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Along with the start of the SARS-CoV-2 pandemic, mathematical epidemiology
quickly reached a new and broader audience in early 2020 [1]. If epidemiological
models were sometimes recognized as useful tools for decision support, their
relevance was also challenged, notably among decision-makers, but also by health
workers and the public. While their scope and their limitations must be
acknowledged [2], the understanding of the modelling principles and main
assumptions by non-specialists appears essential for both transdisciplinary
improvement and better use of their results.

Modelling is a rational simplification of a phenomenon, a formalisation that focuses
on the parts considered to be essential to generate the observed patterns. In the
case of infectious diseases, the mathematical equations on which the models of their
spread are based share a common backbone corresponding to transmission and
recovery events while the vast diversity of details depends on the pathogen, host
population, prevention, and treatments considered [3].

The choice of the starting assumptions and the formalism will essentially depend on
the initial question but might as well be oriented by the kind of data available to
calibrate the parameters.

Most models designed to capture the spread of an epidemic in a given population
are said compartmental. These models are related to the seminal work of Kermack
and McKendrick known as the SIR model, where the population is divided into three
compartments: susceptible (S), infected (I), and removed (R) [4]. The model follows
the change in the proportion of the population belonging to each compartment
through time, by reproducing numerically the course of infectious diseases
epidemics: an infectious individual transmits the disease to a susceptible individual,
who becomes infectious and then transmits the disease at his turn (perpetuating the
epidemic), before recovering (or dying) from the disease, assuming no further
contribution to the spread of the disease.

Advanced and current models are designed with a higher number of connected
compartments to better reflect the clinical and epidemiological features and
outcomes of the disease, as well as to be fit to a particular question and to the data
on which dynamical inference can be done. For instance, one of the main questions
addressed by models during the first wave of the SARS-CoV-2 epidemic in France
(in March 2020) was how many people at most would be simultaneously hospitalized
due to COVID-19, to prevent or at least anticipate a hospital overload. In such a
case, a compartment for hospitalized infected individuals is then introduced. On a
first approach, we could imagine a model with a compartment for infected individuals
who will develop a mild or asymptomatic form of the disease and another
compartment for infected individuals who will develop a severe form of the disease
and will require a later hospitalization before recovering or die, as represented by the
illustrative model presented on Figure 1. This simple model can be further improved
by adding new compartments and be amended on a second approach provided new
knowledge or data (e.g. specifying an incubation period).



There also exist different mathematical formalisms such as discrete-time modelling
(see [5]), based on a system of partial differential equations (e.g. [6]) or even
individual-based stochastic simulations [7], but the most common remains the use of
a system of ordinary differential equations (ODE) [3], that is a set of conditions on
the derivatives of unknown functions. These functions are simply the number of
individuals in each compartment through time.

Instead of trying to estimate at each time step the proportion of the population in
each compartment, which would be somehow very tedious, we simply estimate the
number of individuals who move from one compartment to another.

Thus, we need to know only two things:

1. the state of the epidemic at a given time ¢ ;
2. what happens during the following small-time interval At.

The first step is usually straightforward since we might just consider the beginning of
the epidemic where every individual but one is susceptible. The second step
however represents the mathematical translation of disease dynamics. For instance,
if we consider the model presented beforehand, the number of susceptible S
individuals at time t+At is given by the number of susceptible individuals at time ¢,
minus the individuals that got infected between t and t+At. Assuming that the
probability of infection is proportional to the current number of contagious individuals:

S(t+At|=S(t|- pAeS(t|1,,,[t|

where S is the transmission rate, which represents, for each susceptible individual,
the probability of being infected per unit of time and per capita of currently
contagious individuals in the population. Hence, we need to know the transmission
rate 3, which is often estimated on incidence data using external statistical
procedures (e.g. reproduction number estimation as in [8]). We also need to know
the current total number of individuals infected (I,,,[t|=It|+I°(t)), which implies the

different compartments must be followed simultaneously.

This idea is generalized for each compartment: we determine at each time step the
inflows and outflow related to each compartment. Within a compartment, inflows
correspond to a certain number of individuals per time unit leaving other
compartments, and departures are done with a constant rate — meaning at each time
step a constant proportion of the individuals in the compartment leaves the
compartment. Note that in the simplest models, the force of infection (the rate at
which susceptible individuals become infected) is the only time-varying rate (as a
function of the prevalence) and therefore captures the whole non-linearity of the
dynamics. In more sophisticated models (e.g., weather effect, variant replacement,
public health interventions such as transient social distancing or vaccination
program, immune waning), otherwise constant rates would explicitly depend on time,
therefore greatly increasing the richness of the dynamics.

As for any quantitative approach, such models rely on simplifying assumptions which
constitute inherent limitations. The main ones are the lack of spatial structure (all
encounters have the same probability to occur) and host heterogeneity (inter-



individual differences are smoothed out). Despite their unrealistic nature, these
assumptions have proved to provide robust and conservative estimates in the early
stages of an epidemic [9]. On a longer timescale, however, increasing the number of
compartments to introduce a form of spatial structure and/or individual heterogeneity
is both common and straightforward [3]. This might be e.g., an age structure to take
into account age-differentiated severity as for COVID-19 or add gender structure for
modelling sexually transmitted infections. However, adding a structure needs further
knowledge (literature, expertise, and data) to be implemented.

Another caveat, specific to the ODE formalism presented here, concerns the rate-
based departures of the compartments. It indeed implies the time spent for an
individual in a compartment does not depend on the time already spent in the
compartment (which is rarely true). A workaround consists in chaining many
compartments of a given clinical-epidemiological stage to shape the probability for
an individual to go to the next stage according to the time already spent, as
explained in Figure 2. For instance, [10] developed a model to estimate hospital
occupancy in France in 2020. This model is shown in Figure 3, it is structured by the
age of the individuals. The difference in the number of compartments between
Figure 1 and Figure 3 is mainly due to correcting the residency time memory
problem mentioned beforehand.

From models, we can also retrieve the basic reproduction number, R, that is the
average number of secondary infections caused by an index case [11]. This key
epidemiological descriptor quantifies not only the contagiousness of the disease but
also relates to the epidemic risk (what is the probability for an outbreak to occur?),
the herd immunity (what is the minimum vaccine coverage to prevent any further
outbreak?) threshold and the attack rate (what is the proportion of individuals
eventually infected in absence of intervention?). This might be intuitively seen as

R, = number of contacts per day x probability of transmission per contact x infection
duration (in days).

Its precise derivation however depends on the considered model. In a simple SIR
model, the I compartment satisfies

I(t+At)—1[t|=PAtS(t|I[t|-yI[t)At,

where f is the transmission rate and y is the recovery rate. In this setting, an
outbreak occurs whenever there is an initial increase of the number of infected
individuals. From a mathematical point of view, this corresponds to a positive
derivative of prevalence at t =0, (I(At) - 1(0])/At>0, which, using the previous
equation, can be rewritten as

1<BS—{0):
Y

As immunity builds up in the population (and assuming no immune waning nor
variant), the average number of secondary infections per case eventually decreases
to lower values and the epidemic dynamics are then described by its real-time
analog, namely the temporal reproduction number R,.

R,,



One of the major criticisms against those models is that predictions would be wrong.
It is worth to note such mechanistic models usually are not (and should not) aimed to
predict the future, but simulate the most likely trends given a set of assumptions like
a pre-established contact rate among the population. In a one-year retrospective
analysis, [12] showed that such projections can help anticipate COVID-19 critical
care bed occupancy for more than a month, on average. However, mechanistic
models perform poorly within two weeks that follows a steep change in the
transmission pattern in the absence of previous analogous period, e.g., in the case
of the first implementation of a national curfew for which the efficiency is yet
unknown and requires consolidated testing data to be assessed.

Given their simplifying nature and elementary mathematical formulation,
compartmental models thus represent a trade-off between flexibility, robustness, and
accuracy, which explain their central role in the monitoring and control of epidemics.
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Figure 1. lllustrative compartmental model to estimate hospital occupancy.
Susceptible individuals (S compartment) become infected after being in contact with
infected individuals. They can develop an asymptomatic or mild version of the
disease (I) before recovering (R), or they can become severely infected (I°). In the
latter, they will transmit the disease as the other infected individuals then end up in
the hospital (H) before recovering or dying (D).
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Figure 2. The probability for a given individual of remaining in a specific
compartment in a classical and simple SIR model, like the infected compartment (I)
in Model 1 follows an exponential distribution which is memoryless — meaning the
time spent in the compartment does not depend on the time already spent in the
compartment, which is unrealistic. A workaround consists of chaining compartments
as I, and I, in Model 2, thus creating some heterogeneity and adding memory. For
instance, to specify that an individual who just entered a compartment has a very low
probability to clear the disease instantly and on the contrary if she or he spent
already some significant time infected he has a higher probability to clear the
disease.
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Figure 3. The model used by [10] to estimate the hospital conventional beds
occupancy and ICU beds occupancy. In this model, individuals can be either
susceptible (S, exposed (E), infected but not hospitalised (I), hospitalised in
conventional beds (H), hospitalised in ICU (ICU) or removed (R/ D).
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