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Abstract

Consider the population model with infinite size associated to subcritical continuous-state branching
rocesses (CSBP). We study the flow of ancestral lineages as time goes to the past and show that,
roperly renormalized, it converges almost surely to the inverse of a drift-free subordinator whose
aplace exponent is explicit in terms of the branching mechanism. The inverse subordinator is shown

o be partitioning the current population into ancestral families with distinct common ancestors. When
rey’s condition is satisfied, the population comes from a discrete set of ancestors and the ancestral

amilies have i.i.d. sizes distributed according to the quasi-stationary distribution of the CSBP conditioned
n non-extinction. When Grey’s condition is not satisfied, the population comes from a continuum of
ncestors which is described as the set of increase points S of the limiting inverse subordinator. The
roof is based on a general result for stochastically monotone processes of independent interest, which
elates θ -invariant measures and θ -invariant functions for a process and its Siegmund dual.

2022 Elsevier B.V. All rights reserved.

SC: 60J80; 60J70; 92D25

eywords: Branching processes; Continuous-state space; Inverse subordinators; Ancestral lineage; Siegmund dual;
Invariant function

1. Introduction

Continuous-state branching processes (CSBPs) are positive Markov processes satisfying
he branching property. They arise as scaling limits of Galton–Watson processes and form
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a fundamental class of random population models. Their longterm behaviour has received
a great deal of attention since the seventies. We refer for instance to the early works of
Bingham [6] and Grey [16]. In the seminal work [5], Bertoin and Le Gall showed how to
encode a complete genealogy of a random branching population by considering a flow of
subordinators (Xs,t (x), −∞ < s ≤ t < ∞, x ≥ 0). In this setting, for any x ∈ (0, ∞),
he process (X t (x), t ≥ 0) := (X0,t (x), t ≥ 0) is a CSBP started from x , viewed as the size of
he progeny of all individuals lying in the interval (0, x) at time 0.

The initial value x being arbitrarily large, the population in the flow of subordinators
epresentation has an infinite size at all times. The genealogy is defined as follows: individuals
t time s with descendants at time t > s are the locations of the jumps of the subordinator

x ↦→ Xs,t (x) and the descendants at time t of the individuals in the population at time s are
epresented by the jump intervals. The flow being defined on R, all individuals have arbitrarily
ld ancestors. We shall provide more background on the flow of subordinators in the sequel.

Most works on CSBPs focus on their long-term behaviour forward in time. We refer to
ertoin et al. [4], Duquesne and Labbé [11], Labbé [19] and Foucart and Ma [13] for studies

n the framework of the flow of subordinators. In this article, we are interested in the backward
enealogy of the continuous population and how it behaves on the long-term. To the best of
ur knowledge, fewer works on CSBPs have been done in this direction. We refer however to
he works of Lambert [21], Lambert and Popovic [23], Johnston and Lambert [18] and Foucart
t al. [14]. The representation of the population model through (Xs,t (x), s ≤ t, x ≥ 0) allows
ne to follow the ancestral lineages backward in time. The work [14] initiates the study of the
nverse flow (X̂s,t (x), s ≤ t, x ≥ 0) defined for s ≤ t and x ∈ (0, ∞), as

X̂s,t (x) := inf{y ≥ 0 : X−t,−s(y) > x}. (1.1)

This random variable represents the ancestor at time −t of the individual x in the population
at time −s. From now on, we consider an arrow of time pointing to the past, and call
X̂ t (x) := X̂0,t (x), the ancestor at time t ≥ 0 (backwards) of the individual x of the population
at time 0. Notice that it can also be interpreted as the minimal size which the population
at time t (backwards) should have for the current population to have a size greater than x .
The two-parameter flow (X̂ t (x), t ≥ 0, x ≥ 0) is representing the ancestral lineages of the
individuals in the current population. We call (X̂ t (x), t ≥ 0) the ancestral lineage process. This
is a Feller process with no positive jumps. Moreover, for any x ̸= y, whenever (X̂ t (x), t ≥ 0)
and (X̂ t (y), t ≥ 0) meet, they coalesce and such a coalescence represents the occurrence in
the past of a common ancestor of the individuals x and y. We refer to [14] for a study of the
coalescent processes embedded in the flow (X̂ t (x), t ≥ 0, x ≥ 0).

For any fixed x ∈ (0, ∞), the Markov processes (X̂ t (x), t ≥ 0) and (X t (x), t ≥ 0) are linked
through a duality relationship, called Siegmund duality, of the following form: for any t ≥ 0
and x, y ∈ (0, ∞)

P
(
X̂ t (x) < y

)
= P

(
x < X t (y)

)
. (1.2)

We refer to Siegmund [29] and Clifford and Sudbury [9] for a general study of the duality
(1.2). See [14, Equation (3.5), Section 3] for the case of CSBPs.

We wish to mention that Siegmund dual processes of discrete branching Markov processes
have been already studied by Asmussen and Sigman [1, Example 9], Li et al. [27] and more
recently by Pakes [28]. However no mention was made in these works about the genealogical
interpretation of the Siegmund duals and their almost sure renormalization. Besides the fact
that our study lies in the continuous state space setting, one of the main contributions of this
article will be to provide a genealogical interpretation of the Siegmund duals and their limits.
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We focus in this article on subcritical CSBPs. In such a setting, it has been shown in [14]
hat for all x ∈ (0, ∞), the Markov process (X̂ t (x), t ≥ 0) is transient. The main aim of
his article is to obtain an almost sure renormalization of the inverse flow X̂ of all subcritical
SBPs, including those with no quasi-stationary distributions, namely those for which Grey’s
ondition does not hold, see Section 2. The limit process is the inverse of a certain subordinator
ith an explicit Laplace exponent. Last but not least, we establish that this inverse subordinator

s partitioning the current population into ancestral families with distinct common ancestors.
The paper is organized as follows. Further background on CSBPs and their representation

n terms of flow of subordinators are provided in Section 2. Fundamental properties of the
ncestral lineage process (X̂ t (x), t ≥ 0), such as its Siegmund duality relation with the CSBP
X t (x), t ≥ 0) and the representation of its semigroup, are also recalled. Our main results are
tated in Section 3 and proven in Section 4. The proof is based on a general result, established in
heorem 4.1, for stochastically monotone Markov processes by showing how to link (infinite)
-invariant measures of a process (X t , t ≥ 0) with (increasing) θ -invariant functions of its
iegmund dual process (X̂ t , t ≥ 0). We apply this result in the setting of CSBPs.

. Background on CSBPs and the flow of subordinators

We first recall basic definitions and properties of CSBPs and their representation in terms of
ows. These processes are continuous time and continuous space analogue of Galton–Watson
arkov chains. They have been introduced by Lamperti [24] and Jiřina [17]. CSBPs are positive
arkov processes satisfying the branching property: for any x, y ≥ 0 and fixed time t ≥ 0,

X t (x + y) = X ′

t (x) + X ′′

t (y), (2.3)

here (X t (x + y), t ≥ 0) is a CSBP started from x + y, and (X ′
t (x), t ≥ 0) and (X ′′

t (y), t ≥ 0)
re two independent copies of the process started respectively from x and y. We refer the reader
o [26, Chapter 3] for an introduction to CSBPs. Denote by L the generator of (X t (x), t ≥ 0).
or any q ≥ 0, set eq (x) := e−qx for any x ≥ 0. The operator L acts on the exponential
unctions as follows. For all q, x ≥ 0,

Leq (x) = Ψ (q)xeq (x), (2.4)

here Ψ is a Lévy–Khintchine function and is called the branching mechanism. We refer e.g. to
ilverstein [30]. The linear span of exponential functions A := Span({eq , q ∈ [0, ∞)}) is a core
or generator L.

