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Abstract 7 

 8 

Using	 a	 two-wave	 online	 experiment,	 we	 investigate	 whether	 COVID-19	 exposure	9 

changes	 participants’	 threat-detection	 threshold.	 Threat	 reactivity	was	measured	 in	 a	10 

signal	detection	task	among	277	British	adults	who	also	reported	how	vulnerable	they	11 

felt	to	infectious	diseases.	Participants’	data	were	then	matched	to	the	local	number	of	12 

confirmed	COVID-19	cases	announced	by	the	NHS	every	day.	We	found	that	participants	13 

who	perceive	 themselves	 as	more	 likely	 to	 catch	 infectious	 diseases	 displayed	 higher	14 

threat	reactivity	in	response	to	increased	COVID-19	cases.		15 
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Introduction 23 

 24 

Having	 an	 accurate	 perception	 of	 potential	 risks	 and	 benefits	 is	 essential	 to	 optimal	25 

decision-making.	Although	all	errors	should	ideally	be	avoided,	some	errors	are	costlier	26 

than	others.	False	positives	and	false	negatives	indeed	have	asymmetric	consequences	27 

for	the	individual	because	failing	to	detect	a	threat	when	there	is	one	is	more	dangerous	28 

than	believing	that	there	is	a	threat	when	there	is	none	(Haselton	&	Buss,	2000).	Given	29 

this	asymmetry,	error-management	theory	predicts	that	individuals	should	be	biased	to	30 

overdetect	negative	events.	In	line	with	this	idea,	surveys	consistently	show	that	people	31 

overperceive	all	kinds	of	threats,	such	as	crime	rates,	terrorism	or	unemployment	risk	32 

(Gilbert	et	al.,	2016;	Lieder	et	al.,	2016).	 33 

 34 

To	be	adaptive	however,	threat	reactivity	must	be	sensitive	to	individual	circumstances,	35 

such	as	physical	condition	or	age	(Nettle	&	Bateson,	2012).	For	example,	people	in	poor	36 

physical	condition	can	escape	less	easily	from	threats,	which	means	that	for	them,	more	37 

so	 than	 for	 people	 in	 better	 shape,	 having	 a	 lower	 threat	 detection	 threshold	 is	38 

particularly	adaptive.	In	line	with	this	idea,	people	in	poor	physical	shape	are	more	prone	39 

to	 the	 auditory	 looming	 effect,	 a	 bias	 that	 helps	 us	 get	 ready	 to	 move	 away	 from	40 

approaching	objects	by	making	us	hear	sounds	that	are	coming	towards	us	as	closer	than	41 

sounds	going	away	from	us	(Neuhoff	et	al.,	2012).	 	Similarly,	 individuals	who	perceive	42 

themselves	 as	 more	 sensitive	 to	 diseases	 have	 stronger	 reactions	 to	 disease	 cues	43 

(Navarrete	&	Fessler,	2006;	Reid	et	al.,	2012);	and	women	who	perceive	themselves	as	44 

more	 vulnerable	 to	 sexual	 coercion	 tend	 to	 stereotype	 out-group	 males	 as	 more	45 

threatening	(McDonald	et	al.,	2015)	46 

	47 



	48 

In	addition	to	these	internal	factors,	readiness	to	react	to	threat	should	also	respond	to	49 

local	circumstances.	For	instance,	in	a	highly	threatening	environment,	individuals	should	50 

react	more	readily	to	threat	cues	than	in	an	environment	with	fewer	threats	(Nettle	&	51 

Bateson,	2012).	 In	 line	with	 this	 idea,	 social	perception	experiments	have	 shown	 that	52 

maltreated	children	are	more	likely	to	over-detect	anger	in	emotionally	ambiguous	faces	53 

(Pollak,	2008). 54 

 55 

In	the	present	paper,	we	further	test	this	model	by	analyzing	the	effect	of	the	COVID-19	56 

epidemic	 on	 individuals’	 threat	 reactivity.	 Using	 signal	 detection	 theory,	 we	 test	 the	57 

hypothesis	that	being	surrounded	by	more	COVID-19	cases,	as	measured	by	local	COVID-58 

