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Abstract

Depression is characterized by a marked decrease in social interactions and blunted sensi-

tivity to rewards. Surprisingly, despite the importance of social deficits in depression, non-

social aspects have been disproportionally investigated. As a consequence, the cognitive

mechanisms underlying atypical decision-making in social contexts in depression are poorly

understood. In the present study, we investigate whether deficits in reward processing inter-

act with the social context and how this interaction is affected by self-reported depression

and anxiety symptoms in the general population. Two cohorts of subjects (discovery and

replication sample: N = 50 each) took part in an experiment involving reward learning in con-

texts with different levels of social information (absent, partial and complete). Behavioral

analyses revealed a specific detrimental effect of depressive symptoms–but not anxiety–on

behavioral performance in the presence of social information, i.e. when participants were

informed about the choices of another player. Model-based analyses further characterized

the computational nature of this deficit as a negative audience effect, rather than a deficit in

the way others’ choices and rewards are integrated in decision making. To conclude, our

results shed light on the cognitive and computational mechanisms underlying the interaction

between social cognition, reward learning and decision-making in depressive disorders.

Author summary

Blunted sensitivity to rewards is at the core of depression. However, studies that investi-

gated the influence of depression on decision-making have often done so in asocial con-

texts, thereby providing only partial insights into the way depressive disorders impact the

underlying cognitive processes. Indeed, atypical social functioning is also a central charac-

teristic of depression. Here, we aimed at integrating the social component of depressive

disorders into the study of decision-making in depression. To do so, we measured the

influence of self-reported depressive symptoms on social learning in participants perform-

ing an online experiment. Our study shows that depressive symptoms are associated with

decreased performance only when participants are informed about the actions of another

player. Computational characterizations of this effect reveal that participants with more
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severe depressive symptoms differ only in the way they learn from their own actions in a

social context. In other words, our results indicate that depressive symptoms are associ-

ated with a negative audience effect and thus provide new insights into the way social cog-

nition and decision-making processes interact in depression.

Introduction

One of the core clinical symptoms of depression is anhedonia, which refers to a reduced moti-

vation to engage in daily life activities (motivational anhedonia) and a reduced enjoyment of

usually enjoyable activities (consummatory anhedonia) [1, 2]. In principle, this clinical mani-

festation could be explained by reduced reward sensitivity, both in terms of incentive motiva-

tion and in terms of reinforcement processes [3–5]. A direct prediction of this hypothesis is

that depressive symptoms should be associated with reduced reward sensitivity in learning

contexts both at the behavioral and neural level. However, while some studies do find evidence

that depressive symptoms in the general population and in clinical depression are associated

with blunted reward learning and reward-related signals in the brain [6, 7], others indicate no

[8, 9] or mixed effects [5]. As a consequence, there is no strong consensus about which compo-

nents of reward processing are most predictive of depressive symptoms in both the general

population and clinical depression [5].

Another striking clinical manifestation of depressive symptoms is a marked decrease in

social interactions. Depression is indeed associated with social risk factors, social impairments

and poor social functioning [10]. Surprisingly, despite the importance of the socio-cognitive

impairments that are often associated with elevated depressive symptoms, non-social aspects

have received disproportionate attention. Furthermore, when social aspects are investigated

the focus is often on emotional processing and theory of mind but not on how social informa-

tion is integrated to produce efficient goal-directed behavior [11]. In the present study, our

goal was to investigate whether the reward-learning deficit that is often associated with ele-

vated depressive symptoms interacts with the social context [12].

According to social learning theory, a sizable amount of decisions are not directly shaped

by people’s personal history of reward and punishments, but are rather acquired through social

observation [13]. More specifically, this framework posits that human learning occurs mostly

in social contexts, where subjects can be influenced by social cues (i.e. others’ choices and out-

comes) [13, 14]. In order to test how depressive symptoms affect the integration of social cues

during reinforcement learning, we administered a variant of a previously validated observa-

tional learning task on two independent samples of participants [14, 15]. Subjects also com-

pleted psychometric questionnaires assessing depression and anxiety (a co-morbid trait)

symptoms. The task included a ‘Private’ learning condition, in which participants only had

access to the outcome of their own choice, and two social conditions: the ‘Social-Choice’ con-

dition in which participants had access to the demonstrator’s choice, and the ‘Social-Choice+-

Outcome’ condition in which participants had access to the demonstrator’s actions and their

outcome (Fig 1A and 1B).

Our design allowed us to test several hypotheses concerning the relation between depressive

symptoms and learning performance in private and social contexts. First, our design allowed us

to test whether or not depressive symptoms degrade reward learning per se, as assumed by the

standard account of depression as a reward sensitivity deficit. Second, by comparing the ‘Pri-

vate’ and the ‘Social’ learning contexts, we could assess whether or not depressive symptoms are

associated with a learning deficit in ‘Social’ contexts, as predicted by evidence of socio-cognitive
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impairments in depressive patients. Finally, thanks to computational analyses, we could pre-

cisely characterize the learning deficit in the ‘Social’ context either as a primary social learning

deficit (i.e. impaired imitation) or as a secondary social learning (i.e. a negative audience effect).

Results

Experimental protocol and quality checks

An online experiment was particularly suited to test our hypothesis because—compared to lab-

oratory-based experiments—it provides a more diversified pool of subjects, in terms of

Fig 1. Learning task and learning behavior (A) Experimental procedure. Participants first performed a training session before choosing their avatar for the task. They

were then paired with another player (simulated) represented by an avatar neutral in trustworthiness and dominance. Participants then performed the behavioral task

that were organized by randomized blocks. Each block corresponded to a learning condition ‘Private’, ‘Social-Choice’ or ‘Social-Choice+Outcome’ presented once with

stable contingencies and one with unstable contingencies (reversal condition). After the task, participants completed the HAD questionnaire and performed the social

evaluations as a post-test. (B) Behavioral task. In each condition, participants played in turn with a virtual demonstrator. In each private trial, after each choice,

participants received a reward or a punishment. In the Private blocks, participants did not see the choice or the outcome of the demonstrator. In the Social-Choice

blocks, the choice of their demonstrator was displayed at each trial. In the Social-Choice+Outcome blocks, both the choice and the outcome of the demonstrator were

displayed. (C) Learning behavior of the virtual demonstrator and the participants. The behavior of the virtual partner (top) was simulated using a reinforcement

learning model (whose parameters were correctly recovered by our model optimization procedure: black dotted line). Participants accurately learned which option was

the most rewarded across the trial. In both the real and simulated tasks a reversal of the contingencies occured at the 10th ±1 trial (grey shaded area).

https://doi.org/10.1371/journal.pcbi.1007224.g001
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psychiatric traits and cognitive performance [16–19]. Specifically, we tested 50 participants in

the general population and then ran a direct replication of the experiment on a second inde-

pendent sample of 50 participants. In the main text, we report the meta-analytical p-values

computed using a mixed effect meta-analysis. In the tables we present the results separately for

each experiment and highlight the replication criteria proposed by the open science frame-

work [20].

