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STABILITY OF THE POHO ŽAEV OBSTRUCTION IN DIMENSION 3

.

Let Ω be a smooth bounded domain in R n , n ≥ 3. Let . It is well-known that, if Ω is star-shaped with respect to the origin and if h satisfies

h(x) + 1 2
x, ∇h(x) ≥ 0 , (0.2) then there are no non-trivial solutions of (0.1). This is a consequence of Pohožaev's identity (see [START_REF] Pohožaev | On the eigenfunctions of the equation ∆u + λf (u) = 0[END_REF] and equation (4.6) of appendix 4.3) and is referred to as the Pohožaev obstruction.

The above equation has been quite intensively studied in the past thirty years. Many existence results have been obtained if Ω is not assumed to be star-shaped or if h does not verify (0.2). It is almost impossible to give an exhaustive list of references on this equation.

In this paper, we investigate the question of non-existence of positive solutions of equation (0.1) and more precisely the stability properties of the Pohožaev obstruction.

Definition 0.1. Let Ω be a star-shaped domain of R n and let (X, . X ) be some Banach space of functions on Ω (typically X = C k,η (Ω), X = L ∞ (Ω) or X = L p (Ω)). Let h 0 ∈ X ∩ C 1 (Ω) be a function which satisfies (0.2). We say that the Pohožaev obstruction is X-stable at (h 0 , Ω) if the following property holds : there exists δ (h 0 , Ω, X) > 0 such that for any function h ∈ X with hh 0 X ≤ δ (h 0 , Ω, X) , the only non-negative C 2 -solution of (0.1) is u ≡ 0.

We say that the Pohožaev obstruction is X-stable if it is X-stable at (h 0 , Ω) for all Ω star-shaped with respect to the origin and all h 0 ∈ X ∩ C 1 (Ω) satisfying (0.2).
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Note that the property (0.2) is not stable under perturbations of the function h in any C k -space. Since the work of Brezis and Nirenberg [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], we know that equation (0.1) behaves differently in dimension 3 and in dimensions n ≥ 4. It is clear that, in dimensions n ≥ 4, the Pohožaev obstruction is not X-stable for any reasonable X. Indeed, any perturbation of h ≡ 0 which is negative somewhere leads to a minimizing solution in dimensions n ≥ 4 (see [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF]) 1 . Hence we investigate in this paper the question of the stability of the Pohožaev obstruction for various spaces X in dimension 3. We give a complete answer to this question in the following theorems.

Theorem 1. The Pohožaev obstruction is C 0,η -stable for any η > 0 in dimension 3. In other words, given any η > 0, any domain Ω in R 3 , star-shaped with respect to the origin, and any function h 0 ∈ C 1 (Ω) satisfying (0.2), there exists δ (η, Ω, h 0 ) > 0 such that, if h ∈ C 0,η (Ω) satisfies hh 0 C 0,η (Ω) ≤ δ (η, Ω, h) , the only non-negative solution of (0.1) is u ≡ 0.

Note that a consequence of our theorem is the following : if Ω is a star-shaped domain in R 3 , there exists a constant λ (Ω) > 0 such that equation (0.1) does not possess any nontrivial positive solutions with h ≡ λ for λ > -λ (Ω). This is in sharp contrast with the situation for non star-shaped domains (see [START_REF] Bahri | On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain[END_REF] for instance).

In the seminal paper [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], it was proved that there are no minimizing solutions of equation (0.1) in dimension 3 if the function h ≥ -λ ⋆ (Ω) for some λ ⋆ (Ω) > 0. Since h ≥ 0 if h satisfies (0.2), a consequence of this result is a version of the above stability in C 0 when one considers only minimizing solutions. A necessary and sufficient condition on the function h and the domain Ω for the existence of a minimizing solution of (0.1) in dimension 3 was found in [START_REF] Druet | Elliptic equations with critical Sobolev exponents in dimension 3[END_REF].

In [START_REF] Brezis | On some nonlinear equations with critical exponents[END_REF], the authors studied this question in the case of the unit ball with radial functions. If we let L p r (B) = {u ∈ L p (B) , u radial } , then it was proved in [START_REF] Brezis | On some nonlinear equations with critical exponents[END_REF] that the Pohožaev obstruction is L ∞ r -stable 2 on the unit ball of R 3 for all functions h ∈ L ∞ r (B) ∩ C 1 (B). In [START_REF] Brezis | On some nonlinear equations with critical exponents[END_REF], the question of the extension of the result to the non-radial case was explicitly asked. Our result provides an answer to this question. However, the situation is more delicate than expected in the non-radial case since, while the Pohožaev obstruction is C 0,η -stable for all η > 0, it is never L ∞ -stable.

Theorem 2. The Pohožaev obstruction is never L ∞ -stable. In other words, given any ε > 0, any domain Ω in R 3 , star-shaped with respect to the origin and any function h 0 ∈ C 1 (Ω) satisfying (0.2), we can find some function h ε ∈ L ∞ (Ω) such that h εh ∞ ≤ ε 1 Note that this remark concerns only X-stability in general. The question of X-stability at some given positive function h in dimensions n ≥ 4 is not investigated in this paper. 2 One should restrict oneself to radial solutions of the equation in the definition of stability.

and some positive functions

u ε ∈ C 2 (Ω) satisfying the equation    ∆u ε + h ε u ε = u 5 ε in Ω u ε = 0 on ∂Ω , u ε > 0 in Ω
Thus the L ∞ r -stability result obtained by Brezis-Willem is really specific to the radial case. In fact, it is not really due to the symmetry of the solutions but to one of its by-product in dimension 3, precisely that sequences of solutions of equation (0.1) which are radial are either compact or develop only one concentration point. In fact, with the PDE techniques (to be compared to the ODE techniques used in [START_REF] Brezis | On some nonlinear equations with critical exponents[END_REF]) we use below, we can revisit the question of the stability of the Pohožaev obstruction in dimension 3 in the radial case. We improve the result of [START_REF] Brezis | On some nonlinear equations with critical exponents[END_REF] by proving that the Pohožaev obstruction is L p r -stable on the unit ball for all p > 3 but is never L 3 r -stable. For precise statements, we refer the reader to the end of section 2 and the beginning of section 3.

All these results give a complete picture of the stability of the Pohožaev obstruction in dimension 3 when the attention is restricted to non-negative solutions. The question remains widely open if one allows solutions to change sign, and is certainly more subtle due to the variety of changing-sign solutions of ∆u = u 5 in R 3 .

The paper is organized as follows. Section 2 is devoted to the proofs of theorem 1 and of the corresponding result in the radial situation. The proof makes use of standard blow-up analysis in dimension 3 (see section 1) and of an extension of Pohožaev's identity to Green's functions (see Appendix 4.4). Section 3 is devoted to the proofs of theorem 2 and of the corresponding result in the radial situation.

Here we have to construct examples of functions h arbitrarily close in X to some given function for which there is a positive solution of equation (0.1). It appears to be quite subtle because we need to be sharp. For instance, in order to prove theorem 2, our functions h must be close to the given function in L ∞ (Ω) but not in C 0,η (Ω) for any η > 0.
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Pointwise analysis around a concentration point

We consider in this section a sequence

(h ε ) in C 0,η (R n ) for some η > 0 and a sequence (u ε ) of C 2 -solutions of            ∆u ε + h ε u ε = u 5 ε in Ω u ε = 0 on ∂Ω u ε > 0 in Ω (1.1)
where Ω is some smooth domain of R 3 and

h ε → h in L p (Ω) as ε → 0 (1.2)
for some p > 3 where h ∈ C 1 (R 3 ) satisfies h ≥ 0 in Ω. Note that, as soon as h satisfies (0.2), it is non-negative.

We also assume that we have a sequence (x ε ) of points in Ω and a sequence (ρ ε ) of positive real numbers with 0 < 3ρ ε ≤ d(x ε , ∂Ω) such that

∇u ε (x ε ) = 0 (1.3)
and

ρ ε sup B(xε,ρε) u ε (x) 2 → +∞ as ε → 0 . (1.4)
We prove in this section that the following holds :

Proposition 1.1. If there exists C 0 > 0 such that |x ε -x| 1 2 u ε ≤ C 0 in B(x ε , 3ρ ε ) , (1.5 
)

then there exists C 1 > 0 such that u ε (x ε )u ε (x) ≤ C 1 |x ε -x| -1 in B(x ε , 2ρ ε ) \ {x ε } and u ε (x ε )|∇u ε (x)| ≤ C 1 |x ε -x| -2 in B(x ε , 2ρ ε ) \ {x ε }. Moreover, if ρ ε → 0, then ρ ε u ε (x ε )u ε (x ε + ρ ε x) → 1 |x| + b in C 1 loc (B(0, 2) \ {0}) as ε → 0
where b is some harmonic function in B(0, 2) with b(0) = 0. At last, if the convergence in (1.2) holds in C 0,η , then we also get that ∇b(0) = 0.

The rest of this section is dedicated to the proof of this proposition. We follow the lines of [START_REF]Compactness for Yamabe metrics in low dimensions[END_REF], section 2 (see also [START_REF] Druet | Stability and instability for Einstein-scalar field Lichnerowicz equations in compact Riemannian manifolds[END_REF]). However, one must note that, compared to [START_REF] Druet | Stability and instability for Einstein-scalar field Lichnerowicz equations in compact Riemannian manifolds[END_REF] and other works on this kind of blow-up analysis, some new difficulties arise since the linear term (h ε ) is only uniformly bounded in some L p (Ω).

