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1. INTRODUCTION

The problem of traffic control in transport networks is
relevant due to the increase in merchandising and the
necessity of reducing human error and misbehavior on
urban routes. In both cases, improvements in vehicle
technologies make possible the study of control algorithms
that allow regulating the flow of vehicles. Autonomous
cruise control (ACC) and Cooperative ACC (CCAC) are
well studied techniques to regulate the flow of vehicles;
they are supported by a set of equations that define the
relation of the magnitudes of the vehicle and its interaction
with the environment and other vehicles Van Arem et al.
(2006). These differential equations are nonlinear, which
are linearized for control design in several cases. However,
this limits the range in which control parameters hold, and
may omit critical behaviors of vehicle dynamics.

A general model of the vehicle dynamics given by the
torque applied and the effect of gravity, mass, and route
interactions with the tires can be used to define a cruise
control independent of the source of power of the vehicle
(electric, hybrid, gas) Shakouri et al. (2010). The controller
should allow to control the velocity of the vehicle and,
at the same time, to optimize the torque produced by
the engine, while keeping the restriction of distance. Sev-
eral studies have been done for CCAC applying different
control techniques and approaches. Milanes et al. (2014)
designs a CCAC using a linear model of the vehicle. Naus
et al. (2010) presents a condition for a CCAC for string
stability and considering heterogeneity (different charac-
teristics). A nonlinear model predictive control (NMPC)
is designed by Shakouri and Ordys (2014), in which the
controllers have the capability of switching between CACC
and ACC depending on the situation. A model-free ap-
proach is presented by Zhao et al. (2017), and Lin et al.
(2021) in which Reinforcement Learning (RL) techniques

are used to learn an optimal policy following an actor-critic
structure. In any case, the optimization process over a
nonlinear model may be difficult due to the non-convexity
of the space, resulting in extra computation time and ad-
ditional restrictions. In contrast, the data available coming
from sensors and detailed simulation models increases the
interest in data-driven techniques.

Some RL techniques use a black-box structure, which can
be problematic for determining stability Kiumarsi et al.
(2018). Another data-driven approach is the one based
on operators. Among them, the Koopman operator has
called the attention in recent years, together with its dual
operator known as the Perron-Frobenius operator Mezic
(2005). The main advantage of the Koopman operator is
its capability of representing nonlinear dynamical systems
as a linear one in a new space known as the space of ob-
servables, lifted-space, or Koopman space. Such capability
of linear representation has been enhanced by the develop-
ment of data-based algorithms that only use measurements
of the system and have been optimized to reduce the
computation time and the necessity of data arrangement
before using them.

ACC only needs limited information; however, in CCAC
each vehicle gathers information from other vehicles ac-
cording to the communication network. This distributed
approach allows taking decisions based only on local in-
formation. However, the coupling between physical magni-
tudes should be problematic for control design. The linear
representation in the lifted space facilitates the optimal
control design, following the distributed approach while
keeping the restrictions of the system.

This paper is organized as follows: Section 2 presents the
nonlinear model for cruise control of vehicles. Section 3
presents the generalities of the Koopman operator and
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the data-driven EDMD algorithm. The distributed control
design using the Koopman model is presented in Section 4.
Section 5 presents a case study with the simulation results.
Finally, conclusions are presented in Section 6.

2. NONLINEAR MODEL FOR CRUISE CONTROL

Autonomous cruise control for vehicles is based on dif-
ferential equations representing the interactions of the
vehicle with the environment, and the model of the torque
source or motor Shakouri et al. (2012), Shakouri and
Ordys (2014). In Shakouri et al. (2010), it is presented a
very detailed model which includes the engine, the torque
converter, and the gearbox for the vehicle, and the external
forces acting over it, such as the gravitational effects, the
rolling resistance, and the aerodynamic drag.

Here, it is used a general model which includes the torque
as controlled input and the velocity of the car as state-
variable, like the used by Orosz and Shah (2012) as follows

meffv̇ = −mg sinϕ− γmg cosϕ− k(v + vw)
2 +

η

R
Ten (1)

where meff = m +
J

R2
is the effective mass that gathers

the mass of the vehicle m, the moment of inertia J , and
the wheel radius R. The gravitational constant is given
by g, ϕ is the inclination angle, γ is the rolling resistance
coefficient, k is the air drag constant, the velocity of the
headwind is given by vw, η is the gear ratio, and the engine
torque is given by Ten.

Assuming ϕ = 0, vw = 0, and J = 0, (1) is simplified as

mv̇ = −γmg − kv2 +
η

R
Ten (2)

which is very suitable for determining the set of observ-
ables, as will be explained in the next sections.

Interacting vehicles Model (1) represents the dynamic
of a single vehicle. However, some assumptions should be
made for the proper control of a set of vehicles.

Fig. 1. Single lane sequence of vehicles and definitions for
cruise control

Assumption 1 Based on Fig.1, a single lane of vehicles is
considered, and aside from the inherent differences among
them, such as the weight and the tire features, it is
considered that the dynamics of all vehicles are identical.

Assumption 2 Distances among vehicles di are given by
the difference between tail and head among them, and
there is a leader vehicle denoted by L with velocity denoted
by VL.

Assumption 3 It is assumed a wireless communication
system without delay for the distributed control.

The distance among vehicles is given by the difference be-
tween tail and head of each vehicle. The distance between
the leader and the first vehicle behind is given by

ḋi = VL − vi (3)

It is also possible to define the desired distance between
vehicles as

ddes = l + ds + ThVi (4)

where l is the vehicle length, ds is the desired distance
between vehicles, also known as the collision distance, and
Th is the constant-time headway which is defined between
1.5s and 2s by Martinez and Canudas-de Wit (2007).

3. KOOPMAN OPERATOR AND EDMD

The Koopman operator or composition operator is related
to methods to deal with nonlinear systems representing
them as linear ones but of infinite dimension. Koopman
operator is the dual of the Perron-Frobenius operator that
has been used in statistical mechanics. The increasing
interest in the Koopman operator comes from its capacity
for showing properties of nonlinear systems, such as ergod-
icity and periodicity. Koopman operator can be defined for
discrete-time and continuous-time systems Mauroy et al.
(2020).

For a discrete-time dynamical system defined by

xk+1 = Sxk

where S defines the nonlinear transformation S : X → X,
and X is a finite-dimensional metric space. The evolution
of the system is described by the nonlinear transformation
Sk(x)

∞
k=0 with initial condition x0. Also, it is defined a

set of functions known as observables or basis functions
f : X → C. The Koopman operator is defined as

Usf = f ◦ S ∀f ∈ F

where F is the space of observables usually defined by a
Banach space.

Koopman eigenvalues and eigenfunctions Koopman op-
erator allows defining a set of eigenfunctions and eigenval-
ues for discrete and continuous systems. An eigenfunction
is an observable ϕµ of the Koopman operator with a
discrete-map S that satisfies

Uϕµ = ϕµ ◦ S = µϕµ

where µ ∈ C is the associated eigenvalue Mauroy et al.
(2020).

Koopman modes The Koopman mode expansion of f ∈ G
where G ⊆ F , and assuming that the span of Koopman
eigenfunctions ϕµj

∞
j=1 is given by

f =

∞∑
j=1

vjϕµj

where vj are the Koopman modes corresponding to the
observable f . Koopman expansion can be applied to this
expression as follows

Ukf =

∞∑
j=1

vjµ
k
jϕµj (5)

3.1 Data-Driven methods and EDMD

Koopman mode decomposition (KMD) given by (5) can
be determine by different methods, among them gener-
alized Laplace averages Mauroy et al. (2020), and finite
dimensional matrix approximation with techniques such
as Dynamic Mode Decomposition (DMD) and Extended
DMD (EDMD).

Suppose a set of M measurements of the form {xk, yk}Mk=1
where yk = S(xk), and a set of N observables or basis
functions {ψ1, ψ2, . . . , ψN}, the next two matrices are
defined

X = [ψ1(x), ψ2(x), . . . , ψN (x)]

Y = [ψ1(y), ψ2(y), . . . , ψN (y)]

Then the Koopman matrix U is given by

U = X†Y

where X† is the pseudo-inverse of X.

For a system with inputs, the Koopman operator can be
determined by

(Uf)(x, u) = f(S(x, u, ), u).

where u is the control input.

4. DISTRIBUTED DATA-DRIVEN PREDICTIVE
CONTROL

It is possible to build a linear predictor based on the
Koopman representation of a nonlinear system given by
matrices A, B, and C as the one presented by Korda and
Mezić (2018)

zk+1 = Azk + Bu (6)

y = Cz

with z0 = ψ(x0).

Equation for the distance between vehicles given by (3) is
discretized using the Euler method as follows

dik+1 = dik + T (VL − zik).

where T is the sampling time.

Linear predictor (6) approximates the nonlinear behavior
of (1). The approximation holds for a set of samples;
the better the approximation, the greater the number of

samples that it holds. The leader vehicle sets the velocity
for the rest of vehicles, then the optimization problem is
written as

min
ul

Hp∑
k=0

||zlt+k − zreft+k||
2
Q + ||ul

t+k||2R (7)

s.t. zlk+1 = zlk + T (Azlk + Bul)

where Hp is the prediction time-horizon, Q is the gain
related to the state difference with the reference value, R
is the gain related to the input, and l denotes the leader
node with velocity reference value zref,l.

The distance between vehicles is given by the sum of the
distance calculated by using (4), and the desired distance
between vehicles is defined as follows

dinter = di + ds.

For the rest of vehicles, the optimization problem should
include the restriction for the distance between vehicles,
based on the control proposed by Orosz and Shah (2012)
the velocity of each vehicle depends on the distance be-
tween the vehicle and the vehicle in front of it. Then, the
next control law is proposed

f(x) =

{
0, if dinter ≤ ds
ui, if dinter > ds

where ui is given by solving the next optimization problem

min
ui

Hp∑
k=0

||zit+k − zreft+k||
2
Q + ||ui

t+k||2R + ||L(:, i)z||2S (8)

s.t. zik+1 = zik + T (Azik + Bui)

where z = [z1 z2 . . . zn]
⊤ is a vector with the values

of each vehicle, L(:, i) is the ith row of the Laplacian matrix
L, and S is the gain value for the consensus term.

5. CASE STUDY

Dynamic model (1) is simulated in Matlab according to
the particular characteristics of each vehicle. Series of data
are generated by simulation and used to determine the
Koopman operator. Data is sampled each Ts = 0.1s with
a simulation horizon of Th = 10000s generating 100000
samples. The initial conditions vary randomly from [0,100]
each 200s; the control input varies from [500,1500] each
87s. A set of 990 samples with a unique initial condition
is used for verification purposes.

The simulation scenario consists of seven vehicles with
different mass, tire rolling coefficients, and tire radius.
These values are shown in Table 1. The general parameters
of the system are shown in Table 2.

The set of observables or basis functions is given by

Φ = [1 v v2 exp(0.1v) sin(v) cos(v)]
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the better the approximation, the greater the number of

samples that it holds. The leader vehicle sets the velocity
for the rest of vehicles, then the optimization problem is
written as

min
ul

Hp∑
k=0

||zlt+k − zreft+k||
2
Q + ||ul

t+k||2R (7)

s.t. zlk+1 = zlk + T (Azlk + Bul)

where Hp is the prediction time-horizon, Q is the gain
related to the state difference with the reference value, R
is the gain related to the input, and l denotes the leader
node with velocity reference value zref,l.

The distance between vehicles is given by the sum of the
distance calculated by using (4), and the desired distance
between vehicles is defined as follows

dinter = di + ds.

For the rest of vehicles, the optimization problem should
include the restriction for the distance between vehicles,
based on the control proposed by Orosz and Shah (2012)
the velocity of each vehicle depends on the distance be-
tween the vehicle and the vehicle in front of it. Then, the
next control law is proposed

f(x) =

{
0, if dinter ≤ ds
ui, if dinter > ds

where ui is given by solving the next optimization problem

min
ui

Hp∑
k=0

||zit+k − zreft+k||
2
Q + ||ui

t+k||2R + ||L(:, i)z||2S (8)

s.t. zik+1 = zik + T (Azik + Bui)

where z = [z1 z2 . . . zn]
⊤ is a vector with the values

of each vehicle, L(:, i) is the ith row of the Laplacian matrix
L, and S is the gain value for the consensus term.

5. CASE STUDY

Dynamic model (1) is simulated in Matlab according to
the particular characteristics of each vehicle. Series of data
are generated by simulation and used to determine the
Koopman operator. Data is sampled each Ts = 0.1s with
a simulation horizon of Th = 10000s generating 100000
samples. The initial conditions vary randomly from [0,100]
each 200s; the control input varies from [500,1500] each
87s. A set of 990 samples with a unique initial condition
is used for verification purposes.

The simulation scenario consists of seven vehicles with
different mass, tire rolling coefficients, and tire radius.
These values are shown in Table 1. The general parameters
of the system are shown in Table 2.

The set of observables or basis functions is given by

Φ = [1 v v2 exp(0.1v) sin(v) cos(v)]
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Table 1. Vehicles Parameters

Vehicle index Mass (kg) TRRC (γ) TRR(R) (m)

1 1555 3.5 0.313
2 1849.1 2.8 0.322
3 1934.0 3.6 0.283
4 1678.7 2.9 0.337
5 1757.7 2.5 0.293
6 1743.1 3.3 0.276
7 1392.2 3.1 0.301

TRRC: Tire rolling resistance coefficient
TRR: Tire rolling radius

Table 2. System Parameters

Vehicle feature Value

Gravitational acceleration m/s2 g = 9.81
Desired maximum velocity m/s vmax = 30

Desired distance m ds = 23
Minimal free flow distance m hgo = 35

kg/m k = 0.463

Fig. 2. Velocity output generated by varying the initial
conditions and control input

A1 =




1.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000
−0.0154 1.0006 −0.0000 0.0000 0.0051 −0.0009
−8.8259 0.4721 0.9910 −0.0000 0.3438 −0.5066
−0.0444 −0.1382 0.0040 0.9789 −0.0763 −1.4405
−0.0038 0.0002 −0.0000 0.0000 0.9985 −0.0039
0.0010 −0.0000 0.0000 0.0000 0.0042 0.9983




;

B1 =




0.0000
0.0001
0.0065
0.0026
0.0000
0.0000



; C1 = [ 0 1 0 0 0 0 ] .

Fig. 3. Koopman approximation and data measured rep-
resentation

Matrices A, B, and C are found using the EDMD algo-
rithm. The system response of the linear observer and
using the set of data for verification is shown in Fig. 3.
The first values fit better with the data measured, while
as time passes, the approximation deviates from the real
values.

The parameters for the MPC are shown in Table 3., these
values are applied to all vehicles, including the leader.

Table 3. MPC Parameters

MPC Feature Value

Prediction Horizon Hp = 30
State-variable gain Q = 1× 107

Input gain R = 1
Consensus gain S = 1
Sampling time Ts = 0.5s

Control signal constraint −8× 103 ≤ u ≤ 8× 103

Fig. 4. Control signal (Torque applied) to the leader vehicle

Fig. 5. Change of speed for the leader vehicle when
applying the predictive controller, the set point is
30m/s

Fig. 6. Graph for communication among vehicles

The control signal applied to the leader vehicle is shown
in Fig. 4. The control signals (torque) are limited to two
values in which negative torque corresponds to the action
of the brakes. The velocity of the leader vehicle is shown in
Fig. 5. It takes a few seconds to reach the desired velocity.

Communication among vehicles is represented by the
graph shown in Fig. 6. The leader node appears in shadow.
Connections among agents are determined by the adja-
cency (Adj) and Laplacian matrix L of the graph as follows

Adj =




0 1 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
1 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 1 1 0 1 0




L =




2 −1 0 −1 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 0 0 −1
−1 0 0 3 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 −1 −1 0 −1 3




Fig. 7. Velocity response for each of the seven vehicles
simulated. All vehicles reach the reference of 30m/s

Fig. 8. Distance of the vehicles behind the leader, the
desired distance is set to 23m which is reach in a few
seconds.

Fig. 9. Model predictive control signals applied to the
seven vehicles.

The leader vehicle determines the velocity of the rest
of vehicles, after applying the control law (8), reach the
reference value in a few seconds. The desired distance
between vehicles is set to be 23m as it is shown in Fig. 8.
Each vehicle reaches this value by applying the control
rule. The seven predictive control signals are shown in
Fig.9. The controller holds for a few seconds a high torque,
and then this value drops until the vehicle achieves the
references for velocity and distance.

6. CONCLUSION

This paper presents a cruise control for a network of
autonomous vehicles following a distributed data-driven
control approach. The general scheme of cruise control is
implemented for a set of vehicles defined by a nonlinear
equation. Nonlinearities are managed by representing the
equation in the Koopman space; this allows to get a linear
observer that is used for distributed control instead of
the nonlinear model. The proposed control simplified the
control design and also allows to use a linear MPC. As a
future work, the distributed problem can be solved by an
alternating algorithm such as the distributed alternating
direction multiplier method (ADMM), or use learning
methods to determine the the observable functions for the
Koopman representation.
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