19	prevalence,	will	increase	people’s	reactivity	to	threats.	More	specifically,	we	predict	59 

that	this	effect	is	modulated	by	individuals’	perceived	vulnerability	to	infectious	diseases,	60 

with	a	larger	effect	among	individuals	who	perceive	themselves	as	highly	vulnerable	to	61 

diseases.	 62 

 63 

In	 order	 to	 test	 this	 hypothesis,	 we	 assessed	 subjective	 vulnerability	 in	 a	 sample	 of	64 

participants	who	took	part	in	a	threat	reactivity	experiment	twice:	on	March	24th	and	two	65 

weeks	later,	on	April	7th.	Local	variations	of	the	number	of	COVID-19	cases	allow	us	to	66 

obtain	quasi-experimental	natural	variations	of	threat	exposure.	For	instance,	on	March	67 

24th,	the	urban	local	tier	of	Wakefield	reported	only	13	cases,	less	than	the	mostly	rural	68 

area	of	Wiltshire,	which	counted	almost	3	times	more	cases.	The	evolution	of	the	number	69 

of	COVID-19	cases	also	varied	from	one	region	to	the	next.	For	instance,	both	Hounslow	70 

and	Essex	districts	counted	around	80	cases	on	March	24th	but	Essex	district	counted	938	71 

cases	two	weeks	later	while	Hounslow	district	counted	only	279	more	cases	at	that	date.	72 



Similarly,	while	the	district	of	Merton	ranked	21st	in	the	number	of	cases	on	Match	24th	it	73 

fell	to	the	40th	position	on	April	7th.	Conversely,	the	district	of	Liverpool	jumped	from	the	74 

47th	to	17th	position	in	that	same	time	interval.	We	thus	exploited	these	local	variations	75 

in	 order	 to	 assess	 the	 combined	 effect	 of	 exposure	 to	 disease	 threat	 and	 subjective	76 

vulnerability	to	diseases	on	participants’	reactivity	to	threat.	 77 

 78 

 79 

Methods 80 

 81 

Ethics	 Statement.	 Our	 study	 was	 approved	 by	 the	 local	 Ethical	 Committee	 (CERES	82 

n°201659).	 Each	 participant	 received	 a	 description	 of	 the	 study	 and	 provided	 their	83 

informed	consent	before	starting	the	experiment.	All	scripts	and	raw	data	are	available	84 

in	the	OSF	project	(https://osf.io/5cexn/). 85 

                86 

Participants.	 352	UK	participants	 recruited	 on	Prolific	Academic	 completed	our	 study	87 

twice:	 once	 between	March	 24th	 at	 2PM	 and	March	 25th	 at	 2	 PM,	 and	 a	 second	 time	88 

between	April	7th	at	2PM	and	April	8th	at	2PM.	The	2PM	limit	was	chosen	because	daily	89 

figures	 of	 COVID19	 cases	 are	 announced	 by	 the	 British	 government	 at	 that	 time.	 All	90 

participants	 received	compensation	 for	 their	 time	 (£5	per	hour),	 as	well	 as	a	variable	91 

bonus	depending	on	task	performance	(£0-0.50).	For	both	waves,	all	trials	with	reaction	92 

times	below	150	ms	or	above	2,500	ms	were	excluded.	1	participant	was	removed	for	93 

having	mean	reaction	times	at	±3	SD	of	the	mean	in	the	first	wave	and	4	were	excluded	94 

in	the	second	wave.	22	participants	were	then	removed	for	having	reaction	times	outside	95 

these	ranges	on	more	than	40%	of	the	trials	in	the	first	wave	and	8	were	excluded	based	96 

on	this	same	criterion	in	the	second	wave.	In	addition,	7	participants	were	removed	for	97 



not	 having	 provided	 answers	 to	 the	 “Perceived	 Infectability	 and	 Germ	 Aversion”	98 