We divide the proof of the proposition into several claims. The first one gives the asymptotic behaviour of u ε around x ε at an appropriate small scale.

Claim 1.1. After passing to a subsequence, we have that

µ 1 2 ε u ε (x ε + µ ε x) → 1 1 + |x| 2 3 1 2 in C 1 loc (R 3 ), as ε → 0 (1.6)
where

µ ε = u ε (x ε ) -2 .
Proof of Claim 1.1. Let xε ∈ B(x ε , ρ ε ) and με > 0 be such that

u ε (x ε ) = sup B(xε,ρε) u ε = μ-1 2 ε . (1.7)
Thanks to (1.4), we have that με → 0 and

ρ ε με → +∞ as ε → 0 . (1.8)
Thanks to (1.5), we also have that

|x ε -xε | = O(μ ε ). (1.9) We set for x ∈ Ω ε = x ∈ R 3 s.t. xε + με x ∈ Ω , ũε (x) = μ 1 2 ε u ε (x ε + με x) which verifies ∆ũ ε + μ2 ε hε ũε = ũ5 ε in Ω ε , ũε (0) = sup B( xε-xε με , ρε με ) ũε = 1 , (1.10) 
where hε = h (x ε + με x). Thanks to (1.4), (1.7) and (1.9), we get that

B x ε -xε με , ρ ε με → R 3 as ε → 0 . (1.11)
Now, thanks to (1.10), (1.11), and by standard elliptic theory, we get that, after passing to a subsequence, ũε

→ U in C 1 loc (R 3 ) as ε → 0 where U satisfies ∆U = U 5 in R 3 and 0 ≤ U ≤ 1 = U (0) .
Thanks to the work of Caffarelli, Gidas and Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], we know that

U (x) = 1 + |x| 2 3 -1 2 .
Moreover, thanks to (1.9), we know that, after passing to a new subsequence, xε-xε με → x 0 as ε → 0 for some x 0 ∈ R 3 . Hence, since x ε is a critical point of u ε , x 0 must be a critical point of U , namely x 0 = 0. We deduce that µε με → 1 where µ ε is as in the statement of the claim. The claim 1.1 follows.

For 0 ≤ r ≤ 3ρ ε , we set

ψ ε (r) = r 1 2 ω 2 r 2 ∂B(xε,r) u ε dσ
where dσ denotes the Lebesgue measure on the sphere ∂B(x ε , r) and ω 2 = 4π is the volume of the unit 2-sphere. We easily check, thanks to Claim 1.1, that

ψ ε (µ ε r) = r 1 + r 2 3 1 2 + o(1), ψ ′ ε (µ ε r) = 1 2 r 1 + r 2 3 3 2 1 r 2 - 1 3 + o(1) . (1.12)
We define r ε by

r ε = max r ∈ [2 √ 3µ ε , ρ ε ] s.t. ψ ′ ε (s) ≤ 0 for s ∈ [2 √ 3µ ε , r] .
Thanks to (1.12), the set on which the maximum is taken is not empty for ε small enough, and moreover

r ε µ ε → +∞ as ε → 0 . (1.13)
We prove now the following :

Claim 1.2. There exists C > 0, independent of ε, such that

u ε (x) ≤ Cµ 1 2 ε |x ε -x| -1 in B(x ε , 2r ε ) \ {x ε } and |∇u ε (x)| ≤ Cµ 1 2 ε |x ε -x| -2 in B(x ε , 2r ε ) \ {x ε } .
Proof of Claim 1.2. We follow the proof of Lemma 1.5 and 1.6 of [START_REF] Druet | Stability and instability for Einstein-scalar field Lichnerowicz equations in compact Riemannian manifolds[END_REF]. However, there is an extra-difficulty due to the fact that we do not assume any pointwise convergence of h ε to h. We first prove that for any given 0 < ν < 1 2 , there exists C ν > 0 such that

u ε (x) ≤ C ν µ 1 2 (1-2ν) ε |x -x ε | -(1-ν) + α ε r ε |x -x ε | ν (1.14)
for all x ∈ B (x ε , 2r ε ) and ε small enough, where

α ε = sup ∂B(xε,rε) u ε . (1.15)
First of all, we can use (1.5) and apply the Harnack inequality, see for instance theorem 4.17 of [START_REF] Han | Elliptic partial differential equations[END_REF], to get the existence of some C > 0 such that

1 C max ∂B(xε,r) (u ε + r |∇u ε |) ≤ 1 ω 2 r 2 ∂B(xε,r) u ε dσ ≤ C min ∂B(xε,r) u ε (1.16)
for all 0 < r < 5 2 ρ ε and all ε > 0. The details of the proof of such an assertion may be found in [START_REF] Druet | Stability and instability for Einstein-scalar field Lichnerowicz equations in compact Riemannian manifolds[END_REF], lemma 1.3. Hence, thanks to (1.12) and (1.13), we have that

|x -x ε | 1 2 u ε (x) ≤ Cψ ε (r) ≤ Cψ ε (Rµ ε ) = C R 1 + R 2 3 1 2 + o(1)
for all R ≥ 2 √ 3, all r ∈ [Rµ ε , r ε ],
all ε small enough and all x ∈ ∂B (x ε , r). Thus we get that sup

B(xε,rε)\B(xε,Rµε) |x -x ε | 1 2 u ε (x) = e(R) + o(1) (1.17) 
where e(R) → 0 as R → +∞. Let 0 < σ ≤ 1 and G ε,σ be the Green function of the operator ∆ + hε σ in Ω with Dirichlet boundary condition. Thanks to the fact that h is non-negative (this is an assumption in this section), we can use lemma 4.2 to get the existence of some C σ > 0 such that

|x -y|G ε,σ (x, y) - 1 ω 2 ≤ C σ |x -y|, (1.18) 
and that

|x -y| 2 |∇G ε,σ (x, y)| - 1 ω 2 ≤ C σ |x -y|, (1.19) 
for all x = y ∈ Ω. We fix 0 < ν < 1 2 and we set

Φ ε,ν = µ 1 2 (1-2ν) ε G ε,1-ν (x ε , x) 1-ν + α ε r ε G ε,ν (x ε , x) ν .
Thanks to (1.18), (1.14) reduces to prove that sup

B(xε,2rε) u ε Φ ε,ν = O(1) .
We let

y ε ∈ B(x ε , 2r ε ) \ {x ε } be such that sup B(xε,2rε) u ε Φ ε,ν = u ε (y ε ) Φ ε,ν (y ε ) .
We are going to consider the several possible beahviour of the sequence (y ε ). First of all, assume that

|x ε -y ε | µ ε → R as ε → 0 .
Thanks to Claim 1.1, we have in this case that

µ 1 2 ε u ε (y ε ) → (1 + R 2 ) -1 2 as ε → 0.
On the other hand, thanks to (1.17), we can write that

µ 1 2 ε Φ ε,ν (y ε ) = µ ε ω 2 |x ε -y ε | 1-ν + O α ε µ 1 2 ε r ε |x ε -y ε | ν + o(1) = (Rω 2 ) ν-1 + O (r 1 2 ε α ε )µ 1 2 (1-2ν) ε r 1 2 (2ν-1) ε + o(1) = (Rω 2 ) ν-1 + o(1), if R > 0, and µ 1 2 ε Φ ε,ν (y ε ) → +∞ as ε → 0 if R = 0. In any case, uε(yε) Φ ε,ν(yε ) is bounded.
Assume now that there exists δ > 0 such that y ε ∈ B(y ε , r ε )\ B(y ε , δr ε ). Thanks to Harnack's inequality (1.16), we get that u ε (y ε ) = O(α ε ) which, thanks to (1.18), easily gives that uε(yε) Φ ε,ν(yε ) = O (1). Hence, we are left with the following situation :

|y ε -x ε | r ε → 0 and |x ε -y ε | µ ε → +∞ as ε → 0 . (1.20)
Thanks to the definition of y ε , we can then write that

∆u ε (y ε ) u ε (y ε ) ≥ ∆Φ ε,ν (y ε ) Φ ε,η (y ε )
which gives, thanks to the definition of Φ ε,ν and multiplying by |x ε -

y ε | 2 , that |x ε -y ε | 2 u ε (y ε ) 4 ≥ ν(1 -ν) |x ε -y ε | 2 Φ ε,η (y ε ) α ε r ν ε |∇G ε,ν (x ε , y ε )| 2 G ε,ν (x ε , y ε ) 2 G ε,ν (x ε , y ε ) ν + µ 1 2 (1-2η) ε |∇G ε,1-ν (x ε , y ε )| 2 G ε,1-ν (x ε , y ε ) 2 G ε,1-ν (x ε , y ε ) 1-ν .
Here is the main difference with [START_REF] Druet | Stability and instability for Einstein-scalar field Lichnerowicz equations in compact Riemannian manifolds[END_REF]. Thanks to our choice of Φ ε,ν , the terms involving h ε disappear, which is necessary since we did not assume any pointwise convergence of h ε . Thanks to (1.17), the left-hand side goes to 0 as ε → 0. Then, thanks to (1.18), (1.19) and (1.20), we get that

o(1) ≥ ν(1 -ν) + o(1)
which is a contradiction, and shows that this last case can not occur. This ends the proof of (1.14).