Levels of depressive and anxiety symptoms spanned a large range (Table 1) [21], with good

internal consistency (Hospital Anxiety Depression scale—depression subscale: Cronbach’s

alpha 85%; anxiety subscale: Cronbach’s alpha 84%). Participants were paired with a virtual

demonstrator and performed a probabilistic reinforcement learning task in three contexts: a

‘Private’ condition, in which participants performed the task individually with no access to the

demonstrator’s choices and outcomes, and two social conditions: the ‘Social-Choice’ condition

in which participants had access to the demonstrator’s choices, and the ‘Social-Choice+

Outcome’ condition in which participants had access to the demonstrator’s choices and their

outcome. Overall, participants displayed robust instrumental learning and chose the most

rewarded symbol above chance in all conditions (meta-analysis ‘Private’: MMETA = 0.65 ± 0.03,

zMETA = 11.37, p< .001; ‘Social-Choice’: MMETA = 0.65 ± 0.03, zMETA = 11.83, p< .001;

‘Social-Choice+Outcome’: MMETA = 0.67 ± 0.03, zMETA = 12.45, p< .001; ± corresponds to the

95% confidence intervals; Fig 1C; See S1 Table for the results on the two samples separately).

Assessing observational learning

Contrary to previous studies [14, 15], we used an online adaptive learning algorithm that

determined the demonstrator’s behavior (Q-learning with learning rate = 0.5 and choice tem-

perature = 10). As a consequence, the virtual demonstrators displayed realistic learning curves

with some variability of performance (Fig 1C). We predicted that observational learning

would result in a correlation between the participants’ and the demonstrator’s correct choice

rate in a given learning session. As predicted, a higher correct choice rate for the demonstrator

was associated with a higher correct choice rate for participants in both social conditions

(‘Social-Choice’ condition: rMETA = .20 ± 0.07, zMETA = 2.89, p = .004; ‘Social-Choice+

Outcome’ condition: rMETA = .20 ± 0.07, zMETA = 2.87, p = .004) but not in the private condi-

tion (rMETA = -.01 ± 0.11, zMETA = -0.05, p> .250; Fig 2A; see Table 2 for the results on the

two samples separately).

In order to confirm that participants actually integrated the virtual demonstrator as a social

partner, we measured the influence of participants’ rating of trustworthiness of the demonstra-

tor’s face on social learning. An effect of perceived trustworthiness evaluations was found,

such that participants who perceived the demonstrator’s avatar as more trustworthy had

higher correct choice rates in the ‘Social-Choice’ (rMETA = .32 ± 0.13, zMETA = 2.54, p = .011)

and in the ‘Social-Choice+Outcome’ conditions (rMETA = .29 ± 0.10, zMETA = 2.96, p = .003)

Table 1. Descriptive statistics for age, gender, depression and anxiety scores. For each sample, the mean of each demographic variable is presented with its 95% confi-

dence interval.

Age Sex ratio

(% women)

Depression scores Anxiety scores Correlation between Depression and Anxiety scores

Discovery sample

(N = 50)

33.02 ± 1.25

[22–62]

28% 5.46 ± 1.26

[0–19]

6.40 ± 1.16

[0–15]

r = .44, t(48) = 3.43, p = .001

Replication sample

(N = 50)

33.76 ± 3.28

[19–61]

42% 4.96 ± 1.27

[0–16]

6.30 ± 1.28

[0–20]

r = .74, t(48) = 7.61, p < .001

Statistical difference t(98) = 0.36

p > .250

X-squared = 1.58,

df = 1, p-value = .208

t(98) = 0.56 p > .250 t(98) = 0.12 p > .250

https://doi.org/10.1371/journal.pcbi.1007224.t001
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but not in the ‘Private’ condition (rMETA = .11 ± 0.10, zMETA = 1.09, p> .250; Fig 2B). This

effect of the social evaluation of the demonstrator’s avatar confirms that participants processed

the information in a social context.

Correlation between depressive symptoms and performance

A significant effect of depressive symptoms was found such that the higher the depressive

symptoms, the lower the rate of correct choices in the ‘Social-Choice’ condition only (rMETA =

-.33 ± 0.10, zMETA = -3.47, p< .001; ‘Private’ condition: rMETA = .04 ± 0.16, zMETA = 0.16, p>

.250; ‘Social-Choice+Outcome’ condition: rMETA = -.05 ± 0.10, zMETA = -0.48, p> .250; Fig

3A). However, a similar effect of anxiety, which is a comorbid trait of depression [22, 23], was

found as a trend (rMETA = -0.18 ± 0.10, zMETA = -1.85, p = .065; Fig 3B). In order to better

understand the effect of depressive symptoms on learning in social contexts, we ran a mixed

Fig 2. Assessing social reinforcement learning (A) Effect of demonstrator’s behavior. Scatter plots representing the correlation between the correct choice rate and

the performance of the demonstrator in the three learning contexts (from left to right: ‘Private’, ‘Social Choice’, ‘Social Choice+Outcome’). (B) Effect of perceived

trustworthiness. Scatter plots representing the correlation between the correct choice rate and the reported trustworthiness in the three learning contexts. ‘r’ =

Pearson’s correlation coefficient. ˚p<0.10, �p<0.05, ��p<0.01, Pearson’s correlation.

https://doi.org/10.1371/journal.pcbi.1007224.g002
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Table 2. Main statistical effects obtain by correlations on the performances in ‘Private’, ‘Social-Choice’ and ‘Social-Choice+Outcome’ conditions, with three replica-

tion criteria. For each correlation we report the result (Pearson’s correlation coefficient, p-value and t-value; (± corresponds to s.e.m.) in the first (E0) and the second (E1)

experiment, as well as the meta-analytical p-value (EMETA). For the results with a significant meta-analytical p-value, to better visualize the replicability, we also explicitly

report replication parameters (‘+’ = yes; ‘-‘ = no): i) whether or not the E1 effect is within the 95% confidence interval of the E0 effect; ii)whether or not the effect was signif-

icant in both experiments; (iii) whether or not EMETA was significant. n.a.: not applicable.