questionnaire	 in	 the	 first wave	 and	 27 participants	 were	 removed	 for	 not	 having	99 

provided	answers	 to	 the	“Perceived	Infectability	and	Germ	Aversion”	questionnaire	 in	100 

the	 second	wave	 (Duncan	 et	 al.,	 2009).	 Finally,	 4	 participants	 were	 excluded	 for	 not	101 

having	provided	 their	date	of	birth	and	2	participants	were	excluded	 from	not	having	102 

provided	a	valid	postal	code.	In	total, 75	participants	were	excluded,	which	left	us	with	a	103 

final	sample	of	277	participants	living	in	112	geographical	areas	(158	Females,	mean	age:	104 

38.43	±	12.58	s.d.	years).	 105 

 106 

Materials.	 The	 task	 was	 presented	 using	 Qualtrics.	 Monetary	 punishments	 were	107 

presented	 using	 text	 (“-	 5	 pennies”),	 which	 represented	 the	 true	 amount	 that	 was	108 

subtracted	 from	 participants’	 total	 bonus	 payment	 at	 the	 end	 of	 the	 experiment.	 The	109 

punishments	were	provided	in	response	to	incorrect	identifications	of	a	line	appearing	in	110 

the	 center	 of	 a	 circle	 as	 being	 short	 (11.5mm)	 or	 long	 (13mm).	 Following	 the	111 

experimental	 task,	 participants	 completed	 questionnaires	 including	 standard	 socio-112 

demographic	questions	(age,	income,	education,	postal	code	of	residence)	as	well	as	their	113 

perceived	sensitivity	to	diseases. 114 

 115 

Design	and	Procedure.	The	experiment	was	conducted	online	and	lasted	approximately	116 

25	minutes.	Participants	were	told	that	their	task	was	to	classify	a	line	as	either	short	or	117 

long	by	pressing	the	corresponding	key	and	that	feedback	for	incorrect	responses	would	118 

occur	some	of	the	time.	The	training	phase	consisted	of	22	practice	trials	during	which	119 

the	 difficulty	 of	 the	 task	 was	 progressively	 raised	 until	 real-game	 conditions	 were	120 

reached. 121 

 122 



The	 experiment	 consisted	 of	 300	 trials	 separated	 in	 three	 100-trial	 blocks.	 Each	 trial	123 

began	with	 the	 presentation	 of	 a	 fixation	 cross	 (300ms),	 followed	by	 an	 empty	 circle	124 

(300ms).	 The	 short	 or	 the	 long	 line	 was	 then	 flashed	 within	 the	 circle	 (40ms)	 and	125 

disappeared	to	show	a	plain	black	screen	during	which	participants	could	submit	their	126 

response	(Figure	1).		An	equal	number	of	short	and	long	lines	were	presented	within	each	127 

block.	Short	and	long	lines	were	presented	in	a	random	order.	Participants	were	given	an	128 

infinite	amount	of	time	to	indicate	their	response	using	‘e’	or	‘p’	on	the	keyboard.		Based	129 

on	 the	reinforcing	schedule,	 incorrect	 responses	were	 followed	by	an	800ms	negative	130 

feedback	screen	with	a	probability	of	75%	or	25%,	depending	on	the	type	of	stimulus	(see	131 

below).	Otherwise,	the	next	trial	was	immediately	presented. 132 

 133 

An	asymmetrical	reinforcement	ratio	was	introduced	such	that	one	type	of	line	(i.e.	short	134 

or	long)	was	punished	more	often.	The	line	type	that	was	punished	more	frequently	is	135 

referred	to	as	the	“harsh	stimulus”	and	the	line	type	that	was	punished	less	frequently	is	136 

referred	to	as	the	“lenient	stimulus”.	Misidentifying	the	harsh	line	(i.e.,	if	the	harsh	line	is	137 

short,	a	misidentification	is	to	respond	"long")	was	followed	by	a	negative	feedback	with	138 

a	 probability	 of	 75%.	Misidentifying	 the	 lenient	 line	 (i.e.,	 if	 the	 lenient	 line	 is	 long,	 a	139 