We now claim that there exists C > 0, independent of ε, such that

u ε (x) ≤ C µ 1 2 ε |x -x ε | -1 + α ε in B(x ε , r ε ) . (1.21)
Thanks to Claim 1.1 and (1.16), this holds for all sequences

y ε ∈ B(x ε , r ε ) \ {x ε } such that |y ε -x ε | = O(µ ε ) or |yε-xε| rε → 0.
Thus we may assume from now that

|y ε -x ε | µ ε → +∞ and |y ε -x ε | r ε → 0 as ε → 0 .
Thanks to the Green representation formula, we write with (1.18) and (1.19) that

u ε (y ε ) = B(xε,rε) G ε,1 (∆u ε + h ε u ε ) dx +O r -1 ε ∂B(xε,rε) |∂ ν u ε | dσ +O r -2 ε ∂B(xε,rε) u ε dσ .
This gives with (1.15), (1.16) and (1.18) that

u ε (y ε ) = O B(xε,rε) |x -y ε | -1 |∆u ε + h ε u ε |dx + O (α ε ) . (1.22)
Using (1.14) with ν = 1 5 , we can write that

B(xε,rε) |x -y ε | -1 |∆u ε + h ε u ε |dx = B(xε,µε) u 5 ε |x -y ε | dx + B(xε,rε)\B(xε,µε) |x -y ε | -1 u 5 ε dx = O µ 1 2 ε |y ε -x ε | -1 + α 5 ε r ε B(xε,rε)\B(xε,µε) |x -y ε | -1 |x -x ε | -1 dx + µ 3 2 ε B(xε,rε)\B(xε,µε) |x -y ε | -1 |x -x ε | -4 dx = O µ 1 2 ε |y ε -x ε | -1 + O(α 5 ε r 2 ε ) .
Thanks to (1.13) and to (1.17), this leads to

B(xε,rε) |x -y ε | -1 |∆u ε |dx ≤ O(µ 1 2 ε |y ε -x ε | -1 ) + o(α ε ),
which, thanks to (1.22), proves (1.21).

In order to end the proof of the first part of the claim, we just have to prove that

α ε = sup ∂B(xε,rε) u ε = O µ 1 2 ε r -1 ε . (1.23)
For that purpose, we use the definition of r ε to write that

(βr ε ) 1 2 ψ ε (βr ε ) ≥ (r ε ) 1 2 ψ ε (r ε )
for all 0 < β < 1. Using (1.16), this leads to

r 1 2 ε sup ∂B(xε,rε) u ε ≤ C(βr ε ) 1 2 sup ∂B(xε,βrε) u ε .
Thanks to (1.21), we obtain that sup ∂B(xε,rε)

u ε ≤ Cβ 1 2 µ 1 2 ε (βr ε ) -1 + sup ∂B(xε,rε) u ε .
Choosing β small enough clearly gives (1.23) and thus the pointwise estimate on u ε of the claim. The estimate on ∇u ε then follows from standard elliptic theory.

We now prove the following :

Claim 1.3. If r ε → 0 as ε → 0, up to passing to a subsequence, r ε u ε (x ε )u ε (x ε + r ε x) → 1 |x| + b in C 1 loc (B (0, 2) \ {0}) as ε → 0 where b is some harmonic function in B(0, 2). Moreover, if r ε < ρ ε , then b(0) = 1.
Proof of Claim 1.3. We set, for x ∈ B(0, 2),

ũε (x) = µ -1 2 ε r ε u ε (x ε + r ε x) which verifies ∆ũ ε + r 2 ε hε ũε = µ ε r ε 2 ũ5 ε in B(0, 2) (1.24)
where hε = h(x ε + r ε x). Thanks to Claim 1.2, there exists

C > 0 such that ũε (x) ≤ C |x| in B(0, 2) \ {0}. (1.25) 
Then, thanks to standard elliptic theory, we get that, after passing to a subsequence, ũε

→ U in C 1 loc (B(0, 2) \ {0}) as ε → 0 where U is a non-negative solution of ∆U = 0 in B(0, 2) \ {0} .
Then, thanks to the Bôcher theorem on singularities of harmonic functions, we get that

U (x) = λ |x| + b(x)
where b is some harmonic function in B(0, 2) and λ ≥ 0. Now, integrating (1.24) on B (0, 1), we get that ∂B(0,1)

∂ ν ũε dσ = B(0,1) r 2 ε hε ũε - µ ε r ε 2 ũ5 ε dx Thanks to Claim 1.2, B(0,1)
r 2 ε hε ũε dx → 0 as ε → 0 and, thanks to Claim 1.1,

B(0,1) µ ε r ε 2 ũ5 ε dx → R 3 1 + |x| 2 3 -5 2 dx = ω 2 as ε → 0 .
On the other hand, we have that

∂B(0,1) ∂ ν ũε dσ → -ω 2 λ as ε → 0 .
We deduce that λ = 1, which proves the first part of the Claim. Now, if r ε < ρ ε , we have thanks to the definition of r ε that

ψ ′ ε (r ε ) = 0 . Setting ψε (r) = rε µε 1 2 ψ ε (r ε r) for 0 < r < 2, we see that ψε (r) → r 1 2 ω 2 r 2 ∂B(0,r) U dσ = r -1 2 + r 1 2 b(0) .
We deduce that b(0) = 1, which ends the proof of the Claim.

We prove at last the following :

Claim 1.4. Using the notations of Claim 1.3, we have that b(0) = 0, and if the convergence in (1.2) holds in C 0,η , then ∇b(0) = 0.

Proof of Claim 1.4. We use the notation of the proof of Claim 1.3. Let us apply the Pohožaev identity (4.4) of appendix 4.3 to ũε in B(0, 1). We obtain that

1 2 B(0,1) r 2 ε hε ũ2 ε + hε < x, ∇ũ 2 ε > dx = Bε 1 + Bε 2 where Bε 1 = ∂B(0,1) (∂ ν ũε ) 2 + 1 2 ũε ∂ ν ũε - |∇ũ ε | 2 2 dσ and Bε 2 = ∂B(0,1) µ ε r ε 2 ũ6 ε 6 dσ .
Thanks to Claim 1.2 and to Lebesgue dominated convergence theorem, we can pass to the limit to obtain that ∂B(0,1)

(∂ ν U ) 2 + 1 2 U ∂ ν U - |∇U | 2 2 dσ = 0 .
Since b is harmonic, it is easily checked that the left-hand side is just -ω2b(0)

2

. This proves that b(0) = 0.

In order to prove the second part of the Claim, we apply the Pohožaev identity (4.7) of appendix 4.3 to ũε in B(0, 1). We obtain that ∂B(0,1)

|∇ũ ε | 2 2 ν -∂ ν ũε ∇ũ ε dσ = - B(0,1) r 2 ε hε ∇ũ 2 ε 2 dx - ∂B(0,1) µ ε r ε 2 ũ6 ε 6 ν dσ . (1.26)
It is clear that

∂B(0,1) |∇ũ ε | 2 2 ν -∂ ν ũε ∇ũ ε dσ → ∂B(0,1) |∇U | 2 2 ν -∂ ν U ∇U dσ as ε → 0 .
Moreover, thanks to the fact that b is harmonic, we easily get that

∂B(0,1) |∇U | 2 2 ν -∇U ∂ ν U dσ = ω 2 ∇b(0) .
It remains to deals with the right-hand side of (1.26). It is clear that

∂B(0,1) µ ε r ε 2 ũ6 ε 6 νdσ → 0 as ε → 0 .
Then we rewrite the first term of the right-hand side of (1.26) as

B(0,1) r 2 ε hε ∇ũ 2 ε 2 dx = B(0,1) r 2 ε ( hε -hε (0)) ∇ũ 2 ε 2 dx + hε (0) B(0,1) r 2 ε ∇ũ 2 ε 2 dx .
If we assume that the convergence of (h ε ) holds in C 0,η , we can use Lebesgue dominated convergence theorem to obtain that the first term of the right-hand side goes to 0 as ε → 0. Then, integrating by parts the second term, we get hε (0)

B(0,1)
r 2 ε ∇ũ 2 ε 2 dx = hε (0) ∂B(0,1) r 2 ε ũ2 ε 2 νdσ
which clearly goes to 0 as ε → 0. Finally, collecting the above informations, and passing to the limit ε → 0 in (1.26), we get that ∇b(0) = 0 if the convergence of (h ε ) holds in C 0,η , which achieves the proof of the Claim.

We are now in position to end the proof of proposition 1.1. If ρ ε → 0 as ε → 0 then we deduce the proposition from claims 1.3 and 1.4. If ρ ε → 0 as ε → 0, then claims 1.3 and 1.4 give that r ε → 0 as ε → 0. Then, using the Harnack inequality (1.16), one can extend the result of Claim 1.2 to B(x ε , 2ρ ε ) \ {x ε }, which proves the first part of Proposition 1.1 when ρ ε → 0, and ends the proof of the whole proposition.