Discovery sample

(E0)

Replication sample

(E1)

Meta-analysis

(Emeta)

E1 2 E0 ± 95% conf.

interval

E0 significant

& E1 significant

Emeta significant

Effect of virtual demonstrator’s performance on performance

‘Private’ condition r = -.12 ± .10

t(98) = -1.16 p = .247

r = .11 ± .10

t(98) = 1.06

p = .292

r = -.01±.11

z = -0.05

p > .250

na na na

‘Social Choice’ condition r = .21 ± .10

t(98) = 2.10

p = .039

r = .20± .10

t(98) = 1.20

p = .049

r = .20 ± .07

z = 2.89

p = .004

+ + +

‘Social Choice+Outcome’

condition

r = .13 ± .10

t(98) = 1.34

p = .182

r = .29+.10

t(98) = 2.69

p = .008

r = .20 ±.07

z = 2.87

p = .004

+ - +

Effect of virtual demonstrator’s perceived trustworthiness on performance

‘Private’ condition r = .01 ± .14

t(48) = .95

p > .250

r = .21± .14

t(48) = 1.50

p = .141

r = .11± .10

z = 1.09

p > .250

na na na

‘Social Choice’ condition r = .18 ± .14

t(48) = 1.33

p = .189

r = .44 ± .13

t(48) = 3.42

p = .001

r = .32 ± .13

z = 2.54

p = .011

+ - +

‘Social Choice+Outcome’

condition

r = .33 ± .14

t(48) = 2.42

p = .019

r = .24 ± .14

t(48) = 1.65

p = .087

r = .29 ± .10

z = 2.96

p = .003

+ - +

Effect of depression scores on performance

‘Private’ condition r = .19 ± .14

t(48) = 1.31

p = .198

r = -.14 ± .14

t(48) = -0.95

p > .250

r = .04± .16

z = 0.16

p > .250

na na na

‘Social Choice’ condition r = -.30 ± .14

t(48) = -2.15

p = .036

r = -.36 ± .13

t(48) = -2.75

p = .008

r = -.33± .10

z = -3.47

p < .001

+ + +

‘Social Choice+Outcome’

condition

r = -.08 ± .14

t(48) = -0.58

p > .250

r = -.01± .14

t(48) = -0.10

p > .250

r = -.05 ± .10

z = -0.48

p > .250

na na na

Effect of anxiety scores on performance

‘Private’ condition r = -.02 ± .14

t(48) = -0.02

p > .250

r = -.05 ± .14

t(48) = -0.33

p > .250

r = -.03 ± .10

z = -0.34

p > .250

na na na

‘Social Choice’ condition r = -.24 ± .14

t(48) = -1.68

p = .099

r = -.13 ± .14

t(48) = -0.92

p > .250

r = -0.18 ±
.10

z = -1.85

p = .065

na na na

‘Social Choice+Outcome’

condition

r = -.29 ± .14

t(48) = -2.13

p = .038

r = 0.01 ± .14

t(48) = 0.12

p > .250

r = -0.14 ±
.16

z = -0.91

p > .250

na na na

Effect of depression scores on learning parameters

Temperature ‘Private’ condition

(ßP)

r = .06 ± .14

t(48) = 0.42

p > .250

r = -.15 ± .14

t(48) = -1.06

p > .250

r = -.05 ± .11

z = -0.44

p > .250

na na na

Learning rate ‘Private’ condition

(αP)

r = -.09 ± .15

t(48) = -0.64

p > .250

r = .26 ± .14

t(48) = 1.14

p > .250

r = .04 ± .13

z = 0.29

p > .250

na na na

(Continued)
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linear logistic regression that included depressive and anxiety scores, taken as continuous

between-subject variables (the regression also included a range of controls listed in Table 3).

The analysis revealed a significant effect of depression scores such that the higher the depres-

sive scores, the lower the rate of correct choices in the ‘Social-Choice’ condition compared to

the ‘Private’ condition (zMETA = -2.85, p = .004; no other significant effect of depression and

anxiety scores was evidenced: all ps> .250; Fig 3A). Importantly, the negative effect of depres-

sive symptoms in the ‘Social-Choice’ condition was particularly robust, because it was found

in both the discovery and the replication sample and in the blocks with stable and reversal con-

tingencies (within-subject) (S2 Fig).

Finally, we tested whether the correct choice rates in the ‘Social-Choice’ condition identi-

fied participants with difficulties linked to depressive symptoms (i.e. scoring� 8 on the HAD

depression subscale [21]) from participants in whom these difficulties are absent. The classifi-

cation analysis revealed that the performance in the ‘Social-Choice’ condition identified partic-

ipants with depressive symptoms with good accuracy of 73 ± 1% and with good sensitivity, or

True Positive Rate (82 ± 2%) but low specificity, or True Negative Rate (53 ± 3%) of the classi-

fier (Fig 4A).

Computational model-based analyses

Although model-free analyses reveal a robust negative effect of depressive symptoms on learn-

ing in the ‘Social-Choice’ condition, they do not elucidate the cognitive mechanisms underly-

ing this effect. Indeed, the effect of depressive symptoms could either be due to differences in

social information processing, such as the demonstrator’s choices and outcomes (i.e. a primary
social learning deficit) or to differences in the weighting of the information generated by par-

ticipants’ own choices when social information is also available (i.e. a secondary social learning

deficit or audience effect). These two hypotheses are hard to tease apart based on raw behav-

ioral analyses, because both predict a reduced correct choice rate in the ‘Social’ conditions.