misidentification	 is	 to	 respond	 "short")	 was	 followed	 by	 a	 negative	 feedback	 with	 a	140 

probability	of	25%.	 	Analyses	from	a	pilot	study	using	the same	behavioral	task	prove	141 

that	 the	 actual	 distribution	 of	 negative	 feedbacks	 corresponds	 to	 the	 anticipated	142 

asymmetric	 ratio	design:	on	average,	76.1%	of	errors	on	 the	Harsh	 line	and	29.4%	of	143 

errors	 on	 the	 Lenient	 line	were	 followed	 by	 a	 negative	 feedback	 (-5	 pennies).	 These	144 

results	are	consistent	across	conditions	and	blocks.	74%	of	errors	on	harsh	lines	and	28%	145 

of	errors	on	lenient	lines	were	punished	in	Block	1;	74%	and	30%	in	Block	2;	and	74%	146 

and	21%	in	Block	3	(Safra	et	al.,	2021). 147 



 148 

The	long	line	was	randomly	assigned	to	being	the	harsh	or	the	lenient	stimulus	for	each	149 

participant.	 150 

151 

Figure	1.	 Schematic	 representation	of	 the	 tasks	A	 fixation	 cross	 appears	 for	 300ms,	 followed	by	 an	152 

empty	circle.	A	short	or	a	long	line	is	then	flashed	inside	the	circle	for	40ms.	Participants	have	an	infinite	153 

amount	of	time	to	respond	before	they	receive	a	punishment	for	some	of	their	incorrect	responses. 154 

	 155 

Threat	 reactivity.	Threat	 reactivity	  was	 conceptualized	 as	 participants’	 bias	 to	 avoid	156 

punishment.	 In	our	task	this	meant	over-detecting	the	 line	 for	which	misidentification	157 

was	 associated	 with	 more	 frequent	 punishment	 (i.e.,	 the	 harsh	 line).	 Response	 bias	158 

towards	the	harsh	line	was	computed	using	the	standard	signal	detection	measure:	 159 

 160 

!"#(%) 	= 		 12×	!"#	(
,-./ℎ 1233415	 ∗ 	!78978: ;<1233415	
,-./ℎ ;<1233415 ∗ 	!78978: 1233415

)	161 

 162 

 163 

with	Harshcorrect	and	Lenientcorrect	correspond	to	the	proportion	of	correct	identifications	164 

(hits	and	correct	rejections)	to	the	total	number	of	harsh	and	lenient	trials	respectively,	165 



and	Harshincorrect	and	Lenientincorrect	correspond	to	the	proportion	of	false	identifications	166 

(misses	 and	 incorrect	 rejections)	 to	 the	 total	 number	 of	 harsh	 and	 lenient	 trials	167 

respectively.	When	accuracy	was	equal	to	1	or	0,	we	followed	the	log	linear	correction	168 

procedure	described	by	Hautus	(1995). 169 

 170 

Following	Pizzagalli	 et	 al.	 (2005)	and	Chevallier	et	 al.	 (2016),	 reactivity	 to	 threat	was	171 

computed	by	measuring	the	change	in	bias	towards	the	harsh	line	between	the	first	block	172 

(in	which	the	participant	is	naive	about	the	value	of	the	two	lines)	and	the	last	block	(in	173 

which	 the	 participant	 has	 experienced	 that	 the	 misidentification	 of	 one	 line	 is	 more	174 

frequently	associated	with	punishments).	 175 

 176 

Perceived	 infectability.	 At	 the	 end	 of	 the	 experiment,	 participants’	 susceptibility	 to	177 

infectious	 diseases	 was	 assessed	 using	 the	 “Perceived	 Vulnerability	 to	 Disease”	178 

questionnaire	(Duncan,	Schaller	&	Park,	2009).	This	questionnaire	is	composed	of	two	179 

subscales:	 the	 “Perceived	 Infectability”	 subscale	 which	 measures	 the	 self-reported	180 

susceptibility	to	infectious	diseases,	and	the	“Germ	Aversion”	subscale	which	assess	the	181 

level	of	affective	responses	to	situations	of	high	risk	of	disease	transmission.	In	our	study,	182 

we	used	“Perceived	Infectability”	as	our	measure	of	interest	as	it	indicates	how	much	the	183 

individual	feels	threatened	by	infectious	diseases,	while	“Germ	Aversion”	was	used	as	a	184 

control	measure	for	general	affective	reactions	to	diseases.	 185 

Participants	completed	these	scales	twice,	once	in Wave	1	and	a	second	time	in	Wave	2.	186 