Stability of the Pohožaev obstruction

We prove theorem 1 and give some stability result for radial solutions on the unit ball (see the end of the section). We assume by contradiction that there exists a sequence (h ε ) of functions in C 0,η R 3 for some η > 0 and a sequence (u ε ) of C 2solutions of (1.1) where Ω is some smooth domain of R 3 star-shaped with respect to the origin and h ε → h in L p (Ω) as ε → 0 for some p > 3 where h ∈ C 1 (R 3 ) satisfies (0.2). Sometimes we will assume that h ε → h in C 0,η as ε → 0.

We claim first that

u ε ∞ → +∞ as ε → 0 . (2.1) Indeed, if (u ε ) is uniformly bounded in L ∞ (Ω), then it is clear that uε uε ∞
is uniformly bounded in W 2,p (Ω) for some p > 3, and thus, after passing to a subsequence,

uε uε ∞ → u in C 1 loc (Ω) where u is a positive solution of ∆u + hu = lim ε→0 u ε 4 ∞ u 5 in Ω with u = 0 on ∂Ω. Since h ≥ 0, it is clear that u ε ∞ → 0 as ε → 0. Then ũ = (lim ε→0 u ε ∞ )
u is a non-trivial solution of (0.1), which is a contradiction since (0.2) holds. Thus (2.1) is proved.

Then the sequence (u ε ) develops some concentration phenomena. We prove that this leads to a contradiction as follows : in Claim 2.1, mimicking [START_REF] Druet | Stability and instability for Einstein-scalar field Lichnerowicz equations in compact Riemannian manifolds[END_REF], we exhaust a family of critical points of u ε , (x 1,ε , . . . , x Nε,ε ), such that each sequence (x iε,ε ) satisfies the assumptions of Section 1 with

ρ ε = min 1≤i≤Nε,i =iε {|x i,ε -x iε,ε |, d(x iε ,ε , ∂Ω)} .
In Claim 2.2, we prove that these concentration points are in fact isolated. In other words, we prove that (u ε ) develops only finitely many concentration points. We prove that such a configuration of concentrations points must satisfy two relations involving the Green function of ∆ + h at these points. And it is impossible to find such a configuration thanks to some Pohožaev identity on Green functions we prove in Appendix 4.4. Claim 2.1 is rather classical. The core of the proof lies in Claim 2.2. Avoiding bubble accumulation in the interior Ω in dimension 3 is by now classical. The main difficulty here is to avoid boundary bubble accumulation. The rest of the section is devoted to the details of the proof we just sketched.

Claim 2.1. There exists D > 0 such that for all ε > 0, there exists N ε ∈ N * and N ε critical points of u ε , denoted by (x 1,ε , . . . , x Nε ) such that :

d(x i,ε , ∂Ω)u ε (x i,ε ) 2 ≥ 1 for all i ∈ [1, N ε ] , |x i,ε -x j,ε |u ε (x i,ε ) 2 ≥ 1 for all i = j ∈ [1, N ε ] ,
and

min i∈[1,Nε] |x i,ε -x| u ε (x) 2 ≤ D
for all x ∈ Ω and all ε > 0.

Proof of Claim 2.1. First of all, we claim that

{x ∈ Ω s.t. ∇u ε (x) = 0 and d(x, ∂Ω)u ε (x) 2 ≥ 1} = ∅ (2.2) 
for ε small enough. Let us prove (2.2). Let y ε ∈ Ω be a point where u ε achieves his maximum. We set

µ ε = u ε (y ε ) -2 → 0 as ε → 0. We set also for all x ∈ Ω ε = {x ∈ R 3 s.t. y ε + µ ε x ∈ Ω}, ũε (x) = µ 1 2 ε u ε (y ε + µ ε x) which verifies ∆ũ ε + µ 2 ε hε ũε = ũ5 ε in Ω ε
, where hε = h(y ε + µ ε x). Note that 0 ≤ ũε ≤ ũε (0) = 1. Thanks to standard elliptic theory, we get that ũε → U in C 1 loc (Ω 0 ) where U satisfies ∆U = U 5 in Ω 0 and 0 ≤ U ≤ 1 = U (0), and where Ω 0 = lim ε→0 Ω ε . Thanks to [START_REF] Dancer | Some notes on the method of moving planes[END_REF], we have Ω 0 = R 3 , which proves that d(y ε , ∂Ω)u ε (y ε ) 2 → +∞ as ε → 0. This ends the proof of (2.2). Now, applying Lemma 4.1, see Appendix 4.1, for ε small enough, there exist N ε ∈ N * and N ε critical points of u ε , denoted by (x 1,ε , . . . , x Nε ), such that :

d(x i,ε , ∂Ω)u ε (x i,ε ) 2 ≥ 1 for all i ∈ [1, N ε ] , |x i,ε -x j,| u ε (x i,ε ) 2 ≥ 1 for all i = j ∈ [1, N ε ] ,
and

min i∈[1,Nε] |x i,ε -x| u ε (x) 2 ≤ 1 (2.3) for all critical point x of u ε such that d(x, ∂Ω)u ε (x) 2 ≥ 1. It remains to show that there exists D > 0 such that min i∈[1,Nε] |x i,ε -x| u ε (x) 2 ≤ D
for all x ∈ Ω. We proceed by contradiction, assuming that

sup x∈Ω min i∈[1,Nε] |x i,ε -x| u 2 ε (x) → +∞ (2.4) as ε → 0. Let z ε ∈ Ω be such that min i∈[1,Nε] |x i,ε -z ε | u ε (z ε ) 2 = sup x∈Ω min i∈[1,Nε] |x i,ε -x| u ε (x) 2 .
We set με = u ε (z ε ) -2 and S ε = {x 1,ε , . . . , x Nε,ε }. Thanks to (2.4), we check that με → 0 as ε → 0 and that

d(S ε , z ε ) με → +∞ as ε → 0 . (2.5)
Then we set, for all

x ∈ Ωε = {x ∈ R 3 s.t. z ε + με x ∈ Ω}, ûε (x) = μ 1 2 ε ûε (z ε + με x) which verifies ∆û ε + μ2 ε ĥε ûε = û5
ε in Ω ε where ĥε = h(z ε + με x). Note that ûε (0) = 1 and also that with Ω0 = lim ε→0 Ωε . As above, we deduce that Ω0 = R 3 , which gives that lim

ε→0 d(z ε , ∂Ω)u 2 ε (z ε ) → +∞ . (2.6)
Moreover, thanks to [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], we know that

Û (x) = 1 1 + |x| 2 3 1 2
.

Since Û has a strict local maximum at 0, there exists xε , a critical point of u ε , such that |z εxε | = o(μ ε ) and με u ε (x ε ) 2 → 1 as ε → 0. Thanks to (2.5) and (2.6), this contradicts (2.3) and proves the Claim.

We define

d ε = min {d(x i,ε , x j,ε ), d(x i,ε , ∂Ω) s.t. 1 ≤ i < j ≤ N ε }
and prove :

Claim 2.2. If the convergence of h ε to h holds in C 0,η , then there exists d > 0 such that d ε ≥ d.
Proof of Claim 2.2. Assume that d ε → 0 as ε → 0. There are two cases to consider : either the distance between two critical points goes to 0, or one of them goes to the boundary. In the first case, the arguments which lead to a contradiction follow closely [START_REF]Compactness for Yamabe metrics in low dimensions[END_REF], but in the second case we have to be more precise looking at the "artificial" singularities created by the boundary.

Up to reordering the concentration points, we can assume that

d ε = d(x 1,ε , x 2,ε ) or d(x 1,ε , ∂Ω) . For x ∈ Ω ε = {x ∈ R 3 s.t. x 1,ε + d ε x ∈ Ω}, we set ũε (x) = d 1 2 ε u ε (x 1,ε + d ε x) which verifies ∆ũ ε + d 2 ε hε ũε = ũ5 ε in Ω ε , where hε = h(x 1,ε + d ε x).
We have, up to a harmless rotation,

lim ε→0 Ω ε = Ω 0 = R 3 or ] -∞; d[×R 2 where d ≥ 1 . We also set xi,ε = x i,ε -x 1,ε d ε .
We claim that, for any sequence

i ε ∈ [1, N ε ] such that ũε (x iε,ε ) = O(1) , (2.7) 
we have that sup

B(xi ε,ε , 1 2 ) ũε = O(1) . (2.8) Indeed, let y ε ∈ B(x iε ,ε , 1 
2 ) be such that sup

B(xi ε,ε , 1 2 ) 
ũε = ũε (y ε ) and assume by contradiction that ũε (y ε ) 2 → +∞ as ε → 0 .

(2.9)

Thanks to the definitions of d ε , y ε and the last assertion of Claim 2.1, we can write that

|d ε (y ε -xiε,ε )|u ε (x 1,ε + d ε y ε ) 2 ≤ D so that |y ε -xiε,ε | = o(1) .
(2.10)

For x ∈ B(0, 1 3με ) and ε small enough, we set

ûε (x) = μ 1 2 ε ũε (y ε + με x) where με = u ε (y ε ) -2 . It satisfies ∆û ε + (μ ε d ε ) 2 ĥε ûε = û5 ε in B(0, 1 3μ ε ) and ûε (0) = sup B(0, 1 3 με ) ûε = 1
where ĥε = hε (y ε + με x). Thanks to (2.9), B(0, 1 3με ) → R 3 as ε → +∞. Then (û ε ) is uniformly locally bounded and, by standard elliptic theory, ûε converges to Û in C 1 loc (R 3 ) where Û satisfies ∆ Û = Û 5 in R 3 and 0 ≤ Û ≤ 1 = Û (0) .