Thus, to arbitrate between these two possibilities, we fitted a previously validated social rein-

forcement learning model [14, 24]. This model allows for biasing participants’ choice depend-

ing on the demonstrator’s choice in the ‘Social-Choice’ condition (i.e. imitation) and to update

the value attributed to each symbol depending on the demonstrator’s outcome in the ‘Social-

Choice+Outcome’ condition (i.e. vicarious trial-and-error). To directly assess the ‘socially

induced individual learning deficit’ hypothesis [14], we allowed participants to have different

individual learning parameters in the ‘Private’ (learning rate: αP ,temperature parameter: βP)

Table 2. (Continued)

Discovery sample

(E0)

Replication sample

(E1)

Meta-analysis

(Emeta)

E1 2 E0 ± 95% conf.

interval

E0 significant

& E1 significant

Emeta significant

Temperature ‘Social’ conditions

(ßS)

r = .02 ± .14

t(48) = 0.13

p > .250

r = -.13 ± .14

t(48) = -0.88

p > .250

r = -.05 ± .10

z = -0.53

p > .250

na na na

Learning rate ‘Social’ conditions

(αS)

r = -.17 ± .14

t(48) = -1.32

p = .194

r = -.31 ± .13

t(48) = -2.28

p = .028

r = -.25 ± .10

z = -2.54

p = .011

+ - +

Action imitation parameter (κ) r = .00 ± .14

t(48) = 0.02

p > .250

r = -.15 ± .14

t(48) = -1.06

p > .250

r = -.08 ± .10

z = -0.74

p > .250

na na na

Social learning parameter (αO) r = -.20 ± .14

t(48) = -1.43

p = .158

r = -.06 ± .14

t(48) = -0.40

p > .250

r = -.13 ± .10

z = -1.30

p = .193

na na na

https://doi.org/10.1371/journal.pcbi.1007224.t002
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and in the two social conditions (‘Social-Choice’ and ‘Social-Choice+Outcome’ conditions:

αS , βS; Fig 5A).

More precisely, individual learning and decision-making were modeled with classical soft-

max (Eq 1) and delta-rule (Eq 2) functions, respectively governed by learning rate and choice

randomness (or temperature) parameters:

Ptðst; atÞ ¼ 1=ð1þ eðDQtðstÞÞ�bÞ ð1Þ

Qtþ1ðst; atÞ ¼ Qtðst; atÞ þ aP � RPEt ð2Þ

Fig 3. Effect of depression scores on reinforcement learning. (A) Effect of depression scores on learning. Scatter plots representing the correlation between the

correct choice rate and the self-reported depression score in the three learning contexts (from left to right: ‘Private’, ‘Social Choice’, ‘Social Choice+Outcome’). (B)

Effect of anxiety scores on learning. Scatter plots representing the correlation between the correct choice rate and the self-reported anxiety score in the three

learning contexts ‘r’ = Pearson’s correlation coefficient. ˚p<0.10, �p<0.05, Pearson’s correlation.

https://doi.org/10.1371/journal.pcbi.1007224.g003
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Where RPEt is the reward prediction error calculated as follows (Eq 3):

RPEt ¼ Rt � Qtðst; atÞ ð3Þ

During the ‘Social-Choice’ condition, the model assumes that the Demonstrator’s choice

induces an ‘action’ prediction error (APEt; (Eq 4)), which measures how surprising the Dem-

onstrator’s choice is, given the subject’s current estimate of the probability of selecting this

option:

APEt ¼ 1 � Ptðst; atÞ ð4Þ

The APEt is then used to bias choice probability (Eq 5) in the subsequent trial and the effect

is scaled by a parameter κ 2 {0–1}:

Ptþ1ðst; atÞ ¼ Ptðst; atÞ þ k � APEt ð5Þ

Finally, in the ‘Social-Choice+Outcome’ trials, the model assumes that the demonstrator’s

outcome induces an ‘observational’ reward prediction error (Eq 6), which is scaled by observa-

tional learning rate αO 2 {0–1} (Eq 7):

OPEt ¼ RðdemonstratorÞt � Qtðst; atÞ ð6Þ

Qtþ1ðst; atÞ ¼ Qtðst; atÞ þ aO � OPEt ð7Þ

To sum up, this computational model allowed us to address both primary social learning

deficits (i.e. learning deficits captured by the parameters κ and αO, which are specific to social

information) and secondary social learning deficits (i.e. learning deficits captured by the

parameters βS and αS, which are specific to individual learning in contexts where social infor-

mation is available).

Table 3. Effects (mixed linear model) of social information (‘Social-Choice’ and ‘Social-Choice+Outcome’), virtual demonstrator correct choice rate, perceived

trustworthiness (‘Trustworthiness’), HAD scores (‘Depression’ and ‘Anxiety’), and their interactions compared to the ‘Private’ condition. ˚p<0.10, �p<0.05,
��p<0.01, z-test.

Effect Coefficient SEM z-value P-value

Intercept 0.15 0.05 2.90 .005��

Social-Choice -0.13 0.07 -1.95 .052˚

Social-Choice+Outcome -0.13 0.07 -1.70 .089�

Demonstrator performance -0.01 0.07 -0.09 .925

Trustworthiness 0.03 0.03 0.89 .372

Depressive symptoms 0.00 0.01 0.50 .615

Anxiety symptoms -0.00 0.00 -0.40 .690

Social-Choice x Demonstrator performance 0.23 0.09 2.72 .007��

Social-Choice+Outcome x Demonstrator performance 0.21 0.11 2.00 .045�

Social-Choice x Trustworthiness 0.05 0.03 1.53 .127

Social-Choice+Outcome x Trustworthiness 0.06 0.05 1.35 .176

Social-Choice x Depressive symptoms -0.01 0.00 -2.85 .004��

Social-Choice+Outcome x Depressive symptoms -0.00 0.00 -0.83 .407

Social-Choice x Anxiety symptoms 0.00 0.00 0.52 .604

Social-Choice+Outcome x Anxiety symptoms -0.00 0.00 -0.85 .398

https://doi.org/10.1371/journal.pcbi.1007224.t003
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Fig 4. Social reinforcement learning model (A) Computational model. A social reinforcement learning model was fitted on participants’ behavior. In the

‘Private’ condition (‘Private context’), the model corresponded to a classical Q-learning (or Rescorla-Wagner) model. In Social context’ (‘Social-Choice’ and

‘Social-Choice+Outcome’ conditions), the model assumes that social information is integrated into the learning and decision process. Following Burke et al. [14],

choice probability was updated based on the demonstrator’s action (imitation) in the ‘Social-Choice’ condition and the option value was updated when the

demonstrator’s outcome was presented (counterfactual learning) in the ‘Social-Choice+Outcome’ condition. The proposed model also allows for different
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Computational effects of depressive symptoms

As previously, we analyzed the model parameters fitted on participants’ actual behavior using

correlations. Higher depression scores were specifically associated with lower learning rates in

the ‘Social’ conditions (rMETA = -.25 ± 0.10, zMETA = -2.55, p = .011; all others, including

private parameters (learning rate, αS, and choice randomness, βS) being in the Social context. (B) Parameter recovery. To assess the sensitivity and the specificity

of our model fitting procedure, we conducted a parameter recovery analysis. The matrix represents the percentage of significant correlations detected between

different combinations of parameters. The diagonal cases correspond to the correlations that are accurately recovered; the other cases correspond to correlations

that are spuriously recovered. (C) Effect of depression on the model parameters. Depression was specifically associated with a decrease in the private learning

rate in the Social context αS), even controlling for the correlation between the different model parameters (structural equation modeling).

