then for
voltage changes. The parameters for the interconnected
system are shown in Table 2.

Table 2. MPC Parameters.

Paremeter Generator 1 to 5

State difference gain Q 100
Input gain R 1
Consensus gain α 0.1
Sampling Time Ts=0.1s
Frequency restriction 0.9 ≤ ωi ≤ 1.1
Control Horizon Hp 10
Wight factor ρi ρ1 = 0.8, ρ2 = 0.1, ρ3 = 0.1

4.2.0.1. Decentralized MPC This part partially repro-
duces the results presented by Mauroy et al. (2020), and
Korda et al. (2018). Each generator has a predictive con-
troller and there is no communication among agents. Three
generators connected through transmission lines as shown
in Fig. 2. The power system starts working without control
at t = 0s and the predictive control for each generator is
activated at t = 5s.



	 Vladimir Toro  et al. / IFAC PapersOnLine 55-13 (2022) 97–102	 101

generate the trajectories and collect the data are presented
in the next Section.

4. CASE OF STUDY

In this section, a five-generator interconnected system in
a per unit model, as it is shown in Fig. 2 is simulated. The
parameters of the system are presented in TABLE 1, the
Laplacian matrix L that defines the connections among
generators is given by

L =




1 −1 0 0 0
−1 2 −1 0 0
0 −1 3 −1 −1
0 0 −1 1 0
0 0 −1 0 1




Fig. 2. Network of SGs

Table 1. Generator’s Parameters

Parameter H D ω E

SG1 0.10 0.80 1 1.00
SG2 0.20 0.70 1 1.00
SG3 0.30 0.60 1 1.00
SG4 0.35 0.65 1 1.00
SG5 0.40 0.69 1 1.00
Frequency 60Hz - 1.0 p.u

Line Yij

Y12 = 0.0142− 0.3765i G11 = 10
Y23 = 0.4531− 0.6009i G22 = 10
Y34 = 0.3641− 0.5019i G22 = 10
Y35 = 0.1271− 0.2849i G22 = 10
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Based on (1), a discretized model using Euler is simulated
in Simulink to generate the data to find the Koopman
representation and the set to verify the Koopman approx-
imation for each generator. Measurements of the phase and
angular frequency from each generator are collected with
a sample time Ts = 0.1s, varying the initial condition for
frequency ω(0) each 10s; also the mechanical power and
the voltage values vary each 23s. The mechanical power is
selected to be used as a control input. The total time of
simulation is 1000s; collecting a series of data M = 10000
and 1000 samples to verify the Koopman approximation

The results for the Koopman approximations of (1) are
shown in Fig. 3. The approximation is better at the
beginning and starts to be badder when time passes.
However, for the use of MPC, we are interested in a short
time.

Fig. 3. Koopman representation and values measurement
at generator two

Fig. 4. Eigenvalues of Koopman Matrix for generator one

It is also possible to determine the set of eigenvalues of A1

for the set of 16-based functions, which is plotted in the
unit circle as shown in Fig. 4. Most of the eigenvalues are
close together and around (0, 1). This is very practical for
dimension reduction of the system. In this case, eigenvalues
close to zero can be omitted.

4.2 Decentralized and Distributed MPC Simulations

In this section it is shown the performance of the proposed
algorithms. The five generators are interconnected through
transmission lines. The predictive control performance
is evaluated first for frequency regulation and then for
voltage changes. The parameters for the interconnected
system are shown in Table 2.

Table 2. MPC Parameters.

Paremeter Generator 1 to 5

State difference gain Q 100
Input gain R 1
Consensus gain α 0.1
Sampling Time Ts=0.1s
Frequency restriction 0.9 ≤ ωi ≤ 1.1
Control Horizon Hp 10
Wight factor ρi ρ1 = 0.8, ρ2 = 0.1, ρ3 = 0.1

4.2.0.1. Decentralized MPC This part partially repro-
duces the results presented by Mauroy et al. (2020), and
Korda et al. (2018). Each generator has a predictive con-
troller and there is no communication among agents. Three
generators connected through transmission lines as shown
in Fig. 2. The power system starts working without control
at t = 0s and the predictive control for each generator is
activated at t = 5s.

Fig. 5. Per-unit frequency before and after active the
predictive control signal at t = 5s with decentralized
approach.

Fig. 6. MPC signal applied to generator one after t = 5s

Fig. 7. Frequency response after an abrupt voltage change
in generator one at t = 10s.

