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ABSTRACT

Musical scores are generally analyzed under different as-
pects, notably melody, harmony, rhythm, but also through
their texture, although this last concept is arguably more
delicate to formalize. Symbolic texture depicts how sound-
ing components are organized in the score. It outlines the
density of elements, their heterogeneity, role and interac-
tions. In this paper, we release a set of manual annotations
for each bar of 9 movements among early piano sonatas
by W. A. Mozart, totaling 1164 labels that follow a syntax
dedicated to piano score texture. A quantitative analysis
of the annotations highlights some characteristic textural
features in the corpus. In addition, we present and release
the implementation of low-level descriptors of symbolic
texture, that are preliminary experimented for textural ele-
ments prediction. The annotations and the descriptors offer
promising applications in computer-assisted music analy-
sis and composition.

1. INTRODUCTION

1.1 Texture and symbolic texture

Musical texture generally refers to two distinct levels of
abstraction used to describe musical content [1]. On the
one hand, sound related texture, that can be referred to as
orchestral texture, results from orchestration, instrumen-
tation and timbral characteristics of instruments and per-
formances. On the other hand, symbolic texture, or com-
positional texture, results from the organization of notes,
chords and voices in the musical score. Naturally, these no-
tions are closely related, and Hérold studies both textural
and instrumental factors of timbre [2], highlighting the im-
pact of compositional texture on the final sound field. Sym-
bolic texture, which is the focus of the dataset presented
in this paper, can be described through high level musical
concepts such as layer separation, diversity of sonic activ-
ities, layer roles, note density and interactions [3–7]. For
instance, in piano music, an accompanying chord sequence
can be performed in various ways, each one being identi-
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fied by a specific texture contributing to a stylistic identity.
Symbolic texture stands at the center of the compositional
process and can sometimes be understood as a notion of
style [8]. Musical style is however commonly associated
with a whole piece [9] or section whereas the notion of
symbolic texture considered in this work tends to describe
much shorter time spans in the musical score.

1.2 Related work

Computational methods to analyze symbolic texture have
been elaborated in various musical styles including clas-
sical string quartet music [10] and modern popular guitar
music [11]. Given the wide range of playing modes offered
by the instrument, piano music brings unprecedented chal-
lenges for the task of in-score texture identification. The
present work builds on a recent formal syntax elaborated
to classical piano music modeling [7]. As a crucial param-
eter of musical style, symbolic texture has also recently
raised an important attention in the tasks of music genera-
tion [12] and style transfer [8,13], where musical texture is
efficiently learned by deep neural networks but with lim-
ited perspectives of explicit categorization and musicolog-
ical interpretation. Alternatively, the dataset proposed in
the present work promotes a pedagogical and transparent
expression of symbolic piano texture, aiming at facilitat-
ing its use to design computational tools intended to assist
music pedagogy, analysis and composition.

The MIR – Music Information Retrieval – community
dedicates an important part of its work effort in building
musical expert annotations accompanying music datasets
to facilitate training and evaluation of computational mod-
els. The classical repertoire, in particular its piano music,
gives raise to a number and variety of annotation needs
given the richness of its musical language. Key regions,
cadences, phrases and harmonies were annotated in the
Mozart piano sonatas from the New Mozart Edition (Neue
Mozart Ausgabe) [14]. As other representative initiatives,
the TAVERN dataset includes harmony and phrase anno-
tations on Mozart and Beethoven’s piano variations [15]
and the Fugue dataset includes form annotations specific to
this genre [16]. Beyond piano music, classical string quar-
tets have also raised a number of key, harmony and struc-
ture annotation efforts including repertoires of Haydn [17],
Mozart [18] and Beethoven [19, 20]. Although a corpus
has been proposed in [21], symbolic texture has still rarely



Figure 1. Examples of texture annotations using the syn-
tax defined in [7]. a) K. 283.III m.1-2: the melody is dou-
bled at the third (M2p), and moves in parallel motions (p)
over a static layer with repeated notes (S1r); b) K. 279.I
m.35: in addition to a melodic layer with scale motive
(M1s), a short (sparse, ‘_’) homorhythmic layer appears,
without affecting the vertical global density whose value
remains 1 on the overall measure (1[...]); c) K. 279.I
m.6: a typical example of Alberti bass, described as HS1
harmonic and static layer of density equal to one, and a
possible division into two sublayers; d) K. 279.III m.157-
158: a concluding formula with melodic (horizontal move-
ments), harmonic (verticality) and static (regularity and
emphasis), high vertical density, with an octave motion
(o) optionally detailed in the sublayer decomposition. A
comma separates the dense texture from the contrasting si-
lence (‘_’) in the last measure.

been the subject of consequent corpus annotations, due to
the variety of musical features it involves and the rarity of
formal specification.

1.3 Motivation and outline

In order to provide to the community consistent data to
study symbolic texture in Western classical piano music,
we release a dataset of manual annotations describing sym-
bolic texture at each bar of 9 movements of Mozart Piano
Sonatas, totaling a set of 1164 annotated measures. The
corpus and the annotation process are detailed in Section 2.
Section 3 provides statistics on the textural labels anno-
tated in the dataset. Finally Section 4 presents preliminary
results of texture prediction by a machine learning model.

2. PRESENTATION OF THE DATASET

2.1 Syntax for the annotations of symbolic texture

We follow the syntax proposed in [7] to describe textural
properties of piano music. More precisely, the texture of a
score region is annotated by a text label expressing a set of
features with the following conventions:

Diversity. The overall texture is split into independent tex-
tural layers that are described individually, separated

by a /. They are ordered by descending register.

Example: The label M1/H2 includes two layers, as
in examples a, b and c in Figure 1.

Function. The function of each layer is expressed with
a combination of three specific labels being M for
melodic function, H for harmonic function, and S
for static function like pedals and ostinati.

Example: The label M1/H2 includes one layer with
a melodic function and one layer with an harmonic
function. As an other example, the label HS1 in-
cludes one single layer having both a harmonic and
a static function like a persistent arpeggio.

Density. The density of a layer, also called thickness [1],
corresponds to the number of voices it includes, ex-
pressed by an integer right after the function.

Example: The label M1/H2 includes one melodic
layer with one voice and one harmonic layer includ-
ing two voices.

Global density. The global density of a region corre-
sponds to its global number of voices and is indi-
cated before brackets surrounding the whole label. It
is an approximation of the average number of notes
perceived simultaneously. In most cases, the global
density is equal to the sum of the layer’s density, in
which cases its notation is optional because redun-
dant.

Example: The label 3[M1/H2] indicates a global
density of 3 and can be simplified into M1/H2.
However, the label 2[M1/H2], which can occur in
certain types of sparse regions, cannot be simplified.

Internal organization of a layer. Additional elements
can indicate the presence of relationships between
voices: homorhythmy (h), parallel motion (p), oc-
tave (o) or characteristic musical figures: sustained
notes (t), repeated notes (r), oscillations (b) or
scales (s).

Example: The label M2p/HS3hr can describe a
melody doubled at the third accompanied by re-
peated three-note chords.

Sublayer decomposition. Each layer can optionally be
decomposed into sublayers notated between paren-
theses.

Example: In the label M1/HS1(S1/M1) (see Fig-
ure 1.c), the second layer HS1 itself includes one
static sublayer and one melodic sublayer enabling
for example the expression of a single voice accom-
paniment consisting in an alternation between a sin-
gle repeated pitch and a moving melodic line.

Sparsity. When a layer does not last during the full mea-
sure (as in Figure 1.b), or has too low horizontal den-
sity, it is considered as sparse and notated with ‘_’.
This symbol is also used to annotate empty bars.



Figure 2. Excerpt of the first movement of Mozart’s Piano Sonata n.2 (K. 279, m.7-10) as seen on the web application used
to annotate and review the dataset. Each annotated label can be put in doubt by the reviewer: once a feedback is opened
over one given measure, comments can be added to exchange with the annotator. Feedbacks have three states: raised (in
white – just submitted by a reviewer), in conflict (red – waiting for a consensus) and resolved (green, as in the figure).

Corpus ID:
corpus:MIR:mozartpianosonatas:texture:2022:version1.0
Raw Corpus
Definition: existing corpus of real symbolic items. Digital
Scores of Mozart’s Piano Sonatas following the Neue Mozart-
Ausgabe (NME) from Mozart Annotated Sonatas [14]. 9 an-
notated movements in 3 sonatas (K. 279, K. 280, K. 283).
Sampling: Western classical style piano music, available
data, all movements in Sonata Form.
Type of media diffusion: original files in .mscx and .tsv (Tab
Separated Values), annotations in .tsv, .txt and .dez (Dezrann
format).
Annotations
Origin: manual
Concepts definition: concepts and syntax for texture anno-
tations from [7].
Annotation rules: annotation guidelines provided with the
dataset.
Annotators: one annotator (expert knowledge in music and
piano), 2 reviewers with the same background.
Validation/reliability: review, one for each movement.
Annotation tools: Dezrann web-interface [24].
Documents and Storing
Identifier and storage: Köchel number, scores from NMA
(Neue Mozart Ausgabe) reference edition, Git repository of
the dataset by [14] in musescore and TSV format, annotation
files on a Git repository 1 and online on Dezrann 2 .

Table 1. Description of the annotated dataset.

2.2 Annotated corpus

Following the syntax presented in Section 2.1, we release
manual annotations of texture at the bar level in the 3
movements of the 3 sonatas K. 279, K. 280 and K. 283
by W. A. Mozart, totaling a set of 1164 bar annotations
in the 9 movements. Those early sonatas were all com-
posed in the end of the year 1774, which presumes a style
consistency and limits the shift of compositional practice
that could be induced by the evolution of piano manufac-
ture. Moreover, these movements present an interesting
diversity in tonality, rhythmic signature and tempo, while
covering a large variety of textures. All those movements
are in Sonata Form, which opens perspectives to pursue
research on the links between texture and form [22].

Table 1 synthesizes the properties of the dataset follow-
ing the conventions proposed in [23].

2.3 Annotation procedure

2.3.1 Granularity of the annotations

Textural segments can have highly variable duration,
which tends to complicate their annotation. As a compro-
mise to facilitate statistics and computational processing of
the annotations, we propose in this work to annotate a sin-
gle texture label for each bar, as indicated in the proposi-
tion of syntax [7]. In some cases where the texture strongly
shifts in the middle of a bar, a comma (,) is used to seg-
ment the label in two parts. In particular, this situation may
occur on boundaries between musical phrases. By contrast,
a texture can also remain unchanged over several consecu-
tive bars, which will lead to a repetition of a same texture
label over these bars.

2.3.2 Annotation and reviewing methodology

This section describes our annotation protocol which was
inspired by [25] and illustrated in Figure 3. One expert E
annotated all the measures of the 9 movements with texture
labels on Dezrann 2 , a web platform dedicated to the anno-
tation of musical analyses on scores [24]. The annotations
were committed to a Git repository to trace the different
stages of annotation and reviews. A Python script 3 was
used to systematically check that the labels were consis-
tently formed before to proceed to the review phase, reliev-
ing the reviewers from syntax checking to concentrate on
the textural decomposition. Two reviewers R1 and R2 (dis-
tinct from the expert), with strong musical background and
piano music knowledge, as well as knowledge of the tex-
ture syntax used, reviewed those annotations on Dezrann.
They added a feedback label each time they disagreed
or were unsure of the annotator label choice, detailing the
reasons of the doubt and possibly providing a new proposi-
tion for the label. The expert E then studied all the doubts,
resolved the obvious ones and discussed with the two re-
viewers to reach a consensus on the remaining labels.

Over the 1164 initial annotations of the annotator, 31%
raised a reviewer feedback and 22% (256) were updated in

1 http://algomus.fr/data
2 http://dezrann.net
3 http://algomus.fr/code



the end. This substantial number emphasizes the impor-
tance of the reviewing phase as well as the complexity of
texture annotation due to its variety and the high expressiv-
ity of the syntax. Besides correcting possible omissions or
typos in the labels, the majority of conflicts ensured a more
homogeneous and precise use of the syntax in the whole
dataset – in each movements and between them. Hence,
most of the discussions between the annotator and the re-
viewers involved several measures: consecutive ones shar-
ing similar texture, cyclic resurgence of thematic materi-
als (for example in both exposition and recapitulation of
sonata form) or comparable textures across pieces. Note
that in some cases (like in music analysis in general), it is
possible to have different interpretations of the textural lay-
ers in a musical passage. The goal of the review here was
not to blur those distinct possible analyses but to provide
consistent labels that made sense for all.

2.3.3 Syntax knowledge and annotation reproducibility

The annotator followed the syntax recalled in Section 2.1
with the help of a catalog of common textural configura-
tions provided in [7]. As shown in Section 2.3.2, the tex-
ture of a bar can sometimes be interpreted in various ways,
leading to different labels. The consideration of the neigh-
boring bars can also impact the texture estimation. To limit
inconsistency in the labels, we provide annotation guide-
lines in addition to the dataset. These guidelines typically
indicate the order of consideration of the different textural
elements when estimating a label. They aim at encourag-
ing a sense of normalization in the annotations, although
such a normalization has not been strictly formalized. This
aims at helping futur annotators to understand and repro-
duce the annotation labels. Since the web platform used
allows to share several analyses of the same musical piece,
divergent labels could be further used ultimately to propose
alternative analyses and diversify the dataset for machine
learning applications.

3. CORPUS ANALYSIS

3.1 Common textures and layers

Among the 1164 annotated bars, 16.6% include two labels
instead of one due to a substantial shift of texture in the
middle of the bar (see Section 2.3.1), resulting in 1357 tex-
tural configurations. From this set, we can extract 2317
non-empty textural layers. Among the most common lay-
ers, we find simple single-voice melodies (M1) which to-
taled 24.9% of all written layers, followed by melodies
with scale motives (M1s, 7.0%, see Figure 1.b) and with
parallel motions (M2p, 3.7%), generally doubled at the
third (see Figure 1.a) or at the sixth.

Another important family of textural layers encom-
passes repetitive accompaniment figures like arpeggios, in
which notes of the current harmony are played one by one
(HS1, here). A famous example is the Alberti bass, an id-
iomatic pattern which alternates notes in low-high-middle-
high order (see Figure 1.c and the first half of Figure 2)
and is typical of Mozart’s piano music. The combination

Figure 3. Annotation protocol. Once each measure of a
given piece has been annotated (1), these labels are read
by a reviewer (2) who can emit a ‘doubt’ on questionable
annotations, along with a justification or a proposal of cor-
rection. Then, the annotator treats each doubt, by either
resolving it or argumenting towards another solution (3).
Finally, conflicts that remained unresolved are discussed
between the annotator and reviewer(s) until a consensus is
found (4). At each step of the process, the correctness of
the syntax is automatically checked and the changes are
committed to a Git repository.

of basic melody M1 and single-voice accompaniments HS1
is the most represented in the dataset, with 7.3% of all an-
notated labels.

3.2 Textural elements in labels

Symbolic texture labels are highly expressive and rich in
information. We call textural elements the set of unary at-
tributes, each one notated with a dedicated character, that
can appear in our labels. We consider that a bar includes
a textural element if it appears at least once in the whole
label. For example, a bar includes the textural element h
(homorhythmy), if the whole texture, or at least one of its
layers, is homorhythmic (and therefore annotated with h).
In the case of two successive textural configurations de-
scribed in one label (A, B), the presence of the element on
one side is sufficient to consider its presence in the whole
label. The textural elements are all listed in Table 2.

Unsurprisingly, a vast majority of the dataset (94.6% 4 )
contains a layer with at least one melodic function (M).
Following on function combinations, 20.2% of labels only
contain melodic layers (presence of the element M and ab-
sence of H and S). The coincident presence of the three
functions concerns 23.5% of the labels and the most com-
mon combination is made of melodic and/or harmonic lay-
ers without any static (S) ones (34.1%) as it is the case
in a typical melody plus accompaniment section. Finally,
the proportion of measures with harmonic layers (textural

4 The proportions of all annotated textures and textural elements are
provided in the dataset repository: http://algomus.fr/data.



element H) varies between annotated movements, notably
according to the tempo: this percentage is 26% higher in
slower movements (the second of each full sonata) than in
the average of the 6 others (84.4% versus 58.2%).

3.3 Density and diversity

We compute the diversity and the global density of each an-
notated textural configuration. As detailed in Section 2.1,
the diversity corresponds to the number of stacked layers
while the global density corresponds to the approximate
number of monophonic voices that can be heard simul-
taneously. Figure 4 puts in relation these two values for
the set of annotated labels. The diagonal is assimilated
to polyphony where each voice sounds like a new distinct
musical idea, an individual layer. On the contrary, the bot-
tom row, with diversity of value 1, corresponds to mono-
phonic texture; thus, any note is contributing to the same
unique musical entity. This case is common at the end of
structural parts and cadences, typically in homorhythmy
(see Figure 1.d). Homophonic textures, for example com-
binations of a main melody and accompaniment, are found
between these two areas. Among the annotated non-empty
textural configurations, 29.2% lay in the 2|2 combination
of diversity|density, including the common case of melody
and singe-voice accompaniment, presented earlier. Tex-
tures in 2|3 and 2|4 (three or four voices merged into two
layers) illustrate denser homophonic variants, in which a
melody may be doubled at the third or at the sixth, or
an accompaniment made of simultaneous notes (in ho-
morhythmy). The combinations above the diagonal cor-
respond to situations where the number of layers is higher
than the number of voices (2|1 or 3|2). This can happen
when two distinct lines alternate in antiphony (call & re-
sponse): several textural layers are perceived whereas their
notes do not overlap.

The diversity, which corresponds to the number of lay-
ers, rarely exceeds 2. However, Figure 4 shows that a sys-
tematic separation into two layers, which follows an in-
tuitive organization of the score content between the two
hands of the pianist, would not be sufficiently representa-
tive of the corpus.

In other repertoires, the number of voices – the verti-
cal density – could be globally higher. Bach three-voice
inventions would be mainly categorized as a continuous
3|3 polyphony, and some works of the Romantic Era in-
cluding very large chords would be extremely dense verti-
cally. Hence, it is easy to imagine that this textural space,
similarly to the one described in [4], is prone to convey
strong stylistic content. Moreover, the evolution of texture
throughout a single piece of music could be modeled as a
trajectory in this space, which offers promising future ana-
lytical perspectives.

4. APPLICATION: PREDICTION OF TEXTURAL
ELEMENTS

We present in this section preliminary experiments of tex-
ture prediction.

Figure 4. Repartition of textural configurations of the
dataset according to their density and diversity. We divided
this textural space into areas corresponding to the main tex-
ture types evoked in Section 3.3: monophony, homophony,
polyphony and antiphony [4, 26]. Empty textures (silence)
are not taken into account in this figure.

4.1 Symbolic textural descriptors

To facilitate the prediction of textural elements in musical
scores, we propose a set of 62 high level features com-
puted on the raw musical score. Some of these were in-
spired from previous works including [27] and were com-
plemented with original ones especially elaborated for the
modeling of high level textural concepts in polyphonic pi-
ano scores. The Python implementation of these descrip-
tors is publicly released 5 . Provided code enables to com-
pute the descriptors in Stream objects from the Music21
Python library [28] as well as note lists directly stored in
TSV (Tab Separated Values) files, as in [14] 6 .

The selected descriptors are computed at different lev-
els of the musical content: pitches, onsets or temporal
slices. Temporal slicing is equivalent to the action of
Stream.chordify() method in the Music21 library,
also called salami-slicing [29]. For elements followed by
the symbol ‘*’, we compute average, deviation, median,
and extremal values.

Pitches. We compute the total number of distinct
pitches, the number of pitch classes, the notes duration*,
the notes MIDI pitch* and an indicator of pitch reuse.

Onsets. We compute the total number of onsets, the
number of simultaneous pitches by onset*, the regularity*,
the harmonic intervals and the number of gaps* between
pitches – where a gap is detected when the interval be-
tween two simultaneous notes is larger than a fourth [3].

Slices. We compute the number of slices, the number of
simultaneous pitches*, the number of gaps*, the distance
pitch ambitus*, the proportion of consonnant intervals (mi-
nor and major third, perfect fourth and perfect fifth), the
proportion of rests and the longest rest.

5 http://algomus.fr/code
6 See https://github.com/DCMLab/mozart_piano_

sonatas/tree/main/notes



Textural element Log. Reg. Random All True
M (melodic) 0.912 0.665 0.973
H (harmonic) 0.744 0.545 0.799
S (static) 0.616 0.457 0.599
h (homorhythmy only) 0.673 0.396 0.453
p (parallel motions) 0.572 0.315 0.401
o (octave motions) 0.538 0.211 0.244
h+ (h or p or o) 0.810 0.538 0.708
p+ (p or o) 0.602 0.393 0.479
s (scale motives) 0.363 0.282 0.332
t (sustained notes) 0.669 0.161 0.193
b (oscillations) 0.098 0.116 0.103
r (repeated notes) 0.501 0.183 0.200
_ (sparsity) 0.587 0.258 0.306
, (sequential) 0.520 0.198 0.291

Table 2. F1-scores of the logistic regression models for the
prediction of each textural element, compared to – respec-
tively – a uniform random model and a model that always
predict the presence of the textural element. F1-scores are
averaged on the 9 folds of the cross-validation.

4.2 Description of the models

Different machine learning models were compared to pre-
dict the presence of textural elements presented in Sec-
tion 3.2 from the set of 62 descriptors detailed in Sec-
tion 4.1. Descriptor values are given to the model as vec-
tors of 62 floats extracted from each measure. The pre-
diction of the presence of each textural element was for-
mulated as a binary classification task leading to a dedi-
cated model for each of the 14 textural elements. Whereas
modern data-driven machine learning approaches tend to
favor neural networks for their power of abstraction, we
stick to simple Logistic Regression models applied on pre-
processed high level features as they seemed more adapted
to the limited size of our training set and are more easily
interpretable. We used Scikit-learn [30] implementation
with L-BFGS solver, a maximum of 100 iterations and
L2-regularization. Decision Tree classifiers and Support
Vector Machine with linear kernel were also tested with-
out significant improvements. In all our models, output
classes weights are balanced with respect to their propor-
tion in the dataset. The evaluation criterion is the F1-score,
using cross-validation with leave-one-piece-out strategy to
avoid overfitting due to similarities and repetitions inside
movements.

4.3 Results and interpretations

The results are presented in Table 2. We observe that the
presence of melody (M) is very well detected (F1-score
of 0.912), despite being highly unbalanced in the dataset
(94.6% of labels contains at least one layer with a melodic
function). Harmonic or static functions are quite more dif-
ficult to predict. They were also more difficult to annotate:
the determination of these functions also involves a part
of subjectivity, despite the efforts made in the reviewing
process to ensure the consistency of annotations.

The predictions of notes simultaneities and semblant
motions (h, p, o) obtain fair results. We could have ex-

pected better from them, as well as for t (sustained notes)
and r (repeated notes), since they only involved rare di-
vergences during reviews, their determination being more
straightforward. Furthermore, they are closer to the use of
defined descriptors – notably those which are related, for
instance, to the number of notes played at the same time
or the presence of certain harmonic intervals in onsets or
slices. The success of predicting h+ compared to specific
relationships h, p or o is meaningful: considering the fact
that parallel motions are specific cases of homorhythmy,
it seems more practical and sound to focus on this more
general case.

The poor results of models to predict oscillation b can
be justified by the limited proportion of positive examples
in the dataset (around 5.1%). Finally, the difficulty of an-
notating scale motives (s) in practice is reflected in their
prediction result (F1-score of 0.36). From slow descending
sequences of neighboring pitches to cells of short-duration
notes that share the same repeated contour: many variants
of this element can be found in the corpus, some of which
were making consensus difficult to reach between annota-
tor and reviewers. This issue can be adressed in the defi-
nition of the syntax as the need to refine the criteria and
guidelines for the annotation of targeted concepts. The
scale patterns sometimes span over wider regions than the
duration of a bar, making the descriptors inadequate in this
case. Providing a larger context to our models therefore ap-
pears as a promising perspective to improve the detection
of this textural element.

5. CONCLUSION AND FURTHER WORKS

We provide an open dataset of texture annotations that
specifically handles piano classical music. This dataset
contains annotations of 9 movements of Mozart’s piano
sonatas, all in Sonata Form, and annotation guidelines are
provided in order to allow for an easy extension of the
dataset by the community. It could be completed with
other movements of Mozart’s piano sonatas, but also with
more diverse piano music from the Classical Era. An ex-
tension of the texture syntax to consider specific textures
from other periods would also certainly bring new insights
for the study of composition styles.

The dataset can be used for musicological purposes, for
instance to study the links between texture and a variety
of annotations – harmony, modulations, cadences, phrases
and section boundaries – that are common subjects of in-
terest in the MIR community. It also opens perspectives in
MIR for computer-aided analysis and composition. As a
first application, we implemented a set of textural descrip-
tors and used them for the prediction of textural elements,
obtaining encouraging results. An in-depth analysis of the
relations between the textural descriptors and textural ele-
ments could help improving the prediction, especially on
harmonic, static layer detection, or scale motives. This
work will also allow to study the evolution of texture in
the musical pieces and to better integrate this dimension
for automatic generation of music following textural sce-
narios.
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