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Introduction

A better understanding the functioning of Earth System in the con-

text of past climatic upheavals is essential for predictions about the

fate of the diversity of life and the future of our society. The Interna-

tional Geoscience Program (IGCP), a joint initiative of UNESCO and

IUGS, serves as a knowledge hub to facilitate international scientific

cooperation in the geosciences. One of the strategical themes of the

IGCP is Global Change: evidence from the geological record, which

perfectly applies to the project IGCP-655, Toarcian Oceanic Anoxic

Event: Impact on marine carbon cycle and ecosystems.

The study of oceanic anoxic events that affected past marine eco-

systems provides us the chance to create models which can be applied

to ongoing environmental global changes and to understand future

evolution of habitats and ecosystems. The Toarcian Oceanic Anoxic

Event (T-OAE, Early Jurassic) is a good past analogue for ongoing cli-

matic changes. This event occurred during the early Toarcian (Serpenti-

num Zone), around 182 Ma ago, due to the Pliensbachian-Toarcian

boundary is dated as 182.7 0.7 Ma in the International Chronostrati-

graphic Chart v.2020/01 (Cohen et al., 2013 updated). However, the U-Pb

geochronology of Sell et al. (2014) indicated that Pliensbachian-Toar-

cian boundary is older than 183.5 Ma and the beginning of the T-OAE

was dated at 183.1 Ma. The term Toarcian Oceanic Anoxic Event was

used initially by Farrimond et al. (1989). The T-OAE was an abrupt

paleoenvironmental perturbation affecting the diversity of marine ecosys-

tems (e.g., Jenkyns, 1988; Jenkyns and Clayton, 1997; Hesselbo et

al., 2007). The end of the Pliensbachian sea-level regression was fol-

lowed by a transgression which occurred during the Early Toarcian

(Hallam et al., 1987; De Graciansky et al., 1998; Pittet et al., 2014; Haq,

2018) coeval with a widespread deposition of black shales in the major-

ity of epicontinental basins (Jenkyns, 1988), and a global warming

(Suan et al., 2011; García Joral et al., 2011; Korte and Hesselbo, 2011;

Them et al., 2017a). A perturbation of the carbon cycle indicated by a

negative carbon isotopic excursion (CIE) has been documented (Fig. 1) in

both marine and terrestrial material (e.g., Jenkyns and Clayton, 1986;

Schouten et al., 2000; Hesselbo et al., 2007; Al-Suwaidi et al., 2010;

Suan et al., 2010; Caruthers et al., 2011; Izumi et al., 2012; Reolid,

2014; Rodrigues et al., 2019; Ruebsam et al., 2019, 2020a).

This Early Jurassic biotic crisis constitutes a second-order mass

extinction for benthic organisms (Little and Benton, 1995; Aberhan

and Fürsich, 2000; Cecca and Macchioni, 2004; Wignall et al., 2005;

Gómez and Goy, 2011; Danise et al., 2013, 2019; Caruthers et al., 2014;

Rita et al., 2016). This biotic crisis was probably driven by oxygen-

depletion affecting platforms and oceanic deep environments (Röhl et

al., 2001; Bucefalo Palliani et al., 2002; Wignall et al., 2005; Hermoso

et al., 2009; Caruthers et al., 2014; Them et al., 2018; Reolid et al., 2012,

2019a). 

The IGCP-655 project of the IUGS-UNESCO has constituted an

international network of researchers with different disciplinary skills

who collaborate and share conceptual advances. The IGCP-655 includes

111 researchers from 65 research centres corresponding to 26 countries.

As a result, the IGCP-655 and the workshops organized provided a

friendly platform for participants to communicate their own research

results and to merge international experts, and research facilities to

solve a truly global-scale problem. This project has favoured a multi-

disciplinary, integrated analysis of the T-OAE from stratigraphic suc-

cessions outcropping in different regions all over the world combining

biotic (microfossils, macroinvertebrates and vertebrate assemblages)

and abiotic data (sedimentology, cyclostratigraphy, mineralogy, elemen-

tal geochemistry, and isotopic geochemistry). 