https://doi.org/10.1371/journal.pcbi.1007224.g004

Fig 5. Classification and computational results (A) Model-free classification. The correct choice rate difference between the ‘Private’ and the ‘Social-Choice’

conditions was significantly different between participants with ‘Absent’ and ‘Present’ depressive symptoms. (B) Effect of depression scores on the learning rate in the

social context. Higher depression scores were associated with lowered learning rates in the social contexts but not with a significant effect on the two other parameters

fitted on the ‘Social-Choice’ condition (C) Model-based classification. The difference between the learning rate of the ‘Private’ and the social information contexts was

significantly different between participants with ‘Absent’ and ‘Present’ symptoms of depression. Present symptoms of depression correspond to scores� 8 on the HAD

depression subscale, respectively. Error bars represents standard errors to the mean. ‘r’ = Pearson’s correlation coefficient., ˚p<0.10, �p<0.05, Student’s t-test and

Pearson’s correlation.

https://doi.org/10.1371/journal.pcbi.1007224.g005
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anxiety: |zMETA|< 1.30, all ps > .190; Fig 5B–5D). These results where further confirmed by

with structural equation modeling accounting for the correlation between the parameters

(depression scores: zMETA = -2.61, p = .009; other ps> .188; Fig 4C). Interestingly, high depres-

sion scores were not solely associated with decreased learning rates in the ‘Social’ conditions,

but also with decreased learning rates in the ‘Social’ conditions when controlling for the learn-

ing rates in the ‘Private’ condition (zMETA = -3.08, p = .002), which indicates that the presence

of social information decreased the learning rate of the most depressed participants. To assess

the complementary utility of computational measures, we tested whether the learning rate in

the ‘Social’ conditions could identify participants with symptoms of depression (i.e. HAD

depression subscale score equal or above 8 [21]). The difference in learning rates detected par-

ticipants with depressive symptoms (score� 8) with good accuracy (64 ± 1%), good sensitivity

(64 ± 2%) and good specificity (65 ± 3%). A comparison between a classifier based on the

model parameters and a classifier based on correct choice rates revealed that the model-based

classifier was more specific to detect participants with higher symptoms of depression (t(198)

= 5.86, p< .001), but was less sensitive (t(198) = -12.03, p< .001; Fig 4C) than the classifier

based on correct choice rates.

Model simulations analyses

Model-based analyses indicated that the severity of depressive symptoms specifically reduced

individuals’ learning rate in ‘Social’ conditions (αS): a parameter that is used both in the

‘Social-Choice’ and in the ‘Social-Choice+Outcome’ condition. Model-free behavioral analyses

showed that the learning deficit associated with depressive symptoms was specific to the

‘Social-Choice’ condition. To ascertain that this computational result was compatible with our

model-free observation, we ran the same statistical analysis on simulated data [25]. Crucially,

data simulated using the fitted parameters accurately recovered the decrease in performance

associated with depression scores in the ‘Social-Choice’ condition compared to the ‘Private’

condition using the same mixed linear regression as on behavioral data (zMETA = -2.72, p =

.007) as well as the blunted effect of depression scores in the ‘Social-Choice+Outcome’ condi-

tion compared to the ‘Private’ condition (zMETA = -1.74, p = .082). Therefore, it appears that,

although depressive symptoms are associated with decreased learning rates in both social con-

ditions, its detrimental effect is manifest only in the ‘Social-Choice’ condition. This is probably

due to showing the demonstrator’s outcomes in the ‘Social-Choice+Outcome’ condition. This

additional outcome information may compensate for the decreases learning rates with depres-

sive symptoms. Confirming this intuition, our simulation analyses accurately recovered the

absence of significant effect of depressive symptoms in the ‘Private’ condition (zMETA = -0.29,

p> .250; S6 Fig). Thus, the simulations captured the specificity of the behavioral effect of

depression scores and illustrate that our model provides an accurate description of the data.

Checking parameter recovery

As we were interested in the modulation of specific parameters by depression scores we tested

whether our task allowed us to successfully retrieve a correlation between parameters in simu-

lated datasets, an important quality check often referred to as ‘parameter recovery’ [25]. To do

so, we ran 100 sets of simulations for each parameter, each simulating 100 participants, with

the parameter of interest correlating with an arbitrary variable (defined as the depression

scores) and the other parameters being randomly set for each participant in the range obtained

by optimization on the total sample. The simulated data were then fitted using our social rein-

forcement-learning model. Overall parameter recovery was very good, especially for the

parameters of the social conditions, with significant correlations were found in the 100% of
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the simulated datasets (average correlation coefficient of the parameters: r = 0.73 ± 0.01).

Importantly, the recovery of the correlations was specific to the manipulated parameter

with false alarms detected in less than 10% of the cases except for learning rate and choice

temperature in the ‘Private’ condition (which was not our condition of interest) (Fig 5B).

This result indicates that it is very unlikely that a correlation of one of our parameters with

participants’ HAD depression scores is due to an effect of depression scores on another

parameter.

Discussion

In the present study we assessed reinforcement learning with a behavioral paradigm involving

both private and social contexts, while concomitantly assessing depressive and anxiety symp-

toms in the general population. First, we replicate previous findings showing that participants

integrate the demonstrator’s choices and outcomes, which is consistent with the idea that

social learning processes (both in terms of imitation and vicarious trial-and-error) play a role

in human reinforcement learning [14, 15, 26–28]. Second, we show that the severity of depres-

sive symptoms is associated with a learning impairment that is specific to the learning context

where participants are informed about the demonstrator’s choices (social context). This nega-

tive effect was robust to the inclusion of anxiety, and robust across experiments and outcome

contingencies. Finally, computational analyses allowed us to characterize the effect of depres-

sive symptoms as a secondary social learning deficit, i.e. a reduction of the learning rate in

social contexts.

We found that depressive symptoms had a specific effect on imitation in the ‘Social-Choice’

condition. Crucially, the effect was robust to the inclusion of anxiety, which did not modulate

performance in our task. That anxiety had no effect may come as a surprise given that previous

studies have found that anxiety is associated with deficits in social and non-social reinforce-

ment learning [29]. One possible explanation is that anxiety might be more strongly linked to

classical fear conditioning than reward-based instrumental learning [30]. Depressive symp-

toms might thus undermine social reinforcement learning in instrumental and reward-maxi-

mization contexts, while anxiety might affect the same processes when outcomes are

independent from the participants’ choices (i.e. Pavlovian learning) and when outcomes have

a negative valence (aversive contexts).