Our	 data	 shows	 strong	 consistency	 in	 participants’	 response	 to	 the	 perceived	187 

vulnerability	 to	 disease	 questionnaire.	 We	 found	 a	 strong	 inter-temporal	 correlation	188 

between	the	two	     waves	for	the	global	disgust	score	(r	=	0.86	±	0.01	s.e.m     ,	p	<	.001),	189 



the	perceived	infectability	score	(r	=	0.86	±	0.01	s.e.m.,	p	<	.001)	and	the	germ	aversion	190 

score	(r	=	0.84	±	0.02	s.e.m,	p	<	.001).	 191 

Socio-demographic	information.	In Wave	1,	participants provided information	about	their	192 

age,	gender	and	level	of	education.	Additional	questionnaires	were	also	included	at	the	193 

end	of Wave	1	and Wave	2	(see	Supplementary	information	for	details). 194 

Local	COVID-19	exposure.	The	number	of	 local	COVID-19	cases	was	retrieved	 from	the	195 

NHS	website	based	on	participants’	postal	codes.	For	residents	of	England,	we	retrieved	196 

COVID-19	 cases	 statistics	 at	 the	upper	 tier	 local	 authority	 level	 (UTLA)	 from	 the	NHS	197 

website.	 UTLAs	 are	 an	 administrative	 subdivision	 below	 the	 level	 of	 the	 region.	 For	198 

residents	of	Scotland,	COVID-19	figures	were	given	at	the	level	of	health	board	areas	from	199 

the	Scotland	NHS	website	(there	are	14	such	areas).	Finally,	COVID-19	cases	statistics	for	200 

Wales	 and	 Northern	 Ireland	 were	 not	 available	 for	 smaller	 subdivisions.	 We	 thus	201 

considered	Wales	and	Northern	Ireland	as	just	other	administrative	sub-divisions.	 202 

 203 

Importantly,	perceived	vulnerability	to	pathogens	was	not	significantly	correlated	with	204 

the	local	numbers	of	COVID-19	cases	neither	in	Wave	1	(r	=	.01	±	0.06	s.e.m.,	t(275)	=	205 

0.13,	p	>	.250)	nor	in	Wave	2	(r	=	-.01	±	0.06	s.e.m.,	t(275)	=	-0.21,	p	>	.250).	Similarly,	in	206 

both	Waves,	no	significant	correlation	was	found	between	the	local	number	of	COVID-19	207 

cases	 and	 the	 subscales	 of	 Perceived	 Vulnerability	 to	 Disease:	 perceived	 infectability	208 

(Wave	1:	r	=	-.02	±	0.06	s.e.m.,	t(275)	=	-0.37,	p	>	.250;	Wave	2:	r	=	-.04	±	0.06	s.e.m.,	t(275)	209 

=	-0.59,	p	>	.250)	and	germ	aversion	(Wave	1:	r	=	.03	±	0.06	s.e.m.,	t(275)	=	0.52,	p	>	.250;	210 