The frequency reaches the reference value in finite time
as shown in Fig. 5, and the control signal is shown in
Fig. 6. The performance of the predictive controller to
disturbances is checked by changing the voltage of the
generator one at t = 10s, the voltage drops from E = 1.0
to E = 0.9. The frequency response is shown in Fig. 7
reaching the reference value after several seconds.

4.2.0.2. Non-Cooperative Distributed Approach Simula-
tions The interconnected generators are controlled by a
non-cooperative distributed predictive control. The com-
munication graph used to check the performance of the
system is shown in Fig. 2.

Fig. 8. Frequency response of the system before and after
the noncooperative control is activated at t = 10s.

Fig. 9. Noncooperative control signal activated at t = 10s.

The non-cooperative distributed control is activated at t =
10s, then the system achieves the frequency of reference as
shown in Fig. 8. The control signal for each generator is
shown in Fig. 9 reaching consensus after some seconds.

Fig. 10. Frequency response of the noncooperative ap-
proach when the voltage at generator one falls from 1
to 0.9 p.u at t = 10s.

Same as for the centralized approach, the voltage of
generator one drops at t = 10s. The frequency response
is shown in Fig. 10. After the disturbance at t = 10s, the
frequency gets close to the reference value; however, it lays
in a window with an error inferior to 1%.

4.2.0.3. Cooperative Distributed Approach Simulations
The interconnected generators are controlled by a cooper-
ative distributed predictive control using the graph shown
in Fig. 2 with weight factors ρi as shown in Table 2.

Fig. 11. Per-unit frequency before and after active the
predictive control signal at t = 5s with a cooperative
distributed approach.

Fig. 12. MPC signal applied to generator one after t = 5s

Fig. 13. Frequency response after an abrupt voltage change
in generator one at t = 10s.

The cooperative distributed control is activated at t = 5s,
then the system achieves the frequency of reference as
shown in Fig. 11. The control signal for the first generator
is shown in Fig. 12. A fault is also simulated when the
voltage at generator one drops from E = 1 to E = 0.9
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Fig. 14. Frequency response for the first generator using
the three control approaches

at t = 10s, the frequency of each generator is shown in
Fig. 13.

The frequency response for each control approach is shown
in Fig. 14. The controllers function since t = 0s achieving
a value close to the reference with an error inferior to one
percent.

5. CONCLUSION

An interconnected system of synchronous generators is
modeled by the nonlinear swing equation, and it is rep-
resented by a linear predictor in the space of observables
by means of the Koopman operator. The frequency of the
interconnected system is controlled using model predictive
control in a distributed way following a non-cooperative,
and a cooperative approach. It is shown that the coop-
erative approach reaches the reference value in a finite
time while keeping the restrictions; however, it is more
complex and computational time consuming. As a future
work, it is interesting to used the linear representation with
a distributed optimization algorithm such as Alternate
Direction Multipliers Method (ADMM).
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Koopmanism. Chaos, 22(4). doi:10.1063/1.4772195.

Caliskan, S.Y. and Tabuada, P. (2015). Uses and abuses
of the swing equation model. In 2015 54th IEEE
Conference on Decision and Control (CDC), 6662–6667.
doi:10.1109/CDC.2015.7403268.

Chen, M., Zhao, J., Xu, Z., Liu, Y., Zhu, Y., and Shao,
Z. (2020). Cooperative distributed model predictive
control based on topological hierarchy decomposition.
Control Engineering Practice, 103(April), 104578. doi:
10.1016/j.conengprac.2020.104578.

Kaiser, E., Kutz, J.N., and Brunton, S. (2021). Data-
driven discovery of Koopman eigenfunctions for control.
Machine Learning: Science and Technology, 98195, 1–
40. doi:10.1088/2632-2153/abf0f5.

King, E., Bakker, C., Bhattacharya, A., Chatterjee, S.,
Pan, F., Oster, M.R., and Perkins, C.J. (2021). Solv-
ing the Dynamics-Aware Economic Dispatch Problem
with the Koopman Operator. e-Energy 2021 - Pro-
ceedings of the 2021 12th ACM International Con-
ference on Future Energy Systems, 137–147. doi:
10.1145/3447555.3464864.

Korda, M. and Mezic, I. (2020). Optimal Construction
of Koopman Eigenfunctions for Prediction and Control.
IEEE Transactions on Automatic Control, 65(12), 5114–
5129. doi:10.1109/TAC.2020.2978039.

Korda, M., Susuki, Y., and Mezić, I. (2018). Power grid
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