Model-free analyses per se do not allow us to pinpoint the psychological mechanisms

underlying the negative effect of depressive scores on correct choice rates in the ‘Social-Choice’

context. The absence of interaction between the demonstrator’s performance and depressive

symptoms suggests that depressive symptoms did not lead participants to disproportionally

follow ‘bad examples’ or to be insensitive to ‘good examples’. However, interpretations based

on negative results are, at best, unsafe. To formally characterize the psychological mechanisms

of the detrimental effects of depressive symptoms we thus turned to model-based analyses.

We fitted subjects’ choice with a slightly modified version of a previously validated social

reinforcement-learning model [14]. As in standard algorithms, the model assumes that sub-

jects learn option values via the calculation of a reward prediction error, that the values are

moderated by a learning rate (αP) and that choices are generated via a soft-maximization pro-

cess whose stochasticity is governed by a temperature (βP) [31]. In addition to this ‘private’

learning module, the model also displays sensitivity to social information: in the ‘Social-

Choice’ condition the demonstrator’s choice biases the subsequent subject’s choice (the mag-

nitude of this effect is governed by an imitation rate κ) and in the ‘Social-Choice+Outcome’

condition the demonstrator’s outcome is integrated into the subject’s value function with a

vicarious learning rate (αO). Finally, we also allowed for different private learning rates and
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temperatures in the ‘Social’ contexts (αS and βS). This precise model parameterization allowed

us to disentangle two different hypotheses concerning the drop in performance associated

with depressive symptoms in the ‘Social-Choice’ condition. A correlation between depressive

scores and imitation rates and/or vicarious learning rates would imply what we define a ‘pri-

mary’ social learning impairment (i.e. an impairment of the social learning processes per se).
On the contrary, a correlation between the ‘Social’ context-specific learning rate and/or tem-

perature would imply a ‘secondary’ social learning impairment (i.e. an impairment of the pri-

vate learning processes in presence of social information). We found that depressive scores

negatively correlated with the private learning rate in the social context (αS), thus indicating

that the effect was consistent with a secondary impairment and was specific to the learning (as

opposed to the decision) process. In other words, our computational results suggest that one

possible way in which depressive symptoms affect learning in social contexts is conceptually

similar to a negative audience effect [32, 33], where the presence of social signals (the demon-

strator’s choices) induces a reduction of subjects’ instrumental performance.

From a methodological point of view, our study exemplifies how computational approaches

can provide new insights on the way in which cognitive processes vary with clinical symptoms.

Indeed, computational modeling demonstrated that the effect of depressive symptoms was

selective of the way individual information was processed [34, 35]. It is worth noting that these

conclusions were only allowed after a careful testing of the ability of our task to precisely iden-

tify which model parameter was influenced by depressive symptoms [25]. The exact cognitive

and psychological mechanisms that mediate the negative effect of social signals in instrumental

performance remain to be characterized. One possibility given that depressive symptoms are

associated with lower cognitive functioning in general [36] is that the mere presence of others

exacerbates these difficulties by capturing already scarcer attentional resources. Alternatively,

negative perception of self and negative comparison to others are core symptoms of depressive

symptoms [37]. Therefore, it is possible that the most depressed participants perceived their

demonstrator’s behavior as more reliable, thus underweighting the information they acquired

through their own experience.

Our results provide new evidence that depression-related reward learning deficits are highly

context-dependent [3–5], and suggest that the difference in learning rates associated with

depressive symptoms may only arise in social contexts [5, 9]. Crucially, our results suggest that

supposedly neutral aspects of the experimental setup (such as whether or not the task is done

in the presence or absence of an experimenter), may affect the results and explain inconsistent

findings [38]. In line with recent propositions, our results also suggest that a deeper investiga-

tion of socio-cognitive impairments in depressive symptoms may provide important new

insights [10, 11]. Following this idea, it would be particularly interesting to contrast the effect

of depressive symptoms on learning when the information is socially (as in the current study)

compared to asocially provided. Finally, we suggest that developing tools assessing reward

learning outside and inside social contexts (characterized either by the presence of another

player or by the social nature of the outcomes [39]) may prove useful to improve diagnosis and

personalize treatments of depressive syndromes in the long term.

An obvious limitation of our study, is that we did not control for participants’ actual diag-

nosis and treatment, which may be problematic since medication interacts with decision-mak-

ing in depression [40]. Therefore, our results would benefit from being replicated in carefully

characterized population, while controlling for medication status and medical history. This

replication would allow us to further measure the diagnostic value of our behavioral task and

associated computational model-based analyses. Indeed, in the present study, we only tested

its ability to detect participants with depressive symptoms as identified by a self-rated scale

[21] . It would be particularly interesting to test whether our behavioral and computational
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measures improve existing self-assessments that detect clinically diagnosed cases of depression

[41]. Finally, longitudinal designs will be required to assess whether or not our behavioral and

computational measures present good test-retest reliability and reflect states or traits, and

whether or not they predict the evolution of depressive symptoms to clinical diagnosis.

Our results have implications beyond their clinical relevance. Consistent with the ‘social

learning theory’ participants imitated demonstrators’ choices (‘Social-Choice’ condition) and

learned from their outcomes (‘Social-Choice+Outcome’ condition) [13, 14]. At the behavioral

level, these two psychological processes were manifest in the fact that participants’ perfor-

mance was modulated by the demonstrators’ performance. In particular, we found that partici-

pants observing a demonstrator performing ‘well’ performed better in the social compared to

the private learning context. Importantly, the opposite was also true: participants observing

low performing demonstrators displayed lower performance in the social compared to the pri-

vate context. This latter result is in apparent contrast with the normative view that imitation

should be biased toward successful individuals in order to be evolutionary adaptive [42–44].

This is also in contrast with recent empirical evidence using a very similar paradigm and show-

ing that imitation rate is modulated by the actual performance of the demonstrator, so that

demonstrators making random (i.e., non reward-maximizing) decisions are less imitated [15].