Wave	2:	r	=	.02	±	0.06	s.e.m.,	t(275)	=	0.26,	p	>	.250). 211 

 212 

Analyses. 213 



Threat	reactivity	in	Wave	1	and	in	Wave	2	were	first	analyzed	using	robust	mixed	linear	214 

regressions	 taking	 the	 number	 of	 reported	 COVID-19	 cases	 in	 the	 upper	 tier	 local	215 

authority,	germ	aversion	and	perceived	infectability,	as	well	as	the	interaction	between	216 

local	 exposure	 to	 COVID-19	 and	 these	 two	 dimensions	 of	 perceived	 vulnerability	 to	217 

diseases	as	predictors.	All	the	predictors	were	transformed	into	z-scores	to	avoid	issues	218 

due	to	scaling	differences.	To	control	for	individual	and	local	effects	independent	of	the	219 

exposure	to	COVID-19	(such	as	living	in	a	rural	area	or	in	a	city),	participant	ID	and	the	220 

upper	tier	local	authority	was	included	as	a	random	factor.	In	order	to	further	assess	the	221 

robustness	of	our	results,	we	conducted	additional	models	with	age,	gender	and	level	of	222 

education	as	additional	predictors. 223 

 224 

Finally,	 in	order	to	compare	participants’	behavior	across	the	two	waves,	we	analysed	     225 

Waves	 1	 and	 2	 simultaneously	 using	 similar	 robust	 mixed	 linear	 regressions	 as	226 

previously	 but	 taking	 “Wave”	 as	 additional	 predictor.	 All	 the	 robust	 mixed	 linear	227 

regressions	were	conducted	using	robustlmm	R	package	(Koller,	2016). 228 

 229 

Results 230 

No	main	effect	of	COVID-19	exposure	was	 found	on threat	reactivity	(b	=	 -0.07	±	0.06	231 

s.e.m.,	 z	 =	 -1.24,	 p	 =	 .215).	 However, there	 was	 a	 significant	 positive	 effect	 of	 the	232 

interaction	between	exposure	to	COVID-19	and	perceived	infectability	(b	=	0.15,	±	0.07	233 

s.e.m.,	z	=	2.27,	p	=	.023)	such	that	participants	who	perceived	themselves	as	more	likely	234 

to	catch	infectious	diseases	reacted	more	strongly	to	the	number	of	COVID-19	cases	in	235 

their	surroundings	(Table	1).	This	effect	was	robust	to	the	inclusion	of	age,	gender	and	236 

level	of	education	(interaction	between	perceived	infectability	and	COVID-19	exposure:	237 

b	=0.18	±	0.07	s.e.m.,	z	=	2.48,	p	=	.013;	no	other	significant	effect,	see	Table	1)	and	was	238 



specific	 to	 perceived	 infectability	 as	 there	 was	 no	 significant	 effect	 of	 germ	 aversion	239 

(main	effect:	b	=	0.08 ±	0.06	s.e.m.,	z	=	1.31,	p	=	.190 ;	interaction:	b	=	-0.00 ±	0.05	s.e.m.,	240 

z	=	-0. 01,	p	>	.250). 241 

Analysis	of	Waves	1	and	2	confirmed	the	positive	interaction	between	exposure	to	COVID-242 

19	and	perceived	infectability	(b	=	0.10	±	0.05	s.e.m.,	z	=	2.22,	p	=	 .026;	Table	1).	This	243 

effect	was	still	found	as	a	trend	after	including	demographic	variables	as	predictors	(b	=	244 

0.10	±	0.05	s.e.m.,	z	=	1.85,	p	=	.064;	Table	1).	 245 

To	 sum	 up,	 differences	 in	 the	 number	 of	 COVID-19	 cases	 had	 no	 overall	 effect	 on	246 

participants’	threat	reactivity	but	participants	with	a	high	sensitivity	to	diseases	had	a	247 

lower	threat	reactivity	threshold	when	they	lived	in	an	area	with	many	COVID-19	cases	248 

than	when	those	who	lived	in	an	area	with	few	COVID-19	cases.	This	suggests	that	threat	     249 

reactivity	 increased	 in	 response	 to	 higher	 levels	 of	 disease	 threat	 among	 those	 who	250 

perceived	themselves	as	vulnerable	to	diseases. 251 

One	possible	interpretation	of	our	findings	is	that	participants	with	a	higher	perceived	252 

sensitivity	to	diseases	are	also	those	who	are	more	informed.	We	ruled	out	this	possibility	253 

by	measuring	participants’	accuracy	when	estimating	the	number	of	COVID-19	cases	in	254 

the	 UK.	 We	 found	 that	 perceived	 infectability	 was	 not	 correlated	 with	 participants’	255 

accuracy	when	they	estimated	the	number	of	COVID-19	cases	in	the	UK	(r	=	0.04	±	0.06	256 

s.e.m.,	t(275)	=	0.66	,	p	>	.250;		non-signed	error:	r	=	-0.04,	t(275)	=	-0.63		±	0.06	s.e.m.,	     257 

,	p	>	.250	;	measured	in Wave	2)	and	that	the	interaction	between	the	number	of	COVID-258 

19	cases	and	perceived	infectability	remained	significant	after	adjusting	for	participants’	259 

knowledge	of	the	epidemics	(after	controlling	for	signed	error:	b	=	0.09	±	0.05	s.e.m.,	z	=	260 

1.97,	p	=	.049;	after	controlling	for	non-signed	error:	b	=	0.09	±	0.05	s.e.m.,	z	=	1.89,	p	=	261 

.058).	This	suggests	that	participants	with	a	high	level	of	perceived	infectability	do	not	262 



have	a	better	or	a	more	catastrophic	image	of	the	situation	than	those	with	a	low	level	of	263 

perceived	infectability.		 	264 



	265 

	 Wave	1	 Waves	1	&	2	
	 Reduced	model	 Full	model	 Reduced	model	 Full	model	

Intercept	 0.23	±	0.06		***	
z	=	4.09	

0.28	±	0.08	***	
z	=	3.70						

0.21	±	0.06	***	
z	=	3.49	

0.27	±	0.07	***	
z	=	3.77						

COVID-19	
published	cases	

-0.07	±	0.06	
z	=	-1.24	

-0.09	±	0.09	
z	=	-0.96	

-0.05	±	0.05	
z	=	-1.05						

-0.04	±	0.07	
z	=	-0.54	

Perceived	
infectability		

Main	effect	
-0.09	±	0.06	
z	=	-1.63						

-0.10	±	0.06	
z	=	-1.66						

-0.05	±	0.04	
z	=	-1.25						

-0.06	±	0.04	
z	=	-1.53						

Interaction	with	COVID-19	published	cases	

0.15	±	0.07	*	
z	=	2.27						

0.18	±	0.07	*	
z	=	2.48						

0.10	±	0.05	*	
z	=	2.22						

0.10	±	0.06	°	
z	=	1.85	

Germ	aversion	

Main	effect	
0.08	±	0.06	
z	=	1.48						

0.08	±	0.06	
z	=	1.31						

0.06	±	0.04	
z	=	1.48						

0.06	±	0.04	
z	=	1.47						

Interaction	with	COVID-19	published	cases	
1.01 ±	0.05	
z	=	0.17	

-0.00	±	0.05	
z	=	-0.01	

-0.04	±	0.03	
z	=	-1.30						

-0.05	±	0.03	
z	=	-1.39						

Age	

Main	effect	

	 -0.02	±	0.06	
z	=	-0.36						 	 0.					04	±	0.04	

z	=	1.10						
Interaction	with	the	number	of	COVID-19	published	cases	

	 -0.05	±	0.08	
z	=	-0.63	 	 -0.04	±	0.05	

z	=	-0.72						

Gender	

Main	effect	

	 -0.12	±	0.12	
z	=	-	1.06						 	 -0.12	±	0.08	

z	=	-1.49						
Interaction	with	the	number	of	COVID-19	published	cases	

	 0.05	±	0.12	
z	=	0.43	 	 -0.00	±	0.09	

z	=	-0.02						

Education	level	

Main	effect	

	 1.01 ±	0.06	
z	=	0.18	 	 -0.01	±	0.04	

z	=	-0.15						
Interaction	with	the	number	of	COVID-19	published	cases	

	 -0.07	±	0.08	
z	=	-0.86	 	 -0.04	±	0.05	

z	=	-0.72	

Wave	 	 	 -0.01	±	0.09	
z	=	-	0.09	

-0.					03	±	0.09	
z	=	-0.36						

Table	1.	Coefficients	of	the	mixed	linear	regression	on	threat	reactivity	conducted	on	Wave	1	alone	and	Waves	266 

