
HAL Id: hal-03859996
https://hal.science/hal-03859996v1

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Hierarchical Clustering of Power Models for circuits
design

Adam Desormiere, Lilia Gzara, Jean Bigeon, Luc Nguyen-Thê

To cite this version:
Adam Desormiere, Lilia Gzara, Jean Bigeon, Luc Nguyen-Thê. Hierarchical Clustering of Power
Models for circuits design. Procedia Computer Science, 2022, International Conference on Industry
Sciences and Computer Science Innovation, 204, pp.566-572. �10.1016/j.procs.2022.08.069�. �hal-
03859996�

https://hal.science/hal-03859996v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 204 (2022) 566–572

1877-0509 © 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the International Conference on Industry Sciences and Computer Sciences
Innovation
10.1016/j.procs.2022.08.069

10.1016/j.procs.2022.08.069 1877-0509

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the International Conference on Industry Sciences and Computer
Sciences Innovation

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2021) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the International Conference on Industry Sciences and Computer Sciences
Innovation

International Conference on Industry Sciences and Computer Science Innovation

Hierarchical Clustering of Power Models for circuits design
Adam Desormiere a,b,*, Lilia Gzaraa, Jean Bigeonc, Luc Nguyen-thê b

a UDL, INSA Lyon, UCBL, Université Lumière Lyon 2, DISP, EA4570, Villeurbanne, FRANCE
b Intel France, 166 Rue du Rocher de Lorzier, 38430 Moirans, FRANCE
 c Nantes LS2N UMR CNRS 6004, 2 Chemin de la Houssinière, FRANCE

Abstract

The work presented in this paper is part of a project which focuses on capitalization and reuse of power models used
at Intel to calculate power consumption of electronic devices. These models are analytical and created using an
application called IDPA (Intel® Docea™ Power Analytics). Hundreds of thousands of power models have been
accumulated in a directory of files and folders, for the simulation of the consumption of thousands of products.
The objective of this work is to group together the models that have been used for the same product, or the same
family of products, for example a generation of processors. This notion of project is not present in the current version
of the application, and we want to use clustering techniques to make proposals to users wishing to reuse groups of
models already present in IDPA database, for example to design the next generation from the current one.
To do that, agglomerative hierarchical clustering is used. Three features are considered to calculate the distance
between files in which power models are stored: low delay between files’ edition times, similarity of files’ names and
closeness in filesystem. Hence, we build a tool that can help architects to automatically group their power models into
working projects. The proposition made by the algorithm can be refined by an expert or can be directly used by novice
users to get an idea on a project on which they have no prior knowledge.

© 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0).
Peer review under responsibility of the scientific committee of the International Conference on Industry Sciences and Computer
Sciences Innovation

Keywords: Power Modeling, Models Management, Machine Learning, Clustering

* Corresponding author. Tel.: +33-6-69-78-59-82

E-mail address: adam.desormiere@intel.com.

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2021) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the International Conference on Industry Sciences and Computer Sciences
Innovation

International Conference on Industry Sciences and Computer Science Innovation

Hierarchical Clustering of Power Models for circuits design
Adam Desormiere a,b,*, Lilia Gzaraa, Jean Bigeonc, Luc Nguyen-thê b

a UDL, INSA Lyon, UCBL, Université Lumière Lyon 2, DISP, EA4570, Villeurbanne, FRANCE
b Intel France, 166 Rue du Rocher de Lorzier, 38430 Moirans, FRANCE
 c Nantes LS2N UMR CNRS 6004, 2 Chemin de la Houssinière, FRANCE

Abstract

The work presented in this paper is part of a project which focuses on capitalization and reuse of power models used
at Intel to calculate power consumption of electronic devices. These models are analytical and created using an
application called IDPA (Intel® Docea™ Power Analytics). Hundreds of thousands of power models have been
accumulated in a directory of files and folders, for the simulation of the consumption of thousands of products.
The objective of this work is to group together the models that have been used for the same product, or the same
family of products, for example a generation of processors. This notion of project is not present in the current version
of the application, and we want to use clustering techniques to make proposals to users wishing to reuse groups of
models already present in IDPA database, for example to design the next generation from the current one.
To do that, agglomerative hierarchical clustering is used. Three features are considered to calculate the distance
between files in which power models are stored: low delay between files’ edition times, similarity of files’ names and
closeness in filesystem. Hence, we build a tool that can help architects to automatically group their power models into
working projects. The proposition made by the algorithm can be refined by an expert or can be directly used by novice
users to get an idea on a project on which they have no prior knowledge.