Two differences between the previous design and ours may explain this discrepancy. First, the

previous study involved mild electric shocks (primary reinforcer), while our study involved

abstract points to be converted into money (secondary reinforcer). More importantly perhaps,

the previous design involved a between-subjects design with two groups of participants paired

either with a consistently good or with a consistently bad participant, while in our experiments

the performance of the demonstrator was allowed to fluctuate in a within-subject manner

around an optimal behavior. Therefore, it could also be argued that our experiment is not well-

suited for measuring demonstrators’ performance effects on participants’ imitation behavior as

such effects require a relatively long and stable reputation building process [45, 46].

The question remains whether or not social learning in our task (imitation and vicarious

trial-and-error) engaged domain-specific social cognitive module or domain-general informa-

tion processing modules. In the absence of additional data (such as neuroimaging) we cannot

provide a definitive answer. However, evidence from post-learning face ratings provides some

clues [47]. We found a positive correlation between performance in the social contexts and the

demonstrator’s judgment of trustworthiness. Even if we cannot infer a causal link and its

direction from the post-learning face evaluation, these results suggest that a specific socio-cog-

nitive module (face evaluation) correlated with instrumental performance, thus demonstrating

the engagement of social information-specific processing and our reinforcement learning task.

Materials and methods

Participants

Two independent cohorts of 100 American participants, similar in terms of reported age

(mean reported age across the two cohorts: 33.39 ± 2.03) and of reported male/female ratio

(mean reported male/female ratio across the two cohorts: 35%; see Table 1) were recruited via

Amazon Mechanical Turk to participate in this online study. Each participant received a fixed

4$ amount for completing the 40-minute task to which a bonus earned during the experiment

was then added (average bonus: 0.49$). Participant received a description of the study and

signed an informed consent before starting the experiment. The study was approved by the the

local Ethical Committee (Conseil d’évaluation éthique pour les recherches en santé–CERES n˚

201659) and is in accordance with the Declaration of Helsinki (World Medical Association,

2008). The first cohort corresponded to a ‘discovery experiment’ where we explored the
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relation between instrumental performance and clinical scores; the second cohort corre-

sponded to a ‘replication experiment’ where we tested the robustness and replicability of the

effect identified in the first experiment.

Experimental design

Participants performed the probabilistic instrumental learning task described in the Results

section (Fig 1A and 1B). The task was programmed on Qualtrics and was composed of six

learning blocks of 20 trials each. In each block, participants had to choose between two cues.

Cues were characters of the agathodaimon font and were always presented in pair and only in

one block per subject. The cue-to-condition attribution was randomized across subjects. Par-

ticipants made their choice by pressing the E or P keys to choose the leftmost or rightmost

symbol. Participants were given no explicit information on reward probabilities, which they

had to learn through trial and error. In addition, they were encouraged to accumulate as many

points as possible, with their final amount of points being translated into bonus money at the

end of the experiment (conversion rate: 40 points equals 1$ bonus). In each pair, cues were

associated with reciprocal reward probabilities (20/80% or 30/70%). For instance, in a 30/70%

pair, the most rewarded cue provided a positive outcome (+1 point) 70% of the times and a

negative outcome (-1 point) 30% of the time, while the less rewarded cue provided a negative

outcome 70% of the time and a positive outcome 30% of the time. Participants had unlimited

time to make their choice (Mean reaction time: 2.47 ± 0.88 s, no significant effect of depressive

symptoms were found on the reaction times, all ps> .250).

Participants were told they had been paired with another player at the beginning of the

experiment with whom they played in turn in each trial. In addition, it was indicated that there

was no competition between them and the other player and that each player played for her/

himself. As in previous studies [48], the behavior of the demonstrators was determined by a

reinforcement learning algorithm (Q-learning) with a reasonable set of free parameters (α =

0.5, ß = 10; see below for a description for the Q-learning and its parameters). To avoid social

perceptual biases, the other player was represented by a neutral avatar, chosen to be generally

perceived as neither dominant or submissive nor trustworthy or untrustworthy [49]. Partici-

pants had to choose their own avatars in a set of other 16 identities (8 female, 8 male) at the

beginning of the task. Participants performed this task in three different contexts with different

amounts of social information: a ‘Private’ condition in which they did not have access to the

demonstrator’s behavior, a ‘Social-Choice’ condition in which participants could see the dem-

onstrator’s behavior but not their outcomes and a ‘Social-Choice+Observation’ in which par-

ticipants could observe the demonstrator’s decisions and outcomes. Importantly, participants

performed each condition (‘Private’, ‘Social-Choice’ and ‘Social-Choice+Outcome’) in sepa-

rate blocks and each block was repeated twice. In the ‘Stable’ type of contingency, outcome

probabilities were set at 30/70% and did not change during the block. In the ‘Reversal’ type of

contingency, outcome probabilities were set at 20/80% and was inverted across cue after 10 tri-

als (in average). Finally, at the end of the experiment, participants rated their demonstrator’s

avatar on three personality traits (trustworthiness, dominance and competence) and com-

pleted the Hospital Anxiety and Depression Scale [21] as well as the Peters et al. Delusions

Inventory, that was included in the exploratory analysis of the Discovery sample and then dis-

carded in absence of any significant effect and its inclusion did not affect the effect of depres-

sion. The total procedure lasts approximatively 45 minutes.

Statistical analyses

The analyses were performed on all participants and trials. No exclusion criteria was applied.
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Percentage of correct choices. Percentage of correct choices were extracted for each

block and either correlated or used as a continuous dependent variable.

Meta-analysis. Meta-analyses were ran using a mixed-effects model which is a conserva-

tive method for computing meta-analytic effects across studies. More precisely, this method

weights each study depending on its variability and allows non-random differences in effect

sizes between samples and computes the average of the distribution of the effect sizes. These

analyses were performed using R Metafor package [50].

Regression analyses. A mixed linear regression with both random intercept and random

slopes was conducted on correct choice rates taking participants’ ID as a random factor, condi-

tion (‘Private’, ‘Social-Choice vs ‘Social-Choice+Outcome’) as within-subject variables and

depression and anxiety scores as well as demonstrator’s performance and trustworthiness

judgment as continuous between-subject variables (Table 3).

Classification analyses. Out of sample tests were used to assess whether our task was able

to distinguish participants scoring above the ‘depressive symptoms absent’ threshold in

depression scale from those below this threshold. 50 participants were randomly extracted

from the entire sample and used to optimize a classifier of depressive symptoms (HAD depres-

sion subscale score above or equal to 8 [21]) using either the correct choice rates in the ‘Social-

Choice’ condition (model-free measure) or the learning rates in the Social information condi-

tions (αS model-based measure; see below). The optimal cut-off was defined to jointly maxi-

mize the specificity (true negative rate) and the sensitivity (true positive rate) of the classifier

on the training sample. The classifier and the associated optimal cut-off was tested on the 50

remaining participants. This operation was repeated 100 times in order to estimate the average

accuracy, sensitivity and sensibility of the classifiers.