Thanks to [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF] and to the fact that xiε,ε-yε με is bounded, we can write that lim inf ε→0 ũε (x iε,ε ) ũε (y ε ) > 0 which is a contradiction with (2.7) and (2.9), and achieves the proof of (2.8).

For R > 0, we set S R,ε = {x i,ε |x i,ε ∈ B(0, R)}. Thanks to definition of d ε , up to a subsequence, S R,ε → S R as ε → 0, where S R is a not empty finite set, then up to performing a diagonal extraction, we can define the countable set

S = R>0 S R .
Thanks to the previous definition, we are ready to prove the following assertion : ), where ỹ = lim ε→0 xiε,ε . We thus obtain thanks to Harnack's inequality that ũε (x iε,ε ) → 0 as ε → 0, which is a contradiction with the first or the second assertion of Claim 2.1.

∀ i ε ∈ [1, N ε ] s.t. d(x iε ,ε , x 1,ε ) = O(d ε ) , ũε (x iε ,ε ) → +∞ as ε → 0 . ( 2 
Thus we have proved that for all sequence j ε such that d(x jε,ε , x 1,ε ) = O(d ε ), ũε (x jε,ε ) is bounded, which proves that (ũ ε ) is uniformly bounded in a neighborhood of any finite subset of S. But thanks to Claim 2.1, ũε is bounded in any compact subset of Ω 0 \ S. This clearly proves that ũε is uniformly bounded on any compact of Ω 0 . Then, by standard elliptic theory, ũε → U in C 1 loc (Ω 0 ) as ε → 0, where U is a nonnegative solution of ∆U = U 5 in Ω 0 .

But, thanks to the first or second assertion of Claim 2.1, we know that U (0) ≥ 1, hence we have necessarily that Ω 0 = R 3 , and thus U possesses at least two critical points, namely 0 and x2 = lim ε→0 x2,ε . Thanks to [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], this is impossible. This ends the proof of (2.11).

We are now going to consider two cases, depending on Ω 0 .

Case 1 : Ω 0 = R 3 -In this case, up to a subsequence, d ε = d(x 1,ε , x 2,ε ) and S = {0, x2 = lim ε→0 x2,ε , . . . } contains at least two points. Applying Proposition 1.1 with x ε = xi,ε and ρ ε = dε 3 , we obtain that

ũε (0)ũ ε (x) → H = 1 |x| + λ 2 |x -x2 | + b in C 1 loc (R 3 \ S) as ε → 0
where b is an harmonic function in Ω 0 \ {S \ {0, x2 }}, and λ 2 > 0. Moreover b(0) = -λ 2 . We prove in the following that b is nonnegative, which will give a contradiction and end the study of this case. To check that b is nonnegative, for all positive number r, we rewrite H as

H = xi∈S∩B(0,r) λ i |x -xi | + br ,
where λ i > 0. Then, taking R > r big enough, we get that br > -1 r on ∂B(0, R). Moreover, for any xj ∈ B(0, R) \ B(0, r), there exist a neighborhood V j,r of xj such that br > 0 on V j,r . Thanks to the maximum principle, br > -1 r on B(0, R). Since 

(0)ũ ε (x) → H = xi∈S λ i |x -xi | + b in C 1 loc (Ω 0 \ S)
where λ i > 0, and b is some harmonic function in Ω 0 . We extend H to R 3 by setting

Ĥ(x) = H(x) if x 1 ≤ d -H(s(x)) otherwise
where s is the symmetry with respect to {d} × R 2 . We also extend b by setting

Ĥ = xi∈S λ i |x -xi | - λ i |s(x) -xi | + b .
It is clear that b is harmonic on R 

∂ ν G R (x, y) = R 2 -|x| 2 ω 2 R |x -y| 3 on ∂B(0, R) that ∂ 1 b(0) = 3 ω 2 R 4 ∂B(0,R) y 1 b(y)dσ .

Now we decompose ∂B(0, R) into three sets, namely

A = {y ∈ ∂B(0, R) s.t. y 1 ≥ d} , B = {y ∈ ∂B(0, R) s.t. 0 ≤ y 1 ≤ d} , C = {y ∈ ∂B(0, R) s.t. y 1 ≤ 0} .
In A and B, we have that y 1 b(y) ≤ d b(y), and in C, we have that y 1 b(y) ≤ 0. Since b ≥ 0 in C, we arrive to

∂ 1 b(0) ≤ 3d ω 2 R 4 A∪B b(y)dσ ≤ 3d ω 2 R 4 ∂B(0,R) b(y)dσ = 3d b(0) R 2 .
Passing to the limit R → +∞ gives that ∂ 1 b(0) ≤ 0. In order to obtain a contradiction, we rewrite H in a neighborhood of 0 as

H(x) = 1 |x| + b(x) where b(x) = b(x) - 1 |s(x)| + xi∈S\{0} λ i 1 |x -xi | - 1 |s(x) -xi | .
As is easily checked, ∂ 1 b(0) < 0, which is a contradiction with Proposition 1.1. This ends the proof of Claim 2.2 in this second case.

We are now ready to prove theorem 1. Thanks to Claim 2.1, there exist D > 0, N ∈ N * and N local maxima of u ε , x 1,ε , . . . , x N , such that:

d(x i,ε , ∂Ω)u ε (x i,ε ) 2 ≥ 1 for all i ∈ [1, N ] , |x i,ε -x j,ε |u ε (x i,ε ) 2 ≥ 1 for all i = j ∈ [1, N ] and min i∈[1,N ] |x i,ε -x| u ε (x) 2 ≤ D
for all x ∈ Ω. We can assume that u ε (x i,ε ) → +∞ as ε → 0. Indeed, otherwise we can remove x i,ε from the family of concentration points, and up to changing D, the assertion remains true. Then, thanks to Harnack inequality, there exists

C > 0 such that 1 C u ε (x 1,ε ) ≤ u ε (x i,ε ) ≤ Cu ε (x 1,ε ) . (2.12)
Now, thanks to the results of section 1 and by standard elliptic theory, we have that, after passing to a subsequence,

u ε (x 1,ε )u ε (x) → G in C 2 loc (Ω \ {x 1 , . . . , x N })as ε → 0 where G(x) = N i=1 λ i G h (x i , x)
with G h the Green function of the limit operator ∆ + h with Dirichlet boundary condition on Ω. Thanks to (2.12), we know that λ i > 0 for 1 ≤ i ≤ N . This can be rewritten as

G(x) = λ i ω 2 |x -x i | + G i (x) (2.13)
where G i is a continuous function on Ω \ {x 1 , . . . , x i-1 , x i+1 , . . . , x N }. Thanks to lemma 4.3, we can write

G i (x) = G i (x i ) + h(x i ) 2ω 2 |x -x i | + γ i (x) (2.14)
where γ i ∈ C 1 (Ω) and γ i (0) = 0. We claim that

G i (x i ) = 0 for all 1 ≤ i ≤ N . (2.15)
In order to prove this, we apply the Pohožaev identity (4.4) to u ε on the ball B (x i,ε , δ) for some δ > 0 small enough. This gives

1 2 B(xi,ε,δ) h ε u 2 ε + h ε < x -x i,ε , ∇u 2 ε > dx = ∂B(xi,ε,δ) δ (∂ ν u ε ) 2 -δ |∇u ε | 2 2 + 1 2 u ε ∂ ν u ε + δ 6 u 6 ε dσ .
(2.16)

Thanks to the fact that h ε is bounded in L p (R 3 ) for some p > 3 and Proposition 1.1., we get the uniform estimate

u ε (x i,ε ) 2 1 2 B(xi,ε,δ) h ε u 2 ε + h ε < x -x i,ε , ∇u 2 ε > dx ≤ e(δ)
where e ∈ C 0 (R) with e(0) = 0. Using (2.13), we get that

∂B(xi,ε,δ) δ (∂ ν u ε ) 2 -δ |∇u ε | 2 2 + 1 2 u ε ∂ ν u ε dσ + ∂B(xi,ε,δ) δ 6 u 6 ε dσ = u ε (x i,ε ) -2 ∂B(xi,δ) δ (∂ ν G) 2 -δ |∇G| 2 2 + 1 2 G∂ ν G dσ + o u ε (x i,ε ) -2
.

Using (2.14), we easily get that

∂B(xi,δ) δ (∂ ν G) 2 -δ |∇G| 2 2 + 1 2 G∂ ν G dσ = - 1 2 λ i G i (x i ) + o(1) as δ → 0 .
Collecting the above informations proves (2.15).

We are going to prove now that ∇γ i (x i ) = 0 where γ i is as in (2.14). This will contradict lemma 4.4 of Appendix 4.4 and will achieve the proof of the theorem. For that purpose, we apply the Pohožaev identity (4.7) to u ε on the ball B (x i,ε , δ) for some δ > 0 small enough. We obtain that

u ε (x i,ε ) 2 ∂B(xi,ε,δ) |∇u ε | 2 ν -∇u ε ∂ ν u ε dσ = u ε (x i,ε ) 2 B(xi,ε,δ) h ε ∇u 2 ε 2 dx -u ε (x i,ε ) 2 ∂B(xi,ε,δ)
∇u 6 ε dσ .

