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NEW LIFE-SPAN RESULTS FOR THE NONLINEAR HEAT EQUATION

SLIM TAYACHI AND FRED B. WEISSLER

Abstract. We obtain new estimates for the existence time of the maximal solutions to the non-

linear heat equation ∂tu −∆u = |u|αu, α > 0 with initial values in Lebesgue, weighted Lebesgue

spaces or measures. Non-regular, sign-changing, as well as non polynomial decaying initial data are

considered. The proofs of the lower-bound estimates of life-span are based on the local construc-

tion of solutions. The proofs of the upper-bounds exploit a well-known necessary condition for the

existence of nonnegative solutions. In addition, we establish new results for life-span using dilation

methods and we give new life-span estimates for Hardy-Hénon parabolic equations.

1. Introduction and statement of the results

In this paper, we consider the nonlinear heat equation

∂tu = ∆u+ |u|αu, (1.1)

where u = u(t, x) ∈ R, t > 0, x ∈ Ω, a domain of RN not necessarily bounded, N ≥ 1 and α > 0.

In the case where the boundary ∂Ω ̸= ∅, we suppose ∂Ω sufficiently smooth and we impose Dirichlet

conditions on the boundary:

u(t, x) = 0, t > 0, x ∈ ∂Ω.

If Ω is not bounded, we impose Dirichlet conditions at infinity:

lim
|x|→∞, x∈Ω

u(t, x) = 0, t > 0,

or perhaps other convenient formulation (see for example [42, Definition 15.1, p. 75]). We usually

consider the equation (1.1) with the initial value

u(0, ·) = u0. (1.2)

The Cauchy problem (1.1)-(1.2) is locally well-posed in various Banach spaces. In other words,

each element or initial value u0 in that space gives rise to a trajectory u(t) = u(t, ·) which is

a solution in some appropriate sense to the given equation, here equation (1.1), and such that

u(0) = u0. In many cases, this trajectory cannot exist for all time t, and we denote by Tmax(u0)

the maximal possible existence time of such a trajectory. The term life-span refers to the study

of the maximal existence time of solutions with initial data of the form u0 = λφ for some fixed

element φ in the considered Banach space and all λ > 0. Our aim is to establish lower and upper
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bounds of the life-span for a large class of initial data φ in terms of λ and study the asymptotic

behavior of Tmax(λφ), either as λ→ ∞ or as λ→ 0.

It is well known that if u0 ∈ Cb(RN ), the Banach space of continuous bounded functions on RN ,
there exists Tmax(u0) > 0 such that (1.1)-(1.2) has a unique classical solution u ∈ C1,2((0, Tmax(u0))×
RN )∩C([0, Tmax(u0))×RN ) which is bounded in [0, T ]×RN for all T < Tmax(u0), and ∥u(t)∥L∞(RN ) →
∞ as t → Tmax(u0), if Tmax(u0) < ∞. It is proved in [15] that if α < 2/N and φ ∈ Cb(RN ) with

φ ≥ 0, φ ̸≡ 0, then Tmax(λφ) < ∞ for any λ > 0. For all α > 0, if φ ∈ Cb(RN ), φ ≥ 0 and

lim inf |x|→∞ |x|γφ(x) > 0 with γ < 2/α, then Tmax(λφ) <∞, for all λ > 0, as shown in [27]. This

last result has been improved in many papers, see [50] for instance and some references therein. If

we do not impose the positivity of the initial data, it has been proven in [29] that for a given φ suf-

ficiently regular (i.e. with finite energy), φ ̸≡ 0, and λ > 0 is sufficiently large then Tmax(λφ) <∞.

If α < 2/N and φ not necessarily positive but φ ∈ L1(RN ) ∩ C0(RN ) and
∫
RN φ ̸= 0 then it is

proved, in [11], that Tmax(λφ) < ∞ for λ > 0 sufficiently small. Other blow-up results for λ small

are proved in [16, 49, 50]. The above mentioned results show in particular the interest of studying

the behavior of Tmax(λφ) for any value of λ and with or without any sign restriction on the initial

data.

For example, it is proved in [27] that given any nontrivial nonnegative initial data φ ∈
Cb(RN ) then Tmax(λφ) ∼ λ−α, as λ → ∞ and Tmax(λφ) ∼ λ−α, as λ → 0 provided that

φ∞ = lim inf |x|→∞ φ(x) > 0. Shortly thereafter the exact limits were given in [18], that is

limλ→∞ λαTmax(λφ) =
1
α∥φ∥

−α
∞ and limλ→0 λ

αTmax(λφ) =
1
αφ

−α
∞ .

An other example is the study of the asymptotic behavior of the life-span Tmax(λφ) when φ ∈
Cb(RN ) is nonnegative nontrivial and having also a polynomial decay at infinity, that is

0 < lim inf
|x|→∞

|x|γφ(x) ≤ lim sup
|x|→∞

|x|γφ(x) <∞, (1.3)

0 < γ < N . This is studied in [27] for small λ > 0. It is shown in [27, Theorem 3.15 (ii), p. 375]

and [27, Theorem 3.21 (ii), p. 376] that if α < 2/N then

0 < lim inf
λ→0

λ[(
1
α
− γ

2
)−1]Tmax(λφ) ≤ lim sup

λ→0
λ[(

1
α
− γ

2
)−1]Tmax(λφ) <∞.

These results have been generalized recently in [23] replacing φ ∈ Cb(RN ) by φ ∈ L∞(RN ). See
[23, Theorem 5.1, p. 128] and [23, Theorem 5.2, p. 130]. We notice that refined asymptotic is

given in [33] for large λ and for φ not necessarily positive but still continuous and bounded. Other

estimates are obtained for the life-span for regular and slowly decaying initial data in [32, 11, 50].

A class of initial data φ where φ is not necessarily in Cb(RN ) or in L∞(RN ) and satisfying

either (1.3) or

0 < lim inf
|x|→0

|x|γφ(x) ≤ lim sup
|x|→0

|x|γφ(x) <∞, (1.4)

has been considered in [50]. In fact, the asymptotic behavior of the life-span for initial data

φ ∈ L1
loc(RN \ {0}), |φ(x)| ≤ c|x|−γ , where 0 < γ < N and c > 0 a constant, is studied in [50]. It

is shown there that for some initial data φ singular at the origin or satisfying lim inf |x|→∞ φ(x) :=

φ∞ = 0 the situation is quite different from previously known life-span results. In particular,
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unlike [18], the limits of λ[(
1
α
− γ

2
)−1]Tmax(λφ) as λ → 0 or as λ → ∞ may not exist. Also, if

φ satisfies (1.4), so that φ is singular at the origin, then Tmax(λφ) ∼ λ−(
1
α
− γ

2 )
−1

, as λ → ∞
instead of λ−α if φ is regular. See [50, Corollary 1.13 and Proposition 4.6]. It is also proved that

if φ(x) = |x|−γ , |x| ≤ 1, φ(x) = 0, |x| > 1, 0 < γ < N, 0 < α < 2/γ, (N − 2)α < 4 then

limλ→∞ λ(
1
α
− γ

2 )
−1

Tmax(λφ) = C > 0. This last behavior shows the impact of the singularity of the

initial data on the behavior of the life-span for large λ.

The goal of this paper is to improve and extend the above mentioned results by considering a

large class of initial data, including singular, sign changing, not necessarily polynomially decaying

initial data. To carry out this goal, we use three different methods. The first is based on the

contraction mapping argument used to prove local existence. We recently introduced and used

this method in [50]. Here, we apply it to the nonlinear heat equation and nonlinear Hardy-Hénon

parabolic equations. In a forthcoming paper, it will be applied to a variety of evolution equations in

order to exhibit the generality of this method ([48]). We know of some cases where the idea behind

this method was previously used in other papers (see for example [24]) but to our knowledge, this

method has never been presented as such or exploited in a systematic way. The second method is

based on a necessary condition for local existence of non-negative solutions. The third method is

based on scaling properties of the equation. Details are given below later in the introduction.

We begin with the first method and we consider the case where u0 belongs to a Lebesgue space,

where we can use the contraction mapping argument done in [53, 54]. It is well known that the

problem (1.1)-(1.2) is locally well-posed in Lq(Ω) whenever q ≥ 1, q > qc where

qc =
Nα

2
. (1.5)

See [53, 54, 42] and references therein. For any u0 ∈ Lq(Ω), we denote by Tmax(u0) the existence

time of the maximal (regular) solution to (1.1)-(1.2) in Lq(Ω). Our first result on lower bound of

the life-span is derived from [53, 54] using an argument from [50].

Theorem 1.1 (Initial data in Lebesgue spaces). Let N ≥ 1, α > 0 and qc be given by (1.5).

Let φ ∈ Lq(Ω) with 1 ≤ q ≤ ∞, q > qc or φ ∈ C0(Ω). Let u ∈ C ([0, Tmax(λφ));L
q(Ω)) be the

maximal classical solution of (1.1)-(1.2) with initial data u0 = λφ, λ > 0 (we replace [0, Tmax(λφ))

by (0, Tmax(λφ)) if q = ∞). Then there exists a constant C = C(α, q) > 0 such that

Tmax(λφ)≥
C

(λ∥φ∥q)(
1
α
−N

2q
)−1

, (1.6)

for all λ > 0.

Hereafter, ∥ · ∥q denotes the norm in the Lebesgue space Lq(Ω).

Remark 1.

1) If Tmax(φ,L
q) denotes the existence time of the maximal (regular) solution to (1.1)-(1.2)

for φ ∈ Lq(Ω), it is known (see for example [53] and Proposition 2.2 below) that if φ ∈
Lp(Ω)∩Lq(Ω) we have Tmax(φ,L

q) = Tmax(φ,L
p). It follows that if φ ∈ Lq(Ω)∩Lq(Ω), 1 ≤
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q ≤ q ≤ ∞, qc < q, then the estimate (1.6) reads

Tmax(λφ) ≥ Cλ
−
(

1
α
−N

2q

)−1

, if 0 < λ < 1,

Tmax(λφ) ≥ Cλ
−
(

1
α
−N

2q

)−1

, if λ > 1.

2) Theorem 1.1 includes many known results on lower bound of the life-span. For ex-

ample, it is shown in [27, Theorem 3.21 (ii), p. 376] that if φ ∈ Cb(RN ), φ ≥ 0 and

lim sup|x|→∞ |x|γφ(x) < ∞, then for N < γ < 2/α, (hence qc < 1) we have Tmax(λφ) ≥

Cλ−(
1
α
−N

2 )
−1

, as λ → 0. This result is a special case of Theorem 1.1. Indeed, it follows

that φ ∈ C0(RN )∩Lq(RN ) with q ≥ 1 > N/γ. Thus, the estimate of [27] follows by taking

q = 1 in (1.6). Other examples will be given throughout the paper.

3) Theorem 1.1 is valid for the equation ∂tu = ∆u + a(x)|u|αu, with a ∈ L∞(Ω). Under the

additional assumption a > 0, it is shown in [40, Theorem 3 (i), p. 35] that, for φ ∈ Cb(RN ),
Tmax(λφ) ≥ Cλ−α, as λ→ ∞. For such initial data we may take q = ∞ and (1.6) recover

the last estimate.

4) For positive initial data and bounded domain, estimate (1.6) is established in [46, Theorem

3.1, p. 2526] where it is also assumed that N ≥ 3, q > max(1, qc). See also [39] for other

estimates with N = 3.

5) Let us consider the nonlinear heat equation with diffusivity:

∂tu = µ∆u+ |u|αu, u(0) = φ ∈ Lq(Ω), q ≥ 1, q > qc, (1.7)

on (0, Tµmax(φ)) × Ω, where α > 0, µ > 0 and Tµmax(φ) denotes the existence time of the

maximal solution of (1.7) with initial data φ. We want to find a lower estimate of Tµmax(φ)

with respect to µ. Let

v(t, x) = µ−1/αu(t/µ, x).

Then v satisfies the equation

∂tv = ∆v + |v|αv, v(0) = µ−1/αφ,

on (0, µTµmax(φ)) × Ω =
(
0, Tmax(µ

−1/αφ)
)
× Ω, where Tmax(µ

−1/αφ) is the existence time

of the maximal solution v. Using (1.6) we get,

Tµmax(φ) = µ−1Tmax(µ
−1/αφ) ≥ Cµ−1

(
µ−1/α∥φ∥q

)−
(

1
α
−N

2q

)−1

.

That is,

Tµmax(φ) ≥ Cµ(
2q
Nα

−1)
−1

∥φ∥
−
(

1
α
−N

2q

)−1

q .

For q = ∞, the right-hand side term does not depend on µ and we have

Tµmax(φ) ≥ C∥φ∥−α∞ .

See [34, 13, 14] for related estimates. Note that if q <∞ then limµ↗∞ Tµmax(φ) = ∞.
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Using the same method based on the contraction mapping argument as in [50], we also derive

from [54] the following lower estimate for the life-span for the case of finite Borel measure. We

denote by M the set of finite Borel measures on Ω.

Theorem 1.2 (Initial data measure). Let N ≥ 1, α > 0 and qc be given by (1.5). If m is a finite

Borel measure on Ω, i.e. m ∈ M, and if qc < 1, i.e. α < 2
N , then the existence time of the

maximal solution for (1.1)-(1.2) with initial data u0 = λm satisfies

Tmax(λm)≥ C

(λ∥m∥M)(
1
α
−N

2
)−1

(1.8)

for all λ > 0, where C = C(α) > 0 is a constant.

We now estimate from below the life-span of solutions for the nonlinear heat equation (1.1) in

RN with decaying initial data u0 = λφ, which may be singular, without sign restriction and for

any λ > 0. For γ > 0, 1 ≤ q ≤ ∞, we consider the weighted Lebesgue space

Lqγ(RN ) = {f : RN → R,mesurable, | · |γf ∈ Lq(RN )},

endowed with the norm

∥f∥Lq
γ(RN ) := ∥| · |γf∥q.

In Theorem 4.1 below, we give a well-posedness result in weighted Lebesgue spaces for the nonlinear

heat equation. As a consequence, we obtain the following lower bound estimates of the life-span.

Theorem 1.3 (Initial data in weighted Lebesgue spaces). Let N ≥ 1 and α > 0. If φ ∈ Lqγ(RN ),
where 0 < γ < N, γ < 2/α, q ∈ (1,∞] and

1

q
+
γ

N
< 1,

Nα

2q
+
αγ

2
< 1, (1.9)

then the existence time of the maximal solution of (1.1)-(1.2) in Lqγ(RN ) with u0 = λφ satisfies

Tmax(λφ)≥
C(

λ∥φ∥Lq
γ

)( 1
α
−N

2q
− γ

2
)−1

, (1.10)

for all λ > 0, where C = C(α, q, γ,N) > 0 is a constant.

Remark 2. Under the conditions 0 < γ < N, γ < 2/α, 1 < q ≤ ∞, (1.9) is equivalent to

q >
N

N − γ
and q >

Nα

2− γα
.

Combining the results of Theorems 1.3 and 1.1, we get the following estimates of the existence

time of the maximal solution to (1.1)-(1.2).

Corollary 1.4. Let N ≥ 1, α > 0, γ > 0, γ ̸= N and qc be given by (1.5). Assume that

min

[
Nα

2
,
γα

2

]
< 1.
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Let φ ∈ Lq(RN )∩Lqγ(RN ), where q ∈ (1,∞], q > qc. If γ < N we assume further (1.9). Then the

existence time of the maximal solution of (1.1)-(1.2) in Lq(RN ) with u0 = λφ satisfies

Tmax(λφ) ≥ Cλ
−
(

1
α
− 1

2
min

(
N
q
+γ,N

))−1

, (1.11)

for all 0 < λ ≤ 1, where C is a positive constant, C = C(α, q, γ,N, ∥φ∥Lq
γ∩Lq) if γ < N and

C = C(α, q, γ,N, ∥φ∥1) if γ > N.

Remark 3.

1) For the particular case q = ∞, Corollary 1.4 includes that of [27, Theorem 3.21, p. 376] and

[23, Theorem 5.1, p. 128], where φ is continuous, φ ≥ 0, φ ∈ L∞(RN ) ∩ L∞
γ (RN ), γ > 0.

The novelty of our estimate is that it holds without any condition on the sign of the initial

data. Unlike [27, 23], the case γ = N is not considered here.

2) Corollary 1.4 is totally new if q <∞.

3) Obviously, if λ > 1, (1.6) is better than (1.11), which itself holds for all λ > 0, as shown in

the proof.

The solution of (1.1)-(1.2) constructed with initial data in Lqγ(RN ) is in C0(RN ) for t > 0,

by Proposition 4.2 below. This is well-known to hold also for the solution with initial data in

Lp(RN ), p <∞. So the constructed solution for initial data in Lp(RN ) ∩ Lqγ(RN ) can be extended

to a maximal solution of (1.1)-(1.2), u : (0, Tmax) → C0(RN ). This maximal existence time is equal

to that in Lp(RN ) or in Lqγ(RN ), as shown in Proposition 4.2 below. In the following result, which

extends Corollary 1.4 for 0 < γ < N, we give a lower bound estimate of the life-span for initial

data in Lp(RN ) ∩ Lqγ(RN ).

Corollary 1.5. Let N ≥ 1, α > 0 and qc be given by (1.5). If φ ∈ Lp(RN ) ∩ Lqγ(RN ), where

p > qc, 1 ≤ p ≤ ∞, 0 < γ < N, γ < 2/α, q ∈ (1,∞] and satisfies (1.9), then the existence time of

the maximal solution of (1.1)-(1.2) with u0 = λφ satisfies

Tmax(λφ) ≥ C

λ
−
(

1
α
−N

2
max

(
1
q
+ γ

N
, 1
p

))−1

, if 0 < λ ≤ 1,

λ
−
(

1
α
−N

2
min( 1

q
+ γ

N
, 1
p
)
)−1

, if λ > 1,

(1.12)

where C = C(α, p, q, γ,N, ∥φ∥Lp∩Lq
γ
) > 0 is a constant.

We now turn to results based on the second method, which gives upper-bounds on the life-span

and which requires positivity. We distinguish the cases when λ > 0 is large or λ > 0 is small and

begin with the case λ is large. By [29], Tmax(λφ) <∞ in this case, if φ is sufficiently regular. By

[56, Theorem 1], it follows that if φ ≥ 0 is either a locally integrable function or a positive Borel

measure on Ω, φ ̸≡ 0, then Tmax(λφ) < ∞ for all sufficiently large λ > 0. See section 5. See also

[36, Theorem 2, p. 882] for φ ∈ C0(Ω). Our first life-span upper bound is as follows.

Theorem 1.6. Let N ≥ 1 and α > 0. Let φ ∈ L∞(Ω), φ ≥ 0 and φ ̸≡ 0. It follows that the

existence time for the maximal solution of (1.1)-(1.2) with u0 = λφ satisfies Tmax(λφ) < ∞ for
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λ > 0 sufficiently large and

lim sup
λ→∞

λαTmax(λφ) ≤
1

α∥φ∥α∞
. (1.13)

Remark 4.

1) Theorem 1.1 and Theorem 1.6 together show that

Tmax(λφ) ∼ (λ∥φ∥∞)−α, λ→ ∞ (1.14)

whenever φ ≥ 0, φ ̸≡ 0, φ ∈ L∞(Ω). This extends the result of [27, Theorem 3.2 (ii), p.

372] to L∞ initial data. The lower estimate is valid even if φ is not necessarily positive.