Our project aims at investigating the climatic changes related to the

sea-level rise, carbon cycle perturbation, global warming and second-

order mass extinction through detailed studies of Upper Pliensbachian to

Middle Toarcian biostratigraphy, ichnology, paleoecology, ecostratig-

raphy, sedimentology, mineralogy, geochemistry, biogeochemistry and

cyclostratigraphy. Our project attempts at documenting the collapse

of global marine ecosystems and their subsequent recovery. One of

the main challenges is the knowledge of the mechanisms related to the

biotic response of various organisms at different trophic levels, from

different habitats and climate zones (calcareous nannofossils, radio-

larians, foraminifera, ostracods, dinoflagellates, bivalves, brachiopods,

ammonites, and vertebrates) to climate and environmental adverse

conditions. Finally, the IGCP-655 also focused on the understanding

of the feedbacks between carbon cycle perturbation and global warm-

ing and the impact on marine ecosystems and primary productivity. 
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Classic and Promising new Pliensbachian-Toar-

cian Stratigraphic Sections

The recent and future advances in the knowledge of the T-OAE are

derived from the collaborative fieldwork in reference to Pliensba-

chian to Toarcian successions. It includes the Peniche section (Lusita-

nian Basin, Portugal; Fig. 1), the Lower Toarcian GSSP (Rocha et al.,

2016) where studies are continuously developing (e.g., Baker et al.,

2017; Correia et al., 2017a; Duarte et al., 2017; Fantasia et al., 2019a;

Ferreira et al., 2019; McArthur et al., 2019; Rita et al., 2019). Other

classic sections such as Valdorbia (Umbria Marche Basin, Italy), María

Pares (Lusitanian Basin), Yorkshire (Cleveland Basin, UK; Fig. 2) and

Sancerre (Paris Basin) have been the subject of study during the

IGCP-655 project, for analyses on foraminifera (Reolid et al., 2019b),

palynostratigraphy (Correia et al., 2017a; Slater et al., 2019), benthic

macroinvertebrates (Caswell and Dawn, 2019), sedimentology (Kemp

et al., 2018), geochemistry (Dickson et al., 2017; Thibault et al., 2018;

Reolid et al., 2019b) and cyclostratigraphy (Boulila and Hinnov, 2017;

Saker-Clark et al., 2019). 

Other classic material for the research on the T-OAE is the Mochras

core (Cardigan Bay Basin, Wales; Fig. 1), where continuous research

on magnetostratigraphy (Xu et al., 2018a), organic and inorganic geo-

chemistry (Xu et al., 2018b), foraminiferal assemblages (Reolid et al.,

2019a) and cyclostratigraphy based on δ13CTOC (Storm et al., 2020) have

been recently published. Additional cores in the Lombardian Basin

(Northern Italy), Colle di Sogno and Gajum cores, can be considered

reference material for the pelagic lower Toarcian of the western Tethys

and will provide high resolution data (Erba et al., 2019). 

During the last three years, other promising sections for the Upper

Pliensbachian-Lower Toarcian have been studied in Swiszerland (Rini-

ken and Gipf sections from Jura and Creux de l’Ours section from

Sub-Briançónais Basin; Fantasia et al., 2019b), in the South Iberian

Paleomargin (La Cerradura section; Reolid et al., 2019c; Rodrigues et al.,

2019; Ruebsam et al., 2020a; Fig. 1), in the North Gondwana paleo-

margin in Morocco (Issouka, Amellago and Talghemt sections; Bodin

et al., 2016; Ait-Itto et al., 2017, 2018; Boulila et al., 2019; Rodrigues

et al., 2020) and in Algeria (Raknet El Kahla section; Ruebsam et al.,

2020b). 