(2.17)

It is clear that we can pass to the limit in the left-hand side. Moreover, thanks to (2.15) and (2.14), we have that

∂B(xi,δ) |∇G| 2 ν -∇G∂ ν G dσ → ∇γ i (x i ) as δ → 0.
Now we look at the right-hand side of (2.17). It is clear that

u ε (x i,ε ) 2 ∂B(xi,ε,δ) ∇u 6 ε dσ → 0 as ε → 0 .
Then we write that

B(xi,ε,δ) h ε ∇u 2 ε 2 dx = B(xi,ε,δ) (h ε -h ε (x i,ε )) ∇u 2 ε 2 dx + h ε (x i,ε ) B(xi,ε,δ) ∇u 2 ε 2 dx .
Assuming that the convergence of h ε to h holds in C 0,η , it is clear that the first term of the right-hand side goes to 0 as ε → 0. Integrating by parts the second term, we get that

h ε (x i,ε ) B(xi,ε,δ) ∇u 2 ε 2 dx = h ε (x i,ε ) ∂B(xi,ε,δ) u 2 ε 2 ν dσ → h (x i ) ∂B(xi,δ) G 2 2 νdσ
as ε → 0. It is easily checked that the above goes to 0 as δ → 0. Finally, collecting the above informations, and passing consecutively to the limit ε → 0 and δ → 0 in (2.17), we get that ∇γ i (x i ) = 0 for all i, which achieves the proof of theorem 1 thanks to lemma 4.4.

Let us now give a precise statement of what we meant by stability of the Pohožaev obstruction in the radial situation in the introduction. We will prove the following : Theorem 3. Let B be the unit ball of R 3 . Let h 0 be a C 1 -radial function which satisfies (0.2). Then for any p > 3, there exists δ > 0 (depending on h 0 and p) such that if h ∈ C 0,η (B) for some η > 0 with hh 0 L p (B) ≤ δ, then there exists no positive radial solution of equation (0.1) in the unit ball.

Proof of theorem 3. We proceed as for the proof of theorem 1. Note that, since u ε is radial, there can be only one concentration point, namely 0. Thanks to claim 2.1, the result of section 1 and standard elliptic theory, we have that

u ε (0)u ε (x) → ω 2 G h (x, 0) in C 1 loc (Ω \ {0}
)as ε → 0 where G h is the Green function of the limit operator ∆ + h. We have that

G h (x, 0) = 1 ω 2 |x| + g(x)
where g is a continuous function on Ω which satisfies

∆g + hg = - h ω 2 |x|
in Ω and g = -ω 2 on ∂Ω .

By the maximum principle, we see that g is negative so that g(0) < 0. Now we can proceed as in the proof of (2.15) to get a contradiction. Note that the proof of (2.15) did not require the C 0,η convergence of h ε . In the above proof, this C 0,η convergence had been used only in the proof of claim 2.2 (which is given for free in the radial situation) and in the last part of the proof to deal with the case of several concentration points (this can not happen in the radial situation).

We shall prove in the next section that the above theorem is sharp in the radial situation.

Construction of blowing-up examples and instability of the Pohožaev obstruction

In this section, we prove theorem 2. In fact, we will first prove the corresponding result in the radial situation (thus showing that our theorem 3 is sharp) since it contains the main ideas and the computations are a little bit less involved.

We first need some results on Green's functions of coercive operators ∆ + h with Dirichlet boundary condition on domains of R 3 . We let Ω be a smooth domain of R 3 and h ∈ C 1 (Ω) be such that the operator ∆+h, with Dirichlet boundary conditions, is coercive. Then there exists a unique function

G : Ω × Ω \ {(x, x) , x ∈ Ω} → R, symmetric, positive, such that ∆ y G (x, y) + h(y)G (x, y) = ω 2 δ x
in Ω and G (x, y) = 0 for y ∈ ∂Ω for all x ∈ Ω. It is easily checked that G (x, y) has the following expansion in the neighbourhood of the diagonal

G (x, y) = 1 |x -y| + 1 2 h(x) |x -y| + γ x (y) (3.1) 
where

γ x ∈ C 1 (Ω) satisfies ∆ y γ x (y) + h(y)γ x (y) = h(x) -h(y) |x -y| - 1 2 h(x)h(y) |x -y| in Ω with γ x (y) = - 1 |x -y| - 1 2 h(x) |x -y|
for all y ∈ ∂Ω.

3.1. The radial case. We start by proving that the Pohožaev identity is not L 3 rstable in the unit ball of R 3 . More precisely, we prove the following result : Note that a function h which satisfies (0.2) is necessarily non-negative. Let us prove the theorem in the rest of this subsection. We let h ∈ C 1 (B) be a nonnegative radial function where B is the unit ball of R 3 . We let G be the Green function of ∆ + h and let G(x) = G (0, x). We set

u ε (x) = U ε (x) + η ε (x)V ε (x) (3.2) 
where

U ε (x) = ε 1 2 ε 2 + G(x) -2 -1 2 V ε (x) = -γ 0 (0)ε 1 2 G(x) -3 ε 2 + G(x) -2 -3 2 η ε (x) = η(x) ln ε 2 + |x| 2 ln ε 2 (3.3)
where η is a smooth positive function such that η = 1 on the ball of radius 1 4 and η = 0 outside of the ball of radius 1 2 . Here, γ 0 comes from the asymptotic expansion (3.1). It is easily checked that u ε is a C 2,η -positive function in B and that u ε = 0 on ∂B. Moreover, we have that

η ε V ε U ε → 0 in L ∞ (B) as ε → 0 . (3.4) 
We claim that 3u

5 ε -∆u ε u ε → h in L 3 (B) as ε → 0 , (3.5) 
which clearly implies the theorem. Straightforward computations give that

∆U ε + hU ε = 3U 5 ε ∇G -1 2 + h(x)εU 3 ε (3.6)
and that

∆V ε + hV ε = 15U 4 ε V ε + 12γ 0 (0)ε 5 2 G 4 1 + ε 2 G 2 -5 2 -ε 1 2 γ 0 (0)h 1 + ε 2 G 2 -5 2 1 + 4ε 2 G 2 -3γ 0 (0)ε 5 2 G 4 1 + ε 2 G 2 -7 2 1 -4ε 2 G 2 ∇G -1 2 -1 . (3.7) 
It is easily checked that this implies that

∆u ε + hu ε -3u 5 ε = o (u ε ) (3.8) in B 0 (1) \ B 0 1 2 .
Using the expansion of G and its consequence

∇G -1 2 = 1 -4γ 0 (0)G -1 + O G -2 ,
we can then write thanks to (3.4) that

∆u ε + hu ε -3u 5 ε u ε = O |x| 2 U 4 ε + O εU 2 ε + O |x| U 4 ε |1 -η ε | + O U -1 ε |∇V ε | |∇η ε | + O U -1 ε |V ε | |∆η ε | (3.9) in B 0 1 2 . It is easily checked that |x| 2 U 4 ε → 0 and εU 2 ε → 0 in L p (B) as ε → 0 (3.10)
for all 1 ≤ p < +∞. Let us write now that

B |x| 3 U 12 ε |1 -η ε | 3 dx = O   ε 6 1 0 r 5 ε 2 + r 2 -6 1 - ln ε 2 + r 2 ln ε 2 3 dr   = O   ε -1 0 r 5 1 + r 2 -6 ln 1 + r 2 ln ε 2 3 dr   = O ln ε 2 -3 = o(1)
thanks to the dominated convergence theorem. We can also write that

B U -3 ε |∇V ε | 3 |∇η ε | 3 dx = O ln ε 2 -3 1 0 r 11 ε 2 + r 2 -6 dr +O   1 2 1 4 ln ε 2 + r 2 ln ε 2 3 dr   = O ln ε 2 -3 = o(1)
and that

B U -3 ε |V ε | 3 |∆η ε | 3 = O ln ε 2 -3 1 0 r 5 ε 2 + r 2 -1 dr + O ln ε 2 -3 = O ln ε 2 -3 = o(1) .
Coming back to (3.9) with these last estimates, we get (3.5). This ends the proof of theorem 4.

The general case.

Here we prove that the Pohožaev identity is never L ∞stable. In fact we will even prove a stronger result :

Theorem 5.
Let Ω be a smooth domain of R 3 and let h ∈ C 1 (Ω) be such that the operator ∆ + h is coercive. For any ε > 0, there exists

h ∈ C 0,η (Ω) with h -h ∞ ≤ ε such that the equation    ∆ũ + hũ = ũ5 in Ω ũ = 0 on ∂Ω , ũ > 0 in Ω admits a solution.
It is clear that this result implies theorem 2. It is sufficient to remember that a function h which satisfies (0.2) is necessarily non-negative and that a non-negative h leads to a coercive operator ∆ + h. The rest of this subsection is devoted to the proof of this theorem.

We will construct a sequence of functions u ε ∈ C ∞ (Ω), positive in Ω, null on the boundary of Ω, such that

∆u ε -3u 5 ε u ε → h in L ∞ (Ω) as ε → 0 . (3.11)
This will clearly prove the theorem.