2) With the notation of Part 5) of Remark 1 and using Theorem 1.6, we have that for φ ≥ 0,

φ ̸≡ 0, φ ∈ L∞(Ω), the maximal existence time of (1.7) satisfies

lim sup
µ↘0

Tµmax(φ) ≤
1

α
∥φ∥−α∞

and hence combined with Part 5) of Remark 1 we have Tµmax(φ) ∼ 1
α∥φ∥

−α
∞ , as µ→ 0. It is

shown in [34, Theorem 1, p. 351] that limµ↘0 T
µ
max(φ) =

1
α∥φ∥

−α
∞ , without sign restriction

on φ but, unlike our case, only for Ω a bounded domain and assuming also φ a continuous

function on Ω.

3) Theorem 1.6 is known for bounded domain and regular initial data, see [45, 43]. See also

[42, Remark 17.2(i), p. 92] for other estimates in bounded domain.

We now consider positive initial data which are singular near the origin, where we restrict

ourselves to the case Ω = RN . We have obtained the following.

Theorem 1.7. Let N ≥ 1 and α > 0. Let 0 < γ < N , γ < 2
α and let ω ∈ L∞(RN ) be homogeneous

of degree 0, ω ≥ 0 and ω ̸≡ 0. Suppose that φ ∈ L1
loc(RN ), φ ≥ 0 is such that φ(x) ≥ ω(x)|x|−γ for

|x| ≤ ϵ, and some ϵ > 0. It follows that Tmax(λφ) <∞ for λ > 0 sufficiently large and

lim sup
λ→∞

λ(
1
α
− γ

2
)−1
Tmax(λφ) ≤

1

(α1/α∥e∆(ω| · |−γ)∥∞)(
1
α
− γ

2
)−1

. (1.15)

Remark 5.

1) If φ is as in Theorem 1.7 such that φ ∈ L∞
γ (RN ), 0 < γ < N , γ < 2

α then Theorem 1.3 and

Theorem 1.7 together show that Tmax(λφ) ∼ λ−( 1
α
− γ

2
)−1
, as λ→ ∞. This extends the result

of [50, Proposition 4.5] by removing the condition (N − 2)α < 4, as well as the condition

lim inf |x|→0 |x|γφ(x) > 0.

2) If N < γ < 2
α , then there is no local nonnegative solution to (1.1) with initial value λφ̃ for

all λ > 0, where

φ̃(x) =

ω(x)|x|−γ , |x| ≤ ϵ

0, |x| > ϵ.
(1.16)

See [56, 6].
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We now turn to upper estimates on Tmax(λφ) as λ → 0. For this we need to assume that Ω is

not bounded, and for simplicity we consider Ω = RN . Our first result of this type is for measures.

Consider u0 = λm, where λ > 0 and m ∈ M, the set of finite Borel measures on RN . We suppose

that m is a positive measure. To insure that (1.1) is locally well-posed on M we assume α < 2
N ,

and this implies (by Fujita’s result) that Tmax(λm) <∞ for all λ > 0.

Theorem 1.8. Let N ≥ 1 and α > 0. Suppose α < 2
N and let m ∈ M be a positive finite Borel

measure on RN . It follows that Tmax(λm) <∞ for all λ > 0 and

lim sup
λ→0

λ(
1
α
−N

2
)−1
Tmax(λm) ≤ 1(

α1/α(4π)−N/2∥m∥M
)( 1

α
−N

2
)−1

. (1.17)

Remark 6. Theorem 1.8 includes the case u0 = λφ where φ ∈ L1(RN ), φ ≥ 0, φ ̸≡ 0 and α < 2
N .

Indeed, consider the measure dm = φdx where dx denotes Lebesgue measure. It follows then that

Theorem 1.1 and Theorem 1.8 together show that

Tmax(λφ) ∼ (λ∥φ∥1)−( 1
α
−N

2
)−1
, λ→ 0, (1.18)

whenever φ ≥ 0, φ ̸≡ 0, φ ∈ L1(RN ). The lower estimate is valid even if φ is not necessarily

positive.

We have obtained the following for positive initial data having some decay at infinity.

Theorem 1.9. Let N ≥ 1 and α > 0. Let φ ∈ L1
loc(RN ), φ ≥ 0 and suppose that φ(x) ≥ ω(x)|x|−γ

for |x| ≥ R, for some R > 0, where ω ∈ L∞(RN ) is homogeneous of degree 0, ω ≥ 0 and ω ̸≡ 0. If

0 < γ < N and γ < 2
α , then Tmax(λφ) <∞ for all λ > 0 and

lim sup
λ→0

λ(
1
α
− γ

2
)−1
Tmax(λφ) ≤

1

(α1/α∥e∆(ω| · |−γ)∥∞)(
1
α
− γ

2
)−1

. (1.19)

Remark 7.

1) If φ is as in Theorem 1.9 such that φ ∈ L∞
γ (RN ), 0 < γ < N , γ < 2

α then Theorem 1.3 and

Theorem 1.9 together show that Tmax(λφ) ∼ λ−( 1
α
− γ

2
)−1
, as λ→ 0. This extends the result

of [50, Proposition 4.5] by removing the condition (N − 2)α < 4, as well as the condition

lim inf |x|→∞ |x|γφ(x) > 0.

2) If N < γ < 2
α , then

˜̃φ ∈ L1(RN ), where

˜̃φ(x) =

0, |x| < R

ω(x)|x|−γ , |x| ≥ R,
(1.20)

for some R > 0, and so Theorem 1.8 gives an upper life-span bound as λ → 0. So for φ

as in Theorem 1.9 with γ > 0, γ ̸= N, and by comparison argument, Remark 6 and the

above one together show that Tmax(λφ) ∼ λ−( 1
α
− 1

2
min(γ,N))−1

, as λ→ 0.

3) In the particular case where φ is continuous and bounded such that lim inf |x|→∞ |x|γφ(x) >
0, a similar result is obtained in [27, Theorem 3.15 (ii)]. If φ ∈ L∞(RN ) and is nonnegative

satisfying φ(x) ≥ (1 + |x|)−γ for almost all x ∈ RN a similar result is also obtained in

[23, Theorem 5.2 (ii)]. Here φ is only L1
loc(RN ), and so the condition on lower bound on
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φ is imposed only near infinity and we do not require lim inf |x|→∞ |x|γφ(x) > 0. In fact,

by taking for example ω(x) = |x1|/|x|, we have lim inf |x|→∞ |x|γφ(x) = 0. We also give an

explicit upper bound.

We now consider upper-bounds of the life-span for sign changing initial data. We define the

sector

Ωm =

{
x = (x1, x2, · · · , xN ) ∈ RN ; x1 > 0, x2 > 0, · · · , xm > 0

}
, (1.21)

where 1 ≤ m ≤ N is an integer. For 0 < γ < N and integer 1 ≤ m ≤ N , we let ψ0 : Ωm → R be

given by

ψ0(x) = cm,γx1 · · ·xm|x|−γ−2m, x ∈ Ωm, (1.22)

where

cm,γ = γ(γ + 2) · · · (γ + 2m− 2). (1.23)

In [50] local well-posedness for φ ∈ L1
loc(RN \{0}), anti-symmetric with respect to x1, x2, · · · , xm,

and φ|Ωm
is in the Banach space

X =

{
ψ ∈ L1

loc(Ωm);
ψ

ψ0
∈ L∞(Ωm)

}
, (1.24)

have been shown for 0 < α < 2/(γ + m). The solution can be extended to maximal solution

u : (0, Tmax(φ)) → C0(RN ). Furthermore, there exits a constant C > 0, such that

λ[(
1
α
− γ+m

2
)−1]Tmax(λφ) ≥ C, (1.25)

for all λ > 0. We denote by et∆m the heat semigroup on Ωm. We have obtained the following for

large λ.

Theorem 1.10. Let the positive integer m and the real numbers α, γ be such that

1 ≤ m ≤ N, 0 < γ < N, 0 < α <
2

γ +m
.

Suppose that φ ∈ L1
loc(RN \ {0}), anti-symmetric with respect to x1, x2, · · · , xm, φ|Ωm

∈ X , φ ≥ 0

in Ωm is such that φ(x) ≥ ω(x)ψ0(x) for x ∈ Ωm ∩ {|x| ≤ ϵ}, for some ϵ > 0, where ω ∈ L∞(RN )
is homogeneous of degree 0, anti-symmetric with respect to x1, x2, · · · , xm, ω ≥ 0 on Ωm and

ω ̸≡ 0. It follows that Tmax(λφ) <∞ for λ > 0 sufficiently large and

lim sup
λ→∞

λ(
1
α
− γ+m

2
)−1
Tmax(λφ) ≤

1

(α1/α∥e∆m(ωψ0)∥∞)(
1
α
− γ+m

2
)−1

.

We have obtained the following for small λ.

Theorem 1.11. Let the positive integer m and the real numbers α, γ be such that

1 ≤ m ≤ N, 0 < γ < N, 0 < α <
2

γ +m
.

Suppose that φ ∈ L1
loc(RN \ {0}), anti-symmetric with respect to x1, x2, · · · , xm, φ|Ωm

∈ X , φ ≥ 0

in Ωm is such that φ(x) ≥ ω(x)ψ0(x) for x ∈ Ωm∩{|x| ≥ R}, for some R > 0, where ω ∈ L∞(RN )
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is homogeneous of degree 0, anti-symmetric with respect to x1, x2, · · · , xm, ω ≥ 0 on Ωm and

ω ̸≡ 0. It follows that Tmax(λφ) <∞ for all λ > 0 and

lim sup
λ→0

λ(
1
α
− γ+m

2
)−1
Tmax(λφ) ≤

1

(α1/α∥e∆m(ωψ0)∥∞)(
1
α
− γ+m

2
)−1

.

Remark 8.

1) Theorems 1.10 and 1.11 improve the results of [50, Theorem 1.10, Proposition 4.5] by

removing the condition (N−2)α < 4. Also the conditions on the lim inf |x|→∞
|x|γ+m

x1x2···xmφ(x) >

0 or on the lim inf |x|→0
|x|γ+m

x1x2···xmφ(x) > 0 are not required here.

2) Theorem 1.10 (respectively Theorem 1.11) together with (1.25) show that

Tmax(λφ) ∼ λ−( 1
α
− γ+m

2
)−1
,

as λ→ ∞ (respectively as λ→ 0).

The proofs of the known results cited above are based on careful constructions of super and

sub-solutions, comparison and Kaplan’s arguments. See, for example, [43, 30, 57, 58, 38] and some

references therein. In the case of decaying initial data, the results are derived via a careful analysis

of the asymptotic in the L∞-norm of the solutions to the linear heat equation on RN with initial

data having specific orders of decay at space infinity as well as Kaplan’s arguments and comparison

principles, see [27]. This method, [27], has been used in many papers in the last three decades, see

for example [30, 60, 61, 5, 59] and references therein. Most of the results require that λ be either

sufficiently large or sufficiently small and initial data are positive and regular. Also, some scaling

arguments are applied to derive life-span estimates, such as in [18, 11].

It interesting to compare the two methods used to prove our results above. The proof of lower

bounds as already mentioned, is based on the contraction mapping argument which gives local

well-posedness of solutions (as in [50]). Consequently, it does not require any positivity condition

or maximum principle. To prove the upper estimates, we use a necessary condition for local

existence of non-negative solutions established in [56] (see Proposition 5.1 below), combined with

the maximum principle, continuity properties of the heat semigroup and scaling argument. For

these estimates, positivity is required. There is a certain unity in these two methods. On the one

hand, the contraction mapping argument gives a sufficient condition on T > 0 for the existence

of a solution on the interval [0, T ] for some initial value u0. This condition takes the form of an

inequality involving both T and u0. This condition must fail for T = Tmax, which implies that the

opposite inequality must hold. When this inequality is applied to initial values of the form u0 = λφ,

this results in a lower life-span estimate. On the other hand, inequality in [56, Theorem 1] gives

a necessary condition on T > 0 for the existence of a (positive) solution on the interval [0, T ], for

some initial value u0 ≥ 0. This condition must hold for all T < Tmax. Moreover, this condition

is stable under limits, and so must hold in the case T = Tmax. When the resulting inequality is

applied to initial values of the form u0 = λφ, an upper life-span estimate is obtained. We note that

the lower estimates for Tmax(λφ) do not in and of themselves prove finite time blowup, while the

upper estimates do so.
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Our results based on scaling, the third approach in this paper, on the one hand use ideas

introduced in [11], and on the other hand comparison arguments. In particular, we give life-span

estimates for an initial value of the form

Φ(x) =

ω(x)|x|−γ1 , |x| ≤ 1

ω(x)|x|−γ2 , |x| > 1.
(1.26)

where 0 < γ1, γ2 < N and γ1, γ2 <
2
α (γ1 ̸= γ2) and ω ∈ L∞(RN ) is homogeneous of degree 0,

ω ≥ 0, ω ̸≡ 0. See Corollary 6.6 below. We show, in particular, the impact of the singularity on

the life-span for λ large and the impact of the decay at infinity on the life-span for λ small.

The rest of this paper is organized as follows. In Section 2, we consider the standard nonlinear

heat equation and prove Theorems 1.1 and 1.2. In Section 3, we prove new estimates for the heat

kernel in weighted Lebesgue spaces, see Proposition 3.1 below. Section 4 is devoted to the case of

slowly decaying initial data and the proofs of Theorem 1.3 and Corollaries 1.4 and 1.5. The upper

estimates, Theorems 1.6–1.11, are proved in Section 5. In Section 6, we establish life-span estimates

via nonlinear scaling. In the appendix, we give some estimates of the life-span for Hardy-Hénon

parabolic equations.

Throughout the paper, C will be a positive constant which may vary from line to line. For

positive functions f and g, we say that f(x) ∼ g(x) as x→ x0 if there exists two positive constants

C1 and C2 such that C1g(x) ≤ f(x) ≤ C2g(x) in a neighborhood of x0.

2. Lower bounds for initial data in Lebesgue spaces

We consider the integral equation corresponding to the problem (1.1)-(1.2)

u(t) = et∆u0 +

∫ t

0
e(t−σ)∆

[
|u(σ)|αu(σ)

]
dσ, (2.1)

where et∆ is the heat semigroup on Ω. It is known that the integral kernel corresponding to et∆

is bounded by the Gauss kernel for the heat semigroup on RN . Hence the Lq − Lr smoothing

inequalities are independent of Ω, i.e.

∥et∆u0∥Lr(Ω) ≤ (4πt)
−N

2
( 1
q
− 1

r
)∥u0∥Lq(Ω) (2.2)

whenever 1 ≤ q ≤ r ≤ ∞.

We recall for future use that in the case of Ω = RN

Dτe
t∆ = e(t/τ

2)∆Dτ (2.3)

where Dτ is the dilation operator Dτf(x) = f(τx). In particular

D√
te
t∆ = e∆D√

t. (2.4)

In this section the goal is to establish lower bounds for the life-span of solutions as an immediate

consequence of the fixed point argument used to prove well-posedness of (2.1) in certain Banach

spaces. While this argument is well-known, in order to show the applications to life-span, it is more

convenient to recall some of the details.
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To this end we recall the value

qc =
Nα

2
,

and we require that q and r satisfy the following conditions:

q > qc (2.5)

and

1 ≤ r

α+ 1
≤ q ≤ r. (2.6)

Note that given q > qc and q ≥ 1, one can always choose r = q(α+1). Also, if q > qc and q ≥ α+1,

one can choose r = q. Furthermore, in all cases above, we have r ≥ α+ 1. Finally, if q = ∞, then

necessarily r = ∞. We set

β =
N

2

(1
q
− 1

r

)
. (2.7)

We next define the space of curves in which we seek a solution to (2.1), i.e. the space in which

we carry out the contraction mapping argument. For a fixed M > 0 and T > 0, (and q, r and β as

above), we set

Y q,r
M,T = {u ∈ C((0, T ];Lr(Ω)) : sup

t∈(0,T ]
tβ∥u(t)∥r ≤M}. (2.8)

With the distance

d(u, v) = dq,rM,T (u, v) = sup
t∈(0,T ]

tβ∥u(t)− v(t)∥r (2.9)

the space Y q,r
M,T is a complete metric space.

To carry out the fixed point argument, we let u0 ∈ D′(Ω) and suppose that there exists K > 0

such that

sup
t∈(0,T ]

tβ∥et∆u0∥r ≤ K. (2.10)

This condition includes implicitly the condition that et∆u0 be well-defined and in Lr(Ω) for t > 0.

Recall that if u0 ≥ 0, then et∆u0 indeed is well-defined, but perhaps infinite. In order for (2.10)

to hold, it suffices for example that supt∈(0,T ] t
β∥et∆|u0|∥r ≤ K, since |et∆u0| ≤ et∆|u0|. We define

the iterative operator by

Fu0u(t) = et∆u0 +

∫ t

0
e(t−σ)∆

[
|u(σ)|αu(σ)

]
dσ. (2.11)

The following theorem is well-known. Since we are particularly interested here in the contraction

mapping property, we sketch that part of the proof.

Theorem 2.1. Let N ≥ 1, α > 0, 1 ≤ q ≤ ∞ and q > qc. There is a constant C = C(α, q) > 0

such that if K > 0, M > 0 and T > 0 satisfy

K + CT
1−Nα

2q Mα+1 ≤M, (2.12)

and if u0 ∈ D′(Ω) satisfies (2.10) for some r ≥ q with 1 ≤ r
α+1 ≤ q ≤ r, then Fu0 is a strict

contraction on Y q,r
M,T and so has a unique fixed point u = Fu0u ∈ Y q,r

M,T . This solution u of (2.1) is

a classical solution of (1.1) on (0, T ].
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Furthermore, if u0 ∈ Lq(Ω) and q < ∞, then this fixed point has the property that u ∈
C([0, T ];Lq(Ω)) with u(0) = u0.

Remark 9. Of course the sufficient condition (2.12) can be taken as

sup
t∈(0,T ]

tβ∥et∆u0∥r + CT
1−Nα

2q Mα+1 ≤M, (2.13)

i.e. taking equality in (2.10)

Proof. We first consider when the space Y q,r
M,T is preserved by the iterative operator Fu0 . Thus we

suppose u ∈ Y q,r
M,T , and we estimate Fu0u(t) as follows.

tβ∥Fu0u(t)∥r ≤ tβ∥et∆u0∥r + tβ
∫ t

0
∥e(t−σ)∆

[
|u(σ)|αu(σ)

]
∥rdσ

≤ K + tβ
∫ t

0
[4π(t− σ)]−

Nα
2r ∥|u(σ)|αu(σ)∥ r

α+1
dσ

= K + (4π)−
Nα
2r tβ

∫ t

0
(t− σ)−

Nα
2r ∥u(σ)∥α+1

r dσ

≤ K + (4π)−
Nα
2r tβ

(∫ t

0
(t− σ)−

Nα
2r σ−β(α+1)dσ

)
Mα+1

≤ K + (4π)−
Nα
2r t

1−Nα
2q

(∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ

)
Mα+1

≤ K + (4π)−
Nα
2r

(∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ

)
T
1−Nα

2q Mα+1

≤ K + 2(α+ 1)(4π)−
Nα
2r

(∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ

)
T
1−Nα

2q Mα+1.