Computational analyses

Model fitting. Computational analyses were performed after the collection of the replica-

tion sample. However, in order to assess the robustness of our computational model, our

computational results are presented as a meta-analysis across the exploratory and replication

samples (S2 Table).

We optimized the model parameters by minimizing the Laplace approximation to the

model evidence (log of the posterior probability: LPP) (Eq 8):

LPP ¼ logðPðdatajy1;...nÞÞ þ
Pn

k¼1
logðPðykÞÞ ð8Þ

Where D represents the data, θ1,. . .n the model, and θk represents one of the n parameters of

the computational model. The LPP represents a trade-off between the model’s accuracy and

complexity: it increases with the likelihood of the model given the data (a measure of fit) and

decreases with the number of parameters. By including priors over the parameters, this

Table 4. Estimated model parameters for the actual participants and for the simulated virtual demonstrators

(mean ± 95% c.i.).

Participants Virtual demonstrators

βP 2.20 ± 0.47 9.54 ± 0.49 (real: 10)

αP 0.58 ± 0.05 0.52 ± 0.02 (real: 0.50)

βS 1.83 ± 0.34

αS 0.60 ± 0.06

κ 0.13 ± 0.02

αO 0.46 ± 0.06

https://doi.org/10.1371/journal.pcbi.1007224.t004
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method avoids degenerate parameter estimation. In our analysis, the priors were defined as a

gamma function (gampdf(1.2,5)) for the temperature parameters (range: 0<β<Infinite) and as

a beta function (betapdf(1.1,1.1)) for the learning and imitation rates (ranges: 0<α<1,

0<κ<1) as described in [51] (see Table 4 for the estimated parameters).

Importantly, LPP analysis suggested that the social reinforcement learning fit the data better

than a simple Q-learning model without social influence, even accounting for its extra-com-

plexity (social reinforcement learning model: posterior probability: 90 ± 3%; exceedance prob-

ability: 100%). As a control analysis, in order to ensure that our model comparison criterion

was not over-fitting prone, we fit the behavior of the virtual demonstrators that we generated

with a Q-learning model. This model recovery analysis [25] correctly indicated that the simple

Q-learning model explained the demonstrators’ data better (social reinforcement learning

model: posterior probability: 100 ± 0%; exceedance probability: 100%) (see supplementary fig-

ures and table for additional information concerning the parameter recovery analysis).

Because the model parameters were correlated with each other (maximal correlation:

r = 0.53; S4 Table), we used structural equation modeling in addition to correlation analyses

to analyze the influence of depression scores on the model parameters. This technique allowed

us to test the influence of depression scores on each parameter while simultaneously account-

ing for the inter-correlations of the dependent variables (the model free parameters) and of the

independent variable (the depression score).

Model simulation analyses. Finally, we assessed the ability of the model to recover the

observed behavioral effect of depressive symptoms using model simulations [25]. For each par-

ticipant, we simulated behavioral data for each condition based on their best fitting parame-

ters. Importantly, a simulated demonstrator was also generated, such that the simulated data

were completely independent of the contingencies actually experienced by the participants.

This procedure was repeated 100 times, to avoid any effect of participant’s and demonstrator’s

history of choice and outcomes. The analysis of the recovered percentage of correct choices

was ran on the averaged rates of correct choices across the 100 simulations using a linear

mixed regression taking the exact same predictors as the mixed general linear model used for

analyzing participants’ percentage of correct choices.
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S6 Table. Parameter recovery—Correlation between the recovered parameters and the

Depressive symptoms scores for each parameter manipulation.

(DOCX)

S1 Fig. Distribution of Depression scores in the two samples.

(PDF)

S2 Fig. Effect of depression scores on the correct response rate for each sample and each

reward contingency.

(PDF)

S3 Fig. Learning curves in each condition for each reward contingency. Mean learning

curves (in black) and their standard errors (shaded light grey area) are represented for each

condition and each reward contingency. The dotted line in orange represents the model pre-

diction for each condition and each reward contingency. The grey area for the reversal blocks

indicates the trials in each the reversal of reward contingencies can occur. For each plot, the

top dotted line indicates the matching law and the bottom dotted line indicates chance level.

(PDF)

S4 Fig. Correlation between the actual performances and the performances predicted by

the model. For each of the condition, the performance predicted by the computational model

highly correlated with the participants’ actual performances in both the discovery and the rep-

lication samples (Meta-analytic correlations: all r-s> .72, all z-s > 10.21, all p-s< .001).

(PDF)

S5 Fig. Distribution of the model parameters in the two samples.

(PDF)

S6 Fig. Effect of depressive symptoms on the rate of correct choice in the social contexts.

Depressive symptoms (HAD Depression subscale score� 8) were associated with decreased

correct response rate only in the ‘Social Choice’ condition. This effect was accurately recovered

by simulations of our model (white dots). Error bars represent standard errors.

(PDF)

S7 Fig. Correlation between the regression coefficients in the discovery and replication

samples. The correlation coefficients of the two samples were highly correlated, indicating the

replication of the results in the two samples. The dotted line corresponds to the perfect replica-

tion.

(PDF)

S8 Fig. Model comparison between a private learning model, our social learning model

and a model with three learning rates and three temperature parameters. In order to fur-

ther test the robustness of our results we first compared our model with a more complex

model including different learning rates and temperature parameters for each condition. This

parsimony-driven model comparison including this model confirmed that the one we used in

our analyses better accounted our data. We then compared our model with all the models of

the possible models containing one to three learning rates and one to three temperature

parameters or two temperature parameters in addition to the imitation (κ) and the observation

learning rate parameter (αO) and a simple reinforcement learning model. In line with our

results, the model with two learning parameters and one temperature parameter was the most

probable for our data (S9 Fig). In addition, we recovered the specific association between

higher depression scores and lower learning rates in the social conditions with the learning

parameters estimated in this model (b = -0.2 ± 0.01, z = -2.55, p = .011, all other |z|< 1.48, all
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S9 Fig. Model comparison between learning models of increasing complexity.
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S10 Fig. Correlation between learning rates in the Social Contexts (retrieved from a model

with only one temperature) and Depression score. The correlation is also significant (b =

-0.2 ± 0.01, z = -2.55, p = .011).

(PDF)
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