We let G be the Green function of the operator ∆+h in Ω with Dirichlet boundary conditions. Note first that γ x (x) → -∞ as x approaches ∂Ω. In particular, there exists a point x 1 ∈ Ω such that γ x1 (x 1 ) < 0. For x ∈ Ω \ {x 1 }, we set

λ(x) = - γ x1 (x 1 ) G (x 1 , x) 2 and F (x) = G (x 1 , x) 2 -γ x1 (x 1 ) γ x (x) .
Since F (x) → +∞ as x → x 1 and F (x) → -∞ as x approaches ∂Ω and since F is continous, there exists x 2 such that F (x 2 ) = 0. We let then λ = λ (x 2 ) and we have

√ λG 2 (x 1 ) + γ 1 (x 1 ) = G 1 (x 2 ) + √ λγ 2 (x 2 ) = 0 (3.12)
where

G 1 (x) = G (x 1 , x) , G 2 (x) = G (x 2 , x) , γ 1 (x) = γ x1 (x) , γ 2 (x) = γ x2 (x) . (3.13)
We let δ > 0 be such that δ ≤ 10d (x 1 , ∂Ω) and δ ≤ 10d (x 2 , ∂Ω). We fix η ∈ C ∞ (R) such that η(r) = 1 for |r| ≤ δ and η(r) = 0 for |r| ≥ 2δ. We set in the following

u ε = ε -1 2 U (εG 1 ) + (λε) -1 2 U (λεG 2 ) + η (|x -x 1 |) γ 1 (x 1 ) ε 1 2 V (εG 1 ) + η (|x -x 2 |) γ 2 (x 2 ) (λε) 1 2 V (λεG 2 ) -η (|x -x 1 |) ψ ε (εG 1 ) ε 1 2 (x -x 1 ) i . 1 + ε 2 G 2 1 -3 2 ∂ i γ 1 (x 1 ) + λ 1 2 ∂ i G 2 (x 1 ) -η (|x -x 2 |) ψ ε (λεG 2 ) (λε) 1 2 (x -x 2 ) i . 1 + λ 2 ε 2 G 2 2 -3 2 ∂ i γ 2 (x 2 ) + λ -1 2 ∂ i G 1 (x 2 ) + η (|x -x 1 |) ε 3 2 ψ ε (εG 1 ) h (x 1 ) W (εG 1 ) - 3 2 γ 1 (x 1 ) 2 U (εG 1 ) 5 + η (|x -x 2 |) (λε) 3 2 ψ ε (λεG 2 ) h (x 2 ) W (λεG 2 ) - 3 2 γ 2 (x 2 ) 2 U (λεG 2 ) 5 (3.14)
where we adopt Einstein summation conventions and U , V , W and ψ ε are given by

U (r) = r 1 + r 2 -1 2 , V (r) = 1 -1 + r 2 -3 2 , ψ ε (r) = 1 + ln 1 + r -2 ln ε 2 and 
W (r) = - 13 4 U + 8 2U 3 -U ln U -2 U -1 -8U + 8U 3 r arctan 1 r . (3.15)
It is easily checked that u ε is C 2,η in Ω and that u ε = 0 on ∂Ω. We claim now that (3.11) holds for this specific u ε and that u ε is positive in Ω. We shall prove this claim in three steps. First, we can prove it rather easily in Ω \ B x1 (2δ) B x2 (2δ) because, in this region, u ε is simply

u ε = ε -1 2 U (εG 1 ) + (λε) -1 2 U (λεG 2 ) .
Now, noticing that U ′ = r -3 U 3 and that U ′′ = -3r -4 U 5 , simple computations lead to

∆ ε -1 2 U (εG 1 ) + (λε) -1 2 U (λεG 2 ) + h ε -1 2 U (εG 1 ) + (λε) -1 2 U (λεG 2 ) = 3 ε -1 2 U (εG 1 ) 5 ∇G -1 1 2 + 3 (λε) -1 2 U (λεG 2 ) 5 ∇G -1 2 2 + hε -1 2 U (εG 1 ) 1 -1 + ε 2 G 2 1 -1 + h (λε) -1 2 U (λεG 2 ) 1 -1 + λ 2 ε 2 G 2 2 -1 (3.16) 
in Ω. In the region we are interested in, this clearly leads to ∆u ε + hu ε -3u 5 ε = o (u ε ) which proves that (3.11) holds in this region while u ε is clearly positive in this region.

We will now prove that (3.11) holds in B x1 (2δ) and that u ε is positive in this ball. By symmetry, it is clear that the proof of the fact that (3.11) holds in B x2 (2δ) is exactly the same 3 . In order to simplify the notations, we will assume that x 1 = 0, which we can always do by translating Ω. We will denote G 1 by G and γ 1 by γ. We also set

U ε = ε -1 2 U (εG) , V ε = ε 1 2 V (εG) , W ε = ε 3 2 W (εG) , ϕ ε = ψ ε (εG) , Y ε = - 3 2 ε 3 2 U (εG) 5 , Ũε = (λε) -1 2 U (λεG 2 )
and

Z ε = -ε 1 2 x i 1 + ε 2 G 2 -3 2 ∂ i γ (0) + λ 1 2 ∂ i G 2 (0) . (3.17) 
With these notations, we have that, in B 0 (2δ),

u ε = U ε + Ũε + η (|x|) γ(0)V ε + η (|x|) ϕ ε h(0)W ε + γ(0) 2 Y ε + Z ε . (3.18)
Let us write thanks to (3.1) that

∇G -1 2 = 1 -4γ(0)G -1 + 3 2γ(0) 2 -h(0) G -2 -6G -1 x i ∂ i γ(0) + o G -2 (3.19)
and let us also remark that

G -2 = εU -2 ε -ε 2 . (3.20)
Let us write thanks to (3.12) that Ũε = -ε

1 2 γ(0) + (λε) 1 2 x i ∂ i G 2 (0) + O ε 3 2 U -2 ε , V ε = O ε 3 2 U 2 ε , W ε = O ε 3 2 , Y ε = O ε 3 2 and Z ε = O εU -1 ε . (3.21)
Thanks to (3.18) and to (3.21), it is easily checked that u ε is positive in B 0 (2δ). Lengthy but straightforward computations lead then to

|∇ϕ ε | = O 1 ε 1 2 ln 1 ε U ε , |∇V ε | = O εU 3 ε , |∇W ε | = O (εU ε ) , |∇Y ε | = O (εU ε ) and |∇Z ε | = O ε 1 2 (3.22) in B 0 (2δ) and to ∆U ε + hU ε = 3U 5 ε -12γ(0)G -1 U 5 ε -18G -1 x i ∂ i γ(0)U 5 ε + 18γ(0) 2 G -2 U 5 ε + h(0) ε 2 -8G -2 U 5 ε + o (U ε ) , ∆ Ũε + h Ũε = 3 Ũ 5 ε ∇G -1 2 2 + λεh Ũ 3 ε = O ε 5 2 , ∆V ε + hV ε = 15U 4 ε V ε -15ε 1 2 U 4 ε + 12G -1 U 5 ε + 12γ(0) 5ε -1 G -4 U 7 ε -4G -2 U 5 ε + o (U ε ) , ∆W ε + hW ε = 15U 4 ε W ε + 8εU 3 ε -9ε 2 U 5 ε + o (U ε ) , ∆Y ε + hY ε = 15U 4 ε Y ε + 30ε 3 U 7 ε -30ε 4 U 9 ε + o (U ε ) , ∆ϕ ε = O 1 ε ln 1 ε U 2 ε , ∆Z ε + hZ ε = 15U 4 ε Z ε + 18U 5 ε G -1 ∂ i γ(0)x i + 15 (λε) 1 2 U 4 ε x i ∂ i G 2 (0) + O εU -1 ε + o (U ε ) (3.23)
in B 0 (2δ). It follows easily from the above equations that

∆u ε + hu ε -3u 5 ε u ε → 0 in L ∞ (B 0 (2δ) \ B 0 (δ)) as ε → 0 .
It remains to prove the result in B 0 (δ). Thanks to (3.21), one can easily check that

u ε U ε → 1 + √ λ G 2 G 1 in L ∞ B 0 (δ) as ε → 0 (3.24)
so that we can write that

3u 5 ε = 3U 5 ε + 15U 4 ε (u ε -U ε ) + 30U 3 ε (u ε -U ε ) 2 + O U 2 ε |u ε -U ε | 3 .
Using again (3.22), we deduce that

3u 5 ε = 3U 5 ε -15ε 1 2 γ(0)U 4 ε + 15 (λε) 1 2 U 4 ε x i ∂ i G 2 (0) +15γ(0)U 4 ε V ε + 15U 4 ε ϕ ε h(0)W ε + γ(0) 2 Y ε + Z ε +30γ(0) 2 U 3 ε V ε -ε 1 2 2 + o (U ε )
in B 0 (δ). Thanks to (3.21), to (3.22) and to (3.23), we can also write that