© 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0).
Peer review under responsibility of the scientific committee of the International Conference on Industry Sciences and Computer
Sciences Innovation

Keywords: Power Modeling, Models Management, Machine Learning, Clustering

* Corresponding author. Tel.: +33-6-69-78-59-82

E-mail address: adam.desormiere@intel.com.

2 DESORMIERE Adam / Procedia Computer Science 00 (2019) 000–000

1. Introduction

We work with analytical power models that build hierarchically from simple electrical equation models to complex
models that simulate the power consumption of real products, such as CPUs. Hundreds of thousands of power models
have already been accumulated in our application, for thousands of simulations, and we want to take advantage of this
knowledge.

The application Intel® Docea™ Power Analytics (IDPA) [1] is a collaborative power-modeling framework whose
objective is to calculate a system’s total electrical consumption from its constituent parts and to enable wide
exploration of the design space. Hence, that tool helps to discover power-efficient architectures, offering opportunities
for productivity gains in power management and time-to-market savings in power/thermal verification and validation.

When we need to model a new generation of processors in IDPA [2], we commonly reuse parts of the previous
generation. Currently, we do this manually and store power models in a drive, but this approach can be time-
consuming when the files are spread across a storage device. To address that issue, we would like to add to IDPA with
the idea of a work project that uses the principles of Product Lifecycle Management (PLM) [3].

As data capitalization and prototype traceability only rely on the knowledge and manual recovery work of experts,
PLM could help us to automate it and open it to non-experts [4]. In the current version of IDPA there is no systematic
method of labeling or referencing power models to facilitate their reuse for further work of the same type. PLM also
enhances, among other things, team collaboration which is a feature that Intel wants to emphasize in its application.
For example, by allowing some teams that design power models for high level products (let's say a whole GPU) to
use power models of low-level components (like an electrical equation) from another team.

In order to facilitate power models referencing and recovery, we introduce the concept of work project which is a
cluster of similar power models. To measure similarities between models, we need to define distances (in part 2). The
ideal way to measure similarities between power models is to look at their data (content), but that is time-consuming
and resource intensive to open, read, and parse the characteristics of hundreds of thousands of files [5]. In a first step
to solving this problem, we only focus the metadata. Among the available metadata we only use the following ones:
model name, model location, last editing time [6].

This paper is organized as follows. Section 2 presents clustering approach and techniques that are addressed
throughout the paper. Section 3 details our proposed method to calculate similarity between power models. Section 4
presents a case study and results from application of proposed method. Section 5 enumerates the conclusions from our
work and introduce future perspectives.

2. Clustering approach

There are many different clustering algorithms [7], including “K Means” [8], “Affinity Propagation” [9], and
“Hierarchical Clustering” [10].

K-Means is the most common algorithm. It starts by choosing an integer number (K) of clusters and then assigns
each object to the closest cluster, which is calculated at each stage by averaging the values of all the objects in the
cluster. The algorithm then recalculates the means for all clusters and assigns each object to the nearest cluster. This
process repeats until the clusters stop changing. However, this approach is insufficient since the number of clusters is
never known in advance. This is enough to rule out this algorithm.

Another clustering algorithm, Affinity Propagation, makes it possible to find the most representative elements of a
set given a “similarity criterion” for the set. This is an iterative algorithm that relies on the sharing of "affinities". For
each cluster “c”, the algorithm locates a nearby element that is sufficiently similar to it, and then increases its affinity
for this element. Subsequent steps propagate the affinity to the other elements. This algorithm performs much better
when we can offer a precise description of the objects to be clustered. For example, this approach would be valuable
if we compared the data of the power models instead of the metadata (as we do here in our first approach).