We shall merely be interested in subcritical CSBPs for which Ψ is of the form

Ψ (u) =
σ 2

2
u2

+ γ u +

∫
∞

0
(e−ux

− 1 + ux)π (dx) for all u ≥ 0, (2.5)

here γ = Ψ ′(0+) > 0, σ ≥ 0, and π is a Lévy measure, i.e. a Borel measure such that
∞

0 (x ∧ x2)π (dx) < ∞. We assume that either π ̸= 0 or σ > 0, so that Ψ is not linear. The
emigroup of (X t (x), t ≥ 0) satisfies for any λ ∈ (0, ∞), t ≥ 0 and x ∈ [0, ∞)

E[e−λX t (x)] = e−xvt (λ), (2.6)

ith for any λ ∈ (0, ∞), t ↦→ vt (λ) defined as the solution to the integral equation∫ λ du
= t. (2.7)
vt (λ) Ψ (u)
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Note that t ↦→ vt (λ) solves d
dt vt (λ) = −Ψ (vt (λ)) with v0(λ) = λ. As a first consequence

f (2.6), the process (X t (x), t ≥ 0) is extinct at time t with probability e−xvt (∞), where
t (∞) := limλ→∞vt (λ) ∈ (0, ∞]. The latter is finite if and only if Ψ satisfies Grey’s condition∫

∞ du
Ψ (u)

< ∞. (2.8)

Lambert [22] and Li [25] have studied the subcritical CSBP (X t (x), t ≥ 0) conditioned on
on-extinction and established the following weak convergence when (2.8) holds:

P(X t (x) ∈ · |X t (x) > 0) −→
t→∞

ν∞(·),

here ν∞ is the (minimal) quasi-stationary distribution of the CSBP and has Laplace transform∫
∞

0
e−qxν∞(dx) = 1 − κ∞(q) := 1 − e−Ψ ′(0+)

∫
∞

q
du

Ψ (u) , q ≥ 0. (2.9)

n interesting phenomenon for CSBPs is that when Grey’s condition (2.8) does not hold, the
atter are persistent in the sense that although subcritical, they are not getting absorbed at the
oundary 0, but are decreasing towards 0 while keeping positive mass at all times. In particular,
o quasi-stationary distributions exist in this setting.

The branching property (2.3) can be translated in terms of independence and stationarity
f the increments of a process (X t (x), x ≥ 0) for any fixed time t . The latter is therefore a
ubordinator and according to (2.6), its Laplace exponent is λ ↦→ vt (λ). Starting from this
bservation, Bertoin and Le Gall in [5] showed that a complete population model can be
ssociated to CSBPs through a flow of subordinators (Xs,t (x), s ≤ t, x ≥ 0).

More precisely, the collection of processes (Xs,t (x), s ≤ t, x ≥ 0) is satisfying the following
roperties:

(1) For every s ≤ t , x ↦→ Xs,t (x) is a càdlàg subordinator with Laplace exponent λ ↦→

vt−s(λ).
(2) For every t ∈ R, (Xr,s, r ≤ s ≤ t) and (Xr,s, t ≤ r ≤ s) are independent.
(3) For every r ≤ s ≤ t , Xr,t = Xs,t ◦ Xr,s a.s.

The two-parameter flow (X t (x), x ≥ 0, t ≥ 0) := (X0,t (x), x ≥ 0, t ≥ 0) is a flow of
CSBPs with branching mechanism Ψ , each starting from an initial population of arbitrarily
large size x . The three-parameter flow above provides a complete genealogy of the underlying
(infinite) population: let y ∈ (0, ∞), if Xs,t (y−) < Xs,t (y), then the individual y at time s has

escendants at time t and those are represented by the interval
(
Xs,t (y−), Xs,t (y)

)
; see Fig. 1.

We will now always work on the probability space on which the flow of subordinators
Xs,t (x), s ≤ t, x ≥ 0) and thus the inverse flow (X̂s,t (x), t ≥ s, x ≥ 0), see (1.1), are defined.
e stress that the statements below hold true with general branching mechanisms, including

hose that are not subcritical. We shall explicitly mentioned the condition Ψ ′(0+) > 0 when
his is needed. Similarly as for the forward flow, we summarize here fundamental properties
f the inverse flow, see [14, Section 3]

(1) For every t ≥ s, x ↦→ X̂s,t (x) is a càdlàg inverse subordinator.
(2) For every t ∈ R, (X̂r,s, r ≤ s ≤ t) and (X̂r,s, t ≤ r ≤ s) are independent.
(3) For all r ≤ s ≤ t , X̂r,t = X̂s,t ◦ X̂s,r a.s.

The ancestral lineage process, defined as

(X̂ (x), t ≥ 0) := (X̂ (x), t ≥ 0),
t 0,t
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Fig. 1. Schematic representation of the genealogy forward in time.

is a non-explosive càdlàg Feller process with no positive jumps, namely for all x ∈ (0, ∞),
T̂∞ := inf{t > 0 : X̂ t (x) = ∞} = ∞ a.s. and P

(
supt>0(X̂ t (x) − X̂ t−(x)) > 0

)
= 0. Property

3) entails that the flow of processes
(
X̂ t (x), t ≥ 0, x ∈ (0, ∞)

)
is coalescing, in the sense

hat, when two ancestral lineages (X̂ t (x), t ≥ 0) and (X̂ t (y), t ≥ 0) meet, they merge. Such a
oalescence represents the occurrence in the past of a common ancestor of the individuals x
nd y. We refer the reader to [14, Section 5.2] for a study of coalescent processes embedded in
he flow (X̂s,t , s ≤ t). The next theorem characterizes the semigroup of (X̂ t , t ≥ 0). We denote
t by (Qt , t ≥ 0).

heorem 2.1 (Theorem 3.5, Proposition 3.6 in [14]). For any continuous function f defined
n (0, ∞) and any q > 0,

E[Qt f (eq )] = E[ f (evt (q))], (2.10)

here for any λ ∈ (0, ∞), eλ is an exponential random variable with parameter λ. The process
X̂ admits an entrance boundary at 0+ if and only if (2.8) is satisfied.

When (2.8) holds, the process started from 0, (X̂ t (0+), t ≥ 0), is defined at any time as
X̂ t (0+) := limx↓0 X̂ t (x) a.s. This corresponds to the first individual at generation t backwards
n time, with descendants at time 0.

We now verify that X̂ satisfies some properties of regularity. For x, y ∈ (0, ∞), set

T̂y := inf{t > 0 : X̂ t (x) > y} = inf{t > 0 : X̂ t (x) = y}. (2.11)

e shall sometimes write T̂y = T̂ x
y to emphasize on the initial state x of the process.

emma 2.2 (Regularity). If −Ψ is not the Laplace exponent of a subordinator, i.e. Ψ (u) ≥ 0 for
ome u > 0, then the process X̂ is regular on (0, ∞), namely for any x < y, Px (T̂y < ∞) > 0.

roof. Let x, y ∈ (0, ∞), for any t > 0, Px (T̂y < t) ≥ P
(
X̂ t (x) > y

)
= P

(
x > X t (y)

)
. By

ssumption, −Ψ is not the Laplace exponent of a subordinator, this ensures that the CSBP is
ot almost surely non-decreasing, see e.g. [6, page 220], and that the event {X t (y) −→

t→∞
0} has

ositive probability. Hence, Px (T̂y < ∞) ≥ limt→∞P
(
x > X t (y)

)
≥ P(X t (y) −→ 0) > 0. □
t→∞
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In the subcritical case, for which Ψ ′(0+) = γ > 0, one has limt→∞vt (λ) = 0 and all
amilies forward in time are getting extinct. As mentioned in the introduction, in this case the
ncestral lineages are transient.

roposition 2.3 (Proposition 3.8 in [14]). Assume Ψ ′(0+) > 0. For any x ∈ (0, ∞), the
ncestral lineage process (X̂ t (x), t ≥ 0) is transient, i.e. X̂ t (x) −→

t→∞
∞ a.s.

The following versions of Siegmund duality relationships will be more convenient to work
ith in the sequel. They will allow us to apply a general result, Theorem 4.1, about invariant

unctions and invariant measures for a given process and its Siegmund dual.

emma 2.4. For any t ≥ 0 and x, y ∈ (0, ∞),

{X̂ t (x) > y} = {x > X−t,0(y)} almost surely, (2.12)

nd

P
(
X̂ t (x) > y

)
= P

(
x > X t (y)

)
. (2.13)

emark 2.5. We stress here on the strict inequalities in (2.13). This form of duality is actually
he one used by Siegmund in his fundamental article [29].

roof. Let t ≥ 0 and x, y ∈ (0, ∞). We establish that {X̂ t (x) ≤ y} = {x ≤ X t (y)} almost
urely. Note that this is equivalent to (2.12). According to [14, Lemma 3.3-(1), Section 3],
X̂ t (x) < y} = {x < X t (y)} almost surely, therefore we only need to focus on the events
X̂ t (x) = y} and {X t (y) = x}. Recall the definition of X̂ t (x) in (1.1),

{X̂ t (x) = y} = {X−t,0(y−) ≤ x < X−t,0(y)} ∪ {X−t,0(y−) = X−t,0(y) = x}.

ince X−t,0 is a subordinator, it has no almost sure fixed discontinuities and the event
X−t,0(y−) < X−t,0(y)} for fixed y has probability 0. Thus

{X̂ t (x) = y} = {X−t,0(y) = x} a.s.,

nd (2.12) is established. Since X−t,0(y) has the same law as X t (y),

P(X̂ t (x) = y) = P(X−t,0(y) = x) = P(X t (y) = x),

nd the identity (2.13) holds. □

. Results

Assume that the branching mechanism Ψ is subcritical, namely Ψ ′(0+) > 0. For any
∈ (0, ∞), define the map on [0, ∞):

κλ : θ ↦→ e−Ψ ′(0+)
∫ λ
θ

du
Ψ (u) . (3.14)

e shall see that κλ is the Laplace exponent of a drift-free subordinator, namely it takes the
orm κλ(θ ) =

∫
∞

0 (1 − e−θx )νλ(dx), for any θ ≥ 0, where νλ is a Lévy measure, i.e. a Borel
easure on (0, ∞) such that

∫
∞

0 (1∧x)νλ(dx) < ∞. The latter is finite when κλ(∞) < ∞. This
ccurs if and only if Grey’s condition holds,

∫
∞ du

Ψ (u) < ∞, see (2.8). In this case, the function
∞ defined in (2.9), is the Laplace exponent of a compound Poisson process with jump law

ν , the quasi-stationary distribution of the Ψ -CSBP conditioned on non-extinction.
∞
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Theorem 3.1. Assume Ψ ′(0+) > 0. Fix λ ∈ (0, ∞). Then, almost surely

vt (λ)X̂ t (x) −→
t→∞

Ŵ λ(x), for all x /∈ J λ
:= {x > 0 : Ŵ λ(x) > Ŵ λ(x−)},

here the process Ŵ λ has càdlàg paths and its right-inverse process W λ, defined for any y ≥ 0
y

W λ(y) := inf{x ≥ 0 : Ŵ λ(x) > y},

s a drift-free subordinator with Laplace exponent κλ defined in (3.14). In addition, the
ollowing dichotomy holds:

(i) If
∫

∞ du
Ψ (u) < ∞, then for any λ ∈ (0, ∞] the process (Ŵ λ(x), x ≥ 0) has piecewise

constant sample paths almost surely.
(ii) If

∫
∞ du

Ψ (u) = ∞, then for any λ ∈ (0, ∞) the process (Ŵ λ(x), x ≥ 0) has continuous
sample paths almost surely.

emark 3.2. In case (i), since the Lévy measure νλ is finite, (Ŵ λ(x), x ≥ 0) is the inverse
f a compound Poisson process with Laplace exponent κλ. It is natural to choose λ = ∞ in
hich case the following almost-sure convergence holds

vt (∞)X̂ t (x) −→
t→∞

Ŵ ∞(x) for all x /∈ J∞,

here (Ŵ ∞(x), x ≥ 0) is the inverse of a compound Poisson process with Laplace exponent
∞, whose Lévy measure is the quasi-stationary law of the CSBP. In case (ii), one cannot take
= ∞, since when Grey’s condition does not hold, vt (∞) = ∞ for all t ≥ 0.

Recall π the Lévy measure in the Lévy–Khintchine form (2.5) of Ψ . The following corollary
hows that the ancestral lineage process (X̂ t (x), t ≥ 0) has an exponential growth when the
easure π satisfies an L log L condition.

orollary 3.3. For any λ > 0, vt (λ) ∼
t→∞

cλe−Ψ ′(0+)t for some constant cλ > 0 if and only if
∞

1 u log uπ (du) < ∞. Moreover, under this latter condition, almost surely

e−Ψ ′(0+)t X̂ t (x) −→
t→∞

Ŵ (x), for all x /∈ J := {x > 0 : Ŵ (x) > Ŵ (x−)},

here Ŵ is the inverse of a subordinator W with Laplace exponent

κ : θ ∈ [0, ∞) ↦→ θe−Ψ ′(0+)
∫ θ

0

(
1

Ψ ′(0+)u
−

1
Ψ (u)

)
du

.

emark 3.4. Corollary 3.3 is reminiscent to results for supercritical CSBPs with an L log L
oment, which have an exponential growth when they are not getting extinct, see [16] and

.g. [26, Chapter 3].

xample 3.5. Let γ > 0. Consider the subcritical Neveu CSBP whose branching mechanism
s defined by Ψ (u) := γ (u + 1) log(u + 1) for all u ≥ 0. Note that Ψ ′(0+) = γ > 0 and∫
∞ du

Ψ (u) = ∞. Solving (2.7) yields vt (λ) = (λ + 1)e−γ t
− 1 ∼

t→∞
log(1 + λ)e−γ t , where Ŵ is

he inverse of a subordinator W with Laplace exponent

κ(θ ) = γ log(1 + θ ) =

∫
∞

0
(1 − e−θx )γ

e−x

x
dx .

The limiting process Ŵ is therefore an inverse Gamma subordinator.
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The next observation ensures that the choice of the parameter λ is arbitrary in both cases
i) and (ii) in the sense that a change in λ only affects the limit by a multiplicative factor.

emma 3.6. For any λ′
̸= λ ∈ (0, ∞) and x ∈ (0, ∞),

Ŵ λ′

(x) = cλ′,λŴ λ(x) almost surely, with cλ′,λ = eΨ
′(0+)

∫ λ′

λ
du

Ψ (u) .

The process (Ŵ λ(x), x ≥ 0) can be interpreted as follows. Define a random equivalence
elation A on (0, ∞) via

x
A
∼ y if and only if Ŵ λ(x) = Ŵ λ(y).

This induces a random partition1 of the set (0, ∞) into open intervals of constancy of Ŵ λ. A
imple application of Lemma 3.6 ensures that this partition does not depend on λ. By definition,
he subintervals of the partition A are made of individuals whose ancestral lineages have the
ame asymptotic behaviour. These subintervals correspond to the jump intervals of W λ, the
ubordinator obtained as the right-inverse of Ŵ λ, that is to say

A =
{(

W λ(u−), W λ(u)
)
; u > 0

}
a.s.

n other words the families in A are separated by points xi , i ∈ I , in the support S of the
ssociated Stieltjes measure dŴ λ, S := {W λ(u) : u ≥ 0}.

The next theorem states that A corresponds actually to the families of current individuals
having a common ancestor.

Theorem 3.7. For any x, y ∈ (0, ∞),

x
A
∼ y if and only if X̂ t (x) = X̂ t (y) for some t ≥ 0.

Theorems 3.1 and 3.7 complete the results obtained under Grey’s condition, in Foucart
t al. [14, Sections 3, 4 and 5.3], on the long-term behaviour of the ancestral lineages, as
ell as on the representation of the ancestral partition when Grey’s condition is not in force.
As stated in Theorem 3.1, there are two separate cases to treat according whether Grey’s

ondition holds or not.
When

∫
∞ du

Ψ (u) < ∞ (Grey’s condition), the process (Ŵ λ(x), x ≥ 0) is the inverse of a
ompound Poisson process for any λ ∈ (0, ∞]. By taking λ = ∞, the latter has for jump
easure the probability law ν∞ and the partition A is thus constituted of i.i.d. families with

engths of law ν∞, i.e. A takes the form of a consecutive partition into intervals:

A =
(
(0, x1), (x1, x2), . . .

)
a.s.,

here (xi , i ≥ 1) is a random renewal process with jump law ν∞. An important example is
he subcritical Feller diffusion, for which Ψ (q) = σ 2/2q2

+ γ q and ν∞ is the exponential
aw with parameter 2γ /σ , see [22, Section 5.2]. According to [14, Theorem 4.2], the flow of
ncestral lineage processes (X̂ t , t ≥ 0) has in this case the same law as a flow of supercritical
eller diffusions with constant immigration (at rate σ 2). The almost-sure convergence stated

n Theorem 3.1 can also be shown by applying Theorem 1 in Foucart et al. [15], where an
lmost-sure renormalisation of supercritical branching processes with immigration is provided.
he following figure provides a schematic representation of the families, their lineages and

1 Up to a negligible set.
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Fig. 2. Schematic representation of ancestral families under Grey’s condition.

he process Ŵ ∞, under Grey’s condition. We mention that in the Feller case, only binary
oalescences are possible. When Ψ is not the branching mechanism of the subcritical Feller
iffusion, i.e. π ̸≡ 0, coalescences between the ancestral lineages inside each family are
ossibly multiple and can be described using the notion of consecutive coalescents, see [14,
ection 5].