∆u ε + hu ε = 3U 5 ε + 15γ(0)U 4 ε V ε + 15 (λε) 1 2 ϕ ε U 4 ε x i ∂ i G 2 (0) -15γ(0)ε 1 2 U 4 ε + 15U 4 ε ϕ ε h(0)W ε + γ(0) 2 Y ε + Z ε +30γ(0) 2 2ε -1 G -4 U 7 ε -G -2 U 5 ε + h(0) ε 2 -8G -2 U 5 ε +h(0)ϕ ε 8εU 3 ε -9ε 2 U 5 ε + 30γ(0) 2 ϕ ε ε 3 U 7 ε -ε 4 U 9 ε +18 (ϕ ε -1) U 5 ε |x|∂ i γ(0)x i + o (U ε ) . Combining these two last equations, we get that ∆u ε + hu ε -3u 5 ε = -30γ(0) 2 U 3 ε V ε -ε 1 2 2 -ϕ ε ε 3 U 7 ε +ϕ ε ε 4 U 9 ε -2ε -1 G -4 U 7 ε + G -2 U 5 ε +h(0) ε 2 U 5 ε -8G -2 U 5 ε + 8ϕ ε εU 3 ε -9ϕ ε ε 2 U 5 ε + o (U ε ) +18 (ϕ ε -1) |x|x i ∂ i γ(0)U 5 ε It remains to remark using (3.20) that U 3 ε V ε -ε 1 2 2 -ϕ ε ε 3 U 7 ε + ϕ ε ε 4 U 9 ε -2ε -1 G -4 U 7 ε + G -2 U 5 ε = ε 2 G -2 U 9 ε (1 -ϕ ε ) = - ε 2 ln ε 2 ln 1 + ε -2 G -2 G -2 U 9 ε = - U ε ln ε 2 ε 6 ln 1 + ε -2 G -2 G -2 ε 2 + G -2 -4 = O U ε ln 1 ε = o (U ε ) , that ε 2 U 5 ε -8G -2 U 5 ε + 8ϕ ε εU 3 ε -9ϕ ε ε 2 U 5 ε = -9ε 2 U 5 ε + 8εU 3 ε (ϕ ε -1) = U ε ln ε 2 ln 1 + ε -2 G -2 -9 1 + ε -2 G -2 -2 + 8 1 + ε 2 G -2 -1 = O U ε ln 1 ε = o (U ε )
and that

(ϕ ε -1) G -1 x i ∂ i γ(0)U 5 ε = O U ε ln ε 2 ln 1 + ε -2 G -2 ε -2 G -2 1 + ε -2 G -2 -2 = O U ε ln 1 ε = o (U ε )
to conclude thanks to (3.24) that (3.11) holds in B 0 (δ) for this choice of u ε . As already said, this proves that (3.11) holds for u ε given by (3.14) and this ends the proof of the theorem.

As already said, this result implies theorem 2. 

. , x N ), such that d(x i , ∂Ω)u(x i ) 2 ≥ 1 for all i ∈ [1, N ], |x i -x j |u(x i ) 2 ≥ 1 for all i = j ∈ [1, N ] and min i∈[1,N ] |x i -x| u(x) 2 ≤ 1 for all critical points x of u such that d(x, ∂Ω)u(x) 2 ≥ 1.
Proof of Lemma 4.1. Let C u be the set of critical points of u. Thanks to the Hopf Lemma, it is clear that C u is a compact set of Ω. We let

K 0 = {x ∈ C u s.t. d(x, ∂Ω)u 2 (x) ≥ 1}
and we assume that K 0 = ∅. We let x 1 ∈ K 0 and K 1 ⊂ K 0 be such that u(x 1 ) = max |xx i |u(x) 2 ≥ 1 .

We claim that, at some step in the process, K p = ∅. In order to prove it, we remark that at each step of the construction,

|x i -x j |u(x i ) 2 ≥ 1 for all i = j ∈ [1, p], (4.1) 
which will prove the claim, since Ω is bounded. We prove (4.1) by induction. Let p ≥ 1. By definition, for all x ∈ K p , we have

|x i -x|u(x) 2 ≥ 1 for all i ∈ [1, p] .
This holds in particular for x = x p+1 . Then, for all x ∈ K p , we also easily check that |x i -x|u(x i ) 2 ≥ 1 for all i ∈ [1, p] , which is also true for x p+1 , and proves (4.1). Let N ∈ N * be such that K N = ∅. We claim that min i∈ [1,N ] |x i -x| u 2 (x) ≤ 1 (4.2) for all x ∈ K 0 which, together with (4.1), will end the proof of the lemma. Let x ∈ K 0 . Since K N = ∅, there exists p such that x ∈ K p-1 and x ∈ K p . Then we have either |x p -x|u 2 (x p ) < 1 or min i∈ [1,p] |xx i |u(x) < 1 .

In Proof of lemma 4.2. We divide the proof into three steps.

Step 1 : ∆ + h is coercive if h -3 2 is small enough -Let u ∈ H 1 0 (Ω). We write that 2 2h -3 2 u 6 thanks to Hölder's inequalities. One can then use Sobolev's embeddings and the fact that h - 3 2 is small to conclude this first step.

Ω |∇u| 2 + hu 2 dx ≥ Ω |∇u| 2 -h -u 2 dx ≥ ∇u
Step 2 : Existence and a priori estimate -Let G(x, y) be the Green function of the Laplacian. Then solving ∆ y G h (x, y) + hG h (x, y) = δ x in Ω, G h (x, y) = 0 on ∂Ω, is equivalent to solving ∆ y β(x, y) + hβ(x, y) = -hG(x, y), β(x, y) = 0 on ∂Ω.

Since h ∈ L p (Ω) for some p > 3, there exists q > 3 2 such that hG(x, .) ∈ L q (Ω). The existence of β follows from the coercivity of ∆ + h and Lax-Milgram theorem. for some C > 1 depending only on h p , h -3 2 and Ω. This gives an a priori bound on ∇β 2 .

Step 3 : estimates and positivity -Thanks to the previous Step, there exists C > 0 which depends only on h p and h - 3 2 , and q > 3 2 such that h(β + G(x, .)) q ≤ C . Now, thanks to standard elliptic theory (see for instance theorem 9.13 of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), we see that β ∈ L ∞ and

β ∞ ≤ C
where C is a positive constant which depends only on h p and h -3 2 . This proves the first estimate of the lemma. The second follows by standard elliptic theory. Positivity of the Green function is an easy consequence of the coercivity of the operator ∆ + h. 4.3. General Pohožaev's identities. For the sake of completeness, we derive here several forms of the classical Pohožaev identity [START_REF] Pohožaev | On the eigenfunctions of the equation ∆u + λf (u) = 0[END_REF] we used in this paper. Assume that u is a C 2 -solution of ∆u = u 5hu in Ω . 

Multiplying this equation by

4 n

 4 h ∈ C 1 (R n ) and let us consider the equation    ∆u + hu = |u|

  all R > 0 thanks to (2.4) and (2.5). Standard elliptic theory gives then that ûε → Û in C 1 loc ( Ω0 ) where U satisfies ∆ Û = Û 5 in Ω0 and 0 ≤ Û ≤ 1 = Û (0)

  br → b on every compact set as r → +∞, we get that H = xi∈S λ i |xxi | + b with b ≥ 0, which proves that b ≥ 0. This is the contradiction we were looking for, and this ends the proof of the claim in this first case. Case 2 : Ω 0 =] -∞, d[×R 2 -We still denote S = {0 = x1 , x2 , . . . } and we apply Proposition 1.1 with x ε = x i,ε and ρ ε = dε 3 to get that ũε

3

 3 and satisfies b ≥ 0 in Ω 0 and b ≤ 0 in R 3 \ Ω 0 . This can be proved as in Case 1. Let G R the Green function of the laplacian on the ball centered in 0 with radius R, we get thanks to the Green representation formula that b(x) = ∂B(0,R) ∂ ν G R (x, y) b(y)dσ which gives since

Theorem 4 .

 4 Let h ∈ C 1 (B) be a non-negative radial function on the unit ball B of R 3 . For any ε > 0, there exists a radial function h ∈ C 0,η (B) with hh L 3 (B) ≤ ε such that the equation ∆ũ + hũ = ũ5 in B ũ = 0 on ∂B admits a positive radial solution.

4 . Appendix 4 . 1 .Lemma 4 . 1 .

 44141 A general simple lemma on functions. We prove a new version of the simple Lemma 1.1 of[START_REF] Druet | Stability and instability for Einstein-scalar field Lichnerowicz equations in compact Riemannian manifolds[END_REF], replacing the compact manifold M by a domain Ω in R n . Let Ω be a smooth bounded domain of R n . Let u ∈ C 1 (Ω) be a function positive in the interior and null on the boundary. Assume that {x ∈ Ω s.t. ∇u(x) = 0 and d(x, ∂Ω)u 2 (x) ≥ 1} = ∅ .Then there exist N ∈ N * and N critical points of u, denoted by (x 1 , . .

K0 u and K 1 =

 1 x ∈ K 0 s.t. |x 1 -x|u(x) 2 ≥ 1 .Then we proceed by induction. Assuming we have constructed K 0 ⊃ • • • ⊃ K p and x 1 , . . . , x p such that x i ∈ K i-1 for all i ∈ [1, p], we let x p+1 ∈ K p and K p+1 ⊂ K p be such that u(x p+1 ) = max Kp u andK p+1 = x ∈ K p s.t. |x p+1 -x|u(x p+1 ) 2 ≥ 1and mini∈[1,p] 

(|∇β| 2 +-hGβdx ≤ hG 3 2 β 3 ≤

 23 Moreover, using again the coercivity of ∆ + h and Sobolev's embeddings, we get thathβ 2 )dx = Ω C ∇β 2 ,

  .11) Assume that there exists i ε such thatd(x iε ,ε , x 1,ε ) = