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Abstract
The high cycle fatigue life of turbine blades is negatively impacted by high frequency mechanical vibrations
caused during operation. One method to mitigate this risk is to use underplatform dampers to dissipate
energy from the system and reduce the vibration amplitude. Unfortunately, the state of the art models for
such simulations are deterministic, although literature indicates that a large amount of uncertainty exists
in measured contact parameters. This uncertainty in the contact parameters leads to significant variations
in vibration response. This paper quantifies these uncertainties by considering the input parameters to be
stochastic and generating uncertainty bands. A nonlinear solver based on Multi-Harmonic Balance method
is used to propagate these uncertainties, and a surrogate model is implemented to increase the computational
efficiency. Variance based sensitivity analysis is also performed to rank the importance of each uncertain
parameter.

1 Introduction

The aerospace industry demands lighter and more efficient propulsion systems, thus driving the design of
many components to their structural limits. During operation, a turbine blade experiences a combination of
static and dynamic stresses [1]. The static stresses originate from thermal gradients, centrifugal loads and
fluid pressure variation. On the other hand, dynamic stresses originate from mechanical and aero-dynamic
vibration and have a negative impact on the high cycle fatigue (HCF) life [2]. Excessive stresses caused by
significant vibrations can be dealt with by either moving the resonant frequency out of the operating range or
by reducing the amplitude of vibration [3]. Whilst the former is theoretically achievable, it is not practically
viable to avoid all resonant modes due to the wide distribution of such frequencies and hence the latter
method is preferred. Reduced vibration amplitudes are achieved by removing energy from the system by
using friction dampers [4, 5, 6]. These dampers work by exploiting the relative motion between them and the
vibrating blades [7] leading to a local contact transition between stick and slip. In the slip condition, energy
is dissipated at the contact surface, primarily as heat [8]. Optimizing the design of such dampers requires
an accurate modelling approach to simulate the vibration amplitude response to a harmonic excitation. This
also needs to be backed with experimental validation. Unfortunately, advances in validation methods of the
numerical models have not kept up with the advances in the numerical models [9].

To obtain a better understanding of how to model friction dampers, and in particular underplatform dampers,
a variety of studies have been conducted [10, 11]. Initially, simple models using single [12] and two degree
of freedom [13] oscillators coupled with a type of Coulomb friction element (Jenkins Element [4]) were
generated to investigate the dynamic response yielding partially analytic solutions. These systems were
extended further by using complete FE models of the damper and bladed disks [8, 10, 11]. Underlying
assumptions of the relative motion between the blades and damper proved difficult to validate suggesting the
assumptions themselves were incorrect [8]. In order to remove these assumptions, models that calculated the
damper motion directly were created [14, 15, 16]. Calculating damper motion required advanced 3D friction
elements to model the in-plane tangential motion, normal load based separation and nonlinear contact forces



between the damper and blade. These advanced models are more accurate by better representing the damper-
blade contact domain. The underplatform damper model developed by [9] can be classified as one of these
advanced models.

Figure 1: Underplatform Damper Rig Set-up [9]

In order to validate a greater fidelity underplatform model, Pesaresi et al. [9] have presented a dedicated
UPD test rig based on a double beam configuration, shown in Figure fig:UPDrig. A 3D nonlinear model
with an explicit FE damper design is the baseline of their analysis. The resulting underplatform damper
study uses a nonlinear iterative solver, FORSE, to simulate the amplitude response of the model by calcu-
lating it at each excitation frequency in the studied frequency range. The output is represented by a type of
frequency response function (FRF), accelerance (acceleration per newton (m/s2/N)). The primary purpose of
their study was to produce an accurate and replicable underplatform damper model [9]. The input contact
parameters were assumed to be deterministic based on experimental testing. A deterministic variable is one
which has the exact same, pre-determined value and presents no degree of uncertainty in its realization [17].
Unfortunately, the underplatform damper contact domain is highly dynamic due to variations in contact pa-
rameters over time caused by fretting wear [8]. As such, uncertainties are present in the amplitude response
and frequency when this deterministic approach is utilised.

The aim of this investigation is to quantify the uncertainties in the output response of an underplatform
damper model by taking the input parameters to be stochastic. The purpose of this procedure is to ac-
count for variations in the input parameters to better understand the design considerations needed for friction
dampers. A further goal is to implement Polynomial Chaos Expansion (PCE), a surrogate modelling tech-
nique, to improve the computational efficiency of the numerical approach. The underplatform damper model
presented by [9] is used as the test case.
Hence, this paper first presents a background into the modelling approach techniques. It is followed by the
presentation of techniques to quantify the uncertainty in the system output are formalised. Finally, the results
are presented and some trends are highlighted.

2 Reference model

A 3D nonlinear model with an explicit FE damper design is used as in this UQ study and is better de-
scrobed in [9]. The FE models generated for the blades and damper consisted of quadratic hexahedral
elements, made of steel. Each blade consists of 27486 elements and the damper consists of 3620 elements.
As shown in Fig. fig:UPDrig, the sinusoidal excitation force is applied at bottom of a blade and displace-



ments are computed at the tip of the blades. The first two bending modes of the blades are studied here: an
in-phase motion of the blades (mode 1) or an out-of-phase motion of the blades (mode 2) as illustrated in Fig-
ure fig:UPDmodes.Inthepresenceofthedamper, theresonancefrequenciesare424.1Hzand440.3Hzrespectivelyatlowexcitationlevels.

(a) (b)

Figure 2: (a) In-phase mode of the blades and (b) out-of-phase mode[9]

3 Modeling approach

A general nonlinear system of equations can be represented as follows:

Mẍ(t) + Cẋ(t) + Kx(t) + Fnl(ẋ(t), x(t)) = Fex(t) (1)

Where M, C, K are the mass, damping and stiffness matrices. Fex is vector of external excitation forces and
Fnl is the vector of nonlinear contact forces.

Time integration is the most rigorous approach to solve these set of equations [18]. However, it is computa-
tionally expensive and excessive when the steady-state response to harmonic excitation is the only study of
interest. Consequently, the multi harmonic balance method (MHBM) [1, 19, 20] has been the most common
approach to solve the nonlinear vibration system due to it being by far the most computationally efficient
method [21]. MHBM solves the problem in the frequency domain due to the differential equations being rep-
resented as linear functions, making the system easier to solve. According to the MHBM, for each DOF in
the system, the response can be expressed as a Fourier series truncated at the nth harmonic, which generates
a system of equations in the frequency domain.

A Newton-Raphson iterative solver is used to calculate the harmonic coefficients while the FRF matrix is
obtained by calculating its exact value at a particular frequency point. A more detailed outline of the solving
method can be found here [9]. The exact implementation of the nonlinear solver depends on the contact
model used to describe the friction damping between the underplatform damper and blade root. The contact
model used for the UPD rig is a 3D Jenkins element [19]. It is composed of two Jenkins element together
with a normal spring. This allows both in-plane frictional forces and normal load based variations to be
captured. The definition of each element is made through several contact parameters: the friction coefficient
µ between the two surfaces, the contact tangential stiffness kt and the normal stiffness kn and a normal
load N0 representing the pre-load. The contact surface is discretised into several contact elements, and each
element has its own contact parameters. This contact model allows for three different contact conditions:
stick, slip and separation.



4 Uncertainty Sources in Contact Parameters

The primary source of uncertainty is in dynamics simulations of blades with dampers is the variability ob-
served in experimentally measured contact parameters [22, 23, 24, 25]. During slip, the two rubbing surfaces
undergo solid to solid contact which causes the surface roughness and stiffness to change. In addition, the
change in damper geometry could lead to variations in blade coupling, resulting in the natural frequency
to change. All of these factors lead to random variations in the values of the input parameters causing the
amplitude response as well as the resonant frequency to become uncertain. It is important to quantify these
uncertainties in order to account for these variations in the design of friction dampers [26]. Experimental
testing has to be performed to estimate the variation of both the tangential contact stiffness kt and the friction
coefficient µ. In this study, kt and µ were expressed as normally distributed parameters from experimental
data presented in [23]:

• µ~N(0.9,0.052)

• kt~N(60e6, 3e62)

5 Uncertainty propagation

Different strategies exist to propagate uncertainty in numerical models. Monte Carlo Simulations (MCS)
remains the most robust method to do so [27], however convergence is slow and requires a large number
of simulations making the approach unusable in practical applications. To cope with this issue, Polynomial
Chaos Expansion (PCE) can be used to surrogate the dynamic behaviour of the structure. Once built, PCE
models have negligible numerical cost and so can be exploited to perform different types of analysis as
variance based sensitivity analysis [28, 29].

5.1 PCE model

The basis of PCE is outlined here, but detailed literature can be found here [29, 30, 31]. The principal
concept of PCE is the ability to decompose a random process into independent deterministic and stochastic
components. Generally, for a random process A, that is a function of a random variable ξ and deterministic
coefficients x:

A(x, ξ) =
P∑
i=0

Ai(x)Ψi(ξ) (2)

Where Ai(x) is the vector of deterministic coefficients and Ψi is the orthogonal polynomial basis mapping
the coefficients to the random process. The choice of the polynomial basis is determined by the distribution
of the random variable ξ and can be found directly from literature. For computational efficiency, the theo-
retically infinite sum of deterministic coefficients is truncated to P terms. The only unknown in Equation
eqn:PCEmain is Ai(x). Both intrusive [32, 33] and non-intrusive (NIPCE) methods [17, 34] exist to solve for
these coefficients but non-intrusive methods achieve this without the modification of the deterministic code
that solves the nonlinear dynamic system. Hence, the non-intrusive regression method is employed here [29].
From a set of N evaluations of the system, a least-squares problem is solved to get the coefficients Ai(x).
In the present study, a Latin Hypercube Sampling strategy is employed to generate the N input points. The
construction of the PCE models are done with OpenTurns [31].

5.2 Variance based sensitivity analysis

Sobol analysis ranks the importance of the input parameters to the output response by measuring the change
in the output’s variance caused by a change in the input. The basis of the analysis is the ability to decompose
the output variance into a sum of variances [28, 35] by creating linked sets of the input parameters.



V (output) =
n∑

i=1

Vi +
n∑

i≤j<n

Vij + ...+
n∑

i≤n

Vi...n (3)

In Equation eqn:sobol, V (output) is the total variance of the output, Vi is the first order contribution of the ith

stochastic parameter, Vij is the second order contribution of interaction effects of the ith and jth parameter and
n is the number of stochastic parameters. The first order sensitivity index for the ith parameter is calculated
from Equation eqn:sobolindex:

S1,i =
Vi

V (output)
(4)

The variance decomposition from Equation eqn:sobol can be directly related to the PCE decomposition eqn:PCEmain[29],
and so the Sobol indices can be directly determined from the PCE coefficients without any additional simu-
lation [31].

6 Results

6.1 Nonlinear Vibration response

As explained previously, the first two bending modes of the structure are considered, which are the in-phase
(mode 1) and out-of-phase (mode 2) motion of the two blades. Figure fig:ampconditions(a, b)showsreceptancesfordifferentexcitationlevels.Themeanvaluesofthefrictioncoefficientandthecontactstiffnessareconsideredhere.Asanillustration, theassociatedcontactconditionsattheamplitudepeakaregivenFigure fig : ampconditions(c−
f).Itcanbeseenthatforlowshakerforceamplitudes, bothmodesaresticking, resultinginlowdamping.Increasingtheamplitudefurther, thecontactdomainbeginstoundergononlinearbehaviour.Inmode1(Figurefig : amppeak1), thisisshownbythesoftbehaviour.Thesoftbehaviouriscausedduetothecontactdomainbeginningtoseparateandthisisconfirmedbythecontactconditions(seeF igurefig : ampcond3).Inmode2(Figurefig : amppeak2), thenonlinearresponseisshownbythereductionofamplitudeandshiftingofnaturalfrequency.Thisindicatesthatthereisslipbetweenthedamperandblade, confirmedbythecontactconditions(seeF igurefig : ampcond4).

6.2 Uncertainty Quantification

In this section, the uncertainty associated to the contact parameters is propagated using the PCE method
explained previously. The set of input points used to construct the PCE is generated with a LHS of 100
combinations of contact parameter values. For each of those combinations, the FRFs for both in-phase and
out-of-phase modes were computed at different excitation amplitudes. Results for the 17N excitation loading
are presented in Figure fig:rawData.

Since the FRFs are strongly non linear, the PCE meta-model cannot be constructed as a function of the
frequency (in fact, for some frequency values there are more receptance solutions). To avoid this problem,
the deterministic parameter used is the phase [34]. Figures fig:freqMap and fig:phaseMap show how the
frequency is mapped to the phase. It should be noted that the phase decreases cyclically for each mode.
Once each FRF is decomposed into a phase frequency response and a phase amplitude response, two PCE
meta-models are built for each mode and each phase value: one for the amplitude and one for the frequency.

Such PCE meta-modes can be exploited with an almost null numerical cost to generate the statistical dis-
tribution of the system response. Uncertainty bands obtained from those meta-models are shown in Fig-
ure fig:UQbandsforthetwomodeswithanexcitationamplitudeof17N.Forthereceptance, theuncertaintyisnegligibleattheextremephasevalues.Movingclosertotheresonantfrequency, inthecentreofthephaserange, theuncertaintyincreases, withthelargeststatisticalbandsoccurringatresonance(φ =
−π/2 radians). The uncertainty in the frequency vector is also negligible at the extreme phase values, while it
increases around resonance, as shown in Figure fig:UQbands(b).Thesametrendsarepresentforthesecondmode, showninFiguresfig : UQbands(c)andfig : UQbands(d).

6.3 Sobol indices

First order Sobol indices were also calculated directly from the PCE model to get insights into the influence
of each contact parameter on the system dynamics. The contact conditions for the damper-blade nodes (as a
percentage) were used in combination with Sobol indices to help explain the behaviour. Results are displayed
in Figure fig:Solbol.



(a) Amplitude response in phase peak (b) Amplitude response out of phase peak

(c) Amplitude = 0.096 N, mode 1 (d) Amplitude = 0.096 N, mode 2

(e) Amplitude = 17 N, mode 1 (f) Amplitude = 17 N, mode 2

Figure 3: Forced response and contact conditions for shaker force amplitude sensitivity analysis

For the accelerance, it is evident that when the system has no slip, kt fully determines the system response
as the first order Soblol index of kt is equal to 1, while µ has no impact. This can be seen in Figures
fig:PCEsobolamp1andfig : PCEsobolamp2.However, uponanypercentageofslip, thispatternflipsandµ
solely determines the system response as its first order Sobol index becomes equal to 1. This pattern is ex-
pected as during slip, the amplitude response is determined by the amount of damping and the amount of
damping is determined by friction. In the stick case, there is no sliding and so µ is not relevant in determining
the output response.

On the contrary, the Sobol indices for the frequency do not have such a clear pattern, as shown by Figures
fig:PCEsobolfreq1andfig : PCEsobolfreq2.Ingeneral, forbothmodes, thetangentialstiffnessprimarilydeterminesthefrequencyresponse, especiallyinmode1.Thisisexpectedasdescribedinthecontactconditionsliterature[5].F romthenodalcontactconditionpercentages, itseemsthatthepeaksinslippercentagecorrespondinpeakswiththeSobolindexforµ.
Around the ends of each plot, kt determines the output completely. This is expected with the system being in
the stick condition as confirmed by the stick percentage. For the second mode, from a phase of -1 to 1 radians,
the contact conditions do not vary significantly indicating the Sobol indices should follow a similar pattern.
Rather surprisingly, there is a local minimum in the µ index and a local maximum in the kt index for both



(a) Mode 1 - Raw data (b) Mode 2 - Raw data

Figure 4: 100 LHS simulations run through FORSE, µ~N(0.6,0.052) and kt~N(60e6, 3e62)

(a) Mode 1 with phase equivalent points (b) Mode 1 with frequency equivalent points

Figure 5: Frequency and phase equivalency
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(a) Receptance mode1
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(b) Frequency mode 1
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(c) Receptance mode2
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(d) Frequency mode 2

Figure 6: Uncertainty bands based on PCE model

modes around resonance, shown in Figures fig:PCEsobolfreq1andfig : PCEsobolfreq2.Thereasonforthisbehaviourwasfoundbyperformingasetofsimulationswithafixedkt



(a) Receptance mode 1 (b) Frequency mode 1

(c) Receptance mode 2 (d) Frequency mode 2

Figure 7: Sobol indices for accelerance, frequency with contact conditions superimposed

and a varying µ (here not shown). The simulations showed that for the 0.2 radians case, the frequency re-
mains constant and only the amplitude varies as µ was changed, which explains these results.

Combining the Sobol analysis with the uncertainty bands, it is evident that uncertainty in accelerance is
present only in the slip region and as the output in this region is determined by variations in µ only, it can
be concluded that variations in µ determine the uncertainty in accelerance. For the frequency, uncertainties
are present throughout. kt primarily determines the amount of uncertainty but local peaks in slip increase
the contribution of µ. The uncertainty in resonant frequency is solely determined by variations in kt with µ
altering the resonance amplitude only.

7 Conclusion

A method to quantify the uncertainties in the nonlinear response of an underplatform damper model has been
successfully developed. The method is based on the generation of PCE meta-models, which make it possible
to have a large sample size thus improving statistical accuracy as well as offering a significant reduction in
computation time.

Uncertainty bands in the frequency response functions (FRFs) were obtained from these meta-models. Also
a Sobol analysis was performed to rank the sensitivity of the FRFs on the different contact parameteres. From
this analysis it was found that, for the accelerance, uncertainties only exist while the system is slipping. In this
region, the extent of uncertainty is determined by variations in µ. Under the stick condition, µ has no impact
and kt should control the accelerance amplitude. On the contrary, in the case of frequency, uncertainties are
determined mainly by variations in kt, although trends are not directly related to the slipping conditions.

With regards to optimisation of damper design, the proposed uncertainty quantification method is useful
since it provides bands in the output responses. With this information, damper design criteria can be updated
to better inform the design decisions. In addition, the Sobol analysis allows the prioritisation of design
decisions based on their impact on the output. Finally, the implementation of the PCE model makes the
process computationally very efficient allowing wider underplatform damper studies to be performed with
fewer computational resources. In order to have complete confidence in the statistical bands generated, an



experimental validation of the approach will be performed with future work.
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