In Asia, marine deposits from Tibet (Bilong Co section, Chen et al.,

2017; Fu et al., 2017) and cores of lacustrine deposits from Sichuan

Basin (Xu et al., 2017) have been analysed confirming the incidence

of the carbon cycle perturbation in basins out of marine environments.

Moreover, sections from Western Panthalassa paleomargin show both

negative CIE and oxygen-depleted conditions, such as in the Toyora

area from Japan (Sakuraguchi-dani section; Izumi et al., 2018a, b;

Kemp et al., 2019; Fig. 1). In the other side of the Panthalassa, more

sections have expanded the knowledge of the T-OAE away from Tethyan

paleomargins. Among others, we can indicate the East Tributary Big-

horn Creek section (Fig. 1) and Haida Gwaii section in North America

Figure 1. Recent works showing the negative CIE obtained from δ13Corg values in different parts of the world: Peniche section from Lusitanian

Basin, Mochras Core from Cardigan Bay Basin, La Cerradura section from South Iberian Palaeomargin, Sakuraguchi-dani section from

Toyora area in the west Panthalassa, and East Distributary of Bighorn Creek section from east Panthalassa. The light-grey shaded area cor-

responding to the negative CIE has been located in the different sections between the level of sharp decrease of δ13Corg values and the return

to pre-excursion values.
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Eastern Panthalassa paleomargin (Western Canada; Caruthers et al.,

2011; Them et al., 2017b) and Arroyo Lapa section from Neuquen

Basin (Argentina; Al-Suwaidi et al., 2016; Ros-Franch et al., 2019).

Main Advances of the IGCP-655 on the T-OAE

The T-OAE is documented as one of the most significant global

events of the Mesozoic, but still there is no general consensus about

the causes: volcanic CO2 and thermogenic CH4 related to the emplace-

ment of the Karoo-Ferrar Large Igneous Province (McElwain et al.,

2005; Hesselbo et al., 2007; Fantasia et al., 2019a); b) destabilization

of marine methane hydrates (Hesselbo et al., 2000; Kemp et al., 2005);

c) increased rates of wetland methanogenesis (Them et al., 2017b)

and deterioration of climate-sensitive reservoir permafrost areas during

global warming (Ruebsam et al., 2019, 2020a).

Several environmental changes have been involved in the mass

extinction event in the marine ecosystems, such as marine deoxygen-

ation, ocean acidification, rapid greenhouse warming event, and inci-

dence of sea-level changes (e.g., Hallam, 1987; McArthur et al., 2000;

Bailey et al., 2003; Jenkyns, 2003; Gómez and Goy, 2011; Trecalli et

al., 2012; Rita et al., 2016; Caswell and Frid, 2017; Them et al., 2018).

Numerous studies point to a significant geographical variability of this

event and to the effect of regional-scale processes influencing marine

(McArthur et al., 2008; Rodríguez-Tovar and Uchman, 2010; Reolid

et al., 2014, 2018; Han et al., 2018; McArthur, 2019) and terrestrial

environments (e.g., Rodrigues et al., 2016; Baker et al., 2017). 

The contributions of the members of the IGCP-655 during the three

years of activity (2017-2019), have improved our understanding of

the T-OAE. Most of these advances were presented in the three annual

meetings of the project, the International Workshop on the T-OAE in

Jaén, Spain (2017), Coimbra, Portugal (2018) and Erlangen, Germany

(2019). The major advances are summarized in three main research

topics:

Stratigraphy and Sedimentology

The analysis of stratigraphic successions of the Pliensbachian-Toarcian

is an important tool for interpreting environmental conditions and

eustatic changes and constitutes the framework for subsequent analy-

ses of paleontological and geochemical data. Some studies have docu-

mented the frequency of tempestite deposits during the Early Toarcian

in areas such as the South Iberian Paleomargin (Molina and Nieto, 2019),

the Tibetan Carbonate Platform (Han et al., 2018) and the Andean Basin

in northern Chile (Fantasia et al., 2018). The increase of storm depos-

its during the Early Toarcian highlight the close link between global

warming and tropical cyclones (Krencker et al., 2015). Many works

have focused on the interpretation from the geological record of the

interaction of the oceanographic changes, climatic changes and car-

bonate productivity (e.g., Baroni et al., 2018; Han et al., 2018; Izumi et

al. 2018a; Suan et al., 2018). Some studies put special attention on the

analysis of sea-level fluctuations in the context of the sequence stra-

tigraphy. Krencker et al. (2019) interpreted that a forced regression

preceded the transgression related to the T-OAE. Fantasia et al. (2019a,

2019b) studied stratigraphic fluctuations of δ13C, TOC and sedimentary

features for interpreting sea-level changes and paleoceanographic

incidence. 

Cyclostratigraphic studies have been applied to Iberian Range (Val

et al., 2017), Middle Atlas and High Atlas of Morocco (Martinez et

al., 2017; Ait-Itto et al., 2018) and Wales (Xu et al., 2018a) with spe-

cial emphasis on the orbital chronology. Ait-Itto et al. (2018), Them et

al. (2018), Xu et al. (2018b) and Fantasia et al. (2019a) studied the

incidence of volcanism on the paleoenvironmental change. Ruebsam

et al. (2019) proposed that the cryosphere demise in high latitude was

related to the global warming and the glacioeustatic sea-level change.

Reolid et al. (2019c) focused in the analyses of carbon and sulfur iso-

topes from celestine concretions in the Lower Toarcian of South Ibe-

rian Paleomargin for interpreting the potential development of cold

seeps during the lattermost Pliensbachian and early Toarcian. 

Effect of the T-OAE on Marine Communities

Most of the works on fossil assemblages have focused on the analy-

sis of benthic forms. The analysis of the diversity and composition of

foraminiferal assemblages is a valuable tool for interpreting paleoen-

vironmental conditions during the Toarcian biotic crisis. The analysis

of foraminiferal morphogroups has been employed with very good results

on the SE France (Jozsa et al., 2018), the Lusitanian (Maria Pares sec-

tion, Reolid et al., 2019b) and the Cardigan Bay Basin (Mochras core;

Reolid et al., 2019a), for characterizing the different phases of the biotic

crisis and the recovery of the foraminiferal assemblages. These works

have evidenced the incidence of the oxygen-depleted conditions, the

role of opportunist forms and the subsequent recovery of the diversity

after the biotic crisis. Salazar-Ramírez et al. (2019) have shown a step-

wise extinction of benthic foraminifera in the Basque-Cantabrian Basin

(Spain) during the Early Toarcian and faunal turnover in the Serpenti-

num Zone.

The other microfossil group intensely studied is ostracoda. Soulimane et

al. (2017a, b) analyzed the turnover of ostracod assemblages at the

Pliensbachian-Toarcian transition and at the T-OAE in different paleomar-

gins from the Southwestern Tethys. Finally, Soulimane et al. (2020) pro-

pose a distribution of ostracod bioprovinces and the changes during

the beginning of the Toarcian in the western Tethys. 

The analysis of calcareous nannofossils, and the relationship with

carbonate productivity and paleoceanography during the T-OAE, has

been studied by Ferreira et al. (2017). The analysis of calcareous nan-

nofossils has allowed the refinement of biostratigraphy as well as a

better knowledge of diversity fluctuations during the Pliensbachian

and Toarcian (Ferreira et al., 2019; Menini et al., 2019). Based on the

Lusitanian Basin record, Correia et al. (2017a, 2017b) studied the response

of dinoflagellates to the T-OAE. 

Relevant advances have been obtained concerning to the incidence

of the T-OAE on macroinvertebrate communities, mainly brachiopods

(e.g., Baeza-Carratalá et al., 2017, 2018; García Joral et al. 2018; Danise

et al., 2019; Piazza et al., 2019), bivalves (Posenato et al., 2018; Brame et

al., 2019; Damborenea and Pagani, 2019; Ros-Franch et al., 2019),

and cephalopods (Rita et al., 2018). Many works have focused on the

analysis of diversity and changes in the body-size trends of organisms

at the Early Toarcian extinction event as well as in the recovery stage

(García Joral et al., 2018; Rita et al., 2018, 2019; Caswell and Dawn,

2019; Danise et al., 2019; Piazza et al., 2019; Ros-Franch et al., 2019).

Most of these papers show a decrease of body-size as a precursor of
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the biotic crisis, and the recovery after stressing conditions disappear.

The decrease in size was also recorded for calcareous nannofossils

(Ferreira et al., 2017).

Ichnological analyses have been useful for interpreting changes in

the sedimentation, oxygenation and nutrient availability in the substrate.

Therefore, Rodríguez-Tovar et al. (2017, 2019) show good examples

from the Lusitanian Basin with paleobiological changes of tracemak-

ers and opportunistic behavior as a response to the T-OAE. Reolid and

Reolid (2020) have analysed the geochemical distribution pattern from

spotted marl-limestone successions in the La Cerradura section. 

The study of fossil vertebrates was conducted on especially well-

preserved specimens and facies from Canada, Germany and England

(e.g., Konwert and Stumpf, 2017; Martindale et al., 2017; Vincent et

al., 2017; Muscente et al., 2019). The main studied groups were acti-

nopterygians (Konwert and Stumpf, 2017; Maxwell and Martindale,

2017; Maxwell and Stumpf, 2017; Johnson et al., 2019), elasmobranchs

(Stumpf and Kriwet, 2019), ichthyosaurs (Plet et al., 2017), plesiosaurs

(Vincent et al., 2017) and teleosauroids (Johnson et al., 2019).

The Early Toarcian global warming affected also terrestrial ecosys-

tems. Rodrigues et al. (2019) proposed a decreased 13C fractionation

during photosynthesis in C3 plants and arid environments from the

Iberian Paleomargin. Slater et al. (2019) showed that the fossil spore-pol-

len assemblages from Pliensbachian-Toarcian indicated that vegetation

shifted from a high-diversity assemblage with conifers, seed ferns and

lycophytes, to a low-diversity assemblage of cheirolepid conifers, cycads

and Cerebropollenites-producers adapted to warm drought-like con-

ditions.

Geochemistry, Environmental Conditions and Paleocli-

matology

Various types of geochemical proxies are gradually leading to a better

understanding of the environmental factors controlling the climate,

the oceanographic circulation, the weathering intensity, and the role

of volcanism.

Stable isotopes geochemistry was based mainly on δ13C and δ18O,

but also on δ34S and δ15N. Most of the analyses have been performed

on bulk rock sample (e.g., Bougeault et al., 2017; Them et al., 2017a),

belemnite rostra (e.g., Ait-Itto et al., 2017; Arabas et al., 2017; Rosales

et al., 2018), brachiopod shells (Ferreira et al., 2017; Baghli et al., 2020),

and organic matter (e.g., Silva et al., 2017; Izumi et al., 2018a; Suan et

al., 2018; Thibault et al., 2018; Rodrigues et al., 2019; Ruebsam et al.,

2019, 2020a). Also δ98/95Mo has been analysed from Central and North

European sections for interpreting the incidence of euxinic conditions

and water renewal during the T-OAE (Dickson et al., 2017). The osmium

isotope (187Os/188Os) stratigraphy has been used to characterize the seawa-

ter composition and to approach the enhanced weathering during the

T-OAE as a response to climatic warming (Them et al., 2017b). Them

et al. (2019) studied the Hg content of sediments and detected an Hg

anomaly during the T-OAE using many sections around the world and

interpreting combined volcanic input and emerged land provenance.

The analysis of organic matter includes the determination of the total

organic carbon (TOC), total sulfur, palynofacies and biomarkers. Some

studies have focused on the paleoclimatic reconstruction from analys-

ing the charcoal and phytoclast abundances and palynofacies (Baker

et al., 2017; Xu et al., 2017; Fonseca et al., 2018; Suan et al., 2018;

Kemp et al., 2019; Rodrigues et al., 2019, 2020). These works also

give information about the processes that happened in terrestrial envi-

ronments, such as the incidence of wildfires on the pO2 (Baker et al.,

2017). Finally, Ruebsam et al. (2020a) report the negative CIE from

inorganic carbon, bulk organic carbon and fractions of molecular land

plant fossils from Early Toarcian sediments that coincided with global

warming and a carbon cycle perturbation. Based on differences in the

magnitude of the CIE recorded in land plants and marine substrates

Ruebsam et al. (2020a) infer that the Early Toarcian warming was

paralleled by an increase in atmospheric CO2 levels from ~500 ppmv

to ~1000 ppmv. 

Stable isotopes geochemistry (δ13C, δ18O) has great potential for

determining carbon cycle perturbations, paleotemperature, paleocean-

ographic changes and interpreting enhancement of the hydrological

cycle (e.g., Izumi et al. 2018a, b; Rosales et al., 2018; Fantasia et al.,

2019a). Redox-sensitive elements were used for interpreting oxygen-

depleted conditions (e.g., Izumi et al., 2018b; Reolid et al., 2019b;

Thibault et al., 2018; Fantasia et al., 2018, 2019a) as well as the diam-

eter of pyrite framboids (Izumi et al., 2018b; Suan et al., 2018). Some

works have focused the interpretations in the potential development of

euxinic conditions during the T-OAE (Ruebsam et al., 2018; Suan et

al., 2018; Thibault et al., 2018).

The Use of Terms T-OAE and Jenkyns Event

Global effects of the Toarcian environmental perturbations have

been recognized, since the 80s, with the record of black shales as an

evidence of seawater deoxygenation (e.g., Jenkyns and Clayton, 1986;

Jenkyns, 1988). Later on, such sedimentary records have been associ-

ated with a prominent negative CIE, which interrupted a long-lasting

positive excursion (Hesselbo et al., 2000; Xu et al., 2018b; Storm et

al., 2020). If the black shale record is variable according to the paleo-

geographic context (Wignall et al., 2005; McArthur, 2019), the CIE

seems to be a common feature of most of the studied sites (Fig. 1).

There are other events in Earth history recording positive or negative,

global CIE which are named after pioneer researchers, such as the

Weissert Event (positive CIE of the mid Valanginian; Erba et al., 2004),

Farahoni Event (positive CIE of the latest Hauterivian; e.g., Baudin

and Riquier, 2014), Selli Event or Selli level (positive CIE of the early

Aptian; e.g., Menegatti et al., 1998) and Bonarelli Event (positive CIE

of the Cenomanian-Turonian boundary; Luciani and Cobianchi, 1999).

Müller et al. (2017) proposed to rename the T-OAE as the Jenkyns

Event, in honour of the seminal contribution of Professor Hugh Jen-

kyns to the understanding of this event. Accordingly, we hereby propose

to use “T-OAE” when studying marine deposits with evidence of oxy-

gen-depleted conditions. The term “Jenkyns Event” has to be used for the

global changes that occurred during the Early Toarcian. These include:

a) Carbon cycle perturbation evidenced by a prominent negative

CIE affecting marine environments (e.g., Saelen et al., 1996; Reolid,

2014; Baghli et al., 2020) and land ecosystems (as evidenced in land

plant organic matter, e.g., Hesselbo et al., 2007; Ruebsam et al., 2020a).

b) Oxygen-depleted conditions in marine ecosystems, in some areas

with generalized anoxia and euxinia (e.g., Gill et al., 2011; Izumi et al.,

2018a; Ruebsam et al., 2018; Suan et al., 2018), but not affecting all

basins and paleomargins (e.g., Boomer et al., 2009; Reolid et al.,
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Figure 2. Synthesis of main environmental and biotic changes, namely extinctions, temporary disappearance and body-size decrease, occur-

ring in two lower Toarcian iconic sections, namely the Yorkshire coast in NE England and the Peniche section in W Portugal. The ii and iii

phases of biotic perturbations from Yorkshire section are described in Caswell et al. (2009). The dark-grey shaded intervals, corresponding to

the local expression of the T-OAE, have been placed as following: (1) in the Yorkshire coast, wt% TOC values steadily higher than 2%

and faunal extinction occurrence; (2) in the Peniche section, wt% TOC peak, and belemnites and benthic fauna blackout. The light-grey

shaded area corresponding to the negative CIE (the Jenkyns event) has been placed in both areas between the level of sharp decrease of

δ13Corg values and the return to pre-excursion values.
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2014, 2015; Miguez-Salas et al., 2017; McArthur, 2019).

c) Increase of TOC during the negative CIE, but to a variable extent

depending on latitude and local environmental conditions (e.g., Wig-

nall et al., 2005), with the most typical facies being black shales in

central and north Europe (e.g., Jenkyns and Clayton, 1986; Bellanca et

al., 1999; Röhl et al., 2001; McArthur, 2019).

d) Biotic crisis recorded with different incidence in marine ecosys-

tems (e.g., Little and Benton, 1995; Caswell et al., 2009; Gómez and

Goy, 2011; Danise et al., 2015; Caswell and Frid, 2017; Reolid et al.,

2019a), but also recorded in terrestrial ecosystems with changes in

diversity and composition in land plants (e.g., Mander and McEl-

wain, 2019; Slater et al., 2019) and the increase of wildfires in some

areas (Baker et al., 2017). The term crisis comprises: extinctions, decrease

or temporary disappearance (blackout) of taxa, as well as reduction in

body-size as observed for calcareous nannofossils (Mattioli et al., 2004a,

b; Reolid et al., 2014; Clémence et al., 2015), micro- (benthic foramin-

ifera; Rita et al., 2016) and macroinvertebrates (ammonites, Morten

and Twitchett, 2009; belemnites, Rita et al., 2019; brachiopods, García

Joral et al., 2018; Piazza et al., 2019). See Figure 2.

e) Climatic change including a global warming (e.g., Gómez et al.,

2008; Korte and Hesselbo, 2011; Danise et al., 2013; Slater et al., 2019;

Baghli et al., 2020), increasing weathering (e.g., Montero-Serrano et

al., 2015; Fu et al., 2017), variations in detrital and nutrient input to

marine basins (e.g., Rodríguez-Tovar and Reolid, 2013; Danise et al.,

2015; Fantasia et al., 2019a; Kemp et al., 2019), and changes in marine

productivity and a sea-level rise (e.g., Hallam, 1987; Röhl and Schmid-

Röhl, 2005; Wignall et al., 2005). 

IGCP-655 Activities

The main activity of the IGCP-655 has been the three editions

of the International Workshop on the Toarcian Oceanic Anoxic Event

(IW-TOAE). The 1st IW-TOAE happened on October 4-7th 2017 in the

University of Jaén (Spain) organized by the Prof. Matías Reolid. There

were 38 scientific attendees, over 18 oral presentations, and 17 posters.

The 1st IW-TOAE meeting comprised four days of activities. The first

day was dedicated to a short training course “The ichnological record

as a tool to assess different order bio-events” by Prof. Francisco J.