Hierarchical clustering is a type of clustering that builds a hierarchy of groups, with each group being a subdivision
of a single larger group. This type of clustering is appropriate when the number of clusters is not known a priori, since
it supports the creation of multiple proposals with different numbers of clusters. Fig. 2 below shows two types of
hierarchical clustering, called “Agglomerative” and “Divisive”.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2022.08.069&domain=pdf

 Adam Desormiere et al. / Procedia Computer Science 204 (2022) 566–572 567

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2021) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the International Conference on Industry Sciences and Computer Sciences
Innovation

International Conference on Industry Sciences and Computer Science Innovation

Hierarchical Clustering of Power Models for circuits design
Adam Desormiere a,b,*, Lilia Gzaraa, Jean Bigeonc, Luc Nguyen-thê b

a UDL, INSA Lyon, UCBL, Université Lumière Lyon 2, DISP, EA4570, Villeurbanne, FRANCE
b Intel France, 166 Rue du Rocher de Lorzier, 38430 Moirans, FRANCE
 c Nantes LS2N UMR CNRS 6004, 2 Chemin de la Houssinière, FRANCE

Abstract

The work presented in this paper is part of a project which focuses on capitalization and reuse of power models used
at Intel to calculate power consumption of electronic devices. These models are analytical and created using an
application called IDPA (Intel® Docea™ Power Analytics). Hundreds of thousands of power models have been
accumulated in a directory of files and folders, for the simulation of the consumption of thousands of products.
The objective of this work is to group together the models that have been used for the same product, or the same
family of products, for example a generation of processors. This notion of project is not present in the current version
of the application, and we want to use clustering techniques to make proposals to users wishing to reuse groups of
models already present in IDPA database, for example to design the next generation from the current one.
To do that, agglomerative hierarchical clustering is used. Three features are considered to calculate the distance
between files in which power models are stored: low delay between files’ edition times, similarity of files’ names and
closeness in filesystem. Hence, we build a tool that can help architects to automatically group their power models into
working projects. The proposition made by the algorithm can be refined by an expert or can be directly used by novice
users to get an idea on a project on which they have no prior knowledge.

© 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0).
Peer review under responsibility of the scientific committee of the International Conference on Industry Sciences and Computer
Sciences Innovation

Keywords: Power Modeling, Models Management, Machine Learning, Clustering

* Corresponding author. Tel.: +33-6-69-78-59-82

E-mail address: adam.desormiere@intel.com.

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2021) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the International Conference on Industry Sciences and Computer Sciences
Innovation

International Conference on Industry Sciences and Computer Science Innovation

Hierarchical Clustering of Power Models for circuits design
Adam Desormiere a,b,*, Lilia Gzaraa, Jean Bigeonc, Luc Nguyen-thê b

a UDL, INSA Lyon, UCBL, Université Lumière Lyon 2, DISP, EA4570, Villeurbanne, FRANCE
b Intel France, 166 Rue du Rocher de Lorzier, 38430 Moirans, FRANCE
 c Nantes LS2N UMR CNRS 6004, 2 Chemin de la Houssinière, FRANCE

Abstract

The work presented in this paper is part of a project which focuses on capitalization and reuse of power models used
at Intel to calculate power consumption of electronic devices. These models are analytical and created using an
application called IDPA (Intel® Docea™ Power Analytics). Hundreds of thousands of power models have been
accumulated in a directory of files and folders, for the simulation of the consumption of thousands of products.
The objective of this work is to group together the models that have been used for the same product, or the same
family of products, for example a generation of processors. This notion of project is not present in the current version
of the application, and we want to use clustering techniques to make proposals to users wishing to reuse groups of
models already present in IDPA database, for example to design the next generation from the current one.
To do that, agglomerative hierarchical clustering is used. Three features are considered to calculate the distance
between files in which power models are stored: low delay between files’ edition times, similarity of files’ names and
closeness in filesystem. Hence, we build a tool that can help architects to automatically group their power models into
working projects. The proposition made by the algorithm can be refined by an expert or can be directly used by novice
users to get an idea on a project on which they have no prior knowledge.

© 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0).
Peer review under responsibility of the scientific committee of the International Conference on Industry Sciences and Computer
Sciences Innovation

Keywords: Power Modeling, Models Management, Machine Learning, Clustering

* Corresponding author. Tel.: +33-6-69-78-59-82

E-mail address: adam.desormiere@intel.com.

2 DESORMIERE Adam / Procedia Computer Science 00 (2019) 000–000

1. Introduction

We work with analytical power models that build hierarchically from simple electrical equation models to complex
models that simulate the power consumption of real products, such as CPUs. Hundreds of thousands of power models
have already been accumulated in our application, for thousands of simulations, and we want to take advantage of this
knowledge.

The application Intel® Docea™ Power Analytics (IDPA) [1] is a collaborative power-modeling framework whose
objective is to calculate a system’s total electrical consumption from its constituent parts and to enable wide
exploration of the design space. Hence, that tool helps to discover power-efficient architectures, offering opportunities
for productivity gains in power management and time-to-market savings in power/thermal verification and validation.

When we need to model a new generation of processors in IDPA [2], we commonly reuse parts of the previous
generation. Currently, we do this manually and store power models in a drive, but this approach can be time-
consuming when the files are spread across a storage device. To address that issue, we would like to add to IDPA with
the idea of a work project that uses the principles of Product Lifecycle Management (PLM) [3].

As data capitalization and prototype traceability only rely on the knowledge and manual recovery work of experts,
PLM could help us to automate it and open it to non-experts [4]. In the current version of IDPA there is no systematic
method of labeling or referencing power models to facilitate their reuse for further work of the same type. PLM also
enhances, among other things, team collaboration which is a feature that Intel wants to emphasize in its application.
For example, by allowing some teams that design power models for high level products (let's say a whole GPU) to
use power models of low-level components (like an electrical equation) from another team.

In order to facilitate power models referencing and recovery, we introduce the concept of work project which is a
cluster of similar power models. To measure similarities between models, we need to define distances (in part 2). The
ideal way to measure similarities between power models is to look at their data (content), but that is time-consuming
and resource intensive to open, read, and parse the characteristics of hundreds of thousands of files [5]. In a first step
to solving this problem, we only focus the metadata. Among the available metadata we only use the following ones:
model name, model location, last editing time [6].

This paper is organized as follows. Section 2 presents clustering approach and techniques that are addressed
throughout the paper. Section 3 details our proposed method to calculate similarity between power models. Section 4
presents a case study and results from application of proposed method. Section 5 enumerates the conclusions from our
work and introduce future perspectives.

2. Clustering approach

There are many different clustering algorithms [7], including “K Means” [8], “Affinity Propagation” [9], and
“Hierarchical Clustering” [10].

K-Means is the most common algorithm. It starts by choosing an integer number (K) of clusters and then assigns
each object to the closest cluster, which is calculated at each stage by averaging the values of all the objects in the
cluster. The algorithm then recalculates the means for all clusters and assigns each object to the nearest cluster. This
process repeats until the clusters stop changing. However, this approach is insufficient since the number of clusters is
never known in advance. This is enough to rule out this algorithm.

Another clustering algorithm, Affinity Propagation, makes it possible to find the most representative elements of a
set given a “similarity criterion” for the set. This is an iterative algorithm that relies on the sharing of "affinities". For
each cluster “c”, the algorithm locates a nearby element that is sufficiently similar to it, and then increases its affinity
for this element. Subsequent steps propagate the affinity to the other elements. This algorithm performs much better
when we can offer a precise description of the objects to be clustered. For example, this approach would be valuable
if we compared the data of the power models instead of the metadata (as we do here in our first approach).

Hierarchical clustering is a type of clustering that builds a hierarchy of groups, with each group being a subdivision
of a single larger group. This type of clustering is appropriate when the number of clusters is not known a priori, since
it supports the creation of multiple proposals with different numbers of clusters. Fig. 2 below shows two types of
hierarchical clustering, called “Agglomerative” and “Divisive”.

568 Adam Desormiere et al. / Procedia Computer Science 204 (2022) 566–572
DESORMIERE Adam / Procedia Computer Science 00 (2019) 000–000 3

 (a) Agglomerative Hierarchical Clustering (b) Divisive Hierarchical Clustering

Fig. 1. The two types of Hierarchical clustering: (a) Agglomerative (b) Divisive

Agglomerative clustering is typically faster than Divisive clustering since it creates a hierarchy of clusters in fewer

steps. However, Divisive clustering is more flexible since it supports the creation of clusters of any size. We chose to
use Agglomerative clustering for our work since time is a serious limitation for such a huge database.

 Table 1. Pros and Cons of the clustering algorithms

Clustering algorithms Pros Cons

K-means Scales to large data sets Request to choose k manually
Affinity propagation Robust (does not suffer from the initialization),

does not request to choose k
Request a precise description of the objects to be
clustered

Hierarchical Does not request to choose k, flexible Slow, sensitive to noise, computationally demanding

Since the algorithm is stable and convergent [11], we know that after the nth step, we will obtain a single cluster
containing all the models. However, we are most interested in the earlier steps n-x, with x growing until we reach a
quantity that corresponds to the total number of projects under consideration. Indeed, each of these steps is a clustering
proposal for a team’s models.

3. Proposed method to define distances between power models

Hierarchical clustering is based on the calculation of distances between the objects to be clustered. These distances
depend on the files used for clustering [12]. We define them here using three features to identify the similarities
between power models. Hence, we say that two files are “close”, and can be clustered, if any of the three following
conditions is true:

3.1 The files were last edited in a short time interval

It seems logical that two power circuit models published at about the same time are likely to be part of the same

project. Moreover, there is no risk of grouping false positive models between teams working at the same time on
different projects because, for privacy reasons, the program is launched only on power models belonging to members
of the same business unit. However, we know that within the same team, two (or more) people work in parallel on
different projects. We also know projects that have low priority, take a lot of time, or are slightly modified long after
initial development (in which case the modifications will not be close in time). This criterion therefore often seems
necessary, but neither absolute nor sufficient.

3.2 The files have similar names

We can assume that power models containing similar terms are part of the same project. This is especially true
given the technical vocabulary used by power architects. As explained below, a Term Frequency-Inverse Document
Frequency (TF-IDF) compares the similarity between the names of power models by vectorizing documents in the
space of the total vocabulary (where each dimension is a word), then computing the dot product between each pair of
names vectors [13].

 Adam Desormiere et al. / Procedia Computer Science 204 (2022) 566–572 569
DESORMIERE Adam / Procedia Computer Science 00 (2019) 000–000 3

 (a) Agglomerative Hierarchical Clustering (b) Divisive Hierarchical Clustering

Fig. 1. The two types of Hierarchical clustering: (a) Agglomerative (b) Divisive

Agglomerative clustering is typically faster than Divisive clustering since it creates a hierarchy of clusters in fewer

steps. However, Divisive clustering is more flexible since it supports the creation of clusters of any size. We chose to
use Agglomerative clustering for our work since time is a serious limitation for such a huge database.

 Table 1. Pros and Cons of the clustering algorithms

Clustering algorithms Pros Cons

K-means Scales to large data sets Request to choose k manually
Affinity propagation Robust (does not suffer from the initialization),

does not request to choose k
Request a precise description of the objects to be
clustered

Hierarchical Does not request to choose k, flexible Slow, sensitive to noise, computationally demanding

Since the algorithm is stable and convergent [11], we know that after the nth step, we will obtain a single cluster
containing all the models. However, we are most interested in the earlier steps n-x, with x growing until we reach a
quantity that corresponds to the total number of projects under consideration. Indeed, each of these steps is a clustering
proposal for a team’s models.

3. Proposed method to define distances between power models

Hierarchical clustering is based on the calculation of distances between the objects to be clustered. These distances
depend on the files used for clustering [12]. We define them here using three features to identify the similarities
between power models. Hence, we say that two files are “close”, and can be clustered, if any of the three following
conditions is true:

3.1 The files were last edited in a short time interval

It seems logical that two power circuit models published at about the same time are likely to be part of the same

project. Moreover, there is no risk of grouping false positive models between teams working at the same time on
different projects because, for privacy reasons, the program is launched only on power models belonging to members
of the same business unit. However, we know that within the same team, two (or more) people work in parallel on
different projects. We also know projects that have low priority, take a lot of time, or are slightly modified long after
initial development (in which case the modifications will not be close in time). This criterion therefore often seems
necessary, but neither absolute nor sufficient.

3.2 The files have similar names

We can assume that power models containing similar terms are part of the same project. This is especially true
given the technical vocabulary used by power architects. As explained below, a Term Frequency-Inverse Document
Frequency (TF-IDF) compares the similarity between the names of power models by vectorizing documents in the
space of the total vocabulary (where each dimension is a word), then computing the dot product between each pair of
names vectors [13].

4 DESORMIERE Adam / Procedia Computer Science 00 (2019) 000–000

The TF-IDF of a term x in a document y is:

 Wx,y = TFx,y * log 𝑁𝑁
𝐷𝐷𝐷𝐷𝐷𝐷 (1)

with:

• TFx,y is the frequency of the term x in the document y
• Dfx is the number of documents containing the term x
• N is the total number of documents in the corpus

In our case, a document is the name of a model, and the vocabulary is made from all the words of all documents,

and length-adjustable n-grams, as proposed in [14].
However, we know that some power models will be used for the design of a product while having very different

names (for example, it is plausible that a product needs a model named "RAM" and a model named "CPU", etc... But
we hope that these names will be rather "RAM_generation_sku" in order to extract relevant information to associate
the models between them. This criterion therefore often seems necessary, but neither absolute nor sufficient.

3.3 The files are close in the filesystem

We need to define the notion of distance between two files in a file and folder tree, which we call filesystem. When
we work, the natural tendency is to store files from the same project in the same folder. Similarly, it is plausible that
two projects concerning the same product line are stored next to each other in the same parent folder. We count the
number of directory changes to go from a model to another. We assume that the closer two files are in the filesystem,
the higher the probability that they belong to the same work project. Hence, we find the Lowest Common Ancestor
(LCA) for each pair of models, count the number of directory changes needed to go from each model of the pair to
the LCA, and sum up the square of the two edges. In the following figure, for example, the black circles are LCAs,
the orange circles are models, and the calculation of distance is in black text. At each step, the algorithm calculates
these distances for all pairs of models [15].

Fig. 2 Example configurations for two power models in the application filesystem.

However, the company and its IDPA application encourage collaboration between teams. For example, a team can
create some low-level models, which will then be used by another team to assemble higher-level models. Thus, models
from the same project can be stored in different locations in the filesystem, as each team will have stored its models
in its own folders. This criterion therefore often seems necessary, but neither absolute nor sufficient.;

4. Application and Results

We store these distances in three square matrices. The coefficient of position (i , j) is the distance between models i
and j. These matrices are symmetric, and their diagonal coefficients are all 0 (the distance of a model to itself). We
then sum the matrices, weighting with hyperparameters the importance of each feature, before grouping in the same
cluster the two closest models and going to the next step. Figure 3 is the distribution of the coefficients for the 3
normalized matrices and the summed matrix. These are well distributed between 0 and 1 and that confirms us in our
choice of distances (we expect reasonable results), but could be smoother for the path distance due to the chosen

1² + 1² = 2 2² + 2² = 8 1² + 2² = 5 1² + 3² = 10

570 Adam Desormiere et al. / Procedia Computer Science 204 (2022) 566–572DESORMIERE Adam / Procedia Computer Science 00 (2019) 000–000 5

calculation method.

Fig. 3 Distribution of normalized distance matrix coefficients

Summed matrix is defined by the formula:

[Sum matrix] = (𝛼𝛼 . [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚] + 𝛽𝛽 . [𝑁𝑁𝑚𝑚𝑇𝑇𝑇𝑇𝑁𝑁 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚] + µ . [𝑃𝑃𝑚𝑚𝑚𝑚ℎ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚]) . 1
𝛼𝛼+ 𝛽𝛽+ µ . (2)

We did not undertake a sensitivity analysis, so 𝛼𝛼, 𝛽𝛽, µ are equal to 1 by default.

In round 1, there are N clusters and N power models (because each power model forms a cluster on its own). Each
round reduces the number of clusters by one (there are N-1 clusters in round 2, for example). After round N, all the
power models are in one cluster. In the last rounds and until round N-2, the clustering proposals made by the algorithm
were realistic and could be selected by power architects who are very familiar with the database, to arrange their
models as working projects. The following dendrogram depicts the clustering process of the algorithm. Reading from
bottom to top, we see that when the clusters are grouped together, the distance between them increases.

Figure 4 is a dendrogram that shows this algorithm. It is read from bottom to top. For example, we chose to highlight
the N-2 step which shows 3 clusters (the N step has only one cluster left), in 3 different colors. The names of the
power models present have been blurred for confidentiality reasons, as they are real models of the application. But we
noticed that the models having a common substring, for example "CPU_genX" and "GPU_genX" are directly
assembled from the first turns of the algorithm, at the bottom of the figure.

Still for confidentiality reasons, we perform for the moment the clustering within the power models of the same
group. We cannot afford to propose to a team a cluster containing models from another team for the moment. We
choose for figure 4 to cluster the models of a team with very few models, for readability.

N
um

be
r o

f c
oe

ff
ic

ie
nt

s f
or

 e
ac

h
va

lu
e

 Adam Desormiere et al. / Procedia Computer Science 204 (2022) 566–572 571DESORMIERE Adam / Procedia Computer Science 00 (2019) 000–000 5

calculation method.

Fig. 3 Distribution of normalized distance matrix coefficients

Summed matrix is defined by the formula:

[Sum matrix] = (𝛼𝛼 . [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚] + 𝛽𝛽 . [𝑁𝑁𝑚𝑚𝑇𝑇𝑇𝑇𝑁𝑁 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚] + µ . [𝑃𝑃𝑚𝑚𝑚𝑚ℎ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚]) . 1
𝛼𝛼+ 𝛽𝛽+ µ . (2)

We did not undertake a sensitivity analysis, so 𝛼𝛼, 𝛽𝛽, µ are equal to 1 by default.

In round 1, there are N clusters and N power models (because each power model forms a cluster on its own). Each
round reduces the number of clusters by one (there are N-1 clusters in round 2, for example). After round N, all the
power models are in one cluster. In the last rounds and until round N-2, the clustering proposals made by the algorithm
were realistic and could be selected by power architects who are very familiar with the database, to arrange their
models as working projects. The following dendrogram depicts the clustering process of the algorithm. Reading from
bottom to top, we see that when the clusters are grouped together, the distance between them increases.

Figure 4 is a dendrogram that shows this algorithm. It is read from bottom to top. For example, we chose to highlight
the N-2 step which shows 3 clusters (the N step has only one cluster left), in 3 different colors. The names of the
power models present have been blurred for confidentiality reasons, as they are real models of the application. But we
noticed that the models having a common substring, for example "CPU_genX" and "GPU_genX" are directly
assembled from the first turns of the algorithm, at the bottom of the figure.

Still for confidentiality reasons, we perform for the moment the clustering within the power models of the same
group. We cannot afford to propose to a team a cluster containing models from another team for the moment. We
choose for figure 4 to cluster the models of a team with very few models, for readability.

N
um

be
r o

f c
oe

ff
ic

ie
nt

s f
or

 e
ac

h
va

lu
e

6 DESORMIERE Adam / Procedia Computer Science 00 (2019) 000–000

Fig. 4 Dendrogram of Hierarchical Clustering on the models of a Small IDPA Team

5. Conclusion

In conclusion, we have succeeded in proposing a clustering tool that can help architects to automatically group
their power models into working projects. Agglomerative hierarchical clustering gathers power models by affinity
according to three weighted criteria: low delay between edition times, similarity of files’ names and closeness in
filesystem.

This proposal can then be refined by the expert, who chooses the stage at which he wants the algorithm to stop, to
obtain the clusters and therefore the projects he wants. This can be especially useful for a new user with little or no
knowledge of the application's power model database. Of course, this automation does not replace the expert's
judgment, but it simplifies the decision making.

As mentioned, one possible improvement to this approach would be to compare the data (content) of the power
models rather than the metadata. This requires an in-depth exploration of the constituent elements of the power models,
as comparing two models requires the definition of a measure that quantifies the gap between their contents.

Finally, it is not possible to cluster models belonging to different teams for privacy reasons. Thus, our clustering
must be performed in a closed space within each team, on the models it owns. We could therefore also consider
connecting the cluster boundaries for teams that express the desire to collaborate.

6. Acknowledgments

The authors would like to thank the Association Nationale Recherche et Technologie (ANRT) for its financial
contribution. We thank the members of the Docea team from Intel, and members of the Decision & Information
Sciences for Production Systems laboratory. We also would like to thank the anonymous paper reviewers who
provided good input on the kinds of questions that made sense to address in the final version of the paper.

di
sta

nc
e

be
tw

ee
n

cl
us

te
rs

Blurred
names of
clustered
models

572 Adam Desormiere et al. / Procedia Computer Science 204 (2022) 566–572DESORMIERE Adam / Procedia Computer Science 00 (2019) 000–000 7

References

[1] Intel Corporation. (2022) “Intel Docea - Software Trends.” Available Online:

https://resources.softwaretrends.com/products/22493/intel-docea.
[2] IEEE Standards Association. (2019) "IEEE Standard for Power Modeling to Enable System Level Analysis."
[3] J. Li, F. Tao, Y. Cheng and L. Zhao. (2015) “Big Data in product lifecycle management.” International

Journal of Advanced Manufacturing Technology 81 (1-4): 667-684.
[4] S. Singh and S. C. Misra. (2018) “Success determinants to Product Lifecycle Management (PLM)

performance.” 5th International Conference on Industrial Engineering and Applications - ICIEA 2018, pp.
386-390.

[5] Y. Shen, Z. Shen, M. Wang, J. Qin, P. H. S. Torr and L. Shao. (2021) “You Never Cluster Alone.” Advances
in Neural Information Processing Systems 34 proceedings, pp. 1-13.

[6] S. Soltani, S. A. H. Seno and H. S. Yazdi. (2019) “Event reconstruction using temporal pattern of file system
modification.” IET Information Security 13 (3): 201-212.

[7] D. Xu and Y. Tian. (2015) “A Comprehensive Survey of Clustering Algorithms.” Annals of Data Science 2
(2): 165-193.

[8] P. Li, Y. g. Ding, P. p. Yao, K. m. Xue and C. m. Li. (2016) “Some methods for classification and analysis of
multivariate observations.” Journal of Materials Engineering and Performance 25 (8): 3439-3447.

[9] R. Guan, X. Shi, M. Marchese, C. Yang and Y. Liang. (2011) “Text clustering with Seeds Affinity
Propagation.” IEEE Transactions on Knowledge and Data Engineering 23 (4): 627-637.

[10] F. Nielsen. (2016) "Introduction to HPC with MPI for Data Science." Springer International Publishing.
ISBN: 9783319219035.

[11] G. Carlsson and F. Mémoli. (2010) “Characterization, stability and convergence of hierarchical clustering
methods.” Journal of Machine Learning Research 11: 1425-1470.

[12] M. Oppermann, R. Kincaid and T. Munzner. (2021) “VizCommender: Computing text-based similarity in
visualization repositories for content-based recommendations.” IEEE Transactions on Visualization and
Computer Graphics 27(2): 495-505.

[13] P. Bafna, D. Pramod and A. Vaidya. (2016) “Document clustering: TF-IDF approach.” International
Conference on Electrical, Electronics, and Optimization Techniques - ICEEOT 2016, pp. 61-66.

[14] J. Piskorski and G. Jacquet. (2020) “TF-IDF Character N-grams versus Word Embedding-based Models for
Fine-grained Event Classification: A Preliminary Study.” Proceedings of the Workshop on Automated
Extraction of Socio-political Events from News 2020, pp. 26-34.

[15] W. Xingbo. (2016) “Properties of the Lowest Common Ancestor in a Complete Binary Tree.” International
Journal of Scientific and Innovative Mathematical Research 3(3): 12-17.