It follows that if (2.12) holds, where

C = C(α, q, r) = 2(α+ 1)(4π)−
Nα
2r

∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ,

then Y q,r
M,T is stable by Fu0 .
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Next we show that Fu0 is a strict contraction on Y q,r
M,T . We estimate as follows.

tβ∥Fu0u(t)−Fu0v(t)∥r ≤ tβ
∫ t

0
∥e(t−σ)∆

[
|u(σ)|αu(σ)− |v(σ)|αv(σ)

]
∥rdσ

≤ (4π)−
Nα
2r tβ

∫ t

0
(t− σ)−

Nα
2r ∥

[
|u(σ)|αu(σ)− |v(σ)|αv(σ)

]
∥ r

α+1
dσ

≤ (α+ 1)(4π)−
Nα
2r tβ

∫ t

0
(t− σ)−

Nα
2r ∥[u(σ)− v(σ)]

[
|u(σ)|α + |v(σ)|α

]
∥ r

α+1
dσ

≤ (α+ 1)(4π)−
Nα
2r tβ

∫ t

0
(t− σ)−

Nα
2r ∥u(σ)− v(σ)∥r

[
∥u(σ)∥αr + ∥v(σ)∥αr

]
dσ

≤ 2(α+ 1)(4π)−
Nα
2r tβ

(∫ t

0
(t− σ)−

Nα
2r σ−β(α+1)dσ

)
Mαdq,rM,T (u, v)

≤ 2(α+ 1)(4π)−
Nα
2r t

1−Nα
2q

(∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ

)
Mαdq,rM,T (u, v)

≤ 2(α+ 1)(4π)−
Nα
2r

(∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ

)
T
1−Nα

2q Mαdq,rM,T (u, v).

Thus

dq,rM,T (Fu0u,Fu0v) ≤ 2(α+ 1)(4π)−
Nα
2r

(∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ

)
T
1−Nα

2q Mαdq,rM,T (u, v).

It follows that if (2.12) holds then Fu0 is a strict contraction on Y q,r
M,T .

The only difficulty is that C potentially depends on r as well as q and α. To rectify this, one can

replace C(α, q, r) by C(α, q) = maxq≤r≤q(α+1)C(α, q, r) and the result holds with C = C(α, q). □

As is well-known, Theorem 2.1 is used to show that the integral equation (2.1) is locally well-

posed on Lq(Ω). In particular, if u0 ∈ Lq(Ω) the resulting solution given by the fixed point argument

can be extended to a unique maximal solution on an interval [0, Tmax(u0)). We will not belabor

this point further.

We have also the following.

Proposition 2.2. Let N ≥ 1, α > 0, 1 ≤ q <∞ and q > qc. Let Tmax(φ,L
q) denotes the existence

time of the maximal solution of (2.1) with initial data φ ∈ Lq(Ω). Then the following hold.

(i) u(t) ∈ C0(Ω) for t ∈ (0, Tmax(φ,L
q)) .

(ii) If φ ∈ Lq(Ω)∩C0(Ω) then Tmax(φ,L
q) = Tmax(φ,C0(Ω)), the existence time of the maximal

solution of (2.1) with initial data φ ∈ C0(Ω).

(iii) If φ ∈ Lq(Ω) ∩ Lp(Ω) with qc < p ≤ ∞ then Tmax(φ,L
q) = Tmax(φ,L

p), the existence time

of the maximal solution of (2.1) with initial data φ ∈ Lp(Ω).

Proof. (i) By iterative argument, as in [2], u(t) ∈ Lr(Ω) for q ≤ r ≤ ∞. It is known that et∆ :

Lq(Ω) → C0(Ω), is bounded for t > 0 and 1 ≤ q <∞. See [42, 9]. Hence, by (2.1), u(t) ∈ C0(Ω).
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(ii) By (i) we have Tmax(φ,L
q) ≤ Tmax(φ,C0(Ω)). Using (2.1) and (2.2), we have

∥u(t)∥q ≤ ∥et∆φ∥q +
∫ t

0
∥|u(σ)|αu(σ)∥qdσ

≤ ∥φ∥q +
∫ t

0
∥u(σ)∥α∞∥u(σ)∥qdσ.

By Gronwall’s inequality, we get

∥u(t)∥q ≤ ∥φ∥qe
∫ t
0 ∥u(σ)∥α∞dσ.

Hence u can not blow up in Lq(Ω) before it blows up in C0(Ω). That is Tmax(φ,C0(Ω)) ≤
Tmax(φ,L

q).

(iii) Let ε ∈ (0,min(Tmax(φ,L
q), Tmax(φ,L

p))). By (i) we have u(ε) ∈ C0(Ω). Using (ii) we have

if p <∞,

Tmax(u(ε), L
q) = Tmax(u(ε), C0(Ω)) = Tmax(u(ε), L

p).

That is Tmax(φ,L
q)−ε = Tmax(φ,L

p)−ε. If p = ∞, then q < p hence (i)-(ii) hold and Tmax(φ,L
q)−

ε = Tmax(u(ε), C0(Ω)) = Tmax(u(ε), L
∞) = Tmax(φ,L

∞)− ε. Hence we get the result. □

As a first application of Theorem 2.1 to life-span estimates, we prove Theorem 1.1.

Proof of Theorem 1.1. Consider u0 = λφ, where λ > 0 and φ ∈ Lq(Ω). The key observation is that

if Tmax(λφ) <∞, it is impossible to carry out the fixed point argument on the interval [0, Tmax(λφ)]

with initial value u0 = λφ. Hence, by (2.13)

sup
t∈(0,Tmax(λφ)]

tβ∥et∆u0∥r + CTmax(λφ)
1−Nα

2q Mα+1 > M,

for all M > 0. Recall that (4πt)β∥et∆u0∥r ≤ ∥u0∥q by the Lq−Lr smoothing properties of the heat

semigroup (2.2), so that

(4π)βλ∥φ∥q + CTmax(λφ)
1−Nα

2q Mα+1 > M,

for all M > 0. In particular, if we set M = 2(4π)βλ∥φ∥q, this gives

CTmax(λφ)
1−Nα

2q [λ∥φ∥q]α > 1.

Thus we have proved Theorem 1.1. □

As a second application, consider u0 = λm, where λ > 0 and m ∈ M, the set of finite Borel

measures on Ω. For example, m could be a point mass. In order to apply Theorem 2.1, we observe

first that

|et∆m| ≤ (4πt)−
N
2

∫
RN

e−
|x−y|2

4t d|m|(y),
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where, by abuse of notation, m denotes both the measure on Ω and its natural extension to RN ,
and |m| is the total variation of m. Hence

∥et∆m∥∞ ≤ (4πt)−
N
2 ∥m∥M,

∥et∆m∥1 ≤ ∥m∥M;

and so by interpolation

∥et∆m∥r ≤ (4πt)−
N
2
(1− 1

r
)∥m∥M, (2.14)

for all 1 ≤ r ≤ ∞.

Theorem 2.1 thus implies that (2.1) is locally well-posed on M if qc < 1. Simply take q = 1 and

r = α+ 1. (This of course is well-known.)

Proof of Theorem 1.2. To obtain a life-span estimate, we again note that if the maximal existence

time is finite, i.e. Tmax(λm) < ∞, then (2.13) can not hold with u0 = λm and T = Tmax(λm).

Hence, also using (2.14), for β = N
2 (1−

1
α+1), we must have

(4π)βλ∥m∥M + CTmax(λm)1−
Nα
2 Mα+1 > M,

for all M > 0. As above, we take M = 2(4π)βλ∥m∥M, which gives the lower estimate

CTmax(λm)
1
α
−N

2 λ∥m∥M > 1.

This completes the proof of Theorem 1.2. □

As a third application of Theorem 2.1 to life-span estimates we consider u0 = λφ where λ > 0,

φ ∈ L1
loc(RN ) and |φ| ≤ | · |−γ for some 0 < γ < N . We recall that if Nγ < r, then

∥et∆| · |−γ∥r = t−
γ
2
+N

2r ∥e∆| · |−γ∥r (2.15)

for all t > 0. This follows from a scaling argument. For convenience, we set

L = ∥e∆| · |−γ∥r. (2.16)

Hence if |φ| ≤ | · |−γ , then

∥et∆(λφ)∥r ≤ λ∥et∆| · |−γ∥r = Lλt−
γ
2
+N

2r . (2.17)

We next set q = N
γ , so that 1 < q < r, and we may choose r so that (2.6) holds. Also, β =

N
2 (

1
q − 1

r ) = γ
2 − N

2r . Theorem 2.1 clearly shows that (2.1) is locally well-posed for initial values

bounded by a multiple of |x|−γ with 0 < γ < N and N
γ > qc, i.e. γ <

2
α . This of course is known.

See [11, Theorem 2.8], and also [50, Theorem 2.3].

As for a life-span estimate, if u0 = λφ where |φ(x)| ≤ |x|−γ , then the existence time of the

solution, Tmax(λφ), if it is finite, must verify

λL+ CTmax(λφ)
1− γα

2 Mα+1 > M

for all M > 0, where L is given by (2.16). For M = 2λL, this gives

CTmax(λφ)
1− γα

2 (λL)α > 1.
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In other words, we have the following result.

Corollary 2.3. Let 0 < γ < N and γ < 2
α . Suppose φ ∈ L1

loc(RN ) is such that |φ(x)| ≤ |x|−γ. It

follows that

Tmax(λφ)≥
C

(λL)(
1
α
− γ

2
)−1

, λ > 0, (2.18)

where L is given by (2.16) and C depends only on α and γ.

This last result recovers [50, Theorem 2.6(ii)] in the case m = 0, by a different but related

method: the contraction mapping argument is formulated differently. It does not seem possible

that the contraction mapping argument used in the proof of Theorem 2.1 can be used to recover

[50, Theorems 2.3 and 2.6] in the case 1 ≤ m ≤ N . Indeed, that is the point of the paper [50]. Note

also that Theorem 1.3 gives also the result but here the constant at the right-hand side is explicit.

3. Estimates for the heat kernel in weighted spaces

In this section we prove the following heat kernel estimates. For simplicity, the space Lp(RN ),
will be denoted by Lp. We recall that the norm in Lp(RN ), ∥ · ∥Lp(RN ) is denoted by ∥ · ∥p.

Proposition 3.1. Let N ≥ 1, 0 ≤ γ ≤ µ < N, q1 ∈ (1,∞] and q2 ∈ (1,∞] satisfy

0 ≤ 1

q2
<
µ− γ

N
+

1

q1
≤ µ

N
+

1

q1
< 1.

Then there exists a constant C > 0 depending on N, γ, µ, q1 and q2 such that∥∥|.|γet∆u∥∥
q2

≤ Ct
−N

2

(
1
q1

− 1
q2

)
−µ−γ

2 ∥|.|µu∥q1 , t > 0, |.|µu ∈ Lq1 . (3.1)

Remark 10.

1) The estimate (3.1) is well-known for µ = γ = 0, that is (2.2) (see for example [53]). For

the case γ = 0, 0 < µ < N, (3.1) is established in [2]. Estimate (3.1) is known for

0 < γ ≤ µ < N, 0 ≤ 1
q2

≤ 1
q1
< 1

q1
+ µ

N < 1 in [51, 8]. See also [25] for the case q1 = q2 = ∞.

It follows by [51, 8] that (3.1) holds for 0 < γ = µ < N, q1 = q2 = q ∈ (1,∞], 1
q +

µ
N < 1.

2) The power of t in (3.1) is optimal. This can be shown by scaling argument as in [2]. In

fact, for t > 0, we have

e∆u = D√
te
t∆D 1√

t
u

for all u ∈ S ′(RN ). Also

∥| · |γD√
tf∥r = t−

N
2r

− γ
2 ∥| · |γf∥r

for all | · |γf ∈ Lr, r ≥ 1. Writing (3.1) for t = 1 as follows∥∥|.|γe∆u∥∥
q2

=
∥∥∥|.|γD√

te
t∆D1/

√
tu
∥∥∥
q2

≤ C ∥|.|µu∥q1 .

Setting D1/
√
tu = v that is u = D√

tv, we get∥∥∥|.|γD√
te
t∆v

∥∥∥
q2

≤ C
∥∥∥|.|µD√

tv
∥∥∥
q1
.
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That is

t
− N

2q2
− γ

2
∥∥|.|γet∆v∥∥

q2
≤ Ct

− N
2q1

−µ
2 ∥|.|µv∥q1 .

This gives (3.1) for all t > 0.

3) The fact that γ ≤ µ is necessary. This follows by translation argument. See also [10]. We

take, in (3.1), t = 1, u = G1(· − τx0), τ > 0, x0 ∈ RN , |x0| = 1. In fact, we have that

e∆G1(· − τx0) = G1 ⋆ G1(· − τx0) = G2(· − τx0).

On the other hand,

∥| · |γG2(· − τx0)∥q2 = ∥| ·+τx0|γG2∥q2 = τγ
∥∥∥∣∣∣ ·
τ
+ x0

∣∣∣γ G2

∥∥∥
q2

and

∥| · |µG1(· − τx0)∥q1 = τµ
∥∥∥∣∣∣ ·
τ
+ x0

∣∣∣µG1

∥∥∥
q1
.

Hence, (3.1) reads,

τ−(µ−γ)
∥∥∥∣∣∣ ·
τ
+ x0

∣∣∣γ G2

∥∥∥
q2

≤ C
∥∥∥∣∣∣ ·
τ
+ x0

∣∣∣µG1

∥∥∥
q1
.

Then we let τ → ∞, since
∥∥∣∣ ·
τ + x0

∣∣µG1

∥∥
q1

→ ∥G1∥q1 < ∞ and
∥∥∣∣ ·
τ + x0

∣∣γ G2

∥∥
q2

→
∥G2∥q2 > 0, to deduce that γ ≤ µ if q2, q1 <∞.

4) Our estimate is different from that of [51, 8] since we do not require q1 ≤ q2 if γ < µ. In

fact, since the condition γ ≤ µ, is necessary by the above remark, all that we require is that

the power of t in (3.1) is negative.

To prove Proposition 3.1, we establish the following estimates for the heat kernel in weighted

Lorentz spaces. Since the cases 0 = γ < µ < N, ([2]) and 0 < γ = µ < N ([51, 8]) are known, we

only give the proof for 0 < γ < µ < N.

Proposition 3.2. Let N ≥ 1, 0<γ<µ < N, 1 ≤ q ≤ ∞, q1 ∈ (1,∞] and q2 ∈ (1,∞] satisfy

0 ≤ 1

q2
<
µ− γ

N
+

1

q1
<
µ

N
+

1

q1
< 1.

Then there exists a constant C > 0 depending on N, γ, µ, q, q1 and q2 such that∥∥|.|γet∆u∥∥
Lq2,q

≤ Ct
−N

2

(
1
q1

− 1
q2

)
−µ−γ

2 ∥|.|µu∥Lq1,∞ , t > 0, |.|µu ∈ Lq1,∞, (3.2)

with if q2 = ∞ then q = ∞.

Remark 11. A Young’s inequality is proved in [26, Theorem 3.1, p. 201] for weighted Lebesgue

spaces where it is assumed also q1, q2 < ∞. We do not use this here and we provide a simpler

proof for our case as a convolution with a Gaussian. See [47] for (3.2) with γ = 0 < µ < N,

0 ≤ 1
q2
< µ
N + 1

q1
< 1.

Proof of Proposition 3.2. From the embedding Lq2,1 ↪→ Lq2,q, q ≥ 1, q2 <∞, it is sufficient to give

the proof for q = 1. Since γ > 0, then by the inequality |x|γ ≤ C(|y|γ + |x− y|γ), we write

||.|γet∆u| = ||.|γ(Gt ⋆ u)| ≤ CGt ⋆ (|.|γ |u|) + C(|.|γGt) ⋆ |u|, t > 0. (3.3)
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Let γ < µ < N, q1 ∈ (1,∞) and q2 ∈ (1,∞) be such that

1

q2
<
µ− γ

N
+

1

q1
<

µ

N
+

1

q1
< 1.

Set
1

p1
= 1 +

1

q2
− 1

p2
,

with
1

p2
=
µ− γ

N
+

1

q1
.

Since γ < N, then p1 ∈ (1,∞) and satisfies

γ

N
< 1−

(
µ− γ

N
+

1

q1

)
<

1

p1
< 1.

Let us introduce the numbers p̃1, p̃2 defined by

1

p̃1
=

1

p1
− γ

N
,

1

p̃2
=

µ

N
+

1

q1
.

We have
1

p̃1
= 1 +

1

q2
− 1

p̃2
,

Since 0 < γ < µ, and by the conditions on q1, q2, we have that

0 <
1

p2
<

1

p̃2
< 1, 0 <

1

p̃1
< 1, 0 <

1

p1
+

1

p2
− 1 =

1

p1
− 1 +

1

p2
<

1

p2
< 1.

Using generalized Young’s inequality, see [37, Theorem 2.6, p. 137] or [17, 28], we deduce that

∥|.|γet∆u∥Lq2,1 ≤ C∥Gt ⋆ |.|γ |u|∥Lq2,1 + C∥|.|γGt ⋆ |u|∥Lq2,1

≤ C∥Gt∥Lp1,1∥|.|γ |u|∥Lp2,∞ + C∥|.|γGt∥Lp̃1,1∥|u|∥Lp̃2,∞

:= CI1 + CI2, (3.4)

where

1 +
1

q2
=

1

p1
+

1

p2
=

1

p̃1
+

1

p̃2
, 1 < q2, p2, p̃2 <∞, 1 < p1, p̃1 <∞.

We first estimate I1. Using the generalized Hölder inequality, see [37, Theorem 3.4, p. 141] or

[28, 17]), we get

I1 ≤ C∥Gt∥Lp1,1∥|.|−(µ−γ)∥
L

N
µ−γ ,∞∥|.|µu∥Lq1,∞ , 0 < µ− γ < N,

1

p2
=
µ− γ

N
+

1

q1
< 1.

Since Gt(x) = t−
N
2 G1(x/

√
t) = t−

N
2 (4π)−

N
2 e−

|x|2
4t ∈ Lp1,1, we deduce from [17] that

∥Gt∥Lp1,1 = t−
N
2 ∥D1/

√
tG1∥Lp1,1 = t−

N
2 t

N
2p1 ∥G1∥Lp1,1 = Ct

−N
2

(
1− 1

p1

)
,

with

1− 1

p1
=

1

p2
− 1

q2
=

1

q1
− 1

q2
+
µ− γ

N
> 0.

Then, we deduce that

I1 ≤ Ct
−N

2

(
1
q1

− 1
q2

)
−µ−γ

2 ∥|.|µu∥Lq1,∞ . (3.5)
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We now estimate I2. Using the generalized Hölder inequality, we get

I2 ≤ C∥|.|γGt∥Lp̃1,1∥|.|−µ∥
L

N
µ ,∞∥|.|µu∥Lq1,∞ ,

0 < µ < N,
1

p̃2
=

µ

N
+

1

q1
< 1.

Since |x|γGt(x) = t−
N
2
+ γ

2 |x/
√
t|γG1(x/

√
t) = t−

N
2 (4π)−

N
2 |x|γe−

|x|2
4t ∈ Lp̃1,1, we deduce from [17]

that

∥|.|γGt∥Lp̃1,1 = t−
N
2
+ γ

2 ∥D1/
√
t(|.|

γG1)∥Lp̃1,1 = t−
N
2
+ γ

2 t
N
2p̃1 ∥|.|γG1∥Lp̃1,1 = Ct

−N
2

(
1− 1

p1

)
.

Then, we deduce that

I2 ≤ Ct
−N

2

(
1
q1

− 1
q2

)
−µ−γ

2 ∥|.|µu∥Lq1,∞ . (3.6)

Plugging (3.5) and (3.6) in (3.4) we get (3.2).