When
∫

∞ du
Ψ (u) = ∞, the description is more involved since the process (Ŵ λ(x), x ≥ 0)

as singular continuous paths and any fixed subinterval of (0, ∞) of finite length contains
nfinitely many small families with positive probability. Recall that S is the support of the
andom singular measure dŴ λ.

roposition 3.8. Set Ψ ′(∞) := limu→∞
Ψ (u)

u ∈ (0, ∞]. For any x > 0, the Hausdorff
imension of S ∩ [0, x] is

dimH (S ∩ [0, x]) =
Ψ ′(0+)
Ψ ′(∞)

∈ [0, 1) a.s. (3.15)

From (2.5), one sees that Ψ ′(∞) = σ 2
·∞+γ +

∫
∞

0 xπ (dx) ∈ (0, ∞]. In the case of a CSBP
ith unbounded variation, namely with σ > 0 or

∫ 1
0 xπ (dx) = ∞, one has Ψ ′(∞) = ∞ and

he Hausdorff dimension of S is zero. In the bounded variation case, (3.15) can be rewritten
s

dimH (S ∩ [0, x]) =
γ

γ +
∫

∞

0 hπ (dh)
a.s.

emark 3.9. If one denotes by PPPλ :=
∑

i∈I δ(aλ
i ,∆λ

i ) the Poisson point process associated to
he subordinator W λ, the atoms (∆λ

i , i ∈ I ) are by definition the sizes of the different families
in A and the atoms of jump times (aλ

i , i ∈ I ) are related to the rate of escape of the ancestral
lineages and can be thought as some ancestral types. Let ϵ > 0. The restriction of PPPλ to
he set (0, ∞) × (ϵ, ∞) takes the form PPPλ|(0,∞)×(ϵ,∞) =

∑
∞

j=1 δ(eϵ
j ,Dϵ

j ), where (eϵ
j , j ≥ 1)

is a sequence of i.i.d. exponential random variables with parameter ν̄λ(ϵ) := νλ

(
(ϵ, ∞)

)
and

(Dϵ
j , j ≥ 0) are i.i.d. random variables with law νλ(dx)

ν̄λ(ϵ) 1(ϵ,∞)(x). The exponential random
ariables allow one to distinguish families between each others. If eϵ

i is larger than eϵ
j , then

he ancestral lineage of the j th family with size larger than ϵ, diverges slower than that of
he i th. Note that when Grey’s condition holds, the characteristic measure of the Poisson point
rocess PPPλ is finite and one can take ϵ = 0. When Grey’s condition fails, one needs first to
estrict ourselves to families of size greater than ϵ > 0 in order to be able to rank the atoms of
518
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times of PPPλ. In the schematic representation given in Fig. 2, the divergence of the ancestral
lineage of the family (x2, x3) is faster than those of (x1, x2) and (0, x1).

xample 3.10. Let Ψ be the branching mechanism with drift γ = 1 and Lévy measure
(dx) = x−α−1e−x dx with α ∈ (0, 2). Then by a Tauberian theorem, see e.g. Feller’s book [12,
hapter XIII.5],

Ψ (x)
x

∼
x→∞

∫
∞

0
(1 − e−xh)hπ̄ (h)dh ∼

x→∞
cαxα−1,

here for all h > 0, π̄ (h) := π ((h, ∞)) and cα is a strictly positive constant.

(i) If α ∈ (1, 2), then
∫

∞ du
Ψ (u) < ∞, hence Ψ ′(∞) = ∞, and S is a discrete set, thus

dimH (S ∩ [0, x]) = 0 a.s. for all x > 0.
(ii) If α = 1 (Neveu case), then

∫
∞ du

Ψ (u) = ∞ and Ψ ′(∞) = ∞, hence S is not a discrete
set, but dimH (S ∩ [0, x]) = 0 a.s. for all x > 0.

(iii) If α < 1, Ψ ′(∞) < ∞, hence
∫

∞ du
Ψ (u) = ∞ and S is not a discrete set, and

dimH (S ∩ [0, x]) =
1

1+Γ (1−α) a.s. for all x > 0.

In general, inverse subordinators do not have the Markov property. The joint density of the
nite-dimensional marginals of (Ŵ λ(x), x ≥ 0) is thus rather involved to study. We refer to the
orks of Lageras [20] and Veillette and Taqqu [32] for information on inverse subordinators.
The following proposition is a side result on the one-dimensional laws of the limiting process

Ŵ λ(x), x ≥ 0). Recall that νλ denotes the Lévy measure of the subordinator (W λ(x), x ≥ 0)
nd ν̄λ is its tail: for any x ≥ 0, ν̄λ(x) := νλ

(
(x, ∞)

)
.

Proposition 3.11. The law of Ŵ λ(x) admits the density gλ
x defined on (0, ∞) by

gλ
x (u) :=

∫ x

0
ν̄λ(x − z)P(W λ(u) ∈ dz). (3.16)

When
∫

∞ du
Ψ (u) < ∞, Ŵ ∞(x) has density g∞

x :

g∞

x (u) := e−u
∞∑

n=0

un

n!

∫ x

0
ν̄∞(x − z)ν⋆n

∞
(dz). (3.17)

. Proofs

The most demanding part in the proof of Theorem 3.1 lies in the almost-sure convergence.
he convergence in law will be established from a direct argument involving the subordinators
X−t,0(x), x ≥ 0) rather than their inverse, we refer to the forthcoming Lemma 4.14. In order
o show the almost-sure convergence, we first establish a general result of independent interest
elating θ -invariant functions of stochastically monotone processes, with θ -invariant measures
f their dual processes, see Section 4.1. We then apply this result in the setting of CSBPs.
he asymptotics of a certain θ -invariant function for the dual process X̂ is studied. It enables

o find a new martingale associated to the ancestral lineage process. We shall see how the
enormalization vt (λ) appears in this martingale and deduce the almost sure convergence of
he process (vt (λ)X̂ t (x), t ≥ 0) started from a fixed value x , see Lemma 4.10. We study the
ssociated limiting process in x and show that it satisfies the properties stated in Theorem 3.1,

ee Lemma 4.11.
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Theorem 3.7 will be established with the help of some previous results obtained in [14].
roposition 3.8 will be a consequence of Theorem 3.1. The proof of Theorem 3.1 is divided

nto several lemmas. The first are needed to show the almost sure convergence towards some
ositive random variable Ŵ λ(x).

4.1. Invariant functions of stochastically monotone Markov processes

In this section, we consider a “general” standard Markov process X := (X t , t ≥ 0) with
state space [0, ∞), and denote by (X t (y), t ≥ 0) the process started from y ∈ [0, ∞). Recall
that the process X is said to be stochastically monotone if for any t ≥ 0 and x ∈ [0, ∞), the
map y ↦→ P(X t (y) ≥ x) is non-decreasing. Siegmund [29] has established that if the process
X is stochastically monotone, non-explosive or with boundary ∞ absorbing, and that for any
fixed t and z, the map y ↦→ P(X t (y) ≥ z) is right-continuous then there exists a unique Markov
process X̂ , the so-called Siegmund dual process, such that for any t and x, y

P(X t (y) ≥ x) = P(X̂ t (x) ≤ y). (4.18)

The latter identity can be rewritten as

P
(
X̂ t (x) > y

)
= P

(
x > X t (y)

)
. (4.19)

ur first result shows how to find fundamental martingales for the Siegmund dual process
X̂ t (x), t ≥ 0) of any stochastically monotone Markov process (X t (x), t ≥ 0). Recall T̂y defined
n (2.11).

heorem 4.1 (Invariant Functions of X̂ ). Let (Pt , t ≥ 0) be the semigroup of the process
X t , t ≥ 0). Let θ ∈ R. If µθ is a positive Borel measure on (0, ∞) satisfying for any
≥ 0, µθ Pt = eθ tµθ , then the functions x ↦→ µθ ([0, x)) and x ↦→ µθ ((x, ∞)), provided

hey are well-defined, are θ -invariant functions, namely functions fθ such that for any t ≥ 0
nd x ∈ [0, ∞),

E[ fθ (X̂ t (x))] = eθ t fθ (x),

o that(
e−θ t fθ (X̂ t (x)), t ≥ 0

)
is a martingale. (4.20)

n particular, if the process (X̂ t , t ≥ 0) has no positive jumps and µθ is finite on [0, x) for all
x > 0, then fθ : x ↦→ µθ ([0, x)) is a well-defined increasing and left-continuous function, and
or all y ≥ x ≥ 0,

Ex [e−θ T̂y ] =
µθ ([0, x))
µθ ([0, y))

. (4.21)

emark 4.2. A measure µθ satisfying µθ Pt = eθ tµθ is sometimes called an eigen-measure
r a θ -invariant measure.

emark 4.3. Let L be the generator of the process (X t , t ≥ 0). The Kolmogorov forward
quation entails that the condition µθ Pt = eθ tµθ for all t ≥ 0, is equivalent to µθL = θµθ ,
here µθL is by definition the measure such that ⟨µθL, f ⟩ :=

∫
L f (x)µθ (dx) for any function

f ∈ C2((0, ∞)).
b
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Proof. Set fθ (x) = µθ ([0, x)) for all x > 0. For any x ∈ (0, ∞) and any t ≥ 0,

P̂t fθ (x) = E
[

fθ
(
X̂ t (x)

)]
= E

[∫
1

{X̂ t (x)>y}
µθ (dy)

]
= E

[∫
1{x>X t (y)}µθ (dy)

]
by the duality relation (4.19)

= µθ Pt
(
[0, x)

)
= eθ tµθ

(
[0, x)

)
= eθ t fθ (x).

he martingale property (4.20) follows readily from the Markov property. Note that the map
fθ : x ↦→ µθ ([0, x)) is left-continuous. We now apply the bounded optional stopping time
heorem at time t ∧ T̂y :

E
[
e−θ t∧T̂y fθ

(
X̂ t∧T̂y

(x)
)]

= fθ (x).

ince fθ is non-decreasing and X̂ t∧T̂y
(x) ≤ y a.s, one has for any t ≥ 0, fθ

(
X̂ t∧T̂y

(x)
)

≤ fθ (y).
n the event {T̂y < ∞}, the left-continuity of fθ and the absence of negative jumps in the
rocess (X̂ t , t ≥ 0) ensure that fθ

(
X̂ t∧T̂y

(x)
)

−→
t→∞

fθ (y). This yields

fθ (x) = lim
t→∞

E
[
e−θ t∧T̂y fθ

(
X̂ t∧T̂y

(x)
)]

= E
[
e−θ T̂y fθ (y)1

{T̂y<∞}

]
,

hich provides the identity (4.21). □

emark 4.4. Theorem 4.1 holds in general for any stochastically monotone Markov process.
n particular, the process is not required to have one-sided jumps. The state space [0, ∞] could
lso be replaced by a more general nice ordered state space.

emark 4.5. Let L̂ denote the generator of the process X̂ . An invariant function fθ for the
emigroup of X̂ can be thought as a solution to the equation L̂ fθ = θ fθ . However, when the
rocess has jumps, L̂ is an integro-differential operator and no general theory allows one for
dentifying solutions of this equation. Theorem 4.1 reveals that for stochastically monotone
rocesses finding a θ -invariant function corresponds to finding a θ -invariant measure for the
ual process. This is reminiscent to a result of Cox and Rösler [31].

.2. Application to CSBPs and proof of Theorem 3.1

Recall the definition of (X̂ t (x), t ≥ 0) as the right-continuous inverse of (X−t,0(x), t ≥ 0),
emma 2.4 and the duality relation (2.13). This relationship matches with (4.19) and we will
e able to apply Theorem 4.1.

Recall the action (2.4) of the generator L on exponential functions. We now look for the
-invariant measures µθ in our setting and their Laplace transforms explicitly in terms of Ψ .
he following Lemma holds for general branching mechanism (i.e. not necessarily subcritical).

emma 4.6. For any θ > 0, the map cθ : q ↦→ e−θ
∫ q

1
du

Ψ (u) is the Laplace transform of a Borel
easure µθ on [0, ∞). Moreover, the measure µθ is θ -invariant for the semigroup (Pt , t ≥ 0)
f the CSBP (X t , t ≥ 0).

roof. Recall that L denotes the generator of the CSBP (X t (x), t ≥ 0). Let θ ≥ 0. It is
asily checked from the expression of c that (−1)nc(n)

≥ 0 on (0, ∞). Bernstein theorem,
θ θ
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see e.g. [33, Theorem 12.b, page 161], guarantees that there exists a certain Borel measure µθ

possibly infinite) on [0, ∞) such that cθ (q) =
∫

∞

0 e−qxµθ (dx) for all q > 0. We now check
hat the measure µθ solves µθL = θµθ . Let q > 0, recall that λ > 0 is fixed. Observe first

that cθ satisfies the equation

− Ψ (q)c′

θ (q) = θcθ (q), cθ (1) = 1. (4.22)

Recall eq : x ↦→ e−qx for any x, q ≥ 0. Since the linear span of exponential functions is a
core for the generator L, it is enough to verify that

⟨µθL, eq⟩ :=

∫
∞

0
Leq (x)µθ (dx) = ⟨θµθ , eq⟩ = θ

∫
∞

0
e−qxµθ (dx). (4.23)

One has on the other hand Leq (x) = Ψ (q)xeq (x) and (4.23) is equivalent to

Ψ (q)
∫

∞

0
xe−qxµθ (dx) = θ

∫
∞

0
e−qxµθ (dx), (4.24)

which holds true by using (4.22). □

Remark 4.7. In the subcritical or critical cases, the map q ↦→ cθ (q) is completely monotone
on (0, ∞) and not defined at 0. This entails that the measure µθ is infinite. In the supercritical
case, cθ is completely monotone and well-defined and right-continuous at 0, in this case the
measure µθ is finite. Lastly, observe that µθ gives a mass at 0 if and only if Grey’s condition
holds (which ensures that cθ (∞) > 0).

According to Theorem 4.1, the map fθ : x ↦→ µθ ([0, x)) is a θ -invariant function for
(X̂ t , t ≥ 0). The following simple calculation provides an expression of the Laplace transform
of fθ . For any q > 0,

ξθ (q) :=

∫
∞

0
fθ (y)e−qydy =

∫
∞

0

∫
∞

0
1{u<y}e−qyµθ (du)dy =

1
q

cθ (q). (4.25)

nverting ξθ in order to find fθ does not seem to be feasible in a general setting, however we
shall see in the next lemma that ξθ has regular variation properties at 0, Tauberian theorems will
hen allow us to find an equivalent at ∞ of the function fθ and hence enable us to investigate

ore precisely the martingale (e−θ t fθ (X̂ t (x)), t ≥ 0). Arguments for establishing the three next
lemmas are lifted from those in Pakes [28, Theorem 10] and Barbour [2] and adapted to the
setting of continuous-state space branching processes.

Lemma 4.8. Assume Ψ ′(0+) ̸= 0. The map R : q ↦→ e−
∫ q

1
du

Ψ (u) is regularly varying at 0
ith index −1/Ψ ′(0+). In particular it takes the form R(q) = q−

1
Ψ ′(0+) L1(1/q), where L1 is

slowly varying function at ∞. Moreover, for any θ > −Ψ ′(0+),

fθ (y) ∼
y→∞

y
θ

Ψ ′(0+)
1

Γ
(

1 +
θ

Ψ ′(0+)

) L1(y)θ =
1

Γ
(

1 +
θ

Ψ ′(0+)

) R(1/y)θ . (4.26)

roof. For any q > 0,∫ 1

q

du
Ψ (u)

=

∫ 1

q

(
1

Ψ (u)
−

1
Ψ ′(0+)u

)
du +

∫ 1

q

du
Ψ ′(0+)u

=

∫ 1/q ( 1
2 −

1
′

)
du −

1
′

log(q).

1 u Ψ (1/u) Ψ (0+)u Ψ (0+)
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Set ϵ(u) =
1

uΨ (1/u) −
1

Ψ ′(0+) for u > 0 and notice that ϵ(u) −→
u→∞

0. One has

R(q) = q−
1

Ψ ′(0+) exp
(∫ 1/q

1

ϵ(u)
u

du
)

and by Karamata’s representation theorem, see e.g. Bingham et al. [7, Theorem 1.3.1], we see
that L1(x) := exp

(∫ x
1

ϵ(u)
u du

)
is slowly varying at ∞. Recall cθ (q) = e−θ

∫ q
1

du
Ψ (u) . By (4.25),

θ : q ↦→
cθ (q)

q is regularly varying at 0 with index ρ = −1 −
θ

Ψ ′(0+) . The Tauberian theorem
ith monotone density, see e.g. [12, Chapter XIII.5, Theorem 4], provides (4.26). □

From now on, we focus on the subcritical case Ψ ′(0+) > 0. We now establish an almost
ure limit theorem for the first passage time above level y, T̂ x

y , when y goes to ∞.

emma 4.9. For any x > 0, almost-surely

T̂ x
y −

∫ 1

1/y

du
Ψ (u)

−→
y→∞

S(x),

here S(x) is a finite random variable with Laplace transform

E[e−θ S(x)] = Γ

(
1 +

θ

Ψ ′(0+)

)
fθ (x) f or all θ > −Ψ ′(0+). (4.27)

roof. We establish first a convergence in law. By the asymptotic equivalence (4.26), for any
> −Ψ ′(0+),

E[e−θ (T̂ x
y −

∫ 1
1/y

du
Ψ (u) )] −→

y→∞
Γ

(
1 +

θ

Ψ ′(0+)

)
fθ (x).

ne obtains by applying a continuity theorem for the moment generating function, see [10,
heorem 3], that as y goes to ∞,

T̂ x
y −

∫ 1

1/y

du
Ψ (u)

L
−→ S(x), (4.28)

here S(x) has Laplace transform (4.27). We now show the almost sure convergence. Let
yn, n ≥ 0) be an increasing sequence such that yn −→

n→∞
∞ and with y0 := x . Write

T̂ x
yn

−

∫ 1/x

1/yn

du
Ψ (u)

=

n∑
k=0

(
T̂ x

yk+1
− T̂ x

yk
−

∫ 1/yk

1/yk+1

du
Ψ (u)

)
.

ince the Markov process X̂ has no positive jumps, the summands are independent and by
4.28), the series on the right-hand side converges in law, one can apply [8, Theorem 9.5.5],
hich ensures that the series actually converges almost-surely. We finally get that

T̂ x
y −

∫ 1

1/y

du
Ψ (u)

−→
y→∞

S(x) a.s. □

We now deduce the convergence of the process (vt (λ)X̂ t (x), t ≥ 0) for fixed x and a
epresentation of its limit Ŵ λ(x).
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Lemma 4.10. Let λ > 0. For any x > 0, the following almost sure convergence holds:

vt (λ)X̂ t (x) −→
t→∞

Ŵ λ(x) := c(λ)e−Ψ ′(0+)S(x), (4.29)

here c(λ) is a constant independent of x.

Proof. We first establish the almost sure convergence towards some random variable Ŵ λ(x).
y applying Theorem 4.1, the process (e−t f1(X̂ t (x)), t ≥ 0) is a positive martingale. Therefore,

he latter converges almost surely towards some random variable Z (x). Recall Lemma 4.8. Set
(1, λ) :=

λξ1(λ)
Γ (1+1/Ψ ′(0+)) and Rλ(1/y) := exp

(∫ λ

1/y
du

Ψ (u)

)
= exp

(∫ λ

1
du

Ψ (u)

)
R(1/y). Recall that

X̂ t (x) −→
t→∞

∞ a.s, see Proposition 2.3. By Lemma 4.8,

e−t f1
(
X̂ t (x)

)
∼

t→∞
e−tβ(1, λ)Rλ

(
1/X̂ t (x)

)
−→
t→∞

Z (x) a.s.

ence

Rλ

(
1/X̂ t (x)

)
∼

t→∞

et Z (x)
β(1, λ)

. (4.30)

ow, using the fact that Rλ is non-decreasing and regularly varying at 0 with index −
1

Ψ ′(0+) ,
we see that R−1

λ is regularly varying at ∞ with index −Ψ ′(0+). Taking R−1
λ in the asymptotic

equivalence (4.30) yields

1

X̂ t (x)
∼

t→∞
R−1

λ

(
et Z (x)
β(1, λ)

)
∼

t→∞

(
Z (x)

β(1, λ)

)−Ψ ′(0+)

R−1
λ (et ).

y the definition of λ ↦→ vt (λ), see (2.7), one has Rλ

(
vt (λ)

)
= et . This allows us to conclude

hat

vt (λ)X̂ t (x) −→
t→∞

Ŵ λ(x) :=
(
Z (x)/β(1, λ)

)Ψ ′(0+) a.s.

e now explain the relation between Ŵ λ(x) and the random variable S(x) introduced in the
revious lemma. Denote by (Ft )t≥0 the natural filtration of X̂ . Let (Mt , t ≥ 0) be the martingale
efined by Mt := E[e−S(x)

|Ft ] for any t ≥ 0. Note that Mt −→
t→∞

e−S(x) almost surely. Moreover
y Lemma 4.9, and Lebesgue’s theorem, for any t ≥ 0,

Mt = lim
y→∞

E
[

e−

(
T̂ x

y −
∫ 1

1/y
du

Ψ (u)

)
|Ft

]
.

or any fixed y, conditional on {T̂ x
y > t}, we have that T̂ x

y = T̂ x
y ◦θt + t with T̂ x

y ◦θt := inf{s >

: X̂s+t (x) > y}. By the Markov property, we get almost surely

E[e−T̂ x
y |Ft ] =

f1

(
X̂ t∧T̂ x

y
(x)
)

f1(y)
e−t∧T̂ x

y .

Therefore, almost surely

Mt = lim
y→∞

e
∫ 1

1/y
du

Ψ (u)

f1(y)
f1

(
X̂ t∧T̂ x

y
(x)
)

e−t∧T̂ x
y

= Γ

(
1 +

1
Ψ ′(0+)

)
f1(X̂ t (x))e−t .
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Hence,

Z (x) := lim
t→∞

e−t f1(X̂ t (x)) =
1

Γ
(

1 +
1

Ψ ′(0+)

)e−S(x) > 0 a.s.,

nd we have Ŵ λ(x) = c(λ)e−Ψ ′(0+)S(x) a.s. □

The almost sure convergence in Lemma 4.10 holds for fixed x . We now further investigate
he limiting process in the variable x and establish a stronger convergence.

emma 4.11. The process (Ŵ λ(x), x ≥ 0) admits a non-decreasing right-continuous
odification. Moreover, setting J λ

:= {x > 0 : Ŵ λ(x) > Ŵ λ(x−)}, one has almost surely,

∀x /∈ J λ, vt (λ)X̂ t (x) −→
t→∞

Ŵ λ(x). (4.31)

roof. For technical reasons it will be easier to establish the result first with a left-continuous
imiting random process instead of the targeted right-continuous one. Once a version with
eft-continuous paths and right limits is constructed, one can easily consider the associated
ight-continuous version of it. Recall that by Lemma 4.10, for any fixed x , vt (λ)X̂ t (x) converges
lmost surely as t goes to ∞ towards a random variable denoted by Ŵ λ(x). Consider the almost
ure event Ω1 on which all random variables (Ŵ λ(q), q ∈ Q+) are defined. Since for any t ≥ 0,
he process (X̂ t (x), x ≥ 0) is non-decreasing then for any rational numbers q ′

≥ q ≥ 0, one
as Ŵ λ(q ′) ≥ Ŵ λ(q). We work deterministically on Ω1 and define for all x ≥ 0,

˜̂W λ(x) := lim
q↑x,

q∈Q+

Ŵ λ(q).

he process ( ˜̂W λ(x), x ≥ 0) is well-defined on Ω1 and we define it as the null process on Ω\Ω1.
y construction, ( ˜̂W λ(x), x ≥ 0) is left-continuous. It has right limits since it is non-decreasing.
e now show that for any x ≥ 0, P(Ŵ λ(x) =

˜̂W λ(x)) = 1. By the identity (4.29), on the event
1, we have that for all q ∈ Q+ such that q < x

Ŵ λ(q) = Ŵ λ(x)e−Ψ ′(0+)(S(q)−S(x)) a.s. (4.32)

e now verify that S(q) −→
q→x
q<x

S(x) a.s. Since almost surely for all x ≤ q ≤ q ′, X̂ t (x) ≤

X̂ t (q) ≤ X̂ t (q ′), then T̂ q ′

y ≤ T̂ q
y ≤ T̂ x

y and similarly, almost surely

S(q ′) ≤ S(q) ≤ S(x).

ence (S(q), q > 0) is decreasing. Recall the Laplace transform of S(q) given in (4.27), since
he function fθ : x ↦→ µθ ([0, x)) is left-continuous, we have that

E[e−θ S(q)] −→
q→x
q<x

E[e−θ S(x)].

inally we see that S(q) −→
q→x
q<x

S(x) a.s. and by the identity (4.32), Ŵ λ(q) −→
q↑x,q∈Q

Ŵ λ(x), hence

Ŵ λ(x) =
˜̂W λ(x) a.s. and ˜̂W λ is a left-continuous version of the family of random variables

Ŵ λ(x), x ≥ 0). If we now define on Ω1, simultaneously for all x , the process (Ŵ λ(x), x ≥ 0)
y setting Ŵ λ(x) :=

˜̂W λ(x+), then the process (Ŵ λ(x), x ≥ 0) is right-continuous. The
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first statement of the lemma is established. It remains to see that the almost sure pointwise
convergence holds outside the set of jumps J λ. Almost surely for all x /∈ J λ, one can choose
wo rational numbers q and q ′ such that q ′ < x < q. Since X̂ t (q ′) ≤ X̂ t (x) ≤ X̂ t (q) for all t ,
ne has

˜̂W λ(q ′) ≤ lim inf
t→∞

vt (λ)X̂ t (x) ≤ lim sup
t→∞

vt (λ)X̂ t (x) ≤
˜̂W λ(q).

ince ˜̂W λ has left-continuous paths with right limits and x /∈ J λ, both sides of the inequalities
bove converge towards the same value ˜̂W λ(x) when q ′

↑ x and q ↓ x . By definition of Ŵ λ(x),
ince x /∈ J λ, Ŵ λ(x) =

˜̂W λ(x). This allows us to claim (4.31). □

From now on we work with the right-continuous version of Ŵ λ. The next lemma sheds
ome light on the role of the parameter λ and provides Lemma 3.6.

emma 4.12. For any λ > 0 and λ′ > 0,
vt (λ)
vt (λ′)

−→
t→∞

cλ,λ′ := eΨ
′(0+)

∫ λ
λ′

du
Ψ (u) . (4.33)

oreover Ŵ λ(x) = cλ,λ′ Ŵ λ′

(x) for all x ∈ (0, ∞) almost surely.

roof. Since Ψ ′(0+) ≥ 0, vt (λ) −→
t→∞

0. Moreover, limt→∞ ↑
Ψ (vt (u))

vt (u) = Ψ ′(0+). Recall that
d

dλ
vt (λ) =

Ψ (vt (λ))
Ψ (λ) . Therefore for any λ ̸= λ′,

vt (λ)
vt (λ′)

= exp
(∫ λ

λ′

d
du

log vt (u)du
)

= exp
(∫ λ

λ′

Ψ (vt (u))
vt (u)

du
Ψ (u)

)
nd by monotone convergence vt (λ)

vt (λ′) −→
t→∞

exp
(
Ψ ′(0+)

∫ λ

λ′
du

Ψ (u)

)
. We see from Lemma 4.11 that

Ŵ λ(x) = cλ,λ′ Ŵ λ′

(x) for all x ∈ (0, ∞) almost surely. □

emma 4.13. The map κλ : q ↦→ e−Ψ ′(0+)
∫ λ

q
du

Ψ (u) is the Laplace exponent of a drift-free
subordinator W λ. Its Lévy measure, denoted by νλ, is finite if and only if

∫
∞ du

Ψ (u) < ∞.

roof. For any θ > 0 and any y ∈ (0, ∞), since X−t,0(z) has the same law as X0,t (z) for all
z and t ≥ 0, one gets by (2.6) and by applying Lemma 4.12

E[e−θ X−t,0

(
y

vt (λ)

)
] = e−y vt (θ)

vt (λ) −→
t→∞

e−yκλ(θ ). (4.34)

t any time t , the process (X−t,0(y/vt (λ)), y ≥ 0) is a subordinator, the function κλ is therefore
he Laplace exponent of a certain subordinator (W λ(y), y ≥ 0). We show that there is no drift in

the subordinator. Recall Ψ ′(∞) := limu→∞
Ψ (u)

u ∈ (0, ∞]. Since the case of linear branching
mechanism is discarded, i.e Ψ (q) ̸≡ bq , one has by convexity, Ψ ′(∞) > Ψ ′(0+). Choose
δ ∈ (Ψ ′(0+),Ψ ′(∞)). There exists λ0 such that for all u ≥ λ0, Ψ (u)

u ≥ δ and thus 1
Ψ (u) ≤

1
δu .

Therefore

lim
θ→∞

∫ θ

λ0

(
1

Ψ ′(0+)u
−

1
Ψ (u)

)
du ≥

∫
∞

λ0

(
1

Ψ ′(0+)
−

1
δ

)
du
u

= ∞.

ne deduces that
κλ(θ )

=
1

exp
(

−Ψ ′(0+)
∫ θ

(
1

′
−

1
)

du
)

−→ 0,

θ λ λ Ψ (0+)u Ψ (u) θ→∞
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which entails that there is no drift. Letting θ to ∞ in κλ(θ ), we see that

lim
θ→∞

κλ(θ ) = νλ((0, ∞)) = eΨ
′(0+)

∫
∞

λ
du

Ψ (u) ,

hich is finite if and only if
∫

∞ du
Ψ (u) < ∞. Therefore the Lévy measure νλ is finite if and

nly if
∫

∞ du
Ψ (u) < ∞. □

Lemma 4.14. The process (Ŵ λ(x), x ≥ 0) has the same finite-dimensional law as

((W λ)−1(x), x ≥ 0),

where W λ is a càdlàg subordinator with Laplace exponent κλ and

(W λ)−1(x) := inf{y ≥ 0 : W λ(y) > x}.

Moreover, if
∫

∞ du
Ψ (u) = ∞, then the process Ŵ λ has continuous paths almost surely.

Proof. By independence and stationarity of the increments of (X−t,0(y/vt (λ)), y ≥ 0), the
convergence in law of the one-dimensional marginal (X−t,0(y/vt (λ)), t ≥ 0) as t goes to
∞ towards W λ(y), established in (4.34), entails the convergence of the finite-dimensional
marginals. Since there is no drift part in the Laplace exponent κλ, the range of the subordinator
W λ contains almost surely no fixed point, see [3, Proposition 1.9-(i)]. Hence for any x ∈ (0, ∞)
and y ∈ (0, ∞), P(W λ(y) = x) = 0. The weak convergence of the finite-dimensional marginals
of X−t,0(y/vt (λ), y ≥ 0) entails thus that for any 0 < y1 < · · · < yn and 0 < x1 < · · · < xn

lim
t→∞

P
(
X−t,0(y1/vt (λ)) ≥ x1, X−t,0(y2/vt (λ)) ≥ x2, . . . , X−t,0(yn/vt (λ)) ≥ xn

)
= P

(
W λ(y1) ≥ x1, W λ(y2) ≥ x2, . . . , W λ(yn) ≥ xn

)
.

By applying Lemma 4.10, the definition of the flow (X̂ t (x), x ≥ 0) and the duality relation
(2.12), one gets the following identities

P
(

Ŵ λ(x1) ≤ y1, Ŵ λ(x2) ≤ y1, . . . , Ŵ λ(xn) ≤ yn

)
(4.35)

= lim
t→∞

P
(
vt (λ)X̂ t (x1) ≤ y1, vt (λ)X̂ t (x2) ≤ y2, . . . , vt (λ)X̂ t (xn) ≤ yn

)
= lim

t→∞
P
(
X−t,0(y1/vt (λ)) ≥ x1, X−t,0(y2/vt (λ)) ≥ x2, . . . , X−t,0(yn/vt (λ)) ≥ xn

)
= P

(
W λ(y1) ≥ x1, W λ(y2) ≥ x2, . . . , W λ(yn) ≥ xn

)
= P

(
(W λ)−1(x1) ≤ y1, (W λ)−1(x2) ≤ y2, . . . , (W λ)−1(xn) ≤ yn

)
.

The processes (W λ)−1 and Ŵ λ have therefore the same law. The fact that when
∫

∞ du
Ψ (u) = ∞,

here are no jumps, i.e J λ
= ∅ a.s., comes from the fact that the process (W λ)−1 is the inverse

f a subordinator with an infinite Lévy measure. Since there is no drift in W λ, the sample paths
f Ŵ λ are pure singular continuous functions. □

roof of Theorem 3.1. The main theorem is obtained by combining Lemmas 4.11, 4.14 and
.13. □

emark 4.15. When
∫

∞ du
Ψ (u) = ∞, for any time t > 0, the subordinator (X−t,0(x), x ≥ 0) has

n infinite Lévy measure, the process (X̂ t (x), x ≥ 0) is therefore continuous increasing. Since
ts limit (Ŵ λ(x), x ≥ 0) is continuous, Dini’s theorems ensure that the almost sure convergence
4.31) holds true locally uniformly.
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Proof of Corollary 3.3. Recall the statement of Corollary 3.3. For any λ > 0, by (2.7), one
as for any time t ,∫ λ

vt (λ)

(
1

Ψ ′(0+)u
−

1
Ψ (u)

)
du =

1
Ψ ′(0+)

log
(

λ

vt (λ)

)
− t

=
1

Ψ ′(0+)
log

(
λ

vt (λ)
e−Ψ ′(0+)t

)
.

ecall that vt (λ) −→
t→∞

0. Therefore, the asymptotics vt (λ) ∼
t→∞

cλe−Ψ ′(0+)t holds for some
onstant cλ > 0 if and only if∫ λ

0

(
1

Ψ ′(0+)u
−

1
Ψ (u)

)
du < ∞. (4.36)

ne has, when (4.36) holds, cλ = λe−Ψ ′(0+)
∫ λ

0

(
1

Ψ ′(0+)u
−

1
Ψ (u)

)
du . Since Ψ (u) ∼

u→0
Ψ ′(0+)u, the

onvergence (4.36) is equivalent to
∫ λ

0

(
Ψ (u)−γ u

u2

)
du < ∞, where we recall that γ = Ψ ′(0+)

is the linear drift in Ψ , see (2.5). Simple calculations from the Lévy–Khintchine form (2.5)
nsure that the latter integral converges if and only if

∫
∞ u log uπ (du) < ∞. We refer for

nstance to the calculations around Proposition 3.14 in [26]. By Theorem 3.1, almost surely
or all x /∈ J λ,

e−Ψ ′(0+)t X̂ t (x) −→
t→∞

1
cλ

Ŵ λ(x).

he process ( 1
cλ

Ŵ λ(x), x ≥ 0) is the inverse of the subordinator (W λ(cλx), x ≥ 0), whose
aplace exponent is θ ↦→ cλκλ(θ ). Recall κλ, one easily checks that

cλκλ(θ ) = λe−Ψ ′(0+)
[∫ λ

0

(
1

Ψ ′(0+)u
−

1
Ψ (u)

)
du−

∫ θ
λ

du
Ψ (u)

]
= θe−Ψ ′(0+)

∫ θ
0

(
1

Ψ ′(0+)u
−

1
Ψ (u)

)
du

. □

.3. Proof of Theorem 3.7

We establish now that the random partition A matches with the ancestral partition. The
proof relies on discretizations of the current population along the sequence of jumps times of
a Poisson process, see [14, Section 5.2]. Consider a Poisson point process P on R+ ×R+ with
intensity the Lebesgue measure on R+ × R+. Let µ > 0 and (Jµ

j , j ≥ 1) be the sequence of
atoms (i.e. of jump times) of the homogeneous Poisson process (P([0, µ]×[0, x]), x ≥ 0). Note
that all jump times of (P([0, µ] × [0, x]), x ≥ 0) are jump times of (P([0, µ′] × [0, x]), x ≥ 0)

hen µ′ > µ. Therefore the sequence (Jµ′

j , j ≥ 1) is thinner than (Jµ

j , j ≥ 1). Moreover
he set of all jump times ofP , M := {Jµ

i , i ≥ 1, µ > 0}, is almost surely an everywhere
ense subset of [0, ∞). One samples now individuals in the current population along the
equence (Jµ

i , i ≥ 1) for a fixed µ. Let i ̸= j ∈ N. We first establish that the individuals

Jµ

i and Jµ

j have the same ancestors if and only if Jµ

i
A
∼ Jµ

j i.e. Ŵ λ(Jµ

i ) = Ŵ λ(Jµ

j ). The first
mplication is obvious since by definition of Ŵ λ, if X̂ t (Jµ

i ) = X̂ t (Jµ

j ) for some t ≥ 0, then
Ŵ λ(Jµ

i ) = Ŵ λ(Jµ

j ). Denote by (Cµ(t), t ≥ 0) the process defined as follows

i
Cµ(t)
∼ j if and only if X̂ t (Jµ

i ) = X̂ t (Jµ

j ) for any i, j ∈ N⋆.

ccording to [14, Proposition 4.18] and its proof, the process (Cµ(t), t ≥ 0), called consecutive
µ
oalescent in [14], admits an almost-sure limit C (∞) and for any fixed integers i and j ,
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Cµ(∞)
∼ j if and only if there exists a time ti, j > 0 such that for all t ≥ ti, j , i

Cµ(t)
∼ j . To

stablish the other implication, we will show that Cµ(∞) = A µ, where A µ is defined as
ollows:

i
A µ

∼ j if and only if Ŵ λ(Jµ

i ) = Ŵ λ(Jµ

j ).

learly all blocks of Cµ(∞) are sub-blocks of A µ. It is thus sufficient to show that the blocks
f A µ have lengths of the same law as those of Cµ(∞). Recall κλ. By [14, Lemma 5.8], blocks
izes of A µ are i.i.d. with generating function given by,

E[z#A
µ
1 ] = 1 −

κλ(µ(1 − z))
κλ(µ)

, for all z ∈ (0, 1).

imple calculations from the expression of κλ, see (3.14), entail that E[z#A
µ
1 ] = 1 −

e−Ψ ′(0+)
∫ µ
µ(1−z)

du
Ψ (u) . Applying [14, Proposition 5.18], we see that E[z#A

µ
1 ] = E[z#Cµ

1 (∞)] for
ny z ∈ (0, 1).

It remains to deduce that A is indeed the ancestral partition of the whole population. If
x

A
∼ y and x ̸= y, then there exists u > 0, such that x, y ∈

(
W λ(u−), W λ(u)

)
. By density of

he set M, one can find for some large enough µ, atoms Jµ
x , Jµ

y ∈ M such that

W λ(u−) < Jµ
x < x and W λ(u) > Jµ

y > y.

By construction, the individuals Jµ
x and Jµ

y belong to the same interval of A . We have seen
above that it entails that almost surely for large enough t ≥ 0, X̂ t (Jµ

x ) = X̂ t (Jµ
y ). Hence all

ndividuals in the interval (Jµ
x , Jµ

y ) have a common ancestor, including x and y. This achieves
he proof. □

roof of Proposition 3.8. Recall the statement of Proposition 3.8, where S denotes the
upport of the random measure dŴ λ. By Lemma 4.12, Ŵ λ

= cλ,λ′ Ŵ λ′

almost surely, this
ntails that S does not depend on the parameter λ. Moreover, we see by Lemma 4.14 that S
s the range of a subordinator W λ with Laplace exponent κλ. Having the Laplace exponent
f W λ at hand, one can directly apply known results on the geometry of the range of a
ubordinator. By [3, Corollary 5.3], for all x > 0, almost surely dimH (S ∩ [0, x]) = ind(κλ)
ith ind(κλ) := lim infq→∞

log κλ(q)
log q . Recall κλ, one gets

ind(κλ) = lim inf
q→∞

Ψ ′(0+)
log q

∫ q

λ

du
Ψ (u)

.

f Ψ ′(∞) := limu→∞
Ψ (u)

u < ∞, then we see that
∫ q
λ

du
Ψ (u) ∼

q→∞

1
Ψ ′(∞) log q and the result is

stablished. If now Ψ ′(∞) = ∞, then for any large D > 0, for large q ,∫ q

λ

du
Ψ (u)

≤ Cλ +
log q

D
,

for some constant Cλ. We see therefore that ind(κλ) ≤
Ψ ′(0+)

D . Since D is arbitrarily large, one
an conclude that dimH (S ∩ [0, x]) =

Ψ ′(0+)
Ψ ′(∞) = 0 a.s. □

We now establish Proposition 3.11 and look for the density of Ŵ λ(x) for fixed x .

roof of Proposition 3.11. Let λ > 0 and θ > 0. Recall κλ and denote by eθ , eq

two independent exponential random variables with parameter θ and q respectively. By
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Lemma 4.14, we have that P(W λ(eθ ) ≥ eq ) = P(eθ ≥ Ŵ λ(eq )), or equivalently

E[e−θ Ŵλ(eq )] = 1 − E[e−qWλ(eθ )].

e deduce that∫
∞

0
E[e−θ Ŵλ(x)]e−qx dx =

1
q

(
1 − E[e−κλ(q)eθ ]

)
=

1
q

(
1 −

θ

κλ(q) + θ

)
=

1
θ

κλ(q)
q

θ

κλ(q) + θ

=
1
θ

κλ(q)
q

E[e−κλ(q)eθ ] =
1
θ

∫
∞

0
e−qu ν̄λ(u)du

×

∫
∞

0
e−qzP(W λ(eθ ) ∈ dz),

here we have used that

E[e−qWλ(eθ )] = E[e−κλ(q)eθ ] and
κλ(q)

q
=

∫
∞

0
e−qu ν̄λ(u)du.

y the change of variable x = u + z, we obtain∫
∞

0
E[e−θ Ŵλ(x)]e−qx dx =

1
θ

∫
∞

0
e−qx

∫
∞

0
ν̄λ(x − z)P(W λ(eλ) ∈ dz),

and deduce that

E[e−θ Ŵλ(x)] =
1
θ

∫ x

0
ν̄λ(x − z)P(W λ(eθ ) ∈ dz)

=

∫
∞

0
e−θu

∫ x

0
ν̄λ(x − z)P(W λ(u) ∈ dz)du.

Thus, the density of Ŵ λ(x) is gλ
x (u) :=

∫ x
0 ν̄λ(x − z)P(W λ(u) ∈ dz). In the case

∫
∞ du

Ψ (u) < ∞,
W ∞(u), u ≥ 0) is a compound Poisson process with intensity ν∞, and since ν̄∞(0) = 1, the
ormula (3.17) can be plainly checked. □
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