Rodríguez-Tovar and Dr. Javier Dorador of the University of Granada

(Spain). Next day continued with the scientific sessions as well as an

invited lecture by Prof. Stephen P. Hesselbo, (University of Exeter,

UK) entitled “Changing perceptions of the Toarcian Oceanic Anoxic

Event; past, present and future research questions and directions”. In

the last two days the participants visited the best Toarcian sections of

the Subbetic (Betic Cordillera, SE Spain) such as the Fuente Vidriera

section (Fig. 3a), the La Cerradura section, the Iznalloz section and

the Arroyo Mingarrón section (see field guide, Reolid et al., 2018). 

The 2nd IW-TOAE took place in the University of Coimbra (Portu-

gal) from 6 to 9th of September, 2018, organized by the Prof. Luis V.

Duarte, with the attendance of 47 researchers from 15 countries. There

were 20 oral presentations and 15 posters with high-quality scientific

contributions. The meeting comprised four days of activities. A first day

for the scientific sessions began with the invited lecture by Prof. Hugh

Jenkyns (University of Oxford, UK) titled “The Toarcian Oceanic Anoxic

Event: lessons from the Cretaceous”. The two following days were

dedicated to the field trip visiting the classic Lower Jurassic sections

of the Lusitanian Basin (see field guide, Duarte and Silva, 2018). Among

the visited outcrops were Maria Pares (or Rabaçal) and Peniche sec-

tions (Fig. 3b), this latter considered the worldwide reference for the

Figure 3. Researchers attending the different excursions to Pliens-

bachian-Toarcian sections during the three editions of the Interna-

tional Workshop on Toarcian Oceanic Anoxic Event (IW-TOAE).

A. Visit to the Fuente Vidriera section in the Subbetic (Betic Cordil-

lera, South Spain) during the 1st IW-TOAE (October 2017). B. Visit to

the Peniche section in the Lusitanian Basin (Portugal) during the

2nd IW-TOAE (September 2018). C. Visit to the Dotterhausen Quarry

(Swabian Alb, Germany) during the 3rd IW-TOAE (September, 2019).
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Pliensbachian–Toarcian transition (Toarcian GSSP). The last day of

the meeting was dedicated to a short training course entitled “Organic

matter characterization in anoxic marine facies: palynofacies and organic

geochemistry approaches”, coordinated by Prof. João Graciano Men-

donça Filho from the Federal University of Rio de Janeiro (Brazil).

The 3rd IW-TOAE was hosted by the Geozentrum Nordbayern of

the Friedrich-Alexander University in Erlangen (Germany) between

2nd and 5th of September, 2019. This meeting began in the first day with

three training courses: “3D imaging techniques, from CT-scanning acquisi-

tion to Drishti 3D-imaging software, and biometric analysis” taught

by Christian Schulbert and Prof. Kenneth De Baets (Univ. Erlangen,

Germany); “Biomolecules and molecular fossils” by Dr. Wolfgang

Ruebsam (Univ. Kiel); and “R short course on size/extinction/diversity

patterns through time” thought by Prof. Dr. Manuel Steinbauer (Univ.

Erlangen). The second day was focused on the scientific sessions inclu-

ding 24 oral and 14 poster communications with the invited lecture

“The T-OAE: Marine ecosystem response across time and space” of

Dr. Bryony Caswell (University of Hull, UK). The two following days

were dedicated to the field trip focused on the T-OAE in the Swabian

Alb and Franconian Alb, south Germany, with special focus on facies,

geochemistry and fossil assemblages. Among the visited outcrops were

the Dotternhausen Quarry of the Schwäbische Alb Geopark (Fig. 3c),

the Buttentheim clay pit and the Teufelsgraben (see field guide, De

Baets and Rita, 2019). 

The scientific and social activities during the workshops gave many

opportunities to explore new scientific networks and to share new ideas

for advancing in the research on Mesozoic anoxic events. A number

of early career scientists, PhD students and post-docs also attended the

workshop. The educational function of the project is thus valuable.
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