1	and	2	simultaneously.	A	positive	interaction	was	found	between	perceived	infectability	and	the	number	of	COVID-267 

19	published	cases	 in	 the	 local	area.	Standardized	regression	coefficients	are	presented	with	 the	standard	error	 to	268 

mean	and	the	associated	z	value.	°	 indicates	a	p-value	inferior	to	 .100,	*	 indicates	a	p-value	inferior	to	 .050	and	***	269 

indicates	a	p-value	inferior	to	.001.      270 



Discussion 271 

 272 

In	line	with	our	hypothesis,	our	results	revealed	that	variations	in	threat	reactivity	was	273 

associated	to	a	combination	of	local	threat	level	(as	measured	by	the	local	prevalence	of	274 

COVID-19)	 and	 individual	 sensitivity	 to	 threat:	 the	 more	 individuals	 perceived	275 

themselves	as	susceptible	to	infectious	diseases,	the	more	COVID-19	exposure	increased	276 

their	reactivity	to	threats.	This	effect	was	present	at	the	two	time-points	of	the	epidemics	277 

we	had	access	to:	on	the	day	following	the	official	lockdown	enforcement	in	the	UK	and	278 

two	weeks	later.	These	results	provide	evidence	that	individuals	react	to	the	presence	of	279 

survival	threats	by	decreasing	their	threshold	for	responding	to	punishment	(Nettle	&	280 

Bateson,	 2012).	 These	 results	 are	 in	 line	 with	 previous	 findings	 by	 Makhanova	 &	281 

Shepherd	 (2020)	 suggesting	 that	perceived	 infectability	 to	diseases	 is	 associated	with	282 

increased	 vigilance	 to	 health	 and	 disease-related	 issues	 in	 the	 context	 of	 COVID-19	283 

pandemic.	 284 

 285 

Going	 further,	 the	 present	 study	 reveals	 that	 psychological	 adjustments	 following	 an	286 

increase	of	threat	in	the	environment	acts	at	the	global	level	of	individuals’	psychology.	287 

More	precisely,	 it	 appears	 that	disease	 threat,	 such	as	COVID-19	exposure,	modulates	     288 

threat	reactivity	across	domains,	even	if	the	threat	is	not	linked	to	health,	as	it	is	the	case	289 

with	the	financial	punishments	used	in	our	experiment.	 290 

 291 

Crucially,	the	significant	interaction	between	perceived	infectability	and	local	COVID-19	292 

exposure	suggests	that	this	response	is	conditional	on	the	level	of	perceived	threat	and	293 

not	on	 the	absolute	 level	 of	 threat	 in	 the	environment.	Therefore,	 it	 appears	 that	 this	294 

effect	 is	 genuinely	 mediated	 by	 individuals’	 perceived	 risks	 and	 benefits	 of	 adopting	295 



different	strategies	in	the	response	to	an	environmental	change.	Importantly,	this	effect	296 

was	independent	from	individuals’	knowledge	of	the	epidemic	as	well	as	their	age,	gender	297 

and	level	of	education. 298 

 299 

In	a	nutshell,	our	study	provides	evidence	that	individuals	react	to	the	presence	of	threats	300 

in	their	environment	by	decreasing	their	threshold	for reacting	to	threats.	Moreover,	our	301 

results	show	that	adaptation	of	low-level	psychological	variables	is	conditional	on how	302 

much	the	threat	that	is	present	in	the	environment	corresponds	to	a	threat	subjectively	303 

perceived	 as	 such	 by	 the	 individual.	 This	 underlines	 the	 importance	 of	 taking	 inter-304 

individual	differences	into	account	when	designing	public	policies	in	response	to	large	305 

scale	public	threats.	 306 

 307 
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