If q2 ∈ (1,∞) and q1 = ∞, hence q2 > N/(µ − γ), the above calculations for estimating I1, I2

hold using the generalized Hölder inequality in [37, Theorem 3.4, p. 141] (see also [28, Proposition

2.3 a), p. 19]).

If q2 = q = ∞, the proof follows by using the generalized Young inequality, [37, Theorem 3.6, p.

141] (see also [28, Proposition 2.4 b), p. 20]) as follows

∥|.|γet∆u∥∞ ≤ C∥Gt∥Lp1,1∥|.|γ |u|∥Lp2,∞ + C∥|.|γGt∥Lp̃1,1∥|u|∥Lp̃2,∞ ,

with

1−
(
µ− γ

N
+

1

q1

)
=

1

p1
∈ (γ/N, 1)

and by similar calculations as above. This completes the proof. □

We now give the proof of Proposition 3.1.

Proof of Proposition 3.1. The proof follows by taking q = q2 in (3.2) and using the fact that

∥|.|µu∥Lq1,∞ ≤ C ∥|.|µu∥Lq1,q1 = C ∥|.|µu∥Lq1 .

□

4. Lower bounds for slowly decaying initial data

In this section we apply Proposition 3.1 in order to show local well-posedness in weighted

Lebesgue spaces for the nonlinear heat equation (2.1). This allows us to obtain more precise

estimates for the lower bound of the life-span in relation with the weight. For γ ≥ 0, 1 ≤ q ≤ ∞,

we consider the weighted Lebesgue space

Lqγ(RN ) = {f : RN → R,mesurable, | · |γf ∈ Lq(RN )}.

Endowed with the norm

∥f∥Lq
γ
:= ∥| · |γf∥Lq ,
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Lqγ(RN ) is a Banach space. Clearly, if 0 < γ < N, 1 ≤ q ≤ ∞, and 1
q +

γ
N < 1, using the Hölder

inequality, we have Lqγ(RN ) ⊂ S ′(RN ). Also, for u0 ∈ Lqγ(RN ), 0 < γ < N, N
N−γ < q <∞, we have

limt→0 ∥et∆u0 − u0∥Lq
γ(RN ) = 0. This follows as for the standard Lq(RN ) case, that is γ = 0.

We are interested in the local well-posedness for the nonlinear heat equation (2.1) in Lqγ(RN ).
We consider initial data u0 ∈ Lqγ(RN ) where q, γ satisfy

0 < γ < N, γ <
2

α
.

1

q
+
γ

N
< 1,

Nα

2q
+
αγ

2
< 1.

The critical exponent in the weighted Lebesgue space Lqγ(RN ) is given by

qc(γ) =
Nα

2− γα
. (4.1)

The value of the critical exponent qc(γ) can be explained by scaling argument. In fact, if u is a

solution of the equation (1.1), with Ω = RN , then for any µ > 0, uµ is also a solution of (1.1),

where

uµ(t, x) = µ
2
αu(µ2t, µx).

We have ∥uµ(t)∥Lq
γ
= µ

2
α
−γ−N

q ∥u(t)∥Lq
γ
, and on initial data u(0) = u0 we have

∥µ
2
αu0(µ·)∥Lq

γ
= µ

2
α
−γ−N

q ∥u0∥Lq
γ
.

The only weighted Lebesgue exponent (obviously if its exponent is greater than 1) for which the

norm is invariant under these dilations is

N

qc(γ)
=

2

α
− γ.

Hence qc(γ) is given by (4.1). We have the following local well-posedness result.

Theorem 4.1 (Local well-posedness in Lqγ). Let N ≥ 1 be an integer, α > 0 and γ such that

0 < γ < N, γ < 2/α. (4.2)

Let qc(γ) be given by (4.1). Then we have the following.

(i) If γ(α+ 1) < N and q is such that

q >
N(α+ 1)

N − γ(α+ 1)
, q > qc(γ) and q ≤ ∞,

then equation (2.1) is locally well-posed in Lqγ(RN ). More precisely, given u0 ∈ Lqγ(RN ),
then there exist T > 0 and a unique solution u ∈ C

(
[0, T ];Lqγ(RN )) of (2.1) (we replace

[0, T ] by (0, T ] if q = ∞ and u satisfies limt→0 ∥u(t) − et∆u0∥L∞
γ (RN ) = 0). Moreover, u

can be extended to a maximal interval [0, Tmax) such that either Tmax = ∞ or Tmax < ∞
and lim

t→Tmax

∥u(t)∥Lq
γ
= ∞.
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(ii) Assume that q > qc(γ) with N
N−γ < q ≤ ∞. It follows that equation (2.1) is locally well-

posed in Lqγ(RN ) as in part (i) except that uniqueness is guaranteed only among functions

u ∈ C
(
[0, T ];Lqγ(RN )) which also verify t

N
2
( 1
q
− 1

r
)+ να

2 ∥u(t)∥Lr
ν
is bounded on (0, T ], where

r = (α+1)q, ν(α+1) = γ, (we replace [0, T ] by (0, T ] if q = ∞ and u satisfies limt→0 ∥u(t)−
et∆u0∥L∞

γ (RN ) = 0). Moreover, u can be extended to a maximal interval [0, Tmax) such that

either Tmax = ∞ or Tmax <∞ and lim
t→Tmax

∥u(t)∥Lq
γ
= ∞. Furthermore,

∥u(t)∥Lq
γ
≥ C (Tmax − t)

N
2q

− 2−γα
2α , ∀ t ∈ [0, Tmax), (4.3)

where C is a positive constant.

Proof. (i) Let us define the maps

Kt(u) = et∆ (|u|αu) , t > 0.

Using the following inequality, which follows by the Hölder inequality,∥∥∥|.|ν(α+1)
(
|u|αu− |v|αv

)∥∥∥
p

α+1

≤ C
(
∥u∥αLp

ν
+ ∥v∥αLp

ν

)
∥u− v∥Lp

ν
, p ≥ α+ 1, ν ≥ 0, (4.4)

and Proposition 3.1 that is et∆ : L
q

α+1

(α+1)γ → Lqγ is bounded for each t > 0, we have that Kt : L
q
γ −→

Lqγ is locally Lipschitz with

∥Kt(u)−Kt(v)∥Lq
γ

≤ Ct
−N

2
(α+1

q
− 1

q
)−αγ

2 ∥|u|αu− |v|αv∥
L

q
α+1
(α+1)γ

≤ Ct
−Nα

2q
−αγ

2 (∥u∥αLq
γ
+ ∥v∥αLq

γ
)∥u− v∥Lq

γ

≤ 2CMαt
−Nα

2q
−αγ

2 ∥u− v∥Lq
γ
,

for ∥u∥Lq
γ
≤ M and ∥v∥Lq

γ
≤ M. We have also, that t

−Nα
2q

−αγ
2 ∈ L1

loc(0,∞), since q > qc(γ).

Obviously t 7→ ∥Kt(0)∥∞ = 0 ∈ L1
loc(0,∞), also es∆Kt = Kt+s for s, t > 0. Then the proof follows

by [53, Theorem 1, p. 279].

(ii) We consider r and ν > 0 such that ν < γ, ν(α+ 1) < N, r > q. Hence we have

1

r
<
α+ 1

r
+
να

N
<
α+ 1

r
+
ν(α+ 1)

N
< 1,

1

r
<

1

q
+
γ − ν

N
<

1

q
+
γ

N
< 1.

The choice of r, ν is to guaranties that the maps et∆ : L
r

α+1

(α+1)ν → Lrν and et∆ : Lqγ → Lrν are

bounded so that we may apply Proposition 3.1. In order that et∆ : L
r

α+1

(α+1)ν → Lqγ is bounded, we

choose for simplicity,

r = (α+ 1)q, ν(α+ 1) = γ,

(If q = ∞ we have r = ∞), and we may apply [8, Lemma 2.1] to get that et∆ : L
r

α+1

(α+1)ν = Lqγ → Lqγ

is bounded. With this choice, the conditions on r and ν are satisfied, since

1

q
+
γ

N
< 1.

Define

β(ν) =
N

2q
− N

2r
+
αν

2
. (4.5)
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We choose K > 0, T > 0, M > 0 such that

K + CMα+1T
1−Nα

2q
− γα

2 ≤M, (4.6)

where C is a positive constant. We will show that there exists a unique solution u of (2.1) such

that u ∈ C
(
[0, T ];Lqγ(RN )

)
∩ C

(
(0, T ];Lrν(RN )

)
with

∥u∥ = max

[
sup
t∈[0,T ]

∥u(t)∥Lq
γ
, sup
t∈(0,T ]

tβ(ν)∥u(t)∥Lr
ν

]
≤M.

The proof is based on a contraction mapping argument in the set

Y q,γ
M,T = {u ∈ C

(
[0, T ];Lqγ(RN )

)
∩ C((0, T ];Lrν) : ∥u∥ ≤M}.

Endowed with the metric d(u, v) = ∥u − v∥, Y q,γ
M,T is a nonempty complete metric space. We note

that for u0 ∈ Lqγ we have

∥et∆u0∥Lr
ν
≤ Ct

−N
2
( 1
q
− 1

r
)− γ−ν

2 ∥u0∥Lq
γ
= Ct

−N
2
( 1
q
− 1

r
)− να

2 ∥u0∥Lq
γ
= Ct−β(ν)∥u0∥Lq

γ
.

We will show that Fu0 defined in (2.11) is a strict contraction on Y q,γ
M,T . The condition on the

initial data ∥u0∥Lq
γ
≤ K will implies that tβ∥et∆u0∥Lr

ν
≤ K. We have

tβ(ν)∥Fu0u(t)∥Lr
ν

≤ tβ(ν)∥et∆u0∥Lr
ν
+ tβ(ν)

∫ t

0
∥e(t−σ)∆

[
|u(σ)|αu(σ)

]
∥Lr

ν
dσ

≤ K + Ctβ(ν)
∫ t

0
(t− σ)−

Nα
2r

− ν(α+1)−ν
2 ∥| · |ν(α+1)|u(σ)|αu(σ)∥r/(α+1)dσ

= K + Ctβ(ν)
∫ t

0
(t− σ)−

Nα
2r

− να
2 ∥u(σ)∥α+1

Lr
ν
dσ

≤ K + CMα+1tβ(ν)
∫ t

0
(t− σ)−

Nα
2r

− να
2 σ−β(ν)(α+1)dσ

≤ K + CMα+1t
1−Nα

2q
− γα

2

∫ 1

0
(1− σ)−

Nα
2r

− να
2 σ−β(ν)(α+1)dσ

≤ K + CMα+1T
1−Nα

2q
− γα

2

∫ 1

0
(1− σ)−

Nα
2r

− να
2 σ−β(ν)(α+1)dσ.

By the hypotheses and the fact that q < r and ν < γ we have

Nα

2r
+
να

2
<
Nα

2q
+
γα

2
< 1, β(ν)(α+ 1) =

Nα

2q
+
αγ

2
< 1.
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We estimate in Lqγ as follows,

∥Fu0u(t)∥Lq
γ

≤ ∥et∆u0∥Lq
γ
+

∫ t

0
∥e(t−σ)∆

[
|u(σ)|αu(σ)

]
∥Lq

γ
dσ

≤ K + C

∫ t

0
∥| · |ν(α+1)|u(σ)|αu(σ)∥r/(α+1)dσ

= K + C

∫ t

0
∥u(σ)∥α+1

Lr
ν
dσ

≤ K + CMα+1

∫ t

0
σ−β(ν)(α+1)dσ

≤ K + CMα+1t
1−Nα

2q
− γα

2

∫ 1

0
σ−β(ν)(α+1)dσ

≤ K + CMα+1T
1−Nα

2q
− γα

2

∫ 1

0
σ−β(ν)(α+1)dσ.

The condition (4.6) implies that the space Y q,r
M,T is preserved by the iterative operator Fu0 . We

show similarly the contraction. The proof of the other parts follows as in [2]. So we omit the

details. This completes the proof of the theorem. □

We note that uniqueness in Part (ii) of Theorem 4.1 holds in u ∈ C
(
[0, T ];Lqγ(RN ))∩C

(
(0, T ];Lrν(RN )).

This follows by similar argument as in [3]. We will not belabor this point further.

Proof of Theorem 1.3. Consider u0 = λφ, where λ > 0 and φ ∈ Lqγ . If Tmax(λφ) < ∞, it is

impossible to carry out the fixed point argument on the interval [0, Tmax(λφ)] with initial value

u0 = λφ. Hence, by (4.6)

K + CTmax(λφ)
1−Nα

2q
− γα

2 Mα+1 > M,

for all M > K. Letting K = ∥u0∥Lq
γ
= λ∥φ∥Lq

γ
, so that

λ∥φ∥Lq
γ
+ CTmax(λφ)

1−Nα
2q

− γα
2 Mα+1 > M,

for all M > λ∥φ∥Lq
γ
. In particular, if we set M = 2λ∥φ∥Lq

γ
, this gives

CTmax(λφ)
1−Nα

2q
− γα

2 [λ∥φ∥Lq
γ
]α > 1.

Thus we have proved Theorem 1.3. □

Remark 12. If u0 ∈ Lqγ with γ > 0, q ≤ ∞ are as in Theorem 4.1 then writing

|u0| = |u01{|x|≤1} + u01{|x|>1}|

≤ |x|−γ1{|x|≤1}
(
|x|γ |u0|1{|x|≤1}

)
+ |x|−γ1{|x|>1} (|x|γ |u0|)

≤ |x|−γ1{|x|≤1}
(
|x|γ |u0|1{|x|≤1}

)
+ |x|γ |u0|,

where 1A is the indicator function of a subset A of RN , we see by the Hölder inequality that

u0 ∈ Lr+Ls with 1
r = 1

q +
γ
N , s = q if q <∞ and r ≥ 1, Nα

2 < r < N
γ < s <∞ if q = ∞. Then the

local well-posedness is proved in [11, Theorem 2.8]. The fixed point argument used in [11] seems
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not to give an explicit lower bound estimate of life span, as T < 1, the minimal local existence

time, is required in the proof there and the constants in particular in [11, Inequality (2.10)], seems

to depend on T .

The construction of solutions to (2.1) with initial data in the intersection of two metric spaces

follows by well-known argument. See also the proof of [2, Proposition 3.2, p. 126]. We have the

following result for the existence time of the maximal solution.

Proposition 4.2. Let N ≥ 1 be an integer, α > 0 and 0 < γ < N, γ < 2/α. Let qc(γ) be given

by (4.1). Let q > qc(γ),
N

N−γ < q < ∞ and Tmax(φ,L
q
γ) denotes the existence time of the maximal

solution of (2.1) with initial data φ ∈ Lqγ . Then the following hold.

(i) u(t) ∈ C0(RN ) ∩ L∞
γ for t ∈ (0, Tmax(φ,L

q
γ)) .

(ii) If φ ∈ Lqγ∩C0(RN ) then Tmax(φ,L
q
γ) = Tmax(φ,C0(RN )), the existence time of the maximal

solution of (2.1) with initial data φ ∈ C0(RN ).
(iii) If φ ∈ Lqγ ∩Lpγ with p > qc(γ),

N
N−γ < p <∞ then Tmax(φ,L

q
γ) = Tmax(φ,L

p
γ), the existence

time of the maximal solution of (2.1) with initial data φ ∈ Lpγ .

(iv) If φ ∈ Lqγ ∩ Lp with qc < p ≤ ∞, then Tmax(φ,L
q
γ) = Tmax(φ,L

p), the existence time of the

maximal solution of (2.1) with initial data φ ∈ Lp.

Proof. (i) Let φ ∈ Lqγ(RN ), q > qc(γ) and q > N
N−γ . Let r = (α + 1)q, ν(α + 1) = γ and β(ν) be

given by (4.5). Let p be such that r < p ≤ ∞. Hence p > q and

0 ≤ 1

p
<
α+ 1

r
<

γ

N
+
α+ 1

r
< 1,

1

p
<

1

q
<

γ

N
+

1

q
< 1.

For 0 < T < Tmax(φ,L
q
γ), we have

∥u(t)∥Lp
γ

≤ ∥et∆φ∥Lp
γ
+ C

∫ t

0
(t− σ)

−N
2
(α+1

r
− 1

p
)∥u(σ)∥α+1

Lr
ν
dσ

≤ Ct
−N

2
( 1
q
− 1

p
)∥φ∥Lq

γ
+ Ct

1−N
2
(α+1

r
− 1

p
)−β(ν)(α+1)

sup
s∈(0,T ]

(
sβ(ν)(α+1)∥u(s)∥α+1

Lr
ν

)
×∫ 1

0
(1− σ)

−N
2
(α+1

r
− 1

p
)
σ−β(ν)(α+1)dσ

≤ Ct
−N

2
( 1
q
− 1

p
)∥φ∥Lq

γ
+Mα+1Ct

1−N
2
(α+1

q
− 1

p
)− γα

2

∫ 1

0
(1− σ)

−N
2
(α+1

r
− 1

p
)
σ−β(ν)(α+1)dσ.

Since r > q > qc(γ), it follows that if

α+ 1

r
− 2

N
<

1

p
<

1

r
,

then u(t) is in Lpγ for all t ∈
(
0, Tmax(φ,L

q
γ)
)
. The result for general p > q follows by iteration.

Hence u(t) is in L∞
γ , for t ∈

(
0, Tmax(φ,L

q
γ)
)
. Then u(t) ∈ Lr+Ls for r ≥ 1, Nα

2 < r < N
γ < s <∞.

Hence by [11, Theorem 2.8] u(t) ∈ Lp for s ≤ p ≤ ∞. Then it follows that u(t) ∈ C0(RN ), for
t ∈

(
0, Tmax(φ,L

q
γ)
)
.
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(ii) By (i) we have Tmax(φ,L
q
γ) ≤ Tmax(φ,C0(RN )). Using (2.1), we have

∥u(t)∥Lq
γ

≤ ∥et∆φ∥Lq
γ
+ C

∫ t

0
∥|u(σ)|αu(σ)∥Lq

γ
dσ

≤ C∥φ∥Lq
γ
+ C

∫ t

0
∥u(σ)∥α∞∥u(σ)∥Lq

γ
dσ

By Gronwall’s inequality, we get

∥u(t)∥Lq
γ
≤ C∥φ∥Lq

γ
eC

∫ t
0 ∥u(σ)∥α∞dσ.

Hence u can not blow up in Lqγ before it blows up in C0(RN ). That is Tmax(φ,C0(RN )) ≤
Tmax(φ,L

q
γ).

(iii) Let ε ∈ (0,min(Tmax(φ,L
q
γ), Tmax(φ,L

p
γ))). By (i) we have u(ε) ∈ C0(RN ). Using (ii) we

have

Tmax(u(ε), L
q
γ) = Tmax(u(ε), C0(RN )) = Tmax(u(ε), L

p
γ).

That is Tmax(φ,L
q
γ)− ε = Tmax(φ,L

p
γ)− ε, hence we get the result.

(iv) Follows similarly as (iii). This completes the proof of Proposition 4.2. □

Proof of Corollary 1.4. Since Tmax(φ,L
q), the maximal existence time in Lq, is equal to Tmax(φ,L

q∩
Lqγ) the maximal existence time in Lq ∩ Lqγ , we deduce that

1) If Nα < 2 we discuss the two cases

(i) γ < N hence γ < 2/α and we have

1

q
+
γ

N
< 1,

Nα

2q
+
γα

2
=
Nα

2

(
1

q
+
γ

N

)
<
Nα

2
< 1,

hence, we apply Theorem 1.3 to get

Tmax(λφ) ≥ Cλ
−
(

1
α
−N

2q
− γ

2

)−1

.

(ii) γ > N then φ ∈ L1. In fact, we write φ = φ1{|x|≤1} + φ1{|x|>1}. On one hand, since

φ ∈ Lq, q > 1, hence φ1{|x|≤1} ∈ L1. On the other hand, by the Hölder inequality,

∥φ1{|x|>1}∥1 = ∥φ|x|γ |x|−γ1{|x|>1}∥1

≤ ∥φ|x|γ∥q∥∥|x|−γ1{|x|>1}∥q′

= ∥φ∥Lq
γ
∥|x|−γ1{|x|>1}∥q′ <∞,

since γq′ ≥ γ > N and since φ ∈ Lqγ , that is φ1{|x|>1} ∈ L1. Hence both results

give that φ ∈ L1. We may then apply Theorem 1.1 in L1, using 1 > Nα
2 to get

Tmax(λφ) ≥ Cλ−(
1
α
−N

2 )
−1

.

2) If Nα > 2 then we assume γ < 2/α and we have only one case, γ < N. Hence since q > qc(γ)

we apply Theorem 1.3 to get Tmax(λφ) ≥ Cλ
−
(

1
α
−N

2q
− γ

2

)−1

.

In the all cases we have Tmax(λφ) ≥ Cλ
−
(

1
α
− 1

2
min(N

q
+γ,N)

)−1

. This completes the proof of Corollary

1.4. □
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Proof of Corollary 1.5. Since φ ∈ Lp ∩ Lqγ , then the existence time of the maximal solution is the

same to that in Lp and to that in Lqγ . By the Hölder inequality φ ∈ Lrτ for 1
r = θ

p + 1−θ
q , τ =

(1−θ)γ, θ ∈ [0, 1]. The existence time of the maximal solution is also the same in Lrτ . The function

x ∈ (0, 2/(Nα)) → λ−(
1
α
−N

2
x)

−1

is increasing for λ ∈ (0, 1) and decreasing for λ ∈ (1,∞). Letting

x = xθ =
1
r+

τ
N = θ

(
1
p −

1
q − γ

)
+ 1
q+

γ
N , we have that maxθ∈[0,1] xθ = max(1q+

γ
N ,

1
p) = max(x0, x1)

and minθ∈[0,1] xθ = min(1q +
γ
N ,

1
p) = min(x0, x1).

Using Theorem 1.3 if θ = 0 or Theorem 1.1 if θ = 1, we have that

Tmax(λφ) ≥ C
(
λ∥φ∥Lr

τ

)−( 1
α
−N

2 [
1
r
+ τ

N ])
−1

≥ C
(
λ∥φ∥Lp∩Lq

γ

)−( 1
α
−N

2 [
1
r
+ τ

N ])
−1

.

The result follows then by taking in the last inequality maxθ∈[0,1] xθ, for λ ∈ (0, 1) and minθ∈[0,1] xθ

for λ ∈ (1,∞). This completes the proof of the Corollary. □

Example 4.3. Let 0 < γ < N and γ < 2/α. Let φ̃ be given by (1.16). Then φ̃ ∈ Lp ∩ L∞
γ with

Nα
2 < p < N

γ . By Corollary 1.5 we have

Tmax(λφ) ≥ C

λ
−
(

1
α
−N

2p

)−1

, if 0 < λ ≤ 1,

λ−(
1
α
− γ

2 )
−1

, if λ > 1.

5. Upper bounds for nonnegative solutions

In this section we exploit a well-known necessary condition for the existence of a nonnegative

solution to (2.1). More precisely, if u is a nonnegative solution of the integral equation (2.1) on

(0, T )× Ω then

αt(et∆u0)
α ≤ 1, (5.1)

for all t ∈ (0, T ], where u0 ≥ 0 can be either a locally integrable function or a positive Borel measure

on Ω. See [56, Theorem 1].

We let Tmax(u0) denote the maximal existence time of a nonnegative solution of (2.1), and so

0 ≤ Tmax(u0) ≤ ∞. Indeed, there are three possibilities, all of which can be realized: there is no

local nonnegative solution with initial value u0, there is at least one local solution on some interval

(0, T ), but no global solution, i.e. on (0,∞), or there is indeed a global solution. In the case

u0 = λφ, then (5.1) becomes

αλαt(et∆φ)α ≤ 1, (5.2)

for all t ∈ (0, T ]. If φ ≥ 0, φ ̸≡ 0, this implies that Tmax(λφ) < ∞ for all sufficiently large λ > 0

and that

lim
λ→∞

Tmax(λφ) = 0. (5.3)

Indeed, given any t > 0, (5.2) can not be true for sufficiently large λ > 0, and so t ≥ Tmax(λφ) for

sufficiently large λ > 0. This shows the first statements of Theorems 1.6, 1.7 and 1.10.

It is important to realize that Tmax(u0) as just defined, i.e. the maximal existence time of

a nonnegative solution, is not necessarily the same as the maximal existence time of a regular

nonnegative solution. Indeed, in some cases, a nonnegative solution can be continued after blowup.
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See [1] for example. However, any upper bound on Tmax(u0) is also an upper bound on the maximal

existence time of a regular nonnegative solution.

Proposition 5.1. Let u0 ≥ 0 be either a locally integrable function or a positive Borel measure

on Ω, and let Tmax(u0) denote the maximal existence time of a nonnegative solution of (2.1). If

0 < Tmax(u0) <∞, then

αTmax(u0)(e
Tmax(u0)∆u0)

α ≤ 1. (5.4)

In particular, if u0 = λφ, then

αλαTmax(λφ)∥eTmax(λφ)∆φ∥α∞ ≤ 1. (5.5)

Proof. Inequality (5.1) is true for all 0 < t < Tmax(u0). Hence it is true for t = Tmax(u0). □

We now give the proofs of the upper bounds.

Proof of Theorem 1.6. Since Tmax(λφ) → 0 as λ → ∞, it suffices by (5.5) to observe that if φ ∈
L∞(Ω), then ∥et∆φ∥∞ → ∥φ∥∞ as t → 0. Indeed, ∥et∆φ∥∞ ≤ ∥φ∥∞ so lim supt→0 ∥et∆φ∥∞ ≤
∥φ∥∞. On the other hand, et∆φ→ φ weak* as t→ 0, so ∥φ∥∞ ≤ lim inft→0 ∥et∆φ∥∞. □

Proof of Theorem 1.7. In order to estimate Tmax(λφ) from above, it suffices to estimate Tmax(λφ̃)

from above, where φ̃ is defined in (1.16). Indeed, since 0 ≤ φ̃(x) ≤ φ(x) it follows that Tmax(λφ) ≤
Tmax(λφ̃).

To find an upper estimate on Tmax(λφ̃) as λ → ∞, it suffices by Proposition 5.1 to determine

the behavior of ∥et∆φ̃∥∞ as t→ 0. Let Dτ be the dilation operator Dτf(x) = f(τx). We have

∥et∆φ̃∥∞ = ∥D√
te
t∆φ̃∥∞ = ∥e∆D√

tφ̃∥∞ = t−
γ
2 ∥e∆[t

γ
2D√

tφ̃]∥∞. (5.6)

Since t
γ
2D√

tφ̃→ ω| · |−γ in D′(RN ) as t→ 0, it follows by [7, Proposition 3.8 (i), page 1123] that

t
γ
2 ∥et∆φ̃∥∞ → ∥e∆(ω| · |−γ)∥∞,

as t→ 0. Since by (5.3), Tmax(λφ) → 0 as λ→ ∞, this along with (5.5) implies

lim sup
λ→∞

λαTmax(λφ)
1−αγ

2 ≤ 1

α∥e∆(ω| · |−γ)∥α∞
,

which is the desired result. □

Proof of Theorem 1.8. Applying (5.5) we see that

αλαTmax(λm)∥eTmax(λm)∆m∥α∞ ≤ 1.

Furthermore,

∥et∆m∥∞ = ∥D√
te
t∆m∥∞ = ∥e∆D√

tm∥∞ = t−
N
2 ∥e∆[t

N
2 D√

tm]∥∞

so that

αλαTmax(λm)1−
Nα
2 ∥e∆[Tmax(λm)

N
2 D√

Tmax(λm)
m]∥α∞ ≤ 1. (5.7)
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The result follows since Tmax(λm) → ∞ as λ→ 0 (by continuous dependence or Theorem 1.2) and

t
N
2 D√

tm → ∥m∥Mδ as t→ ∞. In fact, µt = tN/2D√
tm is the measure defined by∫

RN

f(x)dµt(x)dx =

∫
RN

D1/
√
tf(x)dm(x), f ∈ C0(RN ).

We have D1/
√
tf → f(0) as t → ∞ m a.e. Since m is finite, then by the dominated convergence

theorem
∫
RN f(x)dµt(x)dx → ∥m∥Mδ as t → ∞ for every f in C0(RN ). Then t

N
2 D√

tm → ∥m∥Mδ

as t → ∞ in the dual space (C0(RN ))′. We know that e∆ : L1(RN ) → C0(RN ) is a continuous

operator then, by duality, e∆ : (C0(RN ))′ → (L1(RN ))′ = L∞(RN ), is a continuous operator.

Hence ∥e∆[Tmax(λm)
N
2 D√

Tmax(λm)
m]∥∞ converges to ∥m∥M∥e∆δ∥∞ = ∥m∥M(4π)−N/2 as λ → 0.

This along with (5.7) implies

lim sup
λ→∞

λαTmax(λm)1−
Nα
2 ≤ 1(

α1/α(4π)−N/2∥m∥M
)α .

This gives the desired result. □

Proof of Theorem 1.9. If φ is too singular, it may happen that Tmax(λφ) = 0, i.e. there is no local

nonnegative solution with initial value λφ. This is not a problem, since we will be obtaining upper

bounds.

Since φ ≥ ˜̃φ, where ˜̃φ is defined in (1.20), it suffices to estimate Tmax(λ ˜̃φ). The calculation in

(5.6) gives

∥et∆ ˜̃φ∥∞ = t−
γ
2 ∥e∆[t

γ
2D√

t
˜̃φ]∥∞.

Moreover, t
γ
2D√

t
˜̃φ→ ω| · |−γ as t→ ∞ in D′(RN ). It follows, by [7, Proposition 3.8 (i), page 1123]

that

t
γ
2 ∥et∆ ˜̃φ∥∞ = ∥e∆[t

γ
2D√

t
˜̃φ]∥∞ → ∥e∆[ω| · |−γ ]∥∞,

as t→ ∞. If 0 < t < Tmax(λ ˜̃φ), then by (5.2) we must have

αλαt1−
αγ
2 [t

γ
2 ∥et∆ ˜̃φ∥∞]α ≤ 1. (5.8)

It follows that if γ < 2
α , then Tmax(λ ˜̃φ) < ∞ for all λ > 0. This is of course a consequence of

Fujita’s result (including the limiting case) if α ≤ 2
N . (See for example [55].) If α > 2

N , i.e. qc > 1,

this is a consequence of the more general result [50, Theorem 1.7] in the case m = 0. (See also [27,

Theorem 3.2(i)] and [44, Theorem 2].) In these cases, putting t = Tmax(λ ˜̃φ) in (5.8) and letting

λ→ 0, we obtain

lim sup
λ→0

λ(
1
α
− γ

2
)−1
Tmax(λ ˜̃φ) ≤

1

(α1/α∥e∆(ω| · |−γ)∥∞)(
1
α
− γ

2
)−1

.

□

Proof of Theorem 1.10. The proof follows similarly as that of Theorem 1.7, replacing RN by Ωm,

|x|−γ by ψ0 hence γ by γ +m, and using [35, Proposition 4.1 (ii), p. 359], for the convergence. □

Proof of Theorem 1.11. The proof follows similarly as that of Theorem 1.9 by replacing RN by Ωm,

|x|−γ by ψ0, hence γ by γ +m, using [50, Theorem 1.7] for the blow up of the solution and [35,

Proposition 4.1 (ii), p. 359], for the convergence. □
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6. Life-span estimates via nonlinear scaling

In this section we show how certain scaling arguments can give upper (and lower) life-span bounds

for solutions of (2.1) on RN . Similar arguments can be used on sectors of RN . The previous section
likewise used scaling arguments, but only in regard to properties of et∆φ. In this section, we

use nonlinear scaling arguments, which can then be adapted to other equations which are scale

invariant. Some of the results in this section are the same as in the previous section, but obtained

by a different method.

We begin with some observations in a general context. We consider an evolution partial differen-

tial equation defined either on RN or on some domain Ω which is a cone, i.e. if x ∈ Ω then µx ∈ Ω

for all µ > 0. We also suppose that the set of solutions of the evolution equation is invariant under

the transformation

uµ(t, x) = µσu(µ2t, µx). (6.1)

In other words, u is a solution if and only if uµ is a solution for all µ > 0. If u has initial value

u(0, ·) = u0, then uµ has initial value uµ(0, ·) = µσu0(µ·) = µσDµu0 ≡ uµ,0. It is clear that

Tmax(uµ,0) = Tmax(µ
σDµu0) =

1

µ2
Tmax(u0)

If u0 = λφ, it follows that uµ,0 = λµσDµφ, so that

µ−2Tmax(λφ) = Tmax(λµ
σDµφ).

Now let us suppose that φ has certain properties with respect to a scaling different from that of

the equation, for example µγDµφ where γ ̸= σ. If so, we may set

λ = µγ−σ, (6.2)

hence µ = λ
1

γ−σ , µ−2 = λ
2

σ−γ , so that

λ
2

σ−γ Tmax(λφ) = Tmax(µ
γDµφ). (6.3)

In the simplest case, µγDµφ ≡ φ, i.e. φ is homogeneous of degree −γ, we have therefore the

following formal proposition.

Proposition 6.1. Let Ω ⊂ RN be a domain which is also a cone. Suppose that the solutions of an

evolution equation (the set of trajectories of a dynamical system over Ω) are invariant under the

transformation (6.1). If φ ∈ L1
loc(Ω) or φ ∈ M(Ω) is homogeneous of degree −γ, where γ ̸= σ,

then

λ
2

σ−γ Tmax(λφ) = Tmax(φ)

for all λ > 0.

In the case of the nonlinear heat equation, σ = 2
α and so (6.2) and (6.3) become

λ = µγ−
2
α , λ(

1
α
− γ

2
)−1
Tmax(λφ) = Tmax(µ

γDµφ). (6.4)

We immediately deduce the following.

Corollary 6.2. Let Tmax(u0) denote the maximal solution to (2.1) on RN with initial value u0.
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(i) If α < 2
N , then

λ(
1
α
−N

2
)−1
Tmax(λδ) = Tmax(δ)

for all λ > 0.

(ii) If 0 < γ < N and γ < 2
α , and if ψ(x) = ω(x)|x|−γ where ω ∈ L∞(RN ) is homogeneous of

degree 0, then

λ(
1
α
− γ

2
)−1
Tmax(λψ) = Tmax(ψ)

for all λ > 0.

There are two other possibilities which allow us to obtain life-span estimates. On the one hand,

it could be that µγDµφ has a limit as µ → 0 or as µ → ∞, possibly along a subsequence. If one

can control Tmax(µ
γDµφ) as this limit is attained, one obtains a corresponding life-span estimate

from (6.3). This procedure was introduced in the paper [11]. For results of this type, we refer the

reader to [11, Theorems 1.3, 1.4, 1.5] and [50, Theorems 1.9, 1.10, 1.12, Corollary 1.13, Propositions

4.5, 4.6]. As these latter results show, one can have different life-span behaviors along different

subsequences, either as λ → 0 or as λ → ∞. We recall that all of these results depend on delicate

continuity properties of the blowup time.

The other approach uses comparison. As a first, and simple, example, we have the following

immediate consequence of Corollary 6.2.

Corollary 6.3. If 0 < γ < N and γ < 2
α , and if φ ∈ L1

loc(RN ), |φ(x)| ≤ ω(x)|x|−γ where

ω ∈ L∞(RN ), ω ≥ 0 is homogeneous of degree 0, then

λ(
1
α
− γ

2
)−1
Tmax(λφ) ≥ Tmax(ω| · |−γ)

for all λ > 0.

This is essentially the same as Corollary 2.3. Theorem 1.3 gives also the result but here the

constant at the right-hand side is explicit.

Proof. The absolute value of the solution with initial value λφ is bounded above by the solution

with initial value λω| · |−γ . We then apply the second assertion of Corollary 6.2. □

We have the following for the function φ̃ given by (1.16).

Corollary 6.4. Let N ≥ 1, α > 0, 0 < γ < N, γ < 2
α , ω ∈ L∞(RN ) is homogeneous of degree 0,

ω ≥ 0, ω ̸≡ 0 and φ̃ be given by (1.16). Then the following hold.

(i) There exists T1 ∈ [Tmax(ω| · |−γ), Tmax(φ̃)) such that

lim
λ→∞

λ(
1
α
− γ

2
)−1
Tmax(λφ̃) = T1.

(ii) limλ→0 λ
( 1
α
− γ

2 )
−1

Tmax(λφ̃) = ∞.

Proof. (i) The function µ→ µγDµφ̃ is decreasing on (0,∞), and

lim
µ→0

µγDµφ̃ = ω| · |−γ , lim
µ→∞

µγDµφ̃ = 0,
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where the first limit is realized in Lq1(RN ) + Lq2(RN ) and the second in Lq1(RN ) whenever 0 ≤
N
q2
< γ < N

q1
≤ N . Consequently

φ̃ ≤ µγDµφ̃ ≤ ω| · |−γ , ∀µ ≤ 1.

Applying (6.4), and since γ < 2/α, we conclude that λ → λ(
1
α
− γ

2
)−1
Tmax(λφ̃) is decreasing on

(0,∞) and

Tmax(ω| · |−γ) ≤ λ(
1
α
− γ

2
)−1
Tmax(λφ̃) ≤ Tmax(φ̃), ∀λ ≥ 1.

The existence of the limit T1 follows by monotonicity.

(ii) We have that φ̃ ∈ Lq for q ≥ 1, Nα2 < q < N
γ . Hence, by Theorem 1.1

Tmax(λφ̃) ≥ Cλ
−
(

1
α
−N

2q

)−1

.

Then

λ(
1
α
− γ

2 )
−1

Tmax(λφ̃) ≥ Cλ
( 1
α
− γ

2 )
−1−

(
1
α
−N

2q

)−1

,

that is

lim
λ→0

λ(
1
α
− γ

2 )
−1

Tmax(λφ̃) = ∞.

For the second assertion, we may also use the continuous dependence in Lq(RN ), where γ < N
q <

2
α . In fact, since limµ→∞ µγDµφ̃ = 0, we know that Tmax(µ

γDµφ̃) → ∞ as µ→ ∞; so that by (6.4)

we have

λ(
1
α
− γ

2
)−1
Tmax(λφ̃) → ∞, asλ→ 0.

□

Remark 13.

1) It is natural to conjection that λ(
1
α
− γ

2
)−1
Tmax(λφ̃) → Tmax(ω| · |−γ), asλ → ∞. This holds

in particular for (N − 2)α < 4, by continuous dependence of the maximal time of existence.

2) We remark that the upper bound on λ(
1
α
− γ

2
)−1
Tmax(λφ̃) for large λ > 0 is of the same order

as given in Theorem 1.7. As for small λ > 0, if α < 2
N , then Theorem 1.2 gives the stronger

estimate λ(
1
α
−N

2
)−1
Tmax(λφ̃) ≥ c > 0 for all λ > 0, and is of the same order as given in

Theorem 1.8 and Remark 6. However, Part (ii) improves the estimate of Corollary 2.3 in

the case α = 2
N , where Tmax(λφ̃) < ∞ for all λ > 0. If α > 2

N , then Tmax(λφ̃) = ∞ for

sufficiently small λ > 0, since φ̃ ∈ Lqc(RN ), see [55].

For the function ˜̃φ, we have the following.

Corollary 6.5. Let N ≥ 1, α > 0, 0 < γ < N, γ < 2
α , ω ∈ L∞(RN ) is homogeneous of degree 0,

ω ≥ 0, ω ̸≡ 0 and ˜̃φ be given by (1.20). Then the following hold.

(i) There exists T2 ∈ [Tmax(ω| · |−γ), Tmax( ˜̃φ)) such that

lim
λ→0

λ(
1
α
− γ

2
)−1
Tmax(λ ˜̃φ) = T2.

(ii) limλ→∞ λ(
1
α
− γ

2 )
−1

Tmax(λ ˜̃φ) = ∞.
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Proof. (i) The function µ→ µγDµ
˜̃φ is increasing on (0,∞), and

lim
µ→0

µγDµ
˜̃φ = 0, lim

µ→∞
µγDµ

˜̃φ = ω| · |−γ ,

where the first limit is realized in Lq2(RN ) and the second in Lq1(RN ) + Lq2(RN ) whenever 0 ≤
N
q2
< γ < N

q1
≤ N . Consequently

˜̃φ ≤ µγDµ
˜̃φ ≤ ω| · |−γ , ∀µ ≥ 1.

Applying (6.4) we conclude that λ→ λ(
1
α
− γ

2
)−1
Tmax(λ ˜̃φ) is increasing on (0,∞) and

Tmax(ω| · |−γ) ≤ λ(
1
α
− γ

2
)−1
Tmax(λ ˜̃φ) ≤ Tmax( ˜̃φ), ∀λ ≤ 1.

(ii) By continuous dependence in L∞(RN ), we know that Tmax(µ
γDµ

˜̃φ) → ∞ as µ→ 0; so that

by (6.4) we have

λ(
1
α
− γ

2
)−1
Tmax(λ ˜̃φ) → ∞, asλ→ ∞.

For the second assertion, we may also use the following argument. We have that ˜̃φ ∈ L∞
γ ∩ L∞.

That is, by Corollary 1.4

Tmax(λ ˜̃φ) ≥ Cλ−(
1
α
− γ

2 )
−1

and by Theorem 1.1

Tmax(λ ˜̃φ) ≥ Cλ−(
1
α)

−1

.

Then

λ(
1
α
− γ

2 )
−1

Tmax(λ ˜̃φ) ≥ max
(
C,Cλ(

1
α
− γ

2 )
−1−( 1

α)
−1)

.

Hence

lim
λ→∞

λ(
1
α
− γ

2 )
−1

Tmax(λ ˜̃φ) = ∞.

□

Remark 14.

1) It is natural to conjection that λ(
1
α
− γ

2
)−1
Tmax(λ ˜̃φ) → Tmax(ω| · |−γ), asλ→ 0.

2) We remark that ˜̃φ ∈ L∞(RN ), and Theorem 1.1 and Theorem 1.6 give the precise order of

magnitude of Tmax(λ ˜̃φ) as λ→ ∞.

Next, we consider the function Φ given by (1.26). We have the following.

Corollary 6.6. Let N ≥ 1, α > 0, 0 < γ1, γ2 < N and γ1, γ2 <
2
α (γ1 ̸= γ2). Let ω ∈ L∞(RN ) is

homogeneous of degree 0, ω ≥ 0, ω ̸≡ 0 and let Φ be defined by (1.26). Then we have the following.

(i) There exists T3 ∈ (Tmax(Φ), Tmax(ω| · |−γ1)] such that

lim
λ→∞

λ(
1
α
− γ1

2
)−1
Tmax(λΦ) = T3

and if α < 4
N−2 , or γ1 > γ2 then

T3 = Tmax(ω| · |−γ1).
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(ii) There exists T̃3 ∈ (Tmax(Φ), Tmax(ω| · |−γ2)] such that

lim
λ→0

λ(
1
α
− γ2

2
)−1
Tmax(λΦ) = T̃3

and if α < 4
N−2 , or γ1 > γ2 then

T̃3 = Tmax(ω| · |−γ2).

(iii) If γ1 < γ2, then limλ→0 λ
( 1
α
− γ1

2
)−1
Tmax(λΦ) = limλ→∞ λ(

1
α
− γ2

2
)−1
Tmax(λΦ) = ∞.

Remark 15. Corollary 6.6 shows that the asymptotic behavior of the life-span as λ → ∞ is

determined by the singularity of the initial data and when λ → 0 it is determined by the decay

rate at infinity of the initial value.

Proof of Corollary 6.6.

1) Analysis of Tmax(λΦ) in the case γ1 < γ2. In this case Φ = ωmin[| · |−γ1 , | · |−γ2 ], so
Φ ≤ ω| · |−γ1 and Φ ≤ ω| · |−γ2 . Hence

µγ1DµΦ ≤ ω| · |−γ1 (6.5)

and

µγ2DµΦ ≤ ω| · |−γ2 (6.6)

for all µ > 0.

We claim that

• The function µ→ µγ1DµΦ is decreasing on (0,∞), and

lim
µ→0

µγ1DµΦ = ω| · |−γ1 , lim
µ→∞

µγ1DµΦ = 0,

where the limits are in Lq1(RN ) + Lq2(RN ) whenever 0 ≤ N
q2
< γ1 <

N
q1

≤ N , by (6.5).

• The function µ→ µγ2DµΦ is increasing on (0,∞), and

lim
µ→0

µγ2DµΦ = 0, lim
µ→∞

µγ2DµΦ = ω| · |−γ2 ,

where the limits are in Lq1(RN ) + Lq2(RN ) whenever 0 ≤ N
q2
< γ2 <

N
q1

≤ N , by (6.6).

Proof of the claim. Let 0 < µ < ν <∞. In particular, µγ1−γ2 > νγ1−γ2 . We have

µγ1Φ(µx) =


ω(x)|x|−γ1 , |x| ≤ 1

ν

ω(x)|x|−γ1 , 1
ν ≤ |x| ≤ 1

µ

µγ1−γ2ω(x)|x|−γ2 , |x| ≥ 1
µ .

=


ω(x)|x|−γ1 , |x| ≤ 1

ν

( 1
|x|)

γ1−γ2ω(x)|x|−γ2 , 1
ν ≤ |x| ≤ 1

µ

µγ1−γ2ω(x)|x|−γ2 , |x| ≥ 1
µ .

≥


ω(x)|x|−γ1 , |x| ≤ 1

ν

νγ1−γ2ω(x)|x|−γ2 , 1
ν ≤ |x| ≤ 1

µ

νγ1−γ2ω(x)|x|−γ2 , |x| ≥ 1
µ .

= νγ1Φ(νx).
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Also,

µγ2Φ(µx) =


µγ2−γ1ω(x)|x|−γ1 , |x| ≤ 1

ν

µγ2−γ1ω(x)|x|−γ1 , 1
ν ≤ |x| ≤ 1

µ

ω(x)|x|−γ2 , |x| ≥ 1
µ .

=


µγ2−γ1ω(x)|x|−γ1 , |x| ≤ 1

ν

µγ2−γ1 |x|γ2−γ1ω(x)|x|−γ2 , 1
ν ≤ |x| ≤ 1

µ

ω(x)|x|−γ2 , |x| ≥ 1
µ .

≤


νγ2−γ1ω(x)|x|−γ1 , |x| ≤ 1

ν

ω(x)|x|−γ2 , 1
ν ≤ |x| ≤ 1

µ

ω(x)|x|−γ2 , |x| ≥ 1
µ .

= νγ1Φ(νx).

It follows that

• The function µ→ Tmax(µ
γ1DµΦ) is increasing on (0,∞), and

Tmax(Φ) ≥ lim
µ→0

Tmax(µ
γ1DµΦ) ≥ Tmax(ω| · |−γ1),

and if α < 4
N−2 , then

lim
µ→0

Tmax(µ
γ1DµΦ) = Tmax(ω| · |−γ1).

Also

lim
µ→∞

Tmax(µ
γ1DµΦ) = ∞.

• The function µ→ Tmax(µ
γ2DµΦ) is decreasing on (0,∞), and

Tmax(Φ) ≥ lim
µ→∞

Tmax(µ
γ2DµΦ) ≥ Tmax(ω| · |−γ2),

and if α < 4
N−2 , then

lim
µ→∞

Tmax(µ
γ2DµΦ) = Tmax(ω| · |−γ2).

Also

lim
µ→0

Tmax(µ
γ2DµΦ) = ∞.

Next, applying (6.4), we have

λ(
1
α
− γ1

2
)−1
Tmax(λΦ) = Tmax(µ

γ1DµΦ), λ = µγ1−
2
α , (6.7)

λ(
1
α
− γ2

2
)−1
Tmax(λΦ) = Tmax(µ

γ2DµΦ), λ = µγ2−
2
α . (6.8)

This completes the proof of (i)-(ii) if γ1 < γ2 and (iii).

2) Analysis of Tmax(λΦ) in the case γ1 > γ2.

In this case Φ = ωmax[| · |−γ1 , | · |−γ2 ], so Φ ≥ ω| · |−γ1 , Φ ≥ ω| · |−γ2 and Φ ≤ ω(| · |−γ1 + | · |−γ2).
Hence

ω| · |−γ1 ≤ µγ1DµΦ ≤ ω(| · |−γ1 + µγ1−γ2 | · |−γ2) (6.9)

and

ω| · |−γ2 ≤ µγ2DµΦ ≤ ω(µγ2−γ1 | · |−γ1 + | · |−γ2) (6.10)

for all µ > 0.

We claim that
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• The function µ→ µγ1DµΦ is increasing on (0,∞), and

lim
µ→0

µγ1DµΦ = ω| · |−γ1 , lim
µ→∞

µγ1DµΦ = ∞,

where the limits are in Lq1(RN ) +Lq2(RN ) whenever 0 ≤ N
q2
< γ2 < γ1 <

N
q1

≤ N , by (6.9).

• The function µ→ µγ2DµΦ is decreasing on (0,∞), and

lim
µ→0

µγ2DµΦ = ∞, lim
µ→∞

µγ2DµΦ = ω| · |−γ2 ,

where the limits are in Lq1(RN )+Lq2(RN ) whenever 0 ≤ N
q2
< γ2 < γ1 <

N
q1

≤ N , by (6.10).

Proof of the claim. Let 0 < µ < ν <∞, so that µγ2−γ1 > νγ2−γ1 . We have

µγ1Φ(µx) =


ω(x)|x|−γ1 , |x| ≤ 1

ν

ω(x)|x|−γ1 , 1
ν ≤ |x| ≤ 1

µ

µγ1−γ2ω(x)|x|−γ2 , |x| ≥ 1
µ .

=


ω(x)|x|−γ1 , |x| ≤ 1

ν

( 1
|x|)

γ1−γ2ω(x)|x|−γ2 , 1
ν ≤ |x| ≤ 1

µ

µγ1−γ2ω(x)|x|−γ2 , |x| ≥ 1
µ .

≤


ω(x)|x|−γ1 , |x| ≤ 1

ν

νγ1−γ2ω(x)|x|−γ2 , 1
ν ≤ |x| ≤ 1

µ

νγ1−γ2ω(x)|x|−γ2 , |x| ≥ 1
µ .

= νγ1Φ(νx).

Also,

µγ2Φ(µx) =


µγ2−γ1ω(x)|x|−γ1 , |x| ≤ 1

ν

µγ2−γ1ω(x)|x|−γ1 , 1
ν ≤ |x| ≤ 1

µ

ω(x)|x|−γ2 , |x| ≥ 1
µ .

=


µγ2−γ1ω(x)|x|−γ1 , |x| ≤ 1

ν

µγ2−γ1 |x|γ2−γ1ω(x)|x|−γ2 , 1
ν ≤ |x| ≤ 1

µ

ω(x)|x|−γ2 , |x| ≥ 1
µ .

≥


νγ2−γ1ω(x)|x|−γ1 , |x| ≤ 1

ν

ω(x)|x|−γ2 , 1
ν ≤ |x| ≤ 1

µ

ω(x)|x|−γ2 , |x| ≥ 1
µ .

= νγ1Φ(νx).

It follows that

• The function µ→ Tmax(µ
γ1DµΦ) is decreasing on (0,∞), and

lim
µ→0

Tmax(µ
γ1DµΦ) = Tmax(ω| · |−γ1).

• The function µ→ Tmax(µ
γ2DµΦ) is increasing on (0,∞), and

lim
µ→∞

Tmax(µ
γ2DµΦ) = Tmax(ω| · |−γ2).

Next, applying (6.4), we have

λ(
1
α
− γ1

2
)−1
Tmax(λΦ) = Tmax(µ

γ1DµΦ), λ = µγ1−
2
α ,

λ(
1
α
− γ2

2
)−1
Tmax(λΦ) = Tmax(µ

γ2DµΦ), λ = µγ2−
2
α .

To show that we reach the above exact limits we use the following.
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Observation. If ϕk → ϕ and assume we are in a situation of continuous dependence, then we know

lim infk→∞ Tmax(ϕk) ≥ Tmax(ϕ). Suppose also that ϕ ≤ ϕk for all k, hence Tmax(ϕk) ≤ Tmax(ϕ) for

all k, so lim supk→∞ Tmax(ϕk) ≤ Tmax(ϕ). Hence limk→∞ Tmax(ϕk) = Tmax(ϕ).

This allows us to obtain the above exact limits for the case γ1 > γ2. This completes the proof of

(i)-(ii) if γ1 > γ2.

We may also show (iii) as follows. The function Φ verifies: if γ1 < γ2 then Φ ∈ Lq,

γ1
N

<
1

q
<
γ2
N

< min(1,
2

Nα
).

Hence, by Theorem 1.1

Tmax(λΦ) ≥ Cλ
−
(

1
α
−N

2q

)−1

.

Then

lim
λ→0

λ(
1
α
− γ1

2 )
−1

Tmax(λΦ) = ∞ = lim
λ→∞

λ(
1
α
− γ2

2 )
−1

Tmax(λΦ).

This completes the proof of Corollary 6.6. □

Appendix A. Nonlinear Hardy parabolic equations

Our purpose in the appendix is to estimate the life-span of solutions for the nonlinear Hardy-

Hénon parabolic equations

∂tu = ∆u+ | · |l|u|αu, (A.1)

u = u(t, x) ∈ R, t > 0, x ∈ RN , N ≥ 1, α > 0, −min(2, N) < l and with initial value

u(0) = u0. (A.2)

A mild solution of the problem (A.1)-(A.2) is a solution of the integral equation

u(t) = et∆u0 +

∫ t

0
e(t−σ)∆

(
| · |l|u(σ)|αu(σ)

)
dσ, (A.3)

and it is in this form that we consider problem (A.1)-(A.2).

In this first part of the appendix we consider the case l < 0, that is the Hardy case. The problem

(A.3) is well-posed in C([0, T ];Lq(RN )) ∩ C((0, T ];Lr(RN )), T > 0, for u0 ∈ Lq(RN ), 1 < q < ∞,

q > qc(l) or u0 ∈ C0(RN ), where

qc(l) =
Nα

2 + l
, (A.4)

and r > q satisfies
1

q(α+ 1)
+

l

N(α+ 1)
<

1

r
<

N + l

N(α+ 1)
. (A.5)

See [2, Theorem 1.1, p. 117] and [3]. This solution can be extended to a maximal solution defined

on [0, Tmax(u0)). We have obtained the following.

Theorem A.1 (The nonlinear Hardy parabolic equations). Let N ≥ 1, −min(2, N) < l < 0,

α > 0, and qc(l) be given by (A.4). Let φ ∈ Lq(RN ) with 1 < q < ∞, q > qc(l) or φ ∈ C0(RN )
and r > q satisfies (A.5). Let u ∈ C

(
[0, Tmax(λφ));L

q(RN )
)
∩ C((0, Tmax(λφ));L

r(RN )) be the
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maximal solution of (A.3) with initial data u0 = λφ, λ > 0. Then there exists a constant C =

C(N, l, α, q) > 0 such that

Tmax(λφ)≥C (λ∥φ∥q)
−
(

2+l
2α

−N
2q

)−1

, (A.6)

for all λ > 0.

Proof of Theorem A.1. For q > qc(l), let r > q satisfying (A.5). Let us define

β(l) =
N

2

(
1

q
− 1

r

)
.

We note that r depends on l, hence β also. The well-posedness results for (A.1) has been obtained

in [2, 3]. We now give the proof of (A.6). Let −min(2, N) < l < 0, α > 0, λ > 0, K > 0

and φ ∈ C0(RN ), ∥φ∥∞ ≤ K or φ ∈ Lq, q > 1, q > qc(l) such that ∥φ∥q ≤ K. Let u ∈
C
(
[0, Tmax(λφ));L

q(RN )
)
∩C

(
(0, Tmax(λφ));L

r(RN )
)
with r > q satisfying (A.5), be the maximal

solution of (A.1) on [0, Tmax(λφ)). It is proved in [2, Inequalities (3.5), (3.6), p. 124] that for

K, T, M > 0 such that

K + CT
1−Nα

2q
+ l

2Mα+1 ≤M

the solution u of (A.1) is defined on [0, T ] and verifies max
[
supt∈(0,T ] t

β(l)∥u(t)∥r, sup[0,T ] ∥u(t)∥q
]
≤

M. Here C is a positive constant. Then for Tmax(φ) we should have

K + C
(
Tmax(φ)

)1−Nα
2q

+ l
2
Mα+1 > M,

for all M > K. That is it must be

λK + C
(
Tmax(λφ)

)1−Nα
2q

+ l
2
Mα+1 > M,

for all M > λK. If we set M = 2λK, we get

2α+1KαCTmax(λφ)
1−Nα

2q
+ l

2λα > 1.

Then taking K = ∥φ∥q, we get that there exists C = C(N,α, l, q) > 0 (since r itself depends on q)

such that (A.6) holds. This completes the proof of the Theorem. □

Using similar argument developed to prove Theorem A.1, we derive the same result for the

equation

∂tu = ∆u+ a(x)|u|αu, (A.7)

where a(x)| · |−l is in L∞(RN ). In particular, we may take a regular near the origin. Then we have

the following.

Corollary A.2. Let N ≥ 1, −min(2, N) < l < 0, α > 0, and qc(l) be given by (A.4). Let

φ ∈ Lq(RN ) with 1 < q ≤ ∞, q > qc(l) or φ ∈ C0(RN ) and r > q satisfies (A.5). Let u ∈
C
(
[0, Tmax(λφ));L

q(RN )
)
∩ C((0, Tmax(λφ));L

r(RN )) be the maximal mild solution of (A.7) such

that a(x)| · |−l ∈ L∞(RN ) and with initial data u0 = λφ, λ > 0, constructed by [2, Theorem 1.1, p.

117 ] and [2, p. 142] (we replace [0, Tmax(λφ)) by (0, Tmax(λφ)) if q = ∞). Then (A.6) holds for

all λ > 0.
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Corollary A.2 includes many known results. We will compare our results with those of [40]. For

this we restrict ourselves to the case where a is positive and Hölder continuous as assumed in [40].

Also, it is supposed in [40] that φ ∈ Cb(RN ), φ ≥ 0. For λ > 0 small, two classes of initial data are

considered in [40].

The first class is for φ dominated by a Gaussian. It is shown in [40, Theorem 1 (i), p. 33] that

if 0 < α < (2 + l)/N, then

Tmax(λφ) ≥ Cλ−(
1
α
−N

2 )
−1

, as λ→ 0.

For this class φ ∈ Lq(RN ) for all q ≥ 1. Since a ∈ L∞(RN ) because l < 0 and a is regular, then we

may use Theorem 1.1 (which is valid for such a as noted before) and apply (1.6) with q = 1 since

qc < 1, and then recover the result of [40].

The second class considered in [40] is for φ such that there exist constants c1, c2 > 0 and

c1 ≤ φ ≤ c2. The estimates, as stated in [40, Theorem 2 (i)-(a), (ii)-(a), (iii)-(a), pp. 33-34], reads

Tmax(λφ) ≥ Cλ−
2α
2+l , as λ→ 0.

Here φ ∈ L∞(RN ), the previous estimate is the same as (A.6) with q = ∞. We then recover the

results of [40].

Appendix B. Nonlinear Hénon parabolic equations

In this part of the appendix we study a nonlinear heat equation with a spatially growing variable

coefficient. We consider the equation (A.1) for l > 0 and with the initial condition (A.2). Local

well-posedness is known in C(RN ) ∩ L∞ ∩ L∞
l/α, (see [52, 31]). Recently local well-posedness is

established in Lqs for some q ≥ α+1 and s satisfying some conditions (see [8]). Not much is known

about this equation in comparison with the standard nonlinear heat equation, that is the case

l = 0. In particular, the life-span is only known for small lambda and rapidly decaying positive

initial data, see [40]. Note that the blowup may hold at the origin as it may also not hold at the

origin. See [22, 19, 20, 21, 12]. To show lower-bound estimates of the life-span, we establish local

well-posedness results. Using Proposition 3.1, we prove local existence for (A.1) in Lqγ for

γ =
l

α
< N

and q is such that

q > qc =
Nα

2
,

N

N − γ
< q ≤ ∞. (B.1)

This value of γ is inspired by [52].

We note that for 0 < γ = l/α < N,

qc >
N

N − γ
⇔ qF :=

Nα

2 + l
> 1,

where qF is the Fujita exponent for the equation (A.1) (see [41]). We have the following local

well-posedness result.
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Theorem B.1 (Local well-posedness in Lqγ). Let N ≥ 1 be an integer, α > 0 and l > 0 be such

that

γ :=
l

α
< N. (B.2)

Let qc be given by (B.1). Then we have the following.

(i) If q is such that

q >
N(α+ 1)

N − γ
, q > qc and q ≤ ∞,

then equation (A.3) is locally well-posed in Lqγ(RN ). More precisely, given u0 ∈ Lqγ(RN ),
then there exist T > 0 and a unique solution of (A.3) u ∈ C

(
[0, T ];Lqγ(RN )

)
if q < ∞

and u ∈ C
(
(0, T ];L∞

γ (RN )
)
, limt→0 ∥u(t)− et∆u0∥L∞

γ (RN ) = 0 if q = ∞. Moreover, u can

be extended to a maximal interval [0, Tmax) such that either Tmax = ∞ or Tmax < ∞ and

lim
t→Tmax

∥u(t)∥Lq
γ
= ∞.

(ii) Assume that q > qc with
N

N−γ < q ≤ ∞. It follows that equation (A.3) is locally well-posed

in Lqγ(RN ) as in part (i) except that uniqueness is guaranteed only among functions u ∈
C
(
[0, T ];Lqγ(RN )

)
which also verify t

N
2
( 1
q
− 1

r
)∥u(t)∥Lr

γ
, is bounded on (0, T ], where r is given

below, (we replace [0, T ] by (0, T ] if q = ∞ and u satisfies limt→0 ∥u(t)−et∆u0∥L∞
γ (RN ) = 0).

Moreover, u can be extended to a maximal interval [0, Tmax) such that either Tmax = ∞ or

Tmax <∞ and lim
t→Tmax

∥u(t)∥Lq
γ
= ∞. Furthermore,

∥u(t)∥Lq
γ
≥ C (Tmax − t)

N
2q

− 1
α , ∀ t ∈ [0, Tmax), (B.3)

where C is a positive constant.

Remark 16. Unlike in [8], here we dot not impose q ≥ α+ 1. Also, our strategy is different from

that of [8]. In fact, we use a method of [53, 2]. Precisely, to prove the local well-posedness in Lqγ ,

we use an auxiliary space Lrγ for some r as an auxiliary parameter, while in [8] the weight γ = l/α

is replaced by a real number s that is considered as an auxiliary parameter.

Proof of Theorem B.1. (i) Let us define the maps

Kt,l(u) = et∆
(
| · |l|u|αu

)
, t > 0.

By the Hölder inequality and Proposition 3.1 with γ = l
α = µ, q1 = q/(α + 1), q2 = q, for each

t > 0 and if q > N(α+1)
N−γ , q ≤ ∞, Kt,l : L

q
γ −→ Lqγ is locally Lipschitz with

∥Kt,l(u)−Kt,l(v)∥Lq
γ

≤ Ct
−N

2
(α+1

q
− 1

q
)
∥∥∥| · |l(|u|αu− |v|αv)

∥∥∥
L

q
α+1
γ

= Ct
−Nα

2q ∥| · |αγ(|u|αu− |v|αv)∥
L

q
α+1
γ

≤ Ct
−Nα

2q (∥u∥αLq
γ
+ ∥v∥αLq

γ
)∥u− v∥Lq

γ

≤ 2CMαt
−Nα

2q ∥u− v∥Lq
γ
,
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for ∥u∥Lq
γ
≤ M and ∥v∥Lq

γ
≤ M. We have also, that t

−Nα
2q ∈ L1

loc(0,∞), since q > qc = Nα
2 .

Obviously t 7→ ∥Kt,l(0)∥∞ = 0 ∈ L1
loc(0,∞), also es∆Kt,l = Kt+s,l for s, t > 0. Then the proof

follows by [53, Theorem 1, p. 279].

(ii) We begin with the observation that, since q > N
N−γ , there exists r > q satisfying

1

q(α+ 1)
<

1

r
<

N − γ

N(α+ 1)
. (B.4)

We then observe that, since q > qc, we have

1

q
− 2

N(α+ 1)
<

1

q(α+ 1)
.

Hence any r > q satisfying (B.4) verifies

1

q
− 2

N(α+ 1)
<

1

r
.

This last inequality implies that

β(α+ 1) < 1,

where

β =
N

2q
− N

2r
. (B.5)

We choose K > 0, T > 0, M > 0 such that

K + CMα+1T
1−Nα

2q ≤M, (B.6)

where C is a positive constant given below. We will show that there exists a unique solution u of

(A.3) such that u ∈ C
(
[0, T ], Lqγ(RN )

)
and u ∈ C

(
(0, T ], Lrγ(RN )

)
with

∥u∥ = max

[
sup
t∈[0,T ]

∥u(t)∥Lq
γ
, sup
t∈(0,T ]

tβ∥u(t)∥Lr
γ

]
≤M.

The proof is based on a contraction mapping argument in the set

Y q,γ
M,T = {u ∈ C

(
[0, T ], Lqγ(RN )

)
∩ C((0, T ], Lrγ) : ∥u∥ ≤M}.

Endowed with the metric d(u, v) = ∥u − v∥, Y q,γ
M,T is a nonempty complete metric space. We note

that for u0 ∈ Lqγ we have

∥et∆u0∥Lr
γ
≤ Ct

−N
2
( 1
q
− 1

r
)∥u0∥Lq

γ
= Ct−β∥u0∥Lq

γ
.

The condition on initial data ∥u0∥Lq
γ
≤ K implies that tβ∥et∆u0∥Lr

γ
≤ K. We will show that

Fu0u(t) = et∆u0 +

∫ t

0
e(t−σ)∆

[
| · |l|u(σ)|αu(σ)

]
dσ. (B.7)

is a strict contraction on Y q,γ
M,T .
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Using Proposition 3.1, that is the boundedness of the map et∆ : Lqγ → Lrγ , for the first term and

the boundedness of the map et∆ : L
r

α+1
γ → Lrγ , for the second term, we have

tβ∥Fφ(u)(t)−Fψ(v)(t)∥Lr
γ

≤ tβ∥et∆(φ− ψ)∥Lr
γ
+ tβ

∫ t

0
∥e(t−s)∆[|.|l

(
|u|αu(s)− |v|αv(s)

)
]∥Lr

γ
ds

≤ ∥φ− ψ∥Lq
γ
+ Ctβ

∫ t

0
(t− s)−

N
2
(α+1

r
− 1

r
)
∥∥|.|γα(|u|αu(s)− |v|αv(s)

)∥∥
L

r
α+1
γ

ds

≤ ∥φ− ψ∥Lq
γ
+

(
2(α+ 1)CMαtβ

∫ t

0
(t− s)−

Nα
2r s−β(α+1)ds

)
d(u, v)

≤ ∥φ− ψ∥Lq
γ
+

(
2(α+ 1)CMαt

1−Nα
2q

∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ

)
d(u, v)

≤ ∥φ− ψ∥Lq
γ
+ C1M

αT
1−Nα

2q d(u, v),

where C1 = 2(α+ 1)C

∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ <∞.

Using [8, Lemma 2.1] that is the boundedness of the map et∆ : Lqγ → Lqγ , for the first term and

Proposition 3.1, the boundedness of the map et∆ : L
r

α+1
γ → Lqγ , for the second term, we have

∥Fφ(u)(t)−Fψ(v)(t)∥Lq
γ

≤ ∥et∆(φ− ψ)∥Lq
γ
+

∫ t

0
∥e(t−s)∆[|.|l

(
|u|αu(s)− |v|αv(s)

)
]∥Lq

γ
ds

≤ ∥φ− ψ∥Lq
γ
+ C

∫ t

0
(t− s)

−N
2
(α+1

r
− 1

q
) ∥∥|.|γα(|u|αu(s)− |v|αv(s)

)∥∥
L

r
α+1
γ

ds

≤ ∥φ− ψ∥Lq
γ
+

(
2(α+ 1)CMα

∫ t

0
(t− s)

−N
2
(α+1

r
− 1

q
)
s−β(α+1)ds

)
d(u, v)

≤ ∥φ− ψ∥q +
(
2(α+ 1)CMαt

1−Nα
2q

∫ 1

0
(1− σ)

−N
2
(α+1

r
− 1

q
)
σ−β(α+1)dσ

)
d(u, v)

≤ ∥φ− ψ∥Lq
γ
+ C2M

αT
1−Nα

2q d(u, v).

where C2 = 2(α+ 1)C

∫ 1

0
(1− σ)

−N
2
(α+1

r
− 1

q
)
σ−β(α+1)dσ <∞.

From the above estimates, it follows that

d(Fφ(u),Fψ(v)) ≤ ∥φ− ψ∥Lq
γ
+ CMαT

1−Nα
2q d(u, v), (B.8)

where C = max(C1, C2). The rest of the proof follows similarly as that of Theorem 4.1 and as in

[2]. This completes the proof. □

Theorem B.1 allows us to obtain the following.

Corollary B.2 (Hénon parabolic equations). Let N ≥ 1, α > 0, 0 < l < Nα. If φ ∈ Lqγ(RN ),
where

γ = l/α < N, q >
Nα

2
and

N

N − γ
< q ≤ ∞,

then the life-span of (A.3) with initial data λφ satisfies

Tmax(λφ)≥C(λ∥φ∥Lq
γ
)
−( 1

α
−N

2q
)−1

, (B.9)

for all λ > 0, where C = C(α, q, l,N).
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Remark 17.

1) We see that l has no effect on the lower bound of the life span. This is because blow up

may not occurs at the origin nor at |x| infinite.
2) Corollary B.2 is totally new for q <∞.

Proof of Corollary B.2. The proof follows using (B.6) and is similar to that of Theorem 1.1. □

In the case of initial data in Lq(RN ) ∩ Lqγ(RN ) we have the following result which generalizes

that of [52] known for q = ∞.

Theorem B.3 (Local well-posedness in Lq ∩ Lqγ). Let N ≥ 1 be an integer, α > 0 and l > 0 be

such that

0 < γ :=
l

α
< N.

Let qc be given by (B.1). Then we have the following.

(i) Equation (A.3) is locally well-posed in L∞(RN ) ∩ L∞
γ (RN ). More precisely, given u0 ∈

L∞(RN ) ∩ L∞
γ (RN ), then there exist T > 0 and a unique solution u ∈ C

(
(0, T ];L∞(RN ) ∩

L∞
γ (RN )) of (A.3) and u satisfies limt→0 ∥u(t)− et∆u0∥L∞∩L∞

γ (RN ) = 0. Moreover, u can

be extended to a maximal interval (0, Tmax) such that either Tmax = ∞ or Tmax < ∞ and

lim
t→Tmax

(∥u(t)∥∞ + ∥u(t)∥L∞
γ
) = ∞.

(ii) If q is such that

q >
N(α+ 1)

N − γ
, q > qc and q <∞,

then equation (A.3) is locally well-posed in Lq(RN ) ∩ Lqγ(RN ). More precisely, given u0 ∈
Lq(RN ) ∩ Lqγ(RN ), then there exist T > 0 and a unique solution u ∈ C

(
[0, T ];Lq(RN ) ∩

Lqγ(RN )
)
of (A.3). Moreover, u can be extended to a maximal interval [0, Tmax) such that

either Tmax = ∞ or Tmax <∞ and lim
t→Tmax

(∥u(t)∥q + ∥u(t)∥Lq
γ
) = ∞.

(iii) Assume that q > qc with
N

N−γ < q ≤ ∞. It follows that equation (A.3) is locally well-posed in

Lq(RN )∩Lqγ(RN ) as in part (ii) except that uniqueness is guaranteed only among functions

u ∈ C
(
[0, T ];Lq(RN ) ∩ Lqγ(RN )

)
which also verify t

N
2
( 1
q
− 1

r
)∥u(t)∥Lr

γ
, t

N
2
( 1
q
− 1

r
)∥u(t)∥r are

bounded on (0, T ], where r is as above (we replace [0, T ] by (0, T ] if q = ∞ and u satisfies

limt→0 ∥u(t)− et∆u0∥L∞∩L∞
γ (RN ) = 0). Moreover, u can be extended to a maximal interval

[0, Tmax) such that either Tmax = ∞ or Tmax < ∞ and lim
t→Tmax

(∥u(t)∥q + ∥u(t)∥Lq
γ
) = ∞.

Furthermore,

∥u(t)∥Lq∩Lq
γ
≥ C (Tmax − t)

N
2q

− 1
α , ∀ t ∈ [0, Tmax), (B.10)

where C is a positive constant.

Proof of Theorem B.3. We will just give the new elements of the proof.

(i)-(ii) By the Hölder inequality and Proposition 3.1 with γ = l
α = µ, q1 = q/(α + 1), q2 = q,

for each t > 0 and if q > N(α+1)
N−γ , q ≤ ∞, Kt,l : L

q ∩ Lqγ −→ Lq ∩ Lqγ is locally Lipschitz and, since
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q > N(α+1)
N−γ > α+ 1,

∥Kt,l(u)−Kt,l(v)∥q ≤ Ct
−N

2
(α+1

q
− 1

q
)
∥∥∥| · |l(|u|αu− |v|αv)

∥∥∥
q/(α+1)

≤ Ct
−Nα

2q (∥u∥αLq
γ
+ ∥v∥αLq

γ
)∥u− v∥q

≤ 2CMαt
−Nα

2q ∥u− v∥q,

for max(∥u∥q, ∥u∥Lq
γ
) ≤ M and max(∥v∥q, ∥v∥Lq

γ
) ≤ M. We have also, that t

−Nα
2q ∈ L1

loc(0,∞),

since q > qc =
Nα
2 . Then the proof follows by [53, Theorem 1, p. 279].

(iii) We choose r > q satisfying (B.4). We consider K > 0, T > 0, M > 0 such that

K + CMα+1T
1−Nα

2q ≤M, (B.11)

where C is a positive constant given below. We will show that there exists a unique solution u of

(A.3) such that u ∈ C
(
[0, T ];Lq(RN ) ∩ Lqγ(RN )

)
and u ∈ C

(
(0, T ];Lr(RN ) ∩ Lrγ(RN )

)
with

∥u∥ = max

[
sup
t∈[0,T ]

∥u(t)∥q, sup
t∈[0,T ]

∥u(t)∥Lq
γ
, sup
t∈(0,T ]

tβ∥u(t)∥Lr
γ
, sup
t∈(0,T ]

tβ∥u(t)∥r

]
≤M.

The proof is based on a contraction mapping argument in the set

Y q,γ
M,T = {u ∈ C

(
[0, T ];Lq(RN ) ∩ Lqγ(RN )

)
∩ C((0, T ];Lr ∩ Lrγ) : ∥u∥ ≤M}.

Endowed with the metric d(u, v) = ∥u − v∥, Y q,γ
M,T is a nonempty complete metric space. We note

that for u0 ∈ Lq,

∥et∆u0∥r ≤ Ct
−N

2
( 1
q
− 1

r
)∥u0∥q = Ct−β∥u0∥q.

The condition on initial data max(∥u0∥q, ∥u0∥Lq
γ
) ≤ K implies that tβ∥et∆u0∥Lr

γ
≤ K, tβ∥et∆u0∥Lr ≤

K. We will show that Fu0 defined in (2.11) is a strict contraction on Y q,γ
M,T . Using Proposition 3.1,

that is et∆ : Lq → Lr, for the first term and et∆ : L
r

α+1 → Lr, for the second term, we have

tβ∥Fφ(u)(t)−Fψ(v)(t)∥r ≤ tβ∥et∆(φ− ψ)∥r + tβ
∫ t

0
∥e(t−s)∆[|.|l

(
|u|αu(s)− |v|αv(s)

)
]∥rds

≤ ∥φ− ψ∥q + Ctβ
∫ t

0
(t− s)−

N
2
(α+1

r
− 1

r
)
∥∥|.|αγ(|u|αu(s)− |v|αv(s)

)∥∥
r

α+1
ds

≤ ∥φ− ψ∥q +
(
2(α+ 1)CMαtβ

∫ t

0
(t− s)−

Nα
2r s−β(α+1)ds

)
d(u, v)

≤ ∥φ− ψ∥q +
(
2(α+ 1)CMαt

1−Nα
2q

∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ

)
d(u, v)

≤ ∥φ− ψ∥Lq + C3M
αT

1−Nα
2q d(u, v),

where C3 = 2(α+ 1)C

∫ 1

0
(1− σ)−

Nα
2r σ−β(α+1)dσ <∞.
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Using Proposition 3.1, that is et∆ : Lq → Lq, for the first term and et∆ : L
r

α+1 → Lq, for the

second term, we have

∥Fφ(u)(t)−Fψ(v)(t)∥q ≤ ∥et∆(φ− ψ)∥q +
∫ t

0
∥e(t−s)∆[|.|l

(
|u|αu(s)− |v|αv(s)

)
]∥qds

≤ ∥φ− ψ∥q + C

∫ t

0
(t− s)

−N
2
(α+1

r
− 1

q
) ∥∥|.|αγ(|u|αu(s)− |v|αv(s)

)∥∥
r

α+1
ds

≤ ∥φ− ψ∥q +
(
2(α+ 1)CMα

∫ t

0
(t− s)

−N
2
(α+1

r
− 1

q
)
s−β(α+1)ds

)
d(u, v)

≤ ∥φ− ψ∥q +
(
2(α+ 1)CMαt

1−Nα
2q

∫ 1

0
(1− σ)

−N
2
(α+1

r
− 1

q
)
σ−β(α+1)dσ

)
d(u, v)

≤ ∥φ− ψ∥Lq + C4M
αT

1−Nα
2q d(u, v).

where C4 = 2(α+1)C

∫ 1

0
(1− σ)

−N
2
(α+1

r
− 1

q
)
σ−β(α+1)dσ <∞. From the above estimates, it follows

that

d(Fφ(u),Fψ(v)) ≤ ∥φ− ψ∥Lq∩Lq
γ
+ CMαT

1−Nα
2q d(u, v), (B.12)

where C = max(C1, C2, C3, C4). The rest of the proof follows similarly as above and as in [2]. □

We have also the following result.

Proposition B.4. Let α > 0 and let 0 < γ := l/α < N . Assume the hypotheses of Theorem B.3.

Let Tmax(φ,L
q ∩ Lqγ) denotes the existence time of the maximal solution of (A.3) with initial data

φ ∈ Lq ∩ Lqγ . Then we have the following.

(i) If φ ∈ Lq ∩ Lqγ , then for t ∈ (0, Tmax(φ, q)) , u(t) ∈ L∞ ∩ L∞
γ .

(ii) If φ ∈ Lp ∩ Lpγ ∩ Lq ∩ Lqγ,
N

N−γ < q < p ≤ ∞ and q > qc. Then Tmax(φ,L
p ∩ Lpγ) =

Tmax(φ,L
q ∩ Lqγ).

Proof. (i) Let φ ∈ Lq(RN ), q > qc and q >
N

N−γ . Let r and β be as above and (B.5). Let p be such

that r < p ≤ ∞. Hence p > q,

0 ≤ 1

p
<

γ

N
+
α+ 1

r
< 1,

1

p
<

γ

N
+

1

q
< 1,

and for 0 < T < Tmax(φ, q), we have

∥u(t)∥p ≤ ∥et∆φ∥p + C

∫ t

0
(t− σ)

−N
2
(α+1

r
− 1

p
)∥u(σ)∥αLr

γ
∥u(σ)∥rdσ

≤ (4πt)
−N

2
( 1
q
− 1

p
)∥φ∥q + Ct

1−N
2
(α+1

r
− 1

p
)−β(α+1)

sup
s∈(0,T ]

(
sβα∥u(s)∥αLr

γ

)
×

sup
s∈(0,T ]

(
sβ∥u(s)∥r

)∫ 1

0
(1− σ)

−N
2
(α+1

r
− 1

p
)
σ−β(α+1)dσ

≤ (4πt)
−N

2
( 1
q
− 1

p
)∥φ∥q +Mα+1Ct

1−N
2
(α+1

q
− 1

p
)
∫ 1

0
(1− σ)

−N
2
(α+1

r
− 1

p
)
σ−β(α+1)dσ.
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Also,

∥u(t)∥Lp
γ

≤ ∥et∆φ∥Lp
γ
+ C

∫ t

0
(t− σ)

−N
2
(α+1

r
− 1

p
)∥u(σ)∥α+1

Lr
γ
dσ

≤ Ct
−N

2
( 1
q
− 1

p
)∥φ∥Lq

γ
+ Ct

1−N
2
(α+1

r
− 1

p
)−β(α+1)

sup
s∈(0,T ]

(
sβ(α+1)∥u(s)∥α+1

Lr
γ

)
×∫ 1

0
(1− σ)

−N
2
(α+1

r
− 1

p
)
σ−β(α+1)dσ

≤ Ct
−N

2
( 1
q
− 1

p
)∥φ∥Lq

γ
+Mα+1Ct

1−N
2
(α+1

q
− 1

p
)
∫ 1

0
(1− σ)

−N
2
(α+1

r
− 1

p
)
σ−β(α+1)dσ.

Since r > q > qc, it follows that if
α+ 1

r
− 2

N
<

1

p
<

1

r
,

then u(t) is in Lp ∩ Lpγ for all t ∈
(
0, Tmax(φ, q)

)
. The result for general p > q follows by iteration.

Hence u(t) is in L∞ ∩ L∞
γ , for t ∈

(
0, Tmax(φ, q)

)
.

(ii) Follows as in Proposition 4.2. This finishes the proof of the proposition. □

Theorem B.3 and inequality (B.11) allow us to obtain that under the same hypotheses of Corol-

lary B.2 if φ ∈ Lq(RN ) ∩ Lqγ(RN ) then the life-span of (A.1) with initial data λφ satisfies

Tmax(λφ)≥C
(
λ∥φ∥Lq

γ∩Lq

)−( 1
α
−N

2q
)−1

, (B.13)

for all λ > 0, which gives a power of λ not depending on l, unlike the case l < 0.

Appendix C. The Hardy-Hénon equations with decaying initial data

In this part of the appendix, we investigate lower bound estimates for life-span for the solutions

of the equation (A.1) with initial data having some decay. As in Section 4, we work in Lqγ with

γ > 0, γ > l/α. This allows us to obtain a lower bound of the life span for initial data having more

decay than l/α, if l > 0. We consider the Duhamel formulation of (A.1)-(A.2), that is the equation

(A.3) and suppose that

N ≥ 1, α > 0, −min(2, N) < l < Nα. (C.1)

Let γ be such that

0 < γ < N,
l

α
< γ <

2 + l

α
(C.2)

and q satisfying
N

N − γ
< q ≤ ∞, q >

Nα

2 + l − γα
=: qc(γ, l). (C.3)

qc(γ, l) is the critical exponent of (A.1) for initial data in Lqγ . The condition (C.3) can be reformu-

lated as follows:
γ

N
≤ 1

q
+
γ

N
< 1,

Nα

2q
+
γα

2
− l

2
< 1.

Let 0 < ν < γ be such that
γ + l

α+ 1
< ν <

N + l

α+ 1
.



LIFE-SPAN RESULTS 47

Hence, using (C.1) and (C.2), we have

l

α
< ν < γ, 0 < ν < ν(α+ 1)− l < N, 0 < γ < ν(α+ 1)− l < N.

Let now r > q be such that

1

q(α+ 1)
− ν(α+ 1)− l − γ

N(α+ 1)
<

1

r
<
N − ν(α+ 1) + l

N(α+ 1)
.

This is possible by (C.3). Hence, we have

1

r
<
α+ 1

r
+
ν(α+ 1)− l − ν

N
<
α+ 1

r
+
ν(α+ 1)− l

N
< 1,

1

q
<
α+ 1

r
+
ν(α+ 1)− l − γ

N
<
α+ 1

r
+
ν(α+ 1)− l

N
< 1.

That is, by [8, Lemma 2.1] et∆ : Lqγ → Lqγ , is bounded and we may apply Proposition 3.1, so that

the maps et∆ : Lqγ → Lrν , e
t∆ : L

r/(α+1)
ν(α+1)−l → Lqγ and et∆ : L

r/(α+1)
ν(α+1)−l → Lrν are bounded.

Let us introduce

β̃l =
N

2

(
1

q
− 1

r

)
+
γ − ν

2
.

Hence

β̃l >
γ − ν

2
> 0.

We have,

β̃l(α+ 1) =
N

2

(
α+ 1

q
− α+ 1

r

)
+ (α+ 1)

γ − ν

2

≤ N

2

(
α+ 1

q
− 1

q
+
ν(α+ 1)− l − γ

N

)
+ (α+ 1)

γ − ν

2

=
Nα

2q
+
αγ

2
− l

2
< 1.

We also have
Nα

2r
+
να

2
− l

2
<
Nα

2q
+
γα

2
− l

2
< 1,

N

2

(
α+ 1

r
− 1

q

)
+
ν(α+ 1)− l − γ

2
<
Nα

2r
+
να

2
− l

2
< 1.

These last three estimates are crucial to the local existence argument below. We note that if l > 0,

we may take ν(α+1)− l = γ, r = (α+1)q. With the above choice of the parameters, we can show

the following local well-posedness result.

Theorem C.1. Let N ≥ 1 be an integer, α > 0, −min(2, N) < l and

l

N
< α. (C.4)

Let γ be satisfying (C.2) and qc(γ, l) be given by (C.3). Then we have the following.
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(i) If γ(α+ 1) < N + l and q is such that

q >
N(α+ 1)

N + l − γ(α+ 1)
, q > qc(γ, l) and q ≤ ∞,

then equation (A.3) is locally well-posed in Lqγ(RN ). More precisely, given u0 ∈ Lqγ(RN ),
then there exist T > 0 and a unique solution u ∈ C

(
[0, T ];Lqγ(RN )

)
of (A.3) (we replace

[0, T ] by (0, T ] if q = ∞ and u satisfies limt→0 ∥u(t) − et∆u0∥L∞
γ (RN ) = 0). Moreover, u

can be extended to a maximal interval [0, Tmax) such that either Tmax = ∞ or Tmax < ∞
and lim

t→Tmax

∥u(t)∥Lq
γ
= ∞.

(ii) Assume that q > qc(γ, l) with N
N−γ < q ≤ ∞. It follows that equation (A.3) is locally well-

posed in Lqγ(RN ) as in part (i) except that uniqueness is guaranteed only among functions

u ∈ C
(
[0, T ];Lqγ(RN )

)
which also verify tβ̃l∥u(t)∥Lr

ν
, is bounded on (0, T ], where r and ν are

as above (we replace [0, T ] by (0, T ] if q = ∞ and u satisfies limt→0 ∥u(t)−et∆u0∥L∞
γ (RN ) =

0). Moreover, u can be extended to a maximal interval [0, Tmax) such that either Tmax = ∞
or Tmax <∞ and lim

t→Tmax

∥u(t)∥Lq
γ
= ∞. Furthermore,

∥u(t)∥Lq
γ
≥ C (Tmax − t)

N
2q

+ γ
2
− 2+l

2α , ∀ t ∈ [0, Tmax), (C.5)

where C is a positive constant.

Proof. (i) Using the inequality (4.4), and Proposition 3.1 that is et∆ : L
q

α+1

(α+1)γ−l → Lqγ is bounded,

for each t > 0 we have that Kt,l : L
q
γ −→ Lqγ is locally Lipschitz with

∥Kt,l(u)−Kt,l(v)∥Lq
γ

≤ Ct
−N

2
(α+1

q
− 1

q
)−αγ−l

2 ∥|u|αu− |v|αv∥
L

q
α+1
(α+1)γ

≤ Ct
−Nα

2q
−αγ

2
+ l

2 (∥u∥αLq
γ
+ ∥v∥αLq

γ
)∥u− v∥Lq

γ

≤ 2CMαt
−Nα

2q
−αγ

2
+ l

2 ∥u− v∥Lq
γ
,

for ∥u∥Lq
γ
≤M and ∥v∥Lq

γ
≤M. The rest of the proof is similar to that of Theorems 4.1 and B.1.

(ii) For u0 ∈ Lqγ we have ∥et∆u0∥Lr
ν
≤ Ct

−N
2
( 1
q
− 1

r
)− γ−ν

2 ∥u0∥Lq
γ
= Ct−β̃l∥u0∥Lq

γ
. We choose K >

0, T > 0, M > 0 such that

K + CMα+1T
1−Nα

2q
− γα

2
+ l

2 ≤M, (C.6)

where C is a positive constant. We will show that there exists a unique solution u of (A.3) such

that u ∈ C
(
[0, T ];Lqγ(RN )

)
and u ∈ C

(
(0, T ];Lrν(RN )

)
with

∥u∥ = max

[
sup
t∈[0,T ]

∥u(t)∥Lq
γ
, sup
t∈(0,T ]

tβ̃l∥u(t)∥Lr
ν

]
≤M.

The proof is based on a contraction mapping argument in the set

Y q,γ
M,T = {u ∈ C

(
[0, T ];Lqγ(RN )

)
∩ C((0, T ];Lrν) : ∥u∥ ≤M}.
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Endowed with the metric d(u, v) = ∥u−v∥, Y q,γ
M,T is a nonempty complete metric space. We consider

u0 such that ∥u0∥Lq
γ
≤ K and we estimate as follows:

tβ̃l∥Fu0u(t)∥Lr
ν

≤ tβ̃l∥et∆u0∥Lr
ν
+ tβ̃l

∫ t

0
∥e(t−σ)∆

[
| · |l|u(σ)|αu(σ)

]
∥Lr

ν
dσ

≤ K + Ctβ̃l
∫ t

0
(t− σ)−

Nα
2r

− (ν(α+1)−l)−ν
2 ∥| · |ν(α+1)|u(σ)|αu(σ)∥r/(α+1)dσ

= K + Ctβ̃l
∫ t

0
(t− σ)−

Nα
2r

− να
2
+ l

2 ∥u(σ)∥α+1
Lr
ν
dσ

≤ K + CMα+1tβ̃l
∫ t

0
(t− σ)−

Nα
2r

− να
2
+ l

2σ−β̃l(α+1)dσ

≤ K + CMα+1t
1−Nα

2q
− γα

2
+ l

2

∫ 1

0
(1− σ)−

Nα
2r

− να
2
+ l

2σ−β̃l(α+1)dσ

≤ K + CMα+1T
1−Nα

2q
− γα

2
+ l

2

∫ 1

0
(1− σ)−

Nα
2r

− να
2
+ l

2σ−β̃l(α+1)dσ,

and similarly for the contraction. The other estimates can be handled similarly as above, see also

[2]. So we omit the details. This completes the proof of Theorem C.1. □

Remark 18.

1) We can take γ = max(0, lα) in Theorem C.1 as well as l = 0, it is then a generalization of

Theorems 4.1 and B.1.

2) See [8, Theorem 1.13] for related results. The range of the values of q in (ii) are larger

than in [8], while (i) is essentially contained in [8] which we give for completeness. Also the

methods are different. In fact, we work in an auxiliary space Lrν , for some r and ν while in

[8] some auxiliary spaces Lqν̃ for some ν̃ but q is fixed are considered.

3) If q = ∞ we may replace L∞
γ by the space obtained by the closure, with respect to the

L∞
γ -topology, of D(RN ), the space of compactly supported C∞(RN ) functions. For initial

data in this sub-space of L∞
γ the result holds on [0, T ] instead of (0, T ].

4) Using argument of [3], we can show that uniqueness in the part (ii) of Theorem C.1 holds

in u ∈ C
(
[0, T ];Lqγ(RN )

)
∩ C

(
(0, T ];Lrν(RN )

)
.

Theorem C.1 gives the following.

Corollary C.2 (Hénon parabolic equations with decaying initial data). Let N ≥ 1 be an integer,

α > 0 and −min(2, N) < l < Nα. If φ ∈ Lqγ(RN ), where

0 < γ < N,
l

α
< γ <

2 + l

α
,

γ

N
≤ 1

q
+
γ

N
< 1,

Nα

2q
+
γα

2
− l

2
< 1.

Then the life-span of (A.3) with initial data λφ satisfies

Tmax(λφ)≥C
(
λ∥φ∥Lq

γ

)−
(

2+l
2α

−N
2q

− γ
2

)−1

, (C.7)

for all λ > 0, where C = C(α, q, l, γ,N) > 0 is a constant.
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Remark 19.

1) Corollary C.2 answerers a problem left open in [40]. In fact, when l > 0 only exponentially

decaying initial data are considered in [40].

2) Similar results, using scaling argument, seems to be proved in [60, 61] for related equations,

but only for small λ, q = ∞ and positive initial data.

3) If φ ∈ Lq ∩Lqγ , or φ ∈ Lql+/α ∩L
q
γ , where l+ = max(l, 0) then (C.7) is better than (A.6) and

(B.9) for 0 < λ < 1.

Proof of Corollary C.2. The proof follows using (C.6) and is similar to that of Theorem 1.1, so we

omit the details. □

We complement Corollary C.2 by the following upper bound estimates.

Proposition C.3 (Upper bounds of life-span for Hardy-Hénon equations). Let N ≥ 1 be an integer

α > 0 and −min(2, N) < l. Assume that

l

N
< α <

2 + l

N
. (C.8)

Let ω ∈ L∞(RN ) be homogeneous of degree 0, ω ≥ 0 and ω ̸≡ 0, φ̃ be given by (1.16) and ˜̃φ be

given by (1.20). Let 0 < γ < N be such that

l

α
< γ,

and φ ∈ Lqγ(RN ), where N
N−γ < q ≤ ∞. Then we have the following.

(i) If φ ≥ φ̃ then Tmax(λφ) ≤ Cλ−(
2+l
2α

− γ
2 )

−1

, λ > 1.

(ii) If φ ≥ ˜̃φ then Tmax(λφ) ≤ Cλ−(
2+l
2α

− γ
2 )

−1

, 0 < λ < 1.

To prove Proposition C.3, we use a scaling argument. We recall the definition of the dilation

operators Dµφ = φ(µ ·), µ > 0. It is clear that if u is a solution of the equation (A.1) then for any

µ > 0, uµ is also a solution of (A.1), where uµ(t, x) = µ
2+l
α u(µ2t, µx). Hence, σ in (6.1) is given by

σ =
2 + l

α
.

So that, for λ = µγ−
2+l
α , (6.3) reads

λ−[( 2+l
2α

− γ
2
)−1]Tmax(λφ) = Tmax(λµ

2+l
α Dµφ) = Tmax(µ

γDµφ). (C.9)

Let 0 < γ < (2 + l)/α. Let φ be a nonnegative function, satisfying µγDµφ ≤ φ, for some µ > 0.

Then, since λ = µγ−
2+l
α , we have by comparison argument (see [52, Theorem 2.4, p. 564]) and

(C.9) that

Tmax(λφ) ≥ λ−(
2+l
2α

− γ
2 )

−1

Tmax(φ).

Similarly, if µγDµφ ≥ φ, for some µ > 0, and Tmax(φ) <∞, we have that

Tmax(λφ) ≤ λ−(
2+l
2α

− γ
2 )

−1

Tmax(φ).
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Proof of Proposition C.3. The condition (C.8) implies that Tmax(λφ) < ∞ as well as Tmax(λφ̃) <

∞, and Tmax(λ ˜̃φ) <∞, for any λ > 0. See [41].

(i) By comparison argument it suffices to give the proof for Tmax(λφ̃). We have that

µγDµφ̃ ≥ φ̃, µ < 1.

Since γ < (2 + l)/α and λ = µγ−
2+l
α then µ < 1 is equivalent to λ > 1. By the above calculations,

Tmax(λφ1) ≤ Cλ−(
2+l
2α

− γ
2 )

−1

, λ > 1.

(ii) By comparison argument it suffices to give the proof for Tmax(λ ˜̃φ). We have that

µγDµ
˜̃φ ≥ ˜̃φ, µ > 1.

Since γ < (2 + l)/α and λ = µγ−
2+l
α then µ > 1 is equivalent to λ < 1. Then by the above

calculations,

Tmax(λ ˜̃φ) ≤ Cλ−(
2+l
2α

− γ
2 )

−1

, λ < 1.

This completes the proof of the proposition. □

Remark 20. We may take q = ∞ in Proposition C.3. In particular, combining Corollary C.2

and Proposition C.8, we have Tmax(λφ̃) ∼ λ−(
2+l
2α

− γ
2 )

−1

, as λ → ∞, and Tmax(λ ˜̃φ) ∼ λ−(
2+l
2α

− γ
2 )

−1

,

as λ → 0. This shows that, for large initial data the life-span increases as the power l increases,

while, for small initial data the life-span decreases as the power l increases.
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