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NEW LIFE-SPAN RESULTS FOR THE NONLINEAR HEAT EQUATION

SLIM TAYACHI AND FRED B. WEISSLER

ABSTRACT. We obtain new estimates for the existence time of the maximal solutions to the non-
linear heat equation dyu — Au = |u|*u, « > 0 with initial values in Lebesgue, weighted Lebesgue
spaces or measures. Non-regular, sign-changing, as well as non polynomial decaying initial data are
considered. The proofs of the lower-bound estimates of life-span are based on the local construc-
tion of solutions. The proofs of the upper-bounds exploit a well-known necessary condition for the
existence of nonnegative solutions. In addition, we establish new results for life-span using dilation

methods and we give new life-span estimates for Hardy-Hénon parabolic equations.

1. INTRODUCTION AND STATEMENT OF THE RESULTS
In this paper, we consider the nonlinear heat equation
O = Au + |u|“u, (1.1)

where u = u(t,z) € R, t >0, z € , a domain of R not necessarily bounded, N > 1 and a > 0.
In the case where the boundary 99 # (), we suppose 0f sufficiently smooth and we impose Dirichlet
conditions on the boundary:

u(t,z) =0, t >0, x € ON.

If © is not bounded, we impose Dirichlet conditions at infinity:
lim  w(t,x) =0, t >0,
|z|—00, €N
or perhaps other convenient formulation (see for example [42, Definition 15.1, p. 75]). We usually

consider the equation (1.1) with the initial value
u(0, -) = up. (1.2)

The Cauchy problem (1.1)-(1.2) is locally well-posed in various Banach spaces. In other words,
each element or initial value ug in that space gives rise to a trajectory w(t) = w(t,-) which is
a solution in some appropriate sense to the given equation, here equation (1.1), and such that
u(0) = up. In many cases, this trajectory cannot exist for all time ¢, and we denote by Tiax(uo)
the maximal possible existence time of such a trajectory. The term life-span refers to the study
of the maximal existence time of solutions with initial data of the form uy = Ay for some fixed

element ¢ in the considered Banach space and all A > 0. Our aim is to establish lower and upper
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2 S. TAYACHI AND F. B. WEISSLER

bounds of the life-span for a large class of initial data ¢ in terms of A and study the asymptotic
behavior of Thax(Ap), either as A — oo or as A — 0.

It is well known that if ug € Cy(R"), the Banach space of continuous bounded functions on RY,
there exists Tinax (1) > 0 such that (1.1)-(1.2) has a unique classical solution u € C'H2((0, Tyax (o)) X
RM)NC([0, Tnax (1)) x RYV) which is bounded in [0, T]|xRY for all T' < Tinax (), and [[w(t)[] oo (mvy —
o0 as t — Tinax(to), if Tmax(ug) < co. It is proved in [15] that if o < 2/N and ¢ € Cp(RY) with
© >0, ¢ Z 0, then Thax(Ap) < oo for any A > 0. For all a > 0, if ¢ € C,(RY), ¢ > 0 and
lim inf |, |2[7@(z) > 0 with v < 2/a, then Tinax(Ap) < oo, for all A > 0, as shown in [27]. This
last result has been improved in many papers, see [50] for instance and some references therein. If
we do not impose the positivity of the initial data, it has been proven in [29] that for a given ¢ suf-
ficiently regular (i.e. with finite energy), ¢ # 0, and A > 0 is sufficiently large then Ty ax(Ap) < 0.
If @ < 2/N and ¢ not necessarily positive but ¢ € L*(RY) N Co(RY) and [pn ¢ # 0 then it is
proved, in [11], that Tihax(A@) < oo for A > 0 sufficiently small. Other blow-up results for A small
are proved in [16, 49, 50]. The above mentioned results show in particular the interest of studying
the behavior of Tiax(Ap) for any value of A and with or without any sign restriction on the initial
data.

For example, it is proved in [27] that given any nontrivial nonnegative initial data ¢ €
Co(RY) then Thax(Ap) ~ A7 as A — 00 and Tpax(Ap) ~ A™%, as A — 0 provided that
$oo = liminfy o () > 0. Shortly thereafter the exact limits were given in [18], that is
lim 00 ATmax (Ap) = 3 llellos and limy 0 A* Tinax(Ap) = 595

An other example is the study of the asymptotic behavior of the life-span Ti,ax(A¢) when ¢ €
Cy(RY) is nonnegative nontrivial and having also a polynomial decay at infinity, that is

0 < liminf |z[7p(z) < limsup |z|7¢(z) < oo, (1.3)
Z|—0o0 |z|—00

0 < v < N. This is studied in [27] for small A > 0. It is shown in [27, Theorem 3.15 (ii), p. 375]
and [27, Theorem 3.21 (ii), p. 376] that if @ < 2/N then

0 < lim inf)\[(é_%)il}TmaX()\gp) < lim sup )\[(é_%)fl]TmaX()\gp) < o00.
A=0 A—=0

These results have been generalized recently in [23] replacing ¢ € Cy(RY) by ¢ € L>®(RY). See
[23, Theorem 5.1, p. 128] and [23, Theorem 5.2, p. 130]. We notice that refined asymptotic is
given in [33] for large X\ and for ¢ not necessarily positive but still continuous and bounded. Other
estimates are obtained for the life-span for regular and slowly decaying initial data in [32, 11, 50].

A class of initial data ¢ where ¢ is mnot necessarily in Cp(R™) or in L>°(RY) and satisfying
either (1.3) or

0 < liminf [z]7p(z) < limsup |z|"p(z) < oo, (1.4)

|z|—0 |z|—0
has been considered in [50]. In fact, the asymptotic behavior of the life-span for initial data
¢ € Li (RN {0}), |¢(z)| < clz|™, where 0 < v < N and ¢ > 0 a constant, is studied in [50]. It

is shown there that for some initial data ¢ singular at the origin or satisfying lim inf |, ¢(7) :=

Yoo = 0 the situation is quite different from previously known life-span results. In particular,
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unlike [18], the limits of A[(ifg)_l]TmaX()\gp) as A — 0 or as A — oo may not exist. Also, if
—1

¢ satisfies (1.4), so that ¢ is singular at the origin, then Tiax(A@) ~ A (-3) , a8 A = o0

instead of A7 if ¢ is regular. See [50, Corollary 1.13 and Proposition 4.6]. It is also proved that

if p(z) = |z|77, |z| <1, p(x) =0, || >1, 0 <y < N, 0 <a<2/y (N—-2)a < 4 then

1

im0 )\(a %)_leaX()\go) = C > 0. This last behavior shows the impact of the singularity of the
initial data on the behavior of the life-span for large A.

The goal of this paper is to improve and extend the above mentioned results by considering a
large class of initial data, including singular, sign changing, not necessarily polynomially decaying
initial data. To carry out this goal, we use three different methods. The first is based on the
contraction mapping argument used to prove local existence. We recently introduced and used
this method in [50]. Here, we apply it to the nonlinear heat equation and nonlinear Hardy-Hénon
parabolic equations. In a forthcoming paper, it will be applied to a variety of evolution equations in
order to exhibit the generality of this method ([48]). We know of some cases where the idea behind
this method was previously used in other papers (see for example [24]) but to our knowledge, this
method has never been presented as such or exploited in a systematic way. The second method is
based on a necessary condition for local existence of non-negative solutions. The third method is
based on scaling properties of the equation. Details are given below later in the introduction.

We begin with the first method and we consider the case where uy belongs to a Lebesgue space,
where we can use the contraction mapping argument done in [53, 54]. It is well known that the

problem (1.1)-(1.2) is locally well-posed in L4(€2) whenever ¢ > 1, ¢ > ¢. where

_Na

="y (15)

See [53, 54, 42] and references therein. For any ug € LI(Q2), we denote by Tiax(ug) the existence
time of the maximal (regular) solution to (1.1)-(1.2) in L(Q2). Our first result on lower bound of

the life-span is derived from [53, 54] using an argument from [50].

Theorem 1.1 (Initial data in Lebesgue spaces). Let N > 1, a« > 0 and q. be given by (1.5).
Let ¢ € L1() with 1 < ¢ < 00, ¢ > g or ¢ € Cp(). Let u € C ([0, Tmax(Ap)); L1(Q)) be the
mazximal classical solution of (1.1)-(1.2) with initial data ug = Ap, A > 0 (we replace [0, Tiax(Ap))
by (0, Trmax(A@)) if ¢ = 00). Then there exists a constant C = C(«,q) > 0 such that

C

TmaX(A@)Z (liﬂ)_l ’ (16)
(Allepllg)™=2a
for all A > 0.
Hereafter, || - ||; denotes the norm in the Lebesgue space L7(§2).
Remark 1.

1) If Thax(p, L9) denotes the existence time of the maximal (regular) solution to (1.1)-(1.2)
for p € L), it is known (see for example [53] and Proposition 2.2 below) that if ¢ €
LP(Q)N L) we have Thax (¢, L) = Thax(, LP). Tt follows that if ¢ € LL(Q)NLI(Q), 1 <
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q <q< 00, g < g, then the estimate (1.6) reads

1 N

-1
Tax(Ap) > CA_(E_@> ,if 0< A<,

Ty -(2-3)7

max(Ap) > CA , if A > 1.

Theorem 1.1 includes many known results on lower bound of the life-span. For ex-
ample, it is shown in [27, Theorem 3.21 (ii), p. 376] that if p € Cy(RY), ¢ > 0 and
lim supjg| o0 [2[70(2) < 00, then for N < v < 2/a, (hence g. < 1) we have Thax(Ap) >
CA_(é_%)il, as A — 0. This result is a special case of Theorem 1.1. Indeed, it follows
that ¢ € Co(RY)N LY(RY) with ¢ > 1 > N/~. Thus, the estimate of [27] follows by taking
g =1in (1.6). Other examples will be given throughout the paper.

Theorem 1.1 is valid for the equation dyu = Au + a(x)|u|*u, with a € L>(£2). Under the
additional assumption a > 0, it is shown in [40, Theorem 3 (i), p. 35] that, for ¢ € Cy(RN),
Thmax(Ap) > CA™%, as A — oo. For such initial data we may take ¢ = oo and (1.6) recover
the last estimate.

For positive initial data and bounded domain, estimate (1.6) is established in [46, Theorem
3.1, p. 2526] where it is also assumed that N > 3, ¢ > max(1, ¢.). See also [39] for other
estimates with NV = 3.

Let us consider the nonlinear heat equation with diffusivity:
Ou = pAu+ |u|u, u(0) =¢ € LI(Q), ¢ > 1, ¢ > qe, (1.7)

on (0, Thax(p)) x ©, where « > 0, u > 0 and Thax(¢) denotes the existence time of the
maximal solution of (1.7) with initial data ¢. We want to find a lower estimate of Tinax ()

with respect to u. Let
v(t,x) = pu(t/p, ).
Then v satisfies the equation
O = Av + 0], v(0) = =,

on (0, uThax(p)) x Q = (O,Tmax(u_l/ago)) x Q, where Tiax(1=/%) is the existence time

of the maximal solution v. Using (1.6) we get,

_(1_n)\!
Thax(p) = M_leax(N_l/aSo) > O,LL_1 (M_l/aH‘PHq) (a 2q> .
That is,
2¢ _\~1 — é_ﬂ -1
Thalie) > Cul 0 g, G750

max

For g = oo, the right-hand side term does not depend on p and we have

Thax(9) = Cllpll™

See [34, 13, 14] for related estimates. Note that if ¢ < co then lim;, s, Tihax(¢) = 0.
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Using the same method based on the contraction mapping argument as in [50], we also derive
from [54] the following lower estimate for the life-span for the case of finite Borel measure. We

denote by M the set of finite Borel measures on ().

Theorem 1.2 (Initial data measure). Let N > 1, a > 0 and q. be given by (1.5). If m is a finite

Borel measure on §2, i.e. m € M, and if ¢ < 1, i.e. a < %, then the existence time of the

mazximal solution for (1.1)-(1.2) with initial data ug = Am satisfies

C
Tnax(Am)>
T Ol G

(1.8)

for all X > 0, where C = C(«) > 0 is a constant.

We now estimate from below the life-span of solutions for the nonlinear heat equation (1.1) in
RY with decaying initial data uyg = Ay, which may be singular, without sign restriction and for

any A > 0. For v > 0, 1 < g < 0o, we consider the weighted Lebesgue space
Ny _ r¢.mN N
LI(R™) = {f : RY — R, mesurable, | - ["f € LI(R™)},

endowed with the norm
I llzs @y =11 " fllq-

In Theorem 4.1 below, we give a well-posedness result in weighted Lebesgue spaces for the nonlinear

heat equation. As a consequence, we obtain the following lower bound estimates of the life-span.

Theorem 1.3 (Initial data in weighted Lebesgue spaces). Let N > 1 and a > 0. If ¢ € LL(RY),
where 0 < v < N, v < 2/a, q € (1,00] and

1 v Na  ay
-+ =<1, —+—x<1 1.9
TN <b gty <b (1.9)

then the existence time of the mazimal solution of (1.1)-(1.2) in LL(RN) with ug = A\ satisfies

Tnax(Ap)> (1.10)

for all X > 0, where C = C(a,q,7v,N) > 0 is a constant.
Remark 2. Under the conditions 0 <y < N, v < 2/a, 1 < ¢ < 00, (1.9) is equivalent to

N
and q > a

>
e N —~ 2 —ya

Combining the results of Theorems 1.3 and 1.1, we get the following estimates of the existence
time of the maximal solution to (1.1)-(1.2).
Corollary 1.4. Let N > 1, a > 0,v> 0, v # N and q. be given by (1.5). Assume that

. | Na ya
—,— | <L
mln[2 2}
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Let o € LYRN)N LL(RY), where q € (1,00, q¢ > q. If v < N we assume further (1.9). Then the
existence time of the mazimal solution of (1.1)-(1.2) in LY(RYN) with ug = \p satisfies

. -1
Tax(Ap) > ox (a3 min(§+2.7)) (1.11)

9

for all 0 < A < 1, where C is a positive constant, C' = C(a,q,7, N, |¢|psnre) if v < N and
C = Cla,q,7, N, [lelh) if v > N.

Remark 3.

1) For the particular case ¢ = 0o, Corollary 1.4 includes that of [27, Theorem 3.21, p. 376] and
23, Theorem 5.1, p. 128], where ¢ is continuous, ¢ > 0, ¢ € L>(RY) N L(RY), v > 0.
The novelty of our estimate is that it holds without any condition on the sign of the initial
data. Unlike [27, 23], the case v = N is not considered here.

2) Corollary 1.4 is totally new if ¢ < co.

3) Obviously, if A > 1, (1.6) is better than (1.11), which itself holds for all A > 0, as shown in
the proof.

The solution of (1.1)-(1.2) constructed with initial data in LZ(RY) is in Co(RY) for ¢t > 0,
by Proposition 4.2 below. This is well-known to hold also for the solution with initial data in
LP(RYN), p < c0. So the constructed solution for initial data in LP(R™) N LY (RY) can be extended
to a maximal solution of (1.1)-(1.2), u : (0, Tyax) — Co(RY). This maximal existence time is equal
to that in LP(RY) or in LI(RY), as shown in Proposition 4.2 below. In the following result, which

extends Corollary 1.4 for 0 < v < N, we give a lower bound estimate of the life-span for initial
data in LP(RN) N LL(RYN).

Corollary 1.5. Let N > 1, a > 0 and q. be given by (1.5). If p € LP(RN) N LL(RY), where
P>qe, 1<p<o0,0<y<N, v<2/a, g€ (1,00] and satisfies (1.9), then the existence time of
the mazimal solution of (1.1)-(1.2) with uyp = A satisfies

EFm ()T ocnsn,

Thax(Ap) = C (1.12)

1

(1N ity 1))
e ) I Y
where C' = C(a,p,q,7, N, |¢llLrnre) > 0 is a constant.

We now turn to results based on the second method, which gives upper-bounds on the life-span
and which requires positivity. We distinguish the cases when A > 0 is large or A > 0 is small and
begin with the case A is large. By [29], Tmax(Ap) < oo in this case, if ¢ is sufficiently regular. By
[56, Theorem 1], it follows that if ¢ > 0 is either a locally integrable function or a positive Borel
measure on 2, ¢ Z 0, then Tinax(Ap) < co for all sufficiently large A > 0. See section 5. See also
[36, Theorem 2, p. 882] for ¢ € Cy(€2). Our first life-span upper bound is as follows.

Theorem 1.6. Let N > 1 and a > 0. Let ¢ € L®(Q), ¢ > 0 and ¢ #Z 0. It follows that the
existence time for the mazimal solution of (1.1)-(1.2) with ug = A satisfies Tmax(Ap) < oo for
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A > 0 sufficiently large and

1
lim sup A%*Tax (Ap) < . 1.13
msup X Tne(39) < Sl 1)
Remark 4.
1) Theorem 1.1 and Theorem 1.6 together show that
Tmax(Ap) ~ (Allefloc) ™, A = 00 (1.14)

whenever ¢ > 0, p # 0, ¢ € L>®(Q). This extends the result of [27, Theorem 3.2 (ii), p.
372] to L initial data. The lower estimate is valid even if ¢ is not necessarily positive.

2) With the notation of Part 5) of Remark 1 and using Theorem 1.6, we have that for ¢ > 0,
¢ £ 0, p € L*°(Q), the maximal existence time of (1.7) satisfies

. 1 -
lim sup Thax(9) < = lell5
HNO0 o

and hence combined with Part 5) of Remark 1 we have Thax(p) ~ Z|/¢[|3%, as g — 0. It is
shown in [34, Theorem 1, p. 351] that lim,\ o Thax(¢) = 1|l¢[5*, without sign restriction
on ¢ but, unlike our case, only for 2 a bounded domain and assuming also ¢ a continuous
function on €.

3) Theorem 1.6 is known for bounded domain and regular initial data, see [45, 43]. See also

[42, Remark 17.2(i), p. 92] for other estimates in bounded domain.

We now consider positive initial data which are singular near the origin, where we restrict

ourselves to the case = RY. We have obtained the following.

Theorem 1.7. Let N > 1 anda>0. Let 0 <y < N, v < % and let w € L=®(RY) be homogeneous
of degree 0, w > 0 and w # 0. Suppose that p € L} (RN), ¢ > 0 is such that o(x) > w(x)|z|7 for
|x| <€, and some € > 0. It follows that Tmax(Ap) < oo for A > 0 sufficiently large and

_ 1
lim sup AG—3) leaX()\gp) <

< —. (1.15)
Ao (aV/leA (@] - |77 loo) = 72

Remark 5.
1) If p is as in Theorem 1.7 such that ¢ € L?YO(RN), 0<vy<N,y< % then Theorem 1.3 and

Theorem 1.7 together show that Tiyax(Ap) ~ )\_(é_%)fl, as A — oo. This extends the result
of [50, Proposition 4.5] by removing the condition (N — 2)a < 4, as well as the condition
lim inf ;g [2|7p(z) > 0.

2) If N <y < 2, then there is no local nonnegative solution to (1.1) with initial value A for

all A > 0, where
5 w(z)|z|77, |z <e
3(a) = (1.16)

0, |z| > €.

See [56, 6].
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We now turn to upper estimates on Tyax(A@) as A — 0. For this we need to assume that  is
not bounded, and for simplicity we consider Q = RY. Our first result of this type is for measures.
Consider ug = Am, where A > 0 and m € M, the set of finite Borel measures on RY. We suppose
that m is a positive measure. To insure that (1.1) is locally well-posed on M we assume o < %,

and this implies (by Fujita’s result) that Tiax(Am) < oo for all A > 0.

Theorem 1.8. Let N > 1 and o > 0. Suppose o < % and let m € M be a positive finite Borel
measure on RN . It follows that Tyax(Am) < oo for all A > 0 and

_ 1
lim sup AG—%) 1Tmax(>\m) < I_Ny1
ja (a1/a(4m) /2] ) 3

(1.17)

Remark 6. Theorem 1.8 includes the case ug = Ap where ¢ € L*(RY), ¢ >0, p 20 and a < %.
Indeed, consider the measure dm = @dx where dx denotes Lebesgue measure. It follows then that
Theorem 1.1 and Theorem 1.8 together show that

N\ —
Tnax(A0) ~ (Allell1) "2, A= 0, (1.18)

whenever ¢ > 0, ¢ Z 0, p € LY(RY). The lower estimate is valid even if ¢ is not necessarily

positive.
We have obtained the following for positive initial data having some decay at infinity.

Theorem 1.9. Let N > 1 and a > 0. Let ¢ € L} _(RY), » > 0 and suppose that o(x) > w(x)|z|™7

loc

for |z| > R, for some R > 0, where w € L®(RY) is homogeneous of degree 0, w >0 and w # 0. If
0<~y <N andy< %, then Thax(Ap) < oo for all A > 0 and

_ 1
lim sup AG—3) leaX()\gp) <

. 1.19
A—0 n (al/o]|e®(w] - \—W)]’m)(é_%)_l ( )

Remark 7.
1) If p is as in Theorem 1.9 such that ¢ € L?(RN), 0 <7y <N, v < 2 then Theorem 1.3 and

Theorem 1.9 together show that Tinax(Ap) ~ )\_(é_%)_l, as A\ — 0. This extends the result
of [50, Proposition 4.5] by removing the condition (N — 2)a < 4, as well as the condition
lim inf ;) o0 |2[7(z) > 0.
2) If N <+ < 2, then ¢ € LY(RY), where
- 0, || < R
3(x) = (1.20)
w(@)lz|™, |z| = R,
for some R > 0, and so Theorem 1.8 gives an upper life-span bound as A — 0. So for ¢
as in Theorem 1.9 with v > 0, v # N, and by comparison argument, Remark 6 and the

min(v,N)7 49 A 3 0.

above one together show that Tiax(Ap) ~ A Gz
3) In the particular case where ¢ is continuous and bounded such that lim inf|,_,, |z[?¢(2) >
0, a similar result is obtained in [27, Theorem 3.15 (ii)]. If ¢ € L>°(R") and is nonnegative
satisfying ¢(x) > (1 + |z|)~7 for almost all z € RY a similar result is also obtained in

23, Theorem 5.2 (ii)]. Here ¢ is only L} (R"), and so the condition on lower bound on
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¢ is imposed only near infinity and we do not require liminf |, |2[7p(z) > 0. In fact,
by taking for example w(x) = [z1]/|x|, we have liminf|,_, [2|7p(z) = 0. We also give an

explicit upper bound.

We now consider upper-bounds of the life-span for sign changing initial data. We define the

sector
Q= {x: (x1, x2, -+, TN) eRYN: 21 >0, 29>0,---, T >0}, (1.21)
where 1 < m < N is an integer. For 0 < v < N and integer 1 < m < N, we let ¢g : ,, = R be

given by

Yo(x) = empyT1 - --xm|x|_7_2m, € Qp, (1.22)

where
Cmy =Yy +2) - (v +2m —2). (1.23)
In [50] local well-posedness for ¢ € L}, (RY\ {0}), anti-symmetric with respect to z1, z2, -+, Tpm,

and @|q,, i1s in the Banach space

r={ve Ll =), (1.24)
have been shown for 0 < a < 2/(y + m). The solution can be extended to maximal solution
w2 (0, Tinax () = Co(RY). Furthermore, there exits a constant C' > 0, such that

NG90, (O) > €, (1.25)
for all A > 0. We denote by e the heat semigroup on €,,. We have obtained the following for

large A.

Theorem 1.10. Let the positive integer m and the real numbers a, v be such that

1<m<IN, 0<y<N,0<ax< .
Y +m

1
loc

in Qu, is such that o(z) > w(x)Yo(z) for x € Qp N {|z| < €}, for some € > 0, where w € L¥(RY)

Suppose that p € L (RN \ {0}), anti-symmetric with respect to 1, 2, -+ , T, 1, €EX, 020

is homogeneous of degree 0, anti-symmetric with respect to x1, T2, -+, Tm, w > 0 on O, and
w #Z 0. It follows that Tiax(Ap) < oo for X > 0 sufficiently large and
1_aytmy—1 ].
lim sup Aa==9)7'T x(Ap) < —,
Avoe - (a1 /e (wifo) o) = =57

We have obtained the following for small A.

Theorem 1.11. Let the positive integer m and the real numbers o, v be such that

1<m<IN, 0<y<N,0<ax< )
Y+m

1
loc

in Qy, is such that o(z) > w(x)o(z) for x € QN {|z| > R}, for some R > 0, where w € L= (RY)

Suppose that p € L} (RN \ {0}), anti-symmetric with respect to x1, T2, -+ , Tm, Pl €EX, 9 >0
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is homogeneous of degree 0, anti-symmetric with respect to x1, T2, -+, Tm, w > 0 on Oy, and
w Z 0. It follows that Tyax(Ap) < oo for all A > 0 and

. 1_y4my-1 1
P e ) S e o T
Remark 8.
1) Theorems 1.10 and 1.11 improve the results of [50, Theorem 1.10, Proposition 4.5] by
removing the condition (N —2)a < 4. Also the conditions on the lim inf|,)_, %gp(x) >

|$"Y+m

0 or on the liminf), o 5 ¢(x) > 0 are not required here.

1Z2Tm

2) Theorem 1.10 (respectively Theorem 1.11) together with (1.25) show that

1 _'y+m

Tmax(Ap) ~ A~G )71a
as A — oo (respectively as A — 0).

The proofs of the known results cited above are based on careful constructions of super and
sub-solutions, comparison and Kaplan’s arguments. See, for example, [43, 30, 57, 58, 38] and some
references therein. In the case of decaying initial data, the results are derived via a careful analysis
of the asymptotic in the L>-norm of the solutions to the linear heat equation on RY with initial
data having specific orders of decay at space infinity as well as Kaplan’s arguments and comparison
principles, see [27]. This method, [27], has been used in many papers in the last three decades, see
for example [30, 60, 61, 5, 59] and references therein. Most of the results require that A be either
sufficiently large or sufficiently small and initial data are positive and regular. Also, some scaling
arguments are applied to derive life-span estimates, such as in [18, 11].

It interesting to compare the two methods used to prove our results above. The proof of lower
bounds as already mentioned, is based on the contraction mapping argument which gives local
well-posedness of solutions (as in [50]). Consequently, it does not require any positivity condition
or maximum principle. To prove the upper estimates, we use a necessary condition for local
existence of non-negative solutions established in [56] (see Proposition 5.1 below), combined with
the maximum principle, continuity properties of the heat semigroup and scaling argument. For
these estimates, positivity is required. There is a certain unity in these two methods. On the one
hand, the contraction mapping argument gives a sufficient condition on 7" > 0 for the existence
of a solution on the interval [0, 7] for some initial value ug. This condition takes the form of an
inequality involving both 7' and wug. This condition must fail for T" = Tiyax, which implies that the
opposite inequality must hold. When this inequality is applied to initial values of the form uy = A,
this results in a lower life-span estimate. On the other hand, inequality in [56, Theorem 1] gives
a necessary condition on T' > 0 for the existence of a (positive) solution on the interval [0,T7], for
some initial value ug > 0. This condition must hold for all T" < T,.x. Moreover, this condition
is stable under limits, and so must hold in the case T' = Tihax. When the resulting inequality is
applied to initial values of the form ug = Ap, an upper life-span estimate is obtained. We note that
the lower estimates for Tinax(A@) do not in and of themselves prove finite time blowup, while the

upper estimates do so.
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Our results based on scaling, the third approach in this paper, on the one hand use ideas
introduced in [11], and on the other hand comparison arguments. In particular, we give life-span

estimates for an initial value of the form

w(@)le[™, |zl <1
d(x) = (1.26)
w(z)|z|772, |z| > 1.
where 0 < 71,72 < N and 1,72 < % (71 # 72) and w € L¥(RY) is homogeneous of degree 0,
w >0, w #Z 0. See Corollary 6.6 below. We show, in particular, the impact of the singularity on
the life-span for A large and the impact of the decay at infinity on the life-span for A small.

The rest of this paper is organized as follows. In Section 2, we consider the standard nonlinear
heat equation and prove Theorems 1.1 and 1.2. In Section 3, we prove new estimates for the heat
kernel in weighted Lebesgue spaces, see Proposition 3.1 below. Section 4 is devoted to the case of
slowly decaying initial data and the proofs of Theorem 1.3 and Corollaries 1.4 and 1.5. The upper
estimates, Theorems 1.6-1.11, are proved in Section 5. In Section 6, we establish life-span estimates
via nonlinear scaling. In the appendix, we give some estimates of the life-span for Hardy-Hénon
parabolic equations.

Throughout the paper, C' will be a positive constant which may vary from line to line. For
positive functions f and g, we say that f(x) ~ g(x) as x — x¢ if there exists two positive constants
Cj and Cy such that Cig(z) < f(x) < Cag(z) in a neighborhood of xy.

2. LOWER BOUNDS FOR INITIAL DATA IN LEBESGUE SPACES

We consider the integral equation corresponding to the problem (1.1)-(1.2)

u(t) = e"®ug + /O =2 |u(o)*u(0)] do, (2.1)

tA A

where e!2 is the heat semigroup on €. It is known that the integral kernel corresponding to e
is bounded by the Gauss kernel for the heat semigroup on RY. Hence the L¢ — L" smoothing

inequalities are independent of €2, i.e.

1

_N 1
e uol| 1y < (4mt) ™2™ [l age (2.2)

whenever 1 < g <r < oo.

We recall for future use that in the case of Q = RN
D! = W/T)AD. (2.3)
where D, is the dilation operator D, f(z) = f(7x). In particular
D\/EetA = GAD\/Z. (24)

In this section the goal is to establish lower bounds for the life-span of solutions as an immediate
consequence of the fixed point argument used to prove well-posedness of (2.1) in certain Banach
spaces. While this argument is well-known, in order to show the applications to life-span, it is more

convenient to recall some of the details.
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To this end we recall the value
Na
qdc = 7a

and we require that g and r satisfy the following conditions:

q > qc (2.5)

and

1<

<qg<r 2.6
oyl sesr (2.6)

Note that given ¢ > ¢. and ¢ > 1, one can always choose r = g(a+1). Also, if ¢ > ¢. and ¢ > a+1,

one can choose r = q. Furthermore, in all cases above, we have r > a + 1. Finally, if ¢ = oo, then

ﬁzg(;—b. (2.7)

We next define the space of curves in which we seek a solution to (2.1), i.e. the space in which

necessarily r = co. We set

we carry out the contraction mapping argument. For a fixed M > 0 and T > 0, (and ¢, r and (3 as

above), we set

Vi ={ue C(0,T; L"(Q)) : sup t°|lu(t)]l, < M}, (2.8)
te(0,T]
With the distance
d(u,v) = dif (u,v) = sup P[u(t) —v(t)|, (2.9)
’ t€(0,T]

the space Yy}’ is a complete metric space.
To carry out the fixed point argument, we let ug € D’'(2) and suppose that there exists K > 0
such that

sup 9] e ugl|, < K. (2.10)
te(0,77]

This condition includes implicitly the condition that e!*ug be well-defined and in L7 () for t > 0.
Recall that if ug > 0, then e/®ug indeed is well-defined, but perhaps infinite. In order for (2.10)
to hold, it suffices for example that sup;c o n 2|t ugl||» < K, since |[ePug| < e®|ug|. We define

the iterative operator by
t
Fuyu(t) = e Pug + / =2 |u(0)*u(o) ] do. (2.11)
0

The following theorem is well-known. Since we are particularly interested here in the contraction

mapping property, we sketch that part of the proof.

Theorem 2.1. Let N > 1, a > 0,1 < q < 00 and q¢ > q.. There is a constant C = C(a,q) > 0
such that if K >0, M >0 and T > 0 satisfy

K+ OT" % Mo+l < M, (2.12)

and if ug € D'(Q) satisfies (2.10) for some r > q with 1 < a1 S q <1, then Fy, is a strict

contraction on Y]\%T and so has a unique fized point u = Fyyu € Y]\‘ZTT. This solution w of (2.1) is
a classical solution of (1.1) on (0,T].
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Furthermore, if ug € L9(2) and q < oo, then this fized point has the property that u €
C([0,T]; L1(£2)) with u(0) = ug.

Remark 9. Of course the sufficient condition (2.12) can be taken as

Na
sup t%(|ePuoll, + CT" 2 MO+ < M, (2.13)
t€(0,77]

i.e. taking equality in (2.10)

Proof. We first consider when the space Y]\?TT is preserved by the iterative operator F,,. Thus we

suppose u € Y7, and we estimate F,u(t) as follows.

)| Fugult) |

IN

t
ﬁugﬁwmr+tﬂ/"wﬂﬂﬁﬂuwku«ﬂwndo
0

IN

K+ﬁAMﬂrmﬂ@mewmwurw

a+1

_Na ﬁ t _Noa a+1
= K+ {dm) 2t (t—o) 2 |ju(o)|s" do
0

IN

Na t Na
K+ (4m)" 2 tP (/ (t— 0)2”75(0‘“)6&7) MoTt
0

IN

1
K+ (471')7%#71\2]7 </ (1-— U)]ggaﬁ(wrl)da) Mett
0

IN

1
K+ (47)" 2 (/ (1- a)]gi’ama*l)da) T %yt
0

IN

Na 1 Na 1 1,@ 1
K +2(a+1)(4n) " 20 </ (1—0) 2 g Pl )da> T 20 Mot
0

It follows that if (2.12) holds, where

1
C'=C(a,q,7) =20+ 1)(4m) 2 / (1-0) 2 o Bt gg
0

then Y;" is stable by Fy,.
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Next we show that F,, is a strict contraction on Y;»".. We estimate as follows.

| Fugult) = Fuv@®)llr < tﬁ/ e [[u(o)|*u(o) = [v(e)|*v(e)]||do

< (4m) B / (t— o)~ = ||[Ju(0)[*u(0) — [v()|*v(0)] | =, do

0
< (a+ 1))t /0 (t— o)~ % [[[u(e) — v [Ju(@)]* + [v(0)]*] || - do
< (a+ 1)) Bt /0 (t = )" = Ju(o) — v(0) |+ [[ul@)]2 + [lo(o) 2] do
< 2(a+1)(47r)_%t5 </0 (t—a)_]gracr_ﬁ(o‘ﬂ)da) Mad%T(u,v)
< 2Aa+1)(dm) F W ( / 1(1—a>—1¥?a—ﬂ<a+l>da> Mdy (u,v)

0

<

1
2(a+ 1)(4%)_% </ (1-— 0)_1\2?(7_5(0‘“)610) Tl_%MO‘d?\}[rT(u,v).
0 )
Thus
q,r —Na ! —Na _g(a+1) =59, o qr
dyr 7 (Fug, Fuov) < 2(a + 1) (4m) ™ 2r ; (l1—0) 20 do | T" 20 M*dy; p(u,v).

It follows that if (2.12) holds then F,, is a strict contraction on Y},
The only difficulty is that C' potentially depends on r as well as ¢ and «. To rectify this, one can
replace C(a, q,7) by C(a, q) = max,<,<q(a+1) C(a, q,7) and the result holds with C' = C(a,q). O

As is well-known, Theorem 2.1 is used to show that the integral equation (2.1) is locally well-
posed on L4(2). In particular, if ug € L%(2) the resulting solution given by the fixed point argument
can be extended to a unique maximal solution on an interval [0, Tinax(uo)). We will not belabor
this point further.

We have also the following.

Proposition 2.2. Let N > 1, a > 0,1 < g < o0 and q > qc. Let Tyax(p, LY) denotes the existence
time of the mazximal solution of (2.1) with initial data p € LY(2). Then the following hold.

(1) u(t) € Co(2) fort € (0, Tmax(p, L7)) .
(ii) If ¢ € LY(Q)NCp(R) then Tmax(p, L) = Tmax (@, Co(R2)), the existence time of the mazimal
solution of (2.1) with initial data ¢ € Cp(R2).
(iii) If p € LI(Q) N LP(Q) with g. < p < 00 then Tmax(p, L) = Tmax(p, LP), the existence time
of the mazimal solution of (2.1) with initial data ¢ € LP(Q).

Proof. (i) By iterative argument, as in [2], u(t) € L"(Q) for ¢ < r < oo. It is known that e!®
L9(Q2) — Cp(Q2), is bounded for ¢t > 0 and 1 < ¢ < co. See [42, 9]. Hence, by (2.1), u(t) € Cp(£2).
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(ii) By (i) we have Trax(p, L?) < Thax(@, Co(€2)). Using (2.1) and (2.2), we have
t
lu@®ll, < llePell+ /O (o) [*u(o)llgdo

t
< HSOHq"‘/O lu(@) S llu(e) oo

By Gronwall’s inequality, we get
lu(®)llg < lpllgelo I,

Hence w can not blow up in L9(Q2) before it blows up in Cp(£2). That is Tmax(v, Co(2)) <
Tmax(SOv Lq)

(iii) Let € € (0, min(Tmax (@, L), Tmax(, LP))). By (i) we have u(e) € Cp(Q2). Using (ii) we have
if p < o0,

Timax(u(g), L) = Tynax(u(g), Co(R)) = Timax(u(e), LP).

That is Tax (@, L?) —& = Thax(p, LP) —e. If p = oo, then ¢ < p hence (i)-(ii) hold and Tiax (e, L) —
e = Thax(u(g), Co(R)) = Thax(u(e), L) = Tmax(p, L) — . Hence we get the result. O

As a first application of Theorem 2.1 to life-span estimates, we prove Theorem 1.1.

Proof of Theorem 1.1. Consider ug = Ap, where A > 0 and ¢ € LI(Q2). The key observation is that
if Thhax(Ap) < o0, it is impossible to carry out the fixed point argument on the interval [0, Tinax(Ap)]
with initial value uy = Ap. Hence, by (2.13)

Na
sup  t7]|e gy + CTmax(Ap)' ™ 20 MOH > M,
t€(0,Timax(Ap)]

for all M > 0. Recall that (47t)P||e'®ug||» < |luollq by the LI — L™ smoothing properties of the heat

semigroup (2.2), so that
Na
(4m)°Mpllg + CTmax (M)~ 20 MOF! > M,
for all M > 0. In particular, if we set M = 2(47)°\||¢||,, this gives
1-Je o
Clmax(Ap)™ 20 [Al@llg]* > 1.
Thus we have proved Theorem 1.1. O

As a second application, consider ug = Am, where A > 0 and m € M, the set of finite Borel
measures on (2. For example, m could be a point mass. In order to apply Theorem 2.1, we observe
first that

_Jz—y|?

oAm| < (dmt) 5 / e dml (y),
RN
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where, by abuse of notation, m denotes both the measure on € and its natural extension to RY,

and |m| is the total variation of m. Hence

_N
le"®mlo < (4mt)” 7 [|m|| s,
leSmlly < mfa
and so by interpolation
_N(_1
le*Am|l, < (4mt) =2 17 [m ag, (2.14)

forall 1 <r < co.
Theorem 2.1 thus implies that (2.1) is locally well-posed on M if ¢. < 1. Simply take ¢ = 1 and

r = a+ 1. (This of course is well-known.)

Proof of Theorem 1.2. To obtain a life-span estimate, we again note that if the maximal existence
time is finite, i.e. Tpax(Am) < oo, then (2.13) can not hold with ug = Am and T" = T ax(Am).
Hence, also using (2.14), for g = %(1 - %H), we must have
(4m)P Al | pg + CTrmax (Am) =5 MOFL > M,
for all M > 0. As above, we take M = 2(47)?\||m||r¢, which gives the lower estimate
1N
CTax(Am)a ™2 A||m|[aq > 1.
This completes the proof of Theorem 1.2. O

As a third application of Theorem 2.1 to life-span estimates we consider ug = Ay where A\ > 0,
pe Ll (RN)and |¢| <|-|77 for some 0 < v < N. We recall that if % < r, then

loc
e 2] - [l = ¢ 20 [ |7, (2.15)

for all t > 0. This follows from a scaling argument. For convenience, we set

L=le [ (2.16)

Hence if |p| < |-|77, then
e (@)l < Alle* ] - |77l = LAC3 3. (2.17)
We next set ¢ = %, so that 1 < ¢ < r, and we may choose r so that (2.6) holds. Also, f =
%(% - =1- % Theorem 2.1 clearly shows that (2.1) is locally well-posed for initial values

bounded by a multiple of |z|™7 with 0 <y < N and % > qe, 1.e. ¥ < % This of course is known.
See [11, Theorem 2.8], and also [50, Theorem 2.3].
As for a life-span estimate, if ug = A¢ where |p(x)| < |2|~7, then the existence time of the

solution, Tiax(Ap), if it is finite, must verify
AL + CTmax (M) ™2 MOt > M
for all M > 0, where L is given by (2.16). For M = 2\L, this gives

CTmax (M) ™2 (AL)® > 1.
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In other words, we have the following result.

Corollary 2.3. Let 0 < v < N and v < 2. Suppose ¢ € L}, .(RY) is such that |o(z)| < |x|77. It

loc
follows that
C

(AL G
where L is given by (2.16) and C' depends only on o and .

Tinax(Ap) 2 A >0, (2.18)

This last result recovers [50, Theorem 2.6(ii)] in the case m = 0, by a different but related
method: the contraction mapping argument is formulated differently. It does not seem possible
that the contraction mapping argument used in the proof of Theorem 2.1 can be used to recover
[50, Theorems 2.3 and 2.6] in the case 1 < m < N. Indeed, that is the point of the paper [50]. Note

also that Theorem 1.3 gives also the result but here the constant at the right-hand side is explicit.

3. ESTIMATES FOR THE HEAT KERNEL IN WEIGHTED SPACES

In this section we prove the following heat kernel estimates. For simplicity, the space L? (]RN ),
will be denoted by LP. We recall that the norm in LP(RY), || - | ey is denoted by || - [[.

Proposition 3.1. Let N >1,0<~y<u <N, ¢ € (1,00] and g € (1,00] satisfy
1 u—vy 1 W 1
0< —<———+—<—=-+—<1L
@ N o~ N @

Then there exists a constant C > 0 depending on N,~, s, g1 and g2 such that

1.7 < ot ¥ Gm) =52 )|, ¢ >0, [JFue Lo, (3.1)

q1’
Remark 10.

1) The estimate (3.1) is well-known for y = v = 0, that is (2.2) (see for example [53]). For
the case v = 0, 0 < p < N, (3.1) is established in [2]. Estimate (3.1) is known for

0<”y§u<N,0§q%gq%<q%+%<1m[51,8]. See also [25] for the case ¢1 = q2 = 0.

It follows by [51, 8] that (3.1) holds for 0 <y =pu < N, ¢1 = g2 = q € (1, 0], % + & <1
2) The power of ¢ in (3.1) is optimal. This can be shown by scaling argument as in [2]. In

fact, for t > 0, we have
eAfu=D D1 u
Ve T
for all u € S'(RY). Also
_N_2y

11D ygflle =722l [ £l

forall |- |7f € L",r > 1. Writing (3.1) for ¢t = 1 as follows
[1-eull,, = [7D e Dy gu| < Ll

Setting Dl/\/gu =wv that is u = D v, we get

H|.|7Dﬁet%Hq2 < cHy.wDﬁqul.



18 S. TAYACHI AND F. B. WEISSLER

That is
a5 % v A —gy—h Iz
t 22 |[|Ve' ]|, < Ot R |, -

This gives (3.1) for all £ > 0.
3) The fact that v < p is necessary. This follows by translation argument. See also [10]. We
take, in (3.1), t =1, u = Gi(- — Txg), 7 > 0, zg € RV, |20| = 1. In fact, we have that

GAGl(- — Two) =G * Gl( _ 7-1-0) — G2( o TJ}()).
On the other hand,

. v
I Gal- = o), = Il - 4720 Gally, =7 || = + 0| G2

q2

and

- PG = 7o)l = 7||= + 0| G

Q1
Hence, (3.1) reads,

el

. Iz
<cf|z+af'a
q2 T Q1

Then we let 7 — o0, since H’;%—xoluGlqu — HGlqu < oo and H};+xo‘7G2Hq2 —
||G2HQ2 > 0, to deduce that v < p if g2, ¢1 < 0.

4) Our estimate is different from that of [51, 8] since we do not require ¢; < g2 if v < p. In
fact, since the condition v < p, is necessary by the above remark, all that we require is that

the power of ¢ in (3.1) is negative.

To prove Proposition 3.1, we establish the following estimates for the heat kernel in weighted
Lorentz spaces. Since the cases 0 = < u < N, ([2]) and 0 < v = u < N ([51, 8]) are known, we
only give the proof for 0 < v < u < N.

Proposition 3.2. Let N > 1, 0<y<p < N, 1 < g < o0, ¢1 € (1,00] and g2 € (1, 00| satisfy
1 p—vy 1 pu 1
0< —<—+ —<—=+—<1.
@2 N a N a

Then there exists a constant C > 0 depending on N,~,u, q, g1 and g2 such that

_N(1 1)\ _p—y
Pt e < €6 F @85 ol e, £ 0, [ e L9, (32

with if go = oo then q¢ = 0.
Remark 11. A Young’s inequality is proved in [26, Theorem 3.1, p. 201] for weighted Lebesgue
spaces where it is assumed also q1,q2 < oo. We do not use this here and we provide a simpler

proof for our case as a convolution with a Gaussian. See [47] for (3.2) with v = 0 < u < N,
1 op 1
0< S<§+4 <L

Proof of Proposition 3.2. From the embedding L' < L9, ¢ > 1, g; < 00, it is sufficient to give
the proof for ¢ = 1. Since v > 0, then by the inequality |z|” < C(|y|” + |z — y|"), we write

7€l = [|.["(Ge x )| < CGyx (. ul) + C(|."Gy)  Jul, ¢ > 0. (3-3)
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Let v < < N, 1 € (1,00) and ¢2 € (1,00) be such that

1 pw—ry 1 W 1
<—F+—< =+ —< 1L
q2 N a N q
Set
1 1 1
=14+ — - =,
b1 q P2
with

Let us introduce the numbers p;, ps defined by
1 1 1 1
2 _ M

m m N p N q

We have
1 1 1
- = 1 + — — =
p1 Q2 P2
Since 0 < v < u, and by the conditions on g1, g2, we have that
1 1 1 1 1 1 1 1
< —<—<L,0<—<,0<—+——-1=——-14+4—<—< 1
p2 p2 b1 b1 b2 Y41 b2 p2

Using generalized Young’s inequality, see [37, Theorem 2.6, p. 137] or [17, 28], we deduce that

A
117" ull oo

IN

CllGe* [Mull| paza + Cll[-"Gex |ull| a1

IN

ClGel Lo lll-Mulllizrzce + CllLTGell L | L oo
CIl + CIQ; (34)

where

1 1 1 1 1 - -
1+7:7+7:T+Ta 1<q2ap27p2<ooa 1<p17 p1 < oo.
@2 p1 P2 P11 P2
We first estimate I;. Using the generalized Holder inequality, see [37, Theorem 3.4, p. 141] or

[28, 17]), we get

(e 1 w—y 1
1< OG0, e lPullzms, 0 <=y <V, — =BT — <1

2
_ =]

Since Gi(z) = t_%Gl(w/\/i) = t_%(47r)_%e 1 € LPYL] we deduce from [17] that

_N _N N _N(_1
1Gill s = 3Dy Gl = 515Gl = €t~ % (750),

with

Then, we deduce that

,ﬂ(i,i),u
L <(Ct 2\ 2 H‘.‘Nu”Lqu. (3.5)
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We now estimate I. Using the generalized Hélder inequality, we get

L < ClILPGell g 1177 o oo -l panee,
1 1
O<pu<N, ==F41 =1
2 N q

2|2

Since |z|7Gy(z) = t_%+%|x/\/f|7G1(:r/\/f) = t_%(47r)_%|x|ye_% € LY we deduce from [17]
that

N
Py

_ N, _ N,y N _N(j_L
1P Gellgn s = 531D, (L0 G) s = £ 3637 LGl s = o6 F (750),

Then, we deduce that
_E(L_L)_u
I < Ct 2\a1 @ 2 |H.‘“’U,HLq1,OO. (36)

Plugging (3.5) and (3.6) in (3.4) we get (3.2).

If g2 € (1,00) and ¢ = o0, hence g2 > N/(pn —7y), the above calculations for estimating I, s
hold using the generalized Holder inequality in [37, Theorem 3.4, p. 141] (see also [28, Proposition
2.3 a), p. 19)).

If g2 = q = o0, the proof follows by using the generalized Young inequality, [37, Theorem 3.6, p.
141] (see also [28, Proposition 2.4 b), p. 20]) as follows

A
1€ ulloo < CIGel oIl ulllLezoe + ClGell prrallulll 1o oo

with
w—xy 1 ) 1
l1-(———+— | =—¢€(y/N,1
(5 3) = o
and by similar calculations as above. This completes the proof. ]

We now give the proof of Proposition 3.1.
Proof of Proposition 3.1. The proof follows by taking ¢ = g2 in (3.2) and using the fact that

- ull oo < Ol ull oy = CHI Pl o -

4. LOWER BOUNDS FOR SLOWLY DECAYING INITIAL DATA

In this section we apply Proposition 3.1 in order to show local well-posedness in weighted
Lebesgue spaces for the nonlinear heat equation (2.1). This allows us to obtain more precise
estimates for the lower bound of the life-span in relation with the weight. For v > 0, 1 < ¢ < oo,

we consider the weighted Lebesgue space
L%(RN) = {f:RY = R,mesurable, | - |7f € LY(R"Y)}.

Endowed with the norm

1A llzg == NIl 17 fllza,
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LiL(RY) is a Banach space. Clearly, if 0 < v < N, 1 < ¢ < oo, and % + % < 1, using the Hélder
inequality, we have L (RY) C S'(RY). Also, for ug € L{(RY), 0 < < N, NL—W < q < oo, we have
limy g [|e"®ug — uo| ¢~y = 0. This follows as for the standard LI(RY) case, that is v = 0.

We are interested in the local well-posedness for the nonlinear heat equation (2.1) in L% (RY).

We consider initial data ug € LL(RY) where g, v satisfy
2

1 v Na ay
-+ =<1, —+—< 1
q + N 2q * 2
The critical exponent in the weighted Lebesgue space L7 (RN) is given by
Na

T2 qa

(7) (4.1)

The value of the critical exponent g.(7y) can be explained by scaling argument. In fact, if u is a
solution of the equation (1.1), with © = R, then for any p > 0, u,, is also a solution of (1.1),

where
2
uu(t, ) = pou(p’t, pe).

2 N
We have [luy(t)||pe = /ﬁ*V*?Hu(t)HLg, and on initial data u(0) = up we have

2 2_,_N
s o ()l o = o~ Juol| .

The only weighted Lebesgue exponent (obviously if its exponent is greater than 1) for which the

norm is invariant under these dilations is

N 2
() o

Hence q.(7) is given by (4.1). We have the following local well-posedness result.
Theorem 4.1 (Local well-posedness in L1). Let N > 1 be an integer, « > 0 and v such that
0<y<N,y<2/a. (4.2)

Let q.(7y) be given by (4.1). Then we have the following.
(i) If y(a+1) < N and q is such that

N(a+1)

>
12N Fa+1)

q>qe(y) and q < oo,

then equation (2.1) is locally well-posed in LL(RN). More precisely, given ug € LL(RYN),
then there exist T > 0 and a unique solution u € C([0,T]; LYARN)) of (2.1) (we replace
[0,T] by (0,T] if ¢ = oo and w satisfies lims_sq ||u(t) — etAU()”L?{o(RN) = 0). Moreover, u
can be extended to a mazimal interval [0, Tiax) such that either Tipax = 00 or Tpax < 00

and lm [lu(®)] 5 = <.

ax
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(ii) Assume that q > q.(y) with NL—W < q < 00. It follows that equation (2.1) is locally well-
posed in LL(RYN) as in part (i) except that uniqueness is guaranteed only among functions
u € C([0,T]; LYA(RN)) which also verify t%(%_%H%Hu(t)HL; is bounded on (0,T], where
r = (a+1)q, v(a+1) =7, (we replace [0, T] by (0,T] if ¢ = oo and u satisfies limy_ ||u(t)—
etAUOHLgo(RN) = 0). Moreover, u can be extended to a mazimal interval [0, Tiax) such that

either Tinax = 00 01 Tipax < 00 cmdt li%n [u(t)l| g = oo. Furthermore,
—Tm

[u(®)lg = C (Tnax = )% =, V£ € [0, Trnan), (4.3)
where C' is a positive constant.
Proof. (i) Let us define the maps
Ki(u) = e (|Ju|*u), t > 0.
Using the following inequality, which follows by the Holder inequality,

1760 (jujo — folo)|

L <Ol + gy =l pza+l vz0,  (44)
a+1
_q_
and Proposition 3.1 that is e*® : L(‘)‘aﬁl)v — L% is bounded for each ¢ > 0, we have that K, : L1 —
L is locally Lipschitz with
[ () = Ke(v)| g

N 1
,f(L,%),%

IN
Q
~

vl 4y
(a+1)y

[Ju|*w = fol*

IN

_Na_ay o o
Ot 5 (Jullgy + lollge)llu — ol 2
_Na_ay
< 20M°t 2 2 {ju — v,

for flullpg < M and |v|[zg < M. We have also, that T € L} (0,00), since ¢ > gc(v).
Obviously ¢ + ||K4(0)||ec = 0 € L} .(0,00), also e**K; = Ky for s, t > 0. Then the proof follows
by [53, Theorem 1, p. 279].

(ii) We consider r and v > 0 such that v <+, v(a+ 1) < N, r > q. Hence we have

L afl va _atl vietl) 1 1 y-v 1 o _,
r r N r N r g N qg N ’

The choice of r, v is to guaranties that the maps e'® : Lﬁl)y — L7, and et LY — LV are

bounded so that we may apply Proposition 3.1. In order that e*® : Lﬁl)y — L% is bounded, we
choose for simplicity,
r=(a+1)g v(a+1) =1,

(If ¢ = 0o we have r = c0), and we may apply [8, Lemma 2.1] to get that e*® : Lﬁl)y =L — I}
is bounded. With this choice, the conditions on r and v are satisfied, since

L v

-+ =<1

q N
Define NN

av
flv)=———+ —. (4.5)

2 2r 2
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We choose K >0, T > 0, M > 0 such that

17Na Yo

K+ CMeHT 720 =2 < M, (4.6)

where C' is a positive constant. We will show that there exists a unique solution u of (2.1) such
that u € C ([0, T); LYARN)) N C ((0, T]; LL,(RY)) with

lul| = max | sup [lu(t) e, sup P u(t) |2y | < M.

) )

The proof is based on a contraction mapping argument in the set
Vi = {u € C ([0, T); LY(RY)) N C((0, T} L) : [Ju]] < M},

Endowed with the metric d(u,v) = |lu — v||, Y}; 7 is a nonempty complete metric space. We note
that for ug € L% we have

N1

_1y_oy—v _N1_1y_rvo _
leugllzy < O F G2 ugl g = € FGTD T Jlugl g = OO g s

We will show that F,, defined in (2.11) is a strict contraction on Y;};7.. The condition on the

initial data [[ugl| s < K will implies that )" ug| 1, < K. We have

PN Fuu®ly < PP uo gy + 7 /O e [u(o)] ()] 5o
< K40t /0 (1 — o) B e () ()] gy o
= K+ [ o) B ulo)l3f o
< K+ CMT1Pw) /t(t — o) T e AW et g,
0

< K+ CMOeFY /1(1 — J)_%_%O’_B(V)(a—i_l)da'

0
< KoM E [0 ) e B g,

0

By the hypotheses and the fact that ¢ < r and v < v we have

Na va Na ~qyo Na ay
— 1 1)=—
<5y T <L AWt =54

2% T 2

<1
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We estimate in LY as follows,

t
[Fuou(®)llpg < He“kuoHLg4-]£ =2 [[u()[*u(o)] || g do
t
< K+CAHMM%Wwwmmwmwﬂw
t
_ K+c/umﬂmﬁw
0 v
t
< K—I—CMO"H/ o BW)etl) g,
o 0
Na Yo 1
< K+OoMotl=2 2 [ B0ty
0
Na ~yo 1
< K+CMtIT 2 2 | o PWetl) s

0

The condition (4.6) implies that the space YJ\%T is preserved by the iterative operator F,,. We
show similarly the contraction. The proof of the other parts follows as in [2]. So we omit the

details. This completes the proof of the theorem. O

We note that uniqueness in Part (ii) of Theorem 4.1 holds in u € C/([0, T]; LY(RY))NC((0, T; L, (RY)).

This follows by similar argument as in [3]. We will not belabor this point further.

Proof of Theorem 1.5. Consider ug = Ap, where A\ > 0 and ¢ € Li. If Thax(Ap) < o0, it is
impossible to carry out the fixed point argument on the interval [0, Tinax(Ap)] with initial value
ug = Ap. Hence, by (4.6)

Na _ ~yo

K 4 CTmax (M) ™20~ 2 MO > M,
for all M > K. Letting K = [luo|| s = Al|¢l|e, so that

Na v

Alllzg + CTmax (M) ™2 % MO > M,
for all M > All¢|[zs. In particular, if we set M = 2A[[¢[|pa, this gives
1—Na_ 7o o
CTmax(Ap) 202 Ml pg]™ > 1.
Thus we have proved Theorem 1.3. O

Remark 12. If uyp € LI with v > 0, ¢ < oo are as in Theorem 4.1 then writing

luol = |uolyjz<1y + volye|>13
< | T g <ay (2 uol1gz<ay) + 127 1gzps1y (J2]7uol)
< | gy <ay ([ uo| g zi<ay) + 12| uol,

where 14 is the indicator function of a subset A of RV, we see by the Holder inequality that
uoeL’"—l—stith%:éjL%, s=qifg<ooandr >1, % <r< % < s < 00 if ¢ = oco. Then the

local well-posedness is proved in [11, Theorem 2.8]. The fixed point argument used in [11] seems
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not to give an explicit lower bound estimate of life span, as T' < 1, the minimal local existence
time, is required in the proof there and the constants in particular in [11, Inequality (2.10)], seems

to depend on T

The construction of solutions to (2.1) with initial data in the intersection of two metric spaces
follows by well-known argument. See also the proof of [2, Proposition 3.2, p. 126]. We have the

following result for the existence time of the maximal solution.

Proposition 4.2. Let N > 1 be an integer, « > 0 and 0 < v < N, v < 2/a. Let q.(7y) be given
by (4.1). Let ¢ > q.(7), % < ¢ < o0 and Tmax(p, L1) denotes the existence time of the mazimal
solution of (2.1) with initial data ¢ € LY. Then the following hold.
(i) u(t) € Co(RN) N L for t € (0, Tiax(, LY)) -
(ii) If p € LINCH(RY) then Trmax (¢, LY) = Timax(p, Co(RY)), the existence time of the mazimal
solution of (2.1) with initial data ¢ € Co(RY).
(iii) If p € LANLY withp > q.(7), NL_V < p < o0 then Tyax(, LY) = Thax(p, LY), the existence
time of the mazimal solution of (2.1) with initial data ¢ € LY.
(iv) If ¢ € LI N LP with q. < p < 00, then Tmax(p, L) = Tmax (i, LP), the ezistence time of the

mazximal solution of (2.1) with initial data ¢ € LP.

Proof. (i) Let ¢ € LL(RYN), ¢ > q.(y) and ¢ > Niﬂ Let r = (o« + 1)g, v(a+ 1) = v and B(v) be
given by (4.5). Let p be such that r» < p < co. Hence p > ¢ and
1 a4+l v a+1 1 1 %

1
0< =< < = <l, -~ << L4+-<1.
—p r N+ r P q N+q

For 0 < T < Tax (¢, LY), we have

A

t _N¢iatl 1 o
lu®lls < Nl +C /0 (t—0) =" Ju(o) 1§ do

< ot 2G|l e + Ot T gy (sﬁ( YOt u(s )Ha“)
7 5€(0,T]

1
/ (1 o) FEE3) 68000+ g,
0
1
T ) A e
0

Since r > ¢ > q.(7), it follows that if

a+1 2 1 1

)

r N p r

then u(t) is in LY for all ¢ € (0, Tmax(¢, LY)). The result for general p > ¢ follows by iteration.
Hence u(t) is in L, for t € (0, Tmax(¢, LY)). Then u(t) € L™+ L* for r > 1, % <r< % < s < o0.
Hence by [11, Theorem 2.8] w(t) € LP for s < p < oo. Then it follows that u(t) € Co(RY), for
t € (0, Tmax(p, LY)).
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ii) By (i) we have Tiax (0, L) < Thax(9, Co(RY)). Using (2.1), we have
vy

N

t
lu@)llzs < ||6tA90||Lz+C/0 [[u(o)[*u(o)||Lado

IN

t
Cliglls +C /0 lu(o)||% u(o)] 2 do

By Gronwall’s inequality, we get
t a
lu(®)l|zg < CllgllggeC o @ Nede,

Hence u can not blow up in L{ before it blows up in CO(RN ). That is Tmax(¢p, CO(RN ) <
TmaX(%L’qy)-

(iii) Let & € (0, min(Tmax(p, L), Tmax (¢, I))). By (i) we have u(e) € Co(RY). Using (ii) we
have

Tinax(u(e), LL) = Tax(u(e), Co(RY)) = Tmax(u(e), LE).

That is Tmax (¢, LL) — € = Thax(¢, LY) — €, hence we get the result.
(iv) Follows similarly as (iii). This completes the proof of Proposition 4.2. O

Proof of Corollary 1.4. Since Tyax (v, L?), the maximal existence time in L?, is equal to Tiax (e, LIN

L%) the maximal existence time in LY N LY, we deduce that

1) If Na < 2 we discuss the two cases

(i) v < N hence v < 2/a and we have

1 v Na ~vya Na /[l v Na
S+l — = <
q+N ’ 2q+2 2 < +

hence, we apply Theorem 1.3 to get

(ii) v > N then p € L. In fact, we write ¢ = ©1{z/<1y + ¥1lfjz/>13- On one hand, since
p € L, g >1, hence o1y, <1y € L'. On the other hand, by the Holder inequality,

leLizs13ll = llelzlM 2] Les1y i

IN

el g™ L gja> 1yl
= llellpglllel gz 13 lly < o0,

since 7¢' > v > N and since ¢ € LI, that is Pl{z>1) € L'. Hence both results
give that ¢ € L'. We may then apply Theorem 1.1 in L!, using 1 > % to get
Tax(Ap) > CA~(5=%)

2) If Nao > 2 then we assume 7y < 2/« and we have only one case, v < N. Hence since ¢ > q.(7)

(1 N _2)7!
we apply Theorem 1.3 to get Tiax(Ap) > CA (“ 24 2> :

1 1 . N -
In the all cases we have Tax(Ap) > C)f(afi mm(?*%N))

1.4. g

1
. This completes the proof of Corollary
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Proof of Corollary 1.5. Since ¢ € LP N L%, then the existence time of the maximal solution is the
same to that in LP and to that in LI. By the Holder inequality ¢ € L for % = % + %9, T =
(1—0)y, 6 €0, 1]. The existence time of the maximal solution is also the same in L7. The function
z € (0,2/(Na)) — AGEF0) g increasing for A € (0,1) and decreasing for A € (1,00). Letting
r=zg=14% =90 (%D - % - 7) —{—%—i—%, we have that maxgc(o,1) 79 = max(%—l—%, %D) = max(xg, r1)
and minge(o 1) 29 = min(% + %, %) = min(xg, 21).
Using Theorem 1.3 if § = 0 or Theorem 1.1 if § = 1, we have that
B L Lol
T 09) = C (Nllle) 37D 5 € (gl ) 20
The result follows then by taking in the last inequality maxyeo 1] zg, for A € (0,1) and mingeo 1] 79
for A € (1,00). This completes the proof of the Corollary. O

Example 4.3. Let 0 <y < N and v < 2/a. Let ¢ be given by (1.16). Then ¢ € LP N L° with
% <p< % By Corollary 1.5 we have

(5‘%71, if 0<A<1,

Tmax(Ap) > C 1 -1
A G2 i a1

X
2

5. UPPER BOUNDS FOR NONNEGATIVE SOLUTIONS

In this section we exploit a well-known necessary condition for the existence of a nonnegative
solution to (2.1). More precisely, if v is a nonnegative solution of the integral equation (2.1) on
(0,T) x Q then

at(ePug)® < 1, (5.1)

for all t € (0,T], where ug > 0 can be either a locally integrable function or a positive Borel measure
on Q. See [56, Theorem 1].
We let Tinax(uo) denote the maximal existence time of a nonnegative solution of (2.1), and so
0 < Thmax(up) < co. Indeed, there are three possibilities, all of which can be realized: there is no
local nonnegative solution with initial value ug, there is at least one local solution on some interval
(0,7"), but no global solution, i.e. on (0,00), or there is indeed a global solution. In the case
ug = Ay, then (5.1) becomes
aXt(eBp)* <1, (5.2)

for all t € (0,T]. If ¢ > 0, ¢ # 0, this implies that Tiax(Ap) < oo for all sufficiently large A > 0
and that

lim Tinax(Ap) = 0. (5.3)
A—00

Indeed, given any ¢t > 0, (5.2) can not be true for sufficiently large A > 0, and so t > Tihax(Ap) for
sufficiently large A > 0. This shows the first statements of Theorems 1.6, 1.7 and 1.10.

It is important to realize that Tynax(up) as just defined, i.e. the maximal existence time of
a nonnegative solution, is not necessarily the same as the maximal existence time of a regular

nonnegative solution. Indeed, in some cases, a nonnegative solution can be continued after blowup.
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See [1] for example. However, any upper bound on Tjax(up) is also an upper bound on the maximal

existence time of a regular nonnegative solution.

Proposition 5.1. Let ug > 0 be either a locally integrable function or a positive Borel measure
on Q, and let Tiax(up) denote the maximal existence time of a nonnegative solution of (2.1). If

0 < Thax(ug) < 00, then

T ax (g ) (€Tmax (W) Aqy ) < 1 (5.4)

In particular, if ug = A, then
X Tnax(Ap) [P 2018, < 1. (5:5)
Proof. Inequality (5.1) is true for all 0 < t < Tinax(uo). Hence it is true for ¢ = Tiax(uo). O

We now give the proofs of the upper bounds.

Proof of Theorem 1.6. Since Tyax(Ap) — 0 as A — oo, it suffices by (5.5) to observe that if ¢ €
L*(Q), then [le®¢]loc — [[@lloc as t — 0. Indeed, [le¢]lo < [|¢llo s0 limsup; g [l ¢l <
¢]loo- On the other hand, e*®¢ — ¢ weak* as t — 0, 50 ||¢]loo < liminf;_q || 0| co- O

Proof of Theorem 1.7. In order to estimate T ax(Ap) from above, it suffices to estimate Tiax(AP)
from above, where ¢ is defined in (1.16). Indeed, since 0 < @(z) < p(z) it follows that Tinax(Ap) <
Tonex(A3).

To find an upper estimate on Tipax(A@P) as A — oo, it suffices by Proposition 5.1 to determine
the behavior of [e!®@||« as t — 0. Let D, be the dilation operator D, f(z) = f(rx). We have

A ~ . A N _a b -
2@ lloc = 1D 76" Blloo = 1e® D, 50lloc = t72[[e[t2 D 78] | oc- (5.6)
Since t%D\/igE — w|-|77 in D'(RY) as t — 0, it follows by [7, Proposition 3.8 (i), page 1123] that
X ~ —
t2[le"@lloc = lle® (@l - |7)lloo,
as t — 0. Since by (5.3), Tmax(Ap) — 0 as A — oo, this along with (5.5) implies

lim sup A*Thax(Ap) 2 < ;
0 SUD A" Tinax (A) A @l

which is the desired result. ]

1_04"/ 1

Proof of Theorem 1.8. Applying (5.5) we see that
AN Tipax (Am)||eTmaxAm) Ao <

Furthermore,

A A A _N AN
le“m|lee = [ Dz mloe = [[eZD jyml|oo = ¢~ 7 [[®[t2 D zm]]l oo

so that
N
2

_Na a
Ck/\aTmaX()\m)l 2 HeA[TmaX()\m) D\/mm}” S 1. (57)
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The result follows since Tiax(Am) — 0o as A — 0 (by continuous dependence or Theorem 1.2) and
t%Dﬁm — |[[m[jpm60 as t — oco. In fact, uy = tN/QD\/im is the measure defined by
f@dulaids = [ Dy gf(@hdmo). f € oY)
RN RN
We have Dl/\/gf — f(0) as t — oo m a.e. Since m is finite, then by the dominated convergence
theorem [n f(2)dp(x)dz — ||[m|sm6 as t — oo for every f in Co(RY). Then t%D\/zm — ||m|| a6
as t — oo in the dual space (Co(RY)). We know that e® : LY(RY) — Co(RY) is a continuous
operator then, by duality, e® : (Co(RM)) — (LY(RM)) = L>*(RY), is a continuous operator.

N _
Hence ||e®[Tinax(Am)2 D\/me—(/\m)m]ﬂoo converges to |m||y][e€2d]|oo = ||m|[a(47)~ N2 as X — 0.
This along with (5.7) implies
a 1
1im sup A Tpax (Am) 75" < .
)\_}OOp max( ) — (al/a(4ﬂ_)_N/2”mHM)Oé
This gives the desired result. O

Proof of Theorem 1.9. If ¢ is too singular, it may happen that Tihax(Ap) = 0, i.e. there is no local
nonnegative solution with initial value Ae. This is not a problem, since we will be obtaining upper
bounds.

Since ¢ > @, where ¢ is defined in (1.20), it suffices to estimate Tiax(A@). The calculation in
(5.6) gives

e Bllo = 72 [le2[t% D, 58] oo-
Moreover, 2 D\/igz — w|-|77 as t — oo in D'(RY). It follows, by [7, Proposition 3.8 (i), page 1123]
that
£7[|e"*Glloo = [1€*[t2 D zéllloo = lle*[] - | lloo,
ast — 00. If 0 < t < Trax(A@), then by (5.2) we must have
Xt T [t G |oo]® < 1. (5.8)

It follows that if v < %, then Tjnax(AP) < oo for all A > 0. This is of course a consequence of
Fujita’s result (including the limiting case) if a < %. (See for example [55].) If a > £, i.e. g. > 1,
this is a consequence of the more general result [50, Theorem 1.7] in the case m = 0. (See also [27,
Theorem 3.2(i)] and [44, Theorem 2].) In these cases, putting ¢ = Tinax(A@) in (5.8) and letting
A — 0, we obtain

~ 1

lim sup )\(é_%)ﬂTmax(}\go) < T
A0 (aV/eled (W] - |77)]loo) @2

O

Proof of Theorem 1.10. The proof follows similarly as that of Theorem 1.7, replacing R by Q,,,
|z| =7 by 1 hence v by v+ m, and using [35, Proposition 4.1 (ii), p. 359], for the convergence. [

Proof of Theorem 1.11. The proof follows similarly as that of Theorem 1.9 by replacing RY by Q,,,
|z| =7 by %o, hence v by v + m, using [50, Theorem 1.7] for the blow up of the solution and [35,
Proposition 4.1 (ii), p. 359], for the convergence. O
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6. LIFE-SPAN ESTIMATES VIA NONLINEAR SCALING

In this section we show how certain scaling arguments can give upper (and lower) life-span bounds
for solutions of (2.1) on RY. Similar arguments can be used on sectors of R"V. The previous section
likewise used scaling arguments, but only in regard to properties of e®¢. In this section, we
use nonlinear scaling arguments, which can then be adapted to other equations which are scale
invariant. Some of the results in this section are the same as in the previous section, but obtained
by a different method.

We begin with some observations in a general context. We consider an evolution partial differen-
tial equation defined either on RY or on some domain 2 which is a cone, i.e. if x €  then pz € Q
for all © > 0. We also suppose that the set of solutions of the evolution equation is invariant under
the transformation

uu(t, ) = pTu(p?t, p). (6.1)
In other words, u is a solution if and only if u, is a solution for all g > 0. If u has initial value

u(0, ) = ug, then w, has initial value u,(0,-) = puo(p-) = p°Dyug = uyp. It is clear that
s (10) = T 17 Dy0) = = T (0
If ug = A, it follows that u, o = Au®D,p, so that
1 Tnax (M) = Tinax (A" Dyp).

Now let us suppose that ¢ has certain properties with respect to a scaling different from that of

the equation, for example 17D, ¢ where v # o. If so, we may set
A=pu"7, (6.2)
hence y = /\7%0, p 2= /\U%V, so that
AT Thax(A@) = Thnax (17 Dyu0). (6.3)
In the simplest case, u7D,p = ¢, i.e. ¢ is homogeneous of degree —v, we have therefore the

following formal proposition.

Proposition 6.1. Let Q@ C RY be a domain which is also a cone. Suppose that the solutions of an
evolution equation (the set of trajectories of a dynamical system over Q) are invariant under the
transformation (6.1). If ¢ € L}, () or ¢ € M(Q) is homogeneous of degree —v, where v # o,
then

A7 T (A@) = Tinax ()
for all A > 0.

In the case of the nonlinear heat equation, o = 2 and so (6.2) and (6.3) become

Tax(A\p) = TmaX(/ﬂD#SO)- (6.4)

A=prma, AGDT
We immediately deduce the following.

Corollary 6.2. Let Tyax(uo) denote the mazimal solution to (2.1) on RN with initial value ug.
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(i) If a < %, then

Ny—
_7)1

Q=

Al Tinax(A0) = Tinax(6)
for all A > 0.

(i) If0 <y < N and v < 2, and if ¥(z) = w(z)|z|™ where w € L®(RY) is homogeneous of
degree 0, then

X
2

AG DT T ) = Tonax (¥)

for all A > 0.

There are two other possibilities which allow us to obtain life-span estimates. On the one hand,
it could be that 7D, ¢ has a limit as 4 — 0 or as u — oo, possibly along a subsequence. If one
can control Tax (1D, ) as this limit is attained, one obtains a corresponding life-span estimate
from (6.3). This procedure was introduced in the paper [11]. For results of this type, we refer the
reader to [11, Theorems 1.3, 1.4, 1.5] and [50, Theorems 1.9, 1.10, 1.12, Corollary 1.13, Propositions
4.5, 4.6]. As these latter results show, one can have different life-span behaviors along different
subsequences, either as A — 0 or as A — co. We recall that all of these results depend on delicate
continuity properties of the blowup time.

The other approach uses comparison. As a first, and simple, example, we have the following

immediate consequence of Corollary 6.2.

Corollary 6.3. If 0 < v < N and v < 2, and if ¢ € L}, .(RY), |o(z)| < w(z)|z|™ where
w € L®RYN), w > 0 is homogeneous of degree 0, then

A(éfg)ileax(ASD) > Tax(w| - |77)
for all A > 0.

This is essentially the same as Corollary 2.3. Theorem 1.3 gives also the result but here the

constant at the right-hand side is explicit.

Proof. The absolute value of the solution with initial value Ay is bounded above by the solution

with initial value Aw|-|~7. We then apply the second assertion of Corollary 6.2. O

We have the following for the function ¢ given by (1.16).

Corollary 6.4. Let N > 1, a>0,0<vy < N, v< %, w € L=®(RY) is homogeneous of degree 0,
w>0,w#0 and @ be given by (1.16). Then the following hold.

(i) There exists Ty € [Tmax(w| - |77), Tmax(®)) such that
—1

lim A2 Thax (M) = T1.

A—00
-1
(ii) limy_o A5 72) " Thax (\@) = oo.
Proof. (i) The function p — p? D, is decreasing on (0, c0), and

lim "Dy =wl| |77, lim gD, =
limy " Dyp w177, lim @7Dup =0,
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where the first limit is realized in L% (RY) + L%(RY) and the second in L% (RY) whenever 0 <
q% <y < qﬂl < N. Consequently
< 1WDup <l [, Va1,
Applying (6.4), and since v < 2/a, we conclude that A — )\(i_%)_leax()\(ﬁ) is decreasing on
(0, 00) and
Trnax(@] | 77) € AG™ D Tae(AG) < Trnax($), YA > 1.
The existence of the limit 77 follows by monotonicity.

(ii) We have that ¢ € L9 for ¢ > 1, % <qg< % Hence, by Theorem 1.1

To(0) = O (780)

Then

[N]S]

_ ~\—1 -1
AE-D 7 00) > oA -(GE)

that is

-1
lim AG2) T (M) = co.

For the second assertion, we may also use the continuous dependence in L9(R™), where v < % <
%. In fact, since lim, oo 17D, = 0, we know that Tiax (D, p) — 00 as p — 00; so that by (6.4)

we have

x
2

)71Tmax()\cﬁ) — 00,as A — 0.

Q=

Al

Remark 13.

—1

1) It is natural to conjection that AG—3) Timax(A@) — Tax(w| - |77),as A — oco. This holds
in particular for (N —2)a < 4, by continuous dependence of the maximal time of existence.
2) We remark that the upper bound on AG=3)!

as given in Theorem 1.7. As for small A > 0, if o < %, then Theorem 1.2 gives the stronger

Tinax(A@) for large A > 0 is of the same order

estimate )\(é_%)ileaX(/\cﬁ) > ¢ > 0 for all A > 0, and is of the same order as given in
Theorem 1.8 and Remark 6. However, Part (ii) improves the estimate of Corollary 2.3 in

the case a = %, where Tiax(A@) < oo for all A > 0. If o > %, then Tiax(A@) = oo for

sufficiently small A > 0, since ¢ € L% (RY), see [55].
For the function ¢, we have the following.

Corollary 6.5. Let N > 1, a >0, 0<y <N, v< %, w € L®(RN) is homogeneous of degree 0,
w>0,w#0 and § be given by (1.20). Then the following hold.

(1) There exists Ty € [Tmax(w| - |77), Tmax(@)) such that

A MG Tae (M) = .

(i) Ty AE3) T Thae (AE) = o0,
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Proof. (i) The function p — YD, is increasing on (0, c0), and
lim D, =0, lim p"Dyg=w|-|~7
lim " Dyp =0, lim p? Dy =wl- |77,

where the first limit is realized in L%(RY) and the second in L9 (RY) + L% (RY) whenever 0 <
q% <7< qﬂl < N. Consequently

MWDH‘; Swl- |77 Ve =1

~

P <
A — )\(éfi)ileax()\gc:)) is increasing on (0, 00) and

Applying (6.4) we conclude that

_ )=
2

Tmax(w| : |_’Y) < A(é ) leax()\SZ) < Tmax(é)a YA <1

(ii) By continuous dependence in L®(RN), we know that Tax (17 D) — 00 as p — 0; so that
by (6.4) we have

)\(é_%)ileaX()\gz) — 00,88 A — 00.

For the second assertion, we may also use the following argument. We have that ¢ € LN L.
That is, by Corollary 1.4

and by Theorem 1.1

Then
1 - —1 -1
AE=3) T (03) > max (C, o3 -(3) )
Hence
—1 -
lim A&72) Tha(A\) = oc.
A—00
O

Remark 14.

—1

1) It is natural to conjection that AG=3) Tinax(A@) = Timax(w| - |~7),as A — 0.
2) We remark that ¢ € L®(RY), and Theorem 1.1 and Theorem 1.6 give the precise order of
magnitude of Tiax(A@) as A — oc.

Next, we consider the function ® given by (1.26). We have the following.

Corollary 6.6. Let N > 1, a > 0,0 < y1,72 < N and 71,72 < % (71 # y2). Let w € L®(RYN) is
homogeneous of degree 0, w > 0, w Z 0 and let ® be defined by (1.26). Then we have the following.

(i) There exists T3 € (Tmax(P), Tmax(w| - |77)] such that

lim A&~ )7 T (\®) = Ty

A—00

and if @ < 545, or v1 > 2 then

T3 = Tmax(w‘ : ‘_71)‘
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(ii) There ezists Ty € (Thmax(®), Tmax(w| - |772)] such that

iigbx(é—”%fleax(m) =Ty

and if @ < 545, or Y1 > 7 then

Ty = Tiax (W] - |77?).

1_m 172

(ifi) If y1 < 72, then limy o A~ 2) " Trax (AP) = limyo0 A6 ™5™ Thax (AD) = 0.

Remark 15. Corollary 6.6 shows that the asymptotic behavior of the life-span as A — oo is
determined by the singularity of the initial data and when A — 0 it is determined by the decay

rate at infinity of the initial value.

Proof of Corollary 6.6.
1) Analysis of T,ax(AP) in the case v; < 2. In this case & = wmin[| - |77,] - |772], so
O <w|- |7 and & < w|-|772. Hence

pID,® < ] [ (6.5)
and
j02D,® < w| [ (6.6)

for all p > 0.
We claim that

e The function p — p" D, ® is decreasing on (0, 00), and

lim "D, ® =w|-|7", lim p"D,® =0,

pn—0 =00
where the limits are in L% (RY) 4 L%(RY) whenever 0 < q% <y < ¥ <N, by (6.5).
e The function p — 72D, ® is increasing on (0, 00), and

; V2 — ; V2 — T2
ilir%)u D,® =0, Hh_g)lo,u D,® =w| |77,

where the limits are in L% (RY) 4 L%(RY) whenever 0 < qﬂ? < < qﬂl < N, by (6.6).

Proof of the claim. Let 0 < p < v < 0o. In particular, g =72 > 1772 We have

w(z)|z|~™, 2| < 5 w(z)|z|~™, x| < 5
pre(pr) = w7, s el < g = () (@), < el < g
L 2w (@) T2, o] > P Pw(a)e| T, e >
(w(a)la| ™, 2l <
> QT w(z)|z|T2, L <z < % = v O(va).
(YT Rw(@) |27, (2] 2 i
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Also,
.
P w(@) e[, ol < 5 P () |7 ol < 5
pRe(ux) = P2 Mw(x) |z, % <|z| < % = qQ uR 2Ny (z)| 2| 772, % <z < %
w(@)le| 7, 2l > 1. w(@)le] 7, 2] > 1.
v My(x) x|, o] < %
< -7 l l = 71 .
< L u@lal e, Lel<l =0
w(@)le] 7, 2] > 1.
It follows that
e The function pp — Tiax(u" D, ®) is increasing on (0, 00), and
Tmax(q)) 2 hm Tmax(ﬂ’leu@) Z Tmax(w‘ : |7’YI)7
n—0
and if a < ﬁ, then
lim Tax(" Dp®) = Tax(w] - |77).
u—0
Also
Mh_{folonax(H%Duq)) = 00.
e The function p1 — Tiax (2D, ®) is decreasing on (0, 00), and
Tmax(q)) > lim Tmax(M’YQD;L(I)) > Tmax(w‘ : ’_72)7
U—>00
and if a < ﬁ, then
i T (172 Dy ®) = T (] - |72).
Also
lim Tax (D, ®) = oo.
u—0
Next, applying (6.4), we have
AGT ) T AD) = T (' D, @), A= s, (6.7)
AGT ) T AD) = T (102D, @), A= . (6.8)
This completes the proof of (i)-(ii) if 71 < 72 and (iii).
2) Analysis of Tiax(AP) in the case v > 7s.
In this case ® = wmax||- |77, |- [72],s0 @ > w|- |7, ®>w| - |72 and ® < w(|- |77 + |- |772).
Hence
Gl [ S D S (| [ R ) (69
and
w7 < pED® <w(pEET [T A ] T) (6.10)
for all p > 0.

We claim that
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e The function y — p" D,® is increasing on (0, 00), and
lim "' D,® = w| [, lim p"D,® =
liany 7 Dy wl - [T, Jim w7 Dy® = oo,
where the limits are in L9 (R) 4 L9 (RN) whenever 0 < % < <m< qﬂl < N, by (6.9).
e The function y — p72D,® is decreasing on (0, 00), and
lim D, ® =00, lim p?D,® =w| |77,
n—0 H—00
where the limits are in L% (RV) 4 L% (RY) whenever 0 < qﬂg <y <m < qﬂl < N, by (6.10).

Proof of the claim. Let 0 < p < v < 00, so that p277 > 71277, We have

.
w(z)|z|~", 2| < 5 w(z)|z|~, x| < 5
pre(ua) = qw(z)lz[7, sl < = E) ez, p Sl < g
P T 2w () 2|72, |z > i P Rw(z) |z 72, 2| > i
w()|z[™, 2l < 5
< Qv 2w(z)|z[72, 1<z < i = v O(va).
Y2 (z) 2|72, x| > i
Also,
(
M (x) |z, x| < % 2w ()|, 2| < %
Wre(uz) = 3@, L<lal < = Qe iw(@)le 7, <l < L
wa) a2, o] > 4. wa)la] ™2, ] = 5
v Mw(z)2| T, o < 5
> qw(x)|z| 2, L<zl<d =v"0(va).
w(w)|z]| 72, 2| > .

It follows that
e The function pp — Tiax(u"* D, ®) is decreasing on (0, 00), and
lim Tinax (" Dp®) = Tiax(w| - |77).
pn—0
e The function p — Tiax(1? D, ®) is increasing on (0, 00), and
lim Tnax(1? Dy ®) = Tiax(w| - [772).
L—>00
Next, applying (6.4), we have
2

A(é_T)ileax(/\@) = Thnax (U Dy®), A= p" "=,

AGT ) T AD) = T (172D, ®@), A= p .

To show that we reach the above exact limits we use the following.
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Observation. If ¢, — ¢ and assume we are in a situation of continuous dependence, then we know
liminfy_ o0 Tinax (k) = Tmax(®). Suppose also that ¢ < ¢ for all k, hence Tiax(¢r) < Tmax(¢) for
all k, so limsupy._, o Tmax(Pk) < Tmax(¢). Hence limy_ o0 Tinax(0r) = Tmax ().

This allows us to obtain the above exact limits for the case 1 > 72. This completes the proof of
(1)-(ii) if v1 > 7o.

We may also show (iii) as follows. The function ® verifies: if 41 < 9 then ® € L9,

Hence, by Theorem 1.1

Then
—1 —1
lim G2 T (AD) = 00 = lim AG=F) Tha(AD).
This completes the proof of Corollary 6.6. O

APPENDIX A. NONLINEAR HARDY PARABOLIC EQUATIONS

Our purpose in the appendix is to estimate the life-span of solutions for the nonlinear Hardy-

Hénon parabolic equations
O = Au + | - |Yul*u, (A.1)
u=u(t,r) R, t>0, 2z RY, N>1, a >0, —min(2, N) < [ and with initial value

u(0) = up. (A.2)

A mild solution of the problem (A.1)-(A.2) is a solution of the integral equation

u(t) = eBug + /O G (\ : |l\u(a)|au(a)) do, (A.3)

and it is in this form that we consider problem (A.1)-(A.2).

In this first part of the appendix we consider the case [ < 0, that is the Hardy case. The problem
(A.3) is well-posed in C([0, T]; LY(RN)) N C((0,T]; L"(RN)), T > 0, for ug € L{(RY), 1 < ¢ < oo,
q > qc(1) or ug € Co(RY), where

qc(l) =5 7 <A4)

and r > q satisfies

1 n l - 1 < N +1
gla+1)  N(a+1) "r N(a+1)
See [2, Theorem 1.1, p. 117] and [3]. This solution can be extended to a maximal solution defined

on [0, Timax(up)). We have obtained the following.

(A.5)

Theorem A.1 (The nonlinear Hardy parabolic equations). Let N > 1, —min(2,N) < | < 0,
a >0, and q.(1) be given by (A.4). Let ¢ € LIRN) with 1 < q < 0o, q¢ > q.(1) or p € Co(RN)
and r > q satisfies (A.5). Let u € C ([0, Timax(A@)); LYURY)) N C((0, Tmax(Ap)); L"(RY)) be the
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mazximal solution of (A.3) with initial data ug = Ap, X > 0. Then there exists a constant C =
C(N,l,a,q) > 0 such that

,(LH,&)”
Tnax(Ap)2C (Allellg) V2 20/, (A.6)
for all A > 0.

Proof of Theorem A.1. For q > q.(1), let r > g satisfying (A.5). Let us define

We note that r depends on [, hence § also. The well-posedness results for (A.1) has been obtained
in [2, 3]. We now give the proof of (A.6). Let —min(2,N) <1 <0, a >0, A >0, K >0
and ¢ € Co(RN), [|¢llec < K or p € L, g > 1, ¢ > q.(I) such that |¢|l, < K. Let u €
C ([0, Tmax(Ap)); LYRN)) N C((0, Trmax(Ap)); L™ (RY)) with r > g satisfying (A.5), be the maximal
solution of (A.1) on [0, Tmax(A¢)). It is proved in [2, Inequalities (3.5), (3.6), p. 124] that for
K, T, M > 0 such that

Na

K_'_CTl—W"‘éMOH‘I S M

the solution u of (A.1) is defined on [0, 7] and verifies max [supte(oﬂ PO |u(t)]],, supyo, 7y llu(t) Hq] <
M. Here C' is a positive constant. Then for Ti,ax () we should have

L

1_%+2 a+1
K+ C(Tmax(g;)) M+ > M,

for all M > K. That is it must be
1-fe
q

AK + C(Tmax(w)) 2t M,

for all M > AK. If we set M = 2\K, we get
20+l T (M) T m TN S 1,

Then taking K = ||¢||, we get that there exists C = C(N, a, 1, q) > 0 (since r itself depends on ¢)
such that (A.6) holds. This completes the proof of the Theorem. O

Using similar argument developed to prove Theorem A.1, we derive the same result for the
equation

Ou = Au+ a(z)|u|*u, (A.7)

where a(x)|- |7 is in L>(RY). In particular, we may take a regular near the origin. Then we have

the following.

Corollary A.2. Let N > 1, —min(2,N) < Il < 0, a > 0, and q.(I) be given by (A.4). Let
¢ € LIRN) with 1 < ¢ < 00, ¢ > qc(I) or ¢ € Co(RY) and r > q satisfies (A.5). Let u €
C ([0, Timax(A@)); LYRY)) N C((0, Tmax(Ap)); L™ (RY)) be the mazimal mild solution of (A.7) such
that a(x)| - |7 € L¥(RN) and with initial data ug = \p, X > 0, constructed by [2, Theorem 1.1, p.
117 | and [2, p. 142] (we replace [0, Tmax(Ap)) by (0, Tmax(Ap)) if ¢ = o0). Then (A.6) holds for
all X > 0.
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Corollary A.2 includes many known results. We will compare our results with those of [40]. For
this we restrict ourselves to the case where a is positive and Hélder continuous as assumed in [40].
Also, it is supposed in [40] that ¢ € Cy(RY), ¢ > 0. For A\ > 0 small, two classes of initial data are
considered in [40].

The first class is for ¢ dominated by a Gaussian. It is shown in [40, Theorem 1 (i), p. 33| that
if 0 << (2+1)/N, then

Q=

Tinax(Ap) > ox( 7%)71, as A — 0.

For this class ¢ € LI(RY) for all ¢ > 1. Since a € L>®°(RY) because [ < 0 and a is regular, then we
may use Theorem 1.1 (which is valid for such a as noted before) and apply (1.6) with ¢ = 1 since
¢e < 1, and then recover the result of [40].

The second class considered in [40] is for ¢ such that there exist constants ¢, ¢ > 0 and
c1 < ¢ < ¢z. The estimates, as stated in [40, Theorem 2 (i)-(a), (ii)-(a), (iii)-(a), pp. 33-34], reads

Tax(Ap) > C’)\_;Tc:l, as A — 0.

Here p € L>®(RY), the previous estimate is the same as (A.6) with ¢ = co. We then recover the
results of [40].

APPENDIX B. NONLINEAR HENON PARABOLIC EQUATIONS

In this part of the appendix we study a nonlinear heat equation with a spatially growing variable
coefficient. We consider the equation (A.1) for [ > 0 and with the initial condition (A.2). Local
well-posedness is known in C(RY) N L> N Ly, (see [52, 31]). Recently local well-posedness is
established in LI for some ¢ > a+ 1 and s satisfying some conditions (see [8]). Not much is known
about this equation in comparison with the standard nonlinear heat equation, that is the case
I = 0. In particular, the life-span is only known for small lambda and rapidly decaying positive
initial data, see [40]. Note that the blowup may hold at the origin as it may also not hold at the
origin. See [22, 19, 20, 21, 12]. To show lower-bound estimates of the life-span, we establish local

well-posedness results. Using Proposition 3.1, we prove local existence for (A.1) in LI for

l
y=—<N
o
and q is such that
> g = N <q< (B.1)
q > {4c= 9 N—’y q < Q. .
This value of + is inspired by [52].
We note that for 0 <y =1/a < N,
> sari= X%
qc N — qr ‘= 241 )

where ¢r is the Fujita exponent for the equation (A.1) (see [41]). We have the following local

well-posedness result.
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Theorem B.1 (Local well-posedness in LY). Let N > 1 be an integer, « > 0 and | > 0 be such

that

I
=2 <N. B.2
7= < (B.2)

Let q. be given by (B.1). Then we have the following.

(i) If q is such that
N(a+1)

N_ny o 97 and g < oo,

q>

then equation (A.3) is locally well-posed in LL(RN). More precisely, given ug € LL(RYN),

then there exist T > 0 and a unique solution of (A.3) u € C([0,T]; LL(RY)) if ¢ < oo

and u € C((0,T7; L?(RN)), limy o ||u(t) — etAUOHL’oyo(RN) =0 if ¢ = co. Moreover, u can

be extended to a mazimal interval [0, Tiax) such that either Tyax = 00 or Thax < 00 and
lim (2] 2 = oo.

(ii) Assuame that ¢ > q. with NL_W < q < 00. It follows that equation (A.3) is locally well-posed
in LL(RN) as in part (i) except that uniqueness is guaranteed only among functions u €
C([0,T); LA(RY)) which also verify t%(é_%)ﬂu(t)HLg, is bounded on (0, T, where r is given
below, (we replace [0,T] by (0,T] if g = oo and u satisfies lim;_, ||u(t)—etAu0\|L$o(RN) =0).
Moreover, u can be extended to a mazimal interval [0, Tiax) such that either Tyax = 00 or

Tinax < 00 and . lim [ju(t)[|gg = oo. Furthermore,

max

NE
Q=

||U(t)||Li1, > C (Tmax — 1) , Vi e |0, Thax)s (B.3)

where C' is a positive constant.

Remark 16. Unlike in [8], here we dot not impose ¢ > a + 1. Also, our strategy is different from
that of [8]. In fact, we use a method of [53, 2]. Precisely, to prove the local well-posedness in L,
we use an auxiliary space LI for some r as an auxiliary parameter, while in [8] the weight v =1/«

is replaced by a real number s that is considered as an auxiliary parameter.
Proof of Theorem B.1. (i) Let us define the maps

Kiy(u) = e (|- ful*u) , ¢ > 0.

By the Holder inequality and Proposition 3.1 with v = é =u, ¢1 =q/(a+1), g2 = q, for each
t>0and if ¢ > 2 g < oo, Ky : LY — LY is locally Lipschitz with
,f(il,l) 1 a o
[Kialw) = Kua@)llzg < €321 flulu = o) s,
Y
—% ary a ot
= Ot 2 |- 1*7(Jul®u — |v] U)HLVQ%
—% e «a
< O B (lullgy + lollgo)llu — olls
Na
< 20MP 5 fu— o),
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Na
for [ulgg < M and |lv|g < M. We have also, that ¢ 2 € L} .(0,00), since ¢ > ¢. = 2.
Obviously t +— [|[K;;(0)|lc = 0 € L} (0,00), also e**K;; = K; 14, for s, t > 0. Then the proof

loc

follows by [53, Theorem 1, p. 279].
(ii) We begin with the observation that, since ¢ > Niﬂ, there exists r > ¢ satisfying

1 1 N —~
i D <r <NarD (B.4)

We then observe that, since ¢ > ¢., we have

1 2 1

g N(a+1) < gla+1)

Hence any r > ¢ satisfying (B.4) verifies

This last inequality implies that

Bla+1) <1,
where
N N
= — — —. (B.5)
2qg 2r
We choose K >0, T > 0, M > 0 such that
K+ CMHIT ™% < M, (B.6)

where C is a positive constant given below. We will show that there exists a unique solution u of
(A.3) such that u € C ([0, T], LY(RY)) and u € C ((0,T], LL(RY)) with

lul| = max | sup [[w(t)llz, sup t°|u(t)]L; | < M.
te[0,T] te(0,17]

The proof is based on a contraction mapping argument in the set
Vit ={ue C([0,T], LLRN)) N C((0,T), L}) : ||ul| < M}.

Endowed with the metric d(u,v) = |lu — v||, Y}} is a nonempty complete metric space. We note

that for ug € L? we have
N1 _
e ugl|y < Ct™ =™ ug|| g = Ot~ |luol| 1.
The condition on initial data |lug|zs < K implies that Pt ug || £z < K. We will show that
t
Fuu(t) = ePug + / =R | (o) |[*u(0)] do. (B.7)
0

is a strict contraction on Y5 7.
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Using Proposition 3.1, that is the boundedness of the map e'® : LI — L7, for the first term and

the boundedness of the map e*® : LF — L7, for the second term, we have

7| Fp () (8) = Fy(0)(@)lzy < tﬁHetA(sO—w)HL;Hﬂ/o eI (lul®us) = [o]*v(s))]l| 25 ds

a+1 1

t
<llp = wlug + €8 [ (¢ s ¥ o
0

[P (Jul *u(s) — o]0 (s)) Hm+1

t
<o —lrg + (2(a + 1)0M°‘t5/ (t—s) = s—ﬂ<a+1>ds> d(u,v)
0

1
< llo = llzs + (2<a + DOMTw / (1-0) % a—“a*”da) d(u, v)
0

aml—To
< o= Bllg + T 5 d(u,v),

1
where C1 = 2(a + 1)0/ (1- 0)7% o et do < oo,
0
Using [8, Lemma 2.1] that is the boundedness of the map e*® : LY — LI, for the first term and

Proposition 3.1, the boundedness of the map e : L«F — L4, for the second term, we have

[Fo(w)(t) = Fy(0)(O)llpg < Hem(so—w)HLng/o le“=I2 L (Jul*u(s) — [v]*v(s))]ll cads

a+1 1

t N
<l = ¢lg +C /0 (t =)7L (ful uls) = Jolv(s))[| sy ds

<o = lg + <2(a + 1M /Ot (t—s) 25 —0) s—ﬂ<a+1>ds) d(u, v)
<l —vllq+ <2(a +1)OMO T /01 (1-0) 250 U_B(O‘H)da) d(u, v)
<lle—lle + C’QMO‘Tl_%d(u,v).
where Cy = 2(a + l)C/1 (1- 0)7%(%17% o Pt do < o0,
From the above estimates, it follows that
A(Fp(u), Fy0)) < o — g + CMOT' 3 d(u,v), (B.8)

where C = max(Cy,C2). The rest of the proof follows similarly as that of Theorem 4.1 and as in
[2]. This completes the proof. O

Theorem B.1 allows us to obtain the following.

Corollary B.2 (Hénon parabolic equations). Let N > 1, a > 0, 0 < | < Na. If ¢ € LL(RY),

where N
«
y=Il/a< N, ¢g>— and < q L 00,
/ 2 N —v
then the life-span of (A.3) with initial data ¢ satisfies
,(l,ﬂ)—l
Tnax(Ap)2C(Allpl p2) 27, (B.9)

for all A > 0, where C' = C(a, q,l,N).
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Remark 17.

1) We see that [ has no effect on the lower bound of the life span. This is because blow up
may not occurs at the origin nor at |z| infinite.

2) Corollary B.2 is totally new for ¢ < oc.

Proof of Corollary B.2. The proof follows using (B.6) and is similar to that of Theorem 1.1. O

In the case of initial data in L4(RY) N LL(RY) we have the following result which generalizes

that of [52] known for ¢ = co.

Theorem B.3 (Local well-posedness in LY N LY). Let N > 1 be an integer, « > 0 and [ > 0 be
such that

l
0<y:=—<N.
!
Let q. be given by (B.1). Then we have the following.

(i) Equation (A.3) is locally well-posed in L®(RN) N L(RN). More precisely, given ug €
L®(RN) N L?YO(]RN), then there exist T > 0 and a unique solution u € C((0,T]; L>*(RY) N
Lgo(]RN)) of (A.3) and u satisfies lim;_q ||u(t) — etAUOHLoomLso(RN) = 0. Moreover, u can
be extended to a mazximal interval (0, Tinax) such that either Tyax = 00 or Tyax < 00 and
i (Jlu(®)lloo + [lu(®)] s ) = 0.

(ii) If q is such that

N(a+1)
>———"  q¢>q. and q<o00,
N —~
then equation (A.3) is locally well-posed in LY(RN) N LL(RYN). More precisely, given ug €
LYRN) N LY(RYN), then there exist T > 0 and a unique solution u € C([0,T); LY(RYN) N
LI(RN)) of (A.3). Moreover, u can be extended to a mazimal interval [0, Tyax) such that

either Tyax = 00 01 Tynax < 00 andt lir}n (lu(®)llg + [[u(®)llLg) = oc.
—

max

(iii) Assume that q > q. with Niﬂ < q < 00. It follows that equation (A.3) is locally well-posed in
LYRN)YNLL(RN) as in part (ii) except that uniqueness is guaranteed only among functions
w € C([0,T); LARN) 0 LYRY)) which also verify t= @ [u(t)]|z:, ¢ Ju(@)], are
bounded on (0,T], where r is as above (we replace [0,T] by (0,T] if ¢ = oo and u satisfies
im0 [|u(t) — etAUOHLoomL’c;o(RN) = 0). Moreover, u can be extended to a mazimal interval
[0, Tinax) such that either Tyax = 00 or Tax < 00 and t_l}j{n (lu@llq + [w®)lze) = oo.

max

Furthermore,

[z

S
Q=

q

[e@ [ panry = € (Tmax —t)2 =, V¢ € [0, Tinax), (B.10)

where C' is a positive constant.

Proof of Theorem B.3. We will just give the new elements of the proof.
(i)-(ii) By the Hélder inequality and Proposition 3.1 with v = £ = pu, ¢ = ¢/(a + 1), ¢ = q,

N(a+1) y

for each t > 0 and if ¢ > ==+, ¢ < 0o, Ky 0 LN L% — LN LY is locally Lipschitz and, since
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q>%_+71)>a+1,

,E(Lﬂ,l)
|Kea(u) — K(v)|lg < Ct 200 a

el
Na

Ot 5% (Jull s + ol ga) e — vl

IN

< 20MOE N fu—wll,,

Na
for max([|ullg, [lullpg) < M and  max([[v]|g, [[v][ze) < M. We have also, that ¢ 2 € L} .(0,00),

since ¢ > q. = % Then the proof follows by [53, Theorem 1, p. 279].
(iii) We choose r > ¢ satisfying (B.4). We consider K > 0, T'> 0, M > 0 such that

K+ CMeHIT ™% < M, (B.11)

where C is a positive constant given below. We will show that there exists a unique solution u of
(A.3) such that uw € C ([0, T7; LY(RY) N LY(RY)) and u € C ((0,T]; L"(RY) N LL(RY)) with

lull = max | sup [[u(t)llg, sup [w(®)llzg, sup t°[lu(®)|rr, sup ¢[ut)]],| < M.
te[0,T] t€[0,T] te(0,77] te(0,17]

The proof is based on a contraction mapping argument in the set
Vi ={ue C([0,T]; LARY) N LLRY)) N C((0,T); L™ N LL) : [|ul] < M}.

Endowed with the metric d(u,v) = ||u — v||, Y}; % is a nonempty complete metric space. We note

that for ug € LY,

1

_N¢1_ 1 _
e ugll, < Ct™ 2™ |lug|ly = Ot |luo],-

The condition on initial data max(||uol|¢, [[uo|ze) < K implies that tﬂHetAuoHLg < K, t9|etPug| - <
K. We will show that F,, defined in (2.11) is a strict contraction on Y, .. Using Proposition 3.1,
that is e!® : L9 — L", for the first term and e!® : Lo+t — L™, for the second term, we have

)| Fp(w)(t) = Fu) Ol < tﬁllew(sa—w)llrthﬁ/O e AL (Jul*u(s) — [v]*v(s))]llds

a+1 1

t
sw—wm+cﬁfu—$ﬁrﬂ
0

1197 (Jul*u(s) = o*0()) || . ds

N

t
<o —llq+ <2(a+ 1)0M%5/ (t—s)wsﬂa“)ds) d(u,v)
0
17& 1 Na
<l —vllq+ <2(a+1)CM°‘t 24 / (1—0) 2 aﬁ<a+1>da> d(u,v)
0

Na
< llp = llea + C3MOT' 20 d(u, v),

Na

1
where C3 = 2(a + 1)0/ (1—0) 2 oAt dr < o0
0
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Using Proposition 3.1, that is '™ : L — L, for the first term and e'® : La — L4, for the
second term, we have

[Fo(w)(t) = Fy(0)(O)llg < ||6m(<p—z!))||q+/0 =21 (Jul*u(s) = [o]*v(s))]lods

N a+1 1
» ds

t
<l =l +C [ (6= EEFD L (" u) — ol°0(s) |

t
<l =, + <2(a + 1)CMO‘/ t—s) 25 9 s—ﬂ<a+1>ds> d(u,v)
0

1
<o —vllq+ <2(a F1)OMO / (1-0)" 2
0

Na
< o = ¥llra + CaMOT" 20 d(u, v).

1
where Cy = 2(a+ 1)0/ (1- 0)77(775 oAt do < co. From the above estimates, it follows
0
that

_Na
A(F o (), Fy(0)) < Nl = 6l garzs +CMOT™ 5 d(u,v), (B.12)

where C = max(C4, C2, C3, Cy). The rest of the proof follows similarly as above and as in [2]. O
We have also the following result.

Proposition B.4. Let « > 0 and let 0 < v :=1/a < N. Assume the hypotheses of Theorem B.S5.
Let Trax(¢, LY N L) denotes the existence time of the mazimal solution of (A.3) with initial data
o € LYN LY. Then we have the following.
(i) If p € LIN L, then for t € (0, Tmax(,q)) , u(t) € L™ N L.
(i) If p € LP NI N LN LY, NL—W < q<p<ooandq > q. Then Thax(p, P N LEY) =
Tax (@, LI N L,qy).

Proof. (i) Let ¢ € LI(RM), ¢ > q. and ¢ > NLﬂ Let r and (8 be as above and (B.5). Let p be such
that » < p < co. Hence p > q,

1 v o+l 1 v 1
0<-<— <1, S< 4+ -<1,
< <Nt S<NTe
and for 0 < T < Tax(p, q), we have
A ! _N(efl_1, o
lu@®lly < lleell, +C (o) [u(o)1zZ: lu(o)lrdo
< (4nt) TG gl + OO up ($Pus) g, ) %
s€(0,7T
1
. (s" (s ) / (1) 2 (5 70)g At g
s€(0,T 0
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Also,
t
A _N¢at+l 1
le®llzg < e elg +C | (¢ =) 25D u(o)lg! do
3G L5 (S =) —Bla+D) Blat1) a+1
<t FG Dl 4 o TR sup (5" u(s)||3H1) x

s€(0,T

Nia+l 1

1
< ot gl g + MoiCr T / (1—0) =5 7)o o,
0

Since r > q > q, it follows that if

a—+1 2 < 1 < 1
r N “p 1’
then w(t) is in LP N LY for all ¢t € (0, Tnax (0, q)) The result for general p > ¢ follows by iteration.

Hence u(t) is in L> N L3°, for t € (0, Tmax (¢, q))-
(ii) Follows as in Proposition 4.2. This finishes the proof of the proposition. O

Theorem B.3 and inequality (B.11) allow us to obtain that under the same hypotheses of Corol-
lary B.2 if p € LY9(RY) N LL(RY) then the life-span of (A.1) with initial data Ay satisfies

2

Toax(A0)2C (Mielzgnze) = (B.13)

1_Ny-1
7)

for all A > 0, which gives a power of A not depending on [, unlike the case | < 0.

APPENDIX C. THE HARDY-HENON EQUATIONS WITH DECAYING INITIAL DATA

In this part of the appendix, we investigate lower bound estimates for life-span for the solutions
of the equation (A.1) with initial data having some decay. As in Section 4, we work in L with
v >0, v > [/a. This allows us to obtain a lower bound of the life span for initial data having more
decay than [/, if I > 0. We consider the Duhamel formulation of (A.1)-(A.2), that is the equation
(A.3) and suppose that

N>1, a>0, —min(2,N) <l < Na. (C.1)
Let v be such that
l 2+1
0<y<N, “<y<citt (C.2)
« @
and ¢ satisfying
Na

< _— = . .
N, SOS0%a> g 2 (7,1) (C.3)

qge(7,1) is the critical exponent of (A.1) for initial data in L. The condition (C.3) can be reformu-

lated as follows:

v 1  ~ Na ~vya 1
=< -4+ =<1, —+——-=-< 1
N_q+N< ’ 2q+2 2 <
Let 0 < v < v be such that
v+ N +1

<r< .
a+1 v a+1
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Hence, using (C.1) and (C.2), we have
l
S <r<Y O<v<via+1l)—I<N,0<y<v(ia+1)—1l<N.

Let now r > g be such that

1 71/(0¢+1)—l—'y<
g(a+1) N(a+1)

This is possible by (C.3). Hence, we have
1 a+1l vie+l)—l—-v a+1 vie+1)-1

— 1
7Q< ; + N < . + N <1,
1 1 1)—1—- 1 1) —1
1_oat +V(Oé+ ) v _at +y(a+ ) <1l
q r N r N

That is, by [8, Lemma 2.1] e/ : L — L%, is bounded and we may apply Proposition 3.1, so that
the maps e'® : LI — L7 2 : L%Sfl;)_l — L% and €' : LZ{(&O:S)_l — L" are bounded.

Let us introduce

Hence
5>1""<9
We have,
~ N /{fa+1 a+1 Y-V
) = — - 1
ety = 5 (-0 @]
N /a+1 1 vie+1)—I1-—x ~y
- _Z 1) L—=
< 2( . q+ N + (a+1) 5
N
_ No oy 1
q 2 2

We also have

N (fat+l 1 +V(a+1)—l—fy<&+ya l<1
2 r q 2 2r 2 2 '

These last three estimates are crucial to the local existence argument below. We note that if > 0,
we may take v(a+1) —1 =, r = (a+ 1)q. With the above choice of the parameters, we can show

the following local well-posedness result.
Theorem C.1. Let N > 1 be an integer, o > 0, —min(2, N) <[ and

% <o (C4)

Let ~y be satisfying (C.2) and q.(7,1) be given by (C.3). Then we have the following.
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(i) If y(a +1) < N +1 and q is such that

S N(a+1)
N+1l—~ya+1)

q q>qc(v,1)  and g < oo,
then equation (A.3) is locally well-posed in LL(RN). More precisely, given ug € LL(RY),
then there exist T > 0 and a unique solution u € C([0,T]; LLA(RY)) of (A.3) (we replace
[0,7] by (0,T] if ¢ = 0o and w satisfies limy_sq ||u(t) — etAU/OHL?{o(RN) = 0). Moreover, u
can be extended to a maximal interval [0, Tyyax) such that either Tax = 00 or Thax < 00
and lim [[u(t)[/g2 = oc.
(ii) Assume that q > qc(7y,1) with NL_W < q < o0. It follows that equation (A.3) is locally well-
posed in LL(RYN) as in part (i) except that uniqueness is guaranteed only among functions
u € C([0,T]; LLRN)) which also verify t°!||u(t)||rr, is bounded on (0,T)], where r and v are
as above (we replace [0,T] by (0,T] if ¢ = 0o and u satisfies lim;_o ||u(t) _etAUOHLgo(RN) =
0). Moreover, u can be extended to a maximal interval [0, Tyax) such that either Tyax = 00
or Tiax < 00 and . lim ||u(t)||Lg = o0o. Furthermore,
— max
Ny 2+l
lu@)[|g = C (Tmax —t)2a 72" 2« , V¢ € [0, Tiax), (C.5)

where C' is a positive constant.

_q_
Proof. (i) Using the inequality (4.4), and Proposition 3.1 that is et : L(aail)v_l — LY is bounded,

for each t > 0 we have that Ky, : LY — L2 is locally Lipschitz with

_Neatl_ 1y_ay=l
1K) = Koy(@)le < €250 07 Jufu — [o]*v]| o
(1)

,M,ﬂ+i a a
< OIS (ulsy + o)) u - vl

< 20MTE T F T Ju— |,

for [[ulgs < M and |[v|[ga < M. The rest of the proof is similar to that of Theorems 4.1 and B.1.
N1 _ 1 —v ~
(ii) For ug € L% we have [e"®ug|zr < Ct_f(a_F)_vTHUOHLg = Ct*ﬂlHuoHLg. We choose K >
0, T"> 0, M > 0 such that

K+ CMO+IT % 5 e < )y, (C.6)
where C' is a positive constant. We will show that there exists a unique solution u of (A.3) such

that u € C ([0, T]; LYA(RY)) and u € C ((0, T}; Lj,(RY)) with

lull = max | sup [ju(t)llze, sup #*|u(t)l|zy | < M.
te[0,7) t€(0,7]

The proof is based on a contraction mapping argument in the set

Yirp = {u e C((0,T]; L§(R™Y)) N C((0, T} Ly) « [lull < M}
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Endowed with the metric d(u, v) = |Jlu—v||, Y} is a nonempty complete metric space. We consider

up such that [[uo[|ps < K and we estimate as follows:

- - - t
tWEM@M;Simw%wm+ﬁAHW”mUWMM%wwmw

t
3 o (wlat)=D-v
< K+t / (t— o) T O (o) u(@)] oy do
0
. 3, ! _Na_va 1 o+l
= K+CP | (t— o) 55 u(o)|5 do
O v
- t ~
< K—G-C'Maﬂtﬁl/(t—a)]ggV2a+éaﬁl(a+1)da
0

. 1 )
< K+C’M““t1g?é+é/ (1—0) % S tig-Alet) gy
0

N 1 N
< K+0Ma+1:r1§5”2+5/ (1—0) % T Fag Aot gy
0

and similarly for the contraction. The other estimates can be handled similarly as above, see also
[2]. So we omit the details. This completes the proof of Theorem C.1. O

Remark 18.

1) We can take v = max(0, é) in Theorem C.1 as well as [ = 0, it is then a generalization of

Theorems 4.1 and B.1.

2) See [8, Theorem 1.13] for related results. The range of the values of ¢ in (ii) are larger
than in [8], while (i) is essentially contained in [8] which we give for completeness. Also the
methods are different. In fact, we work in an auxiliary space L}, for some r and v while in
8] some auxiliary spaces LI for some o but ¢ is fixed are considered.

3) If ¢ = oo we may replace L7° by the space obtained by the closure, with respect to the
L°-topology, of D(RYN), the space of compactly supported C>°(R") functions. For initial
data in this sub-space of L5° the result holds on [0, 77 instead of (0, 7.

4) Using argument of [3], we can show that uniqueness in the part (ii) of Theorem C.1 holds

inu € C([0,T]; LLRN)) N C((0,T]; LT, (RN)).
Theorem C.1 gives the following.

Corollary C.2 (Hénon parabolic equations with decaying initial data). Let N > 1 be an integer,
a >0 and —min(2,N) <1< Na. If p € LL(RY), where

l 2+ 1
0<7<N,—<7<i,
a a
v 1 v Na ~vya 1
A A Wi AT
N_q+N< ’ 2q+2 g <

Then the life-span of (A.3) with initial data A satisfies

_(Lﬂ_ﬂ_z)*l

Tax((9)2C (Algllze) ™ (C.7)

for all A > 0, where C = C(a,q,l,v,N) > 0 is a constant.
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Remark 19.

1) Corollary C.2 answerers a problem left open in [40]. In fact, when [ > 0 only exponentially
decaying initial data are considered in [40].

2) Similar results, using scaling argument, seems to be proved in [60, 61] for related equations,
but only for small A\, ¢ = co and positive initial data.

3) IfpelinLi,orpe L?+/a N L%, where [ = max(l,0) then (C.7) is better than (A.6) and
(B.9) for0 < A < 1.

Proof of Corollary C.2. The proof follows using (C.6) and is similar to that of Theorem 1.1, so we
omit the details. O

We complement Corollary C.2 by the following upper bound estimates.

Proposition C.3 (Upper bounds of life-span for Hardy-Hénon equations). Let N > 1 be an integer
a >0 and —min(2, N) < I. Assume that

N N
Let w € L¥(RN) be homogeneous of degree 0, w > 0 and w # 0, ¢ be given by (1.16) and ¢ be

given by (1.20). Let 0 <y < N be such that

(C.8)

l
— <7,
«

and ¢ € LL(RYN), where NL—V < q < 0. Then we have the following.

—1

) , A> 1.

—1

) , 0< A< 1.

(i) If ¢ = @ then Tnax(hg) < CA(
(i) If ¢ = & then Tmax(Ap) < CA~

241
2

241
2

[N SIS

To prove Proposition C.3, we use a scaling argument. We recall the definition of the dilation
operators Dy, = ¢(p-), p > 0. It is clear that if u is a solution of the equation (A.1) then for any
p >0, uy, is also a solution of (A.1), where u,(t,z) = ,u%u(,th,mc). Hence, o in (6.1) is given by

241
o= —.
e
So that, for A = /ﬂ_%l, (6.3) reads
(2l _ay-1 241
A S —3) ]Tmax()\(/)) = Tmax(At @ Dyp) = Trnax (11" Dyp). (C.9)

Let 0 <y < (2+1)/c. Let ¢ be a nonnegative function, satisfying 7D, < ¢, for some p > 0.
Then, since A = ;ﬂ_%l, we have by comparison argument (see [52, Theorem 2.4, p. 564]) and

(C.9) that
-1
Tinax(Ap) = A (50 73) " T ().

Similarly, if YD, > ¢, for some p > 0, and Tnax(p) < 0o, we have that

—1
Tmax()\@) < )\_(%_%) Tmax(‘P)-
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Proof of Proposition C.3. The condition (C.8) implies that Tmax(Ap) < 0o as well as Tnax(A@) <
00, and Thax(A@) < oo, for any A > 0. See [41].
(i) By comparison argument it suffices to give the proof for Ti,ax(A@). We have that

W Dug > @, < 1.

Since v < (2+1)/a and A = ;ﬂ_% then p < 1 is equivalent to A > 1. By the above calculations,

~\—

1
Toax(Ap1) < OA™(573) A 1.
(ii) By comparison argument it suffices to give the proof for T (A@). We have that
WDup >4, > 1.

Since v < (24 1)/ and A = /ﬂ_ZTH then g > 1 is equivalent to A\ < 1. Then by the above
calculations,

- —1
Trax(A3) < CA~(573) A <1,
This completes the proof of the proposition. O

Remark 20. We may take ¢ = oo in Proposition C.3. In particular, combining Corollary C.2

—1 - —1
and Proposition C.8, we have Tax(Ap) ~ A~ (5-3) , as A — 00, and Tipax(AP) ~ A~ (5-3) ,
as A — 0. This shows that, for large initial data the life-span increases as the power [ increases,

while, for small initial data the life-span decreases as the power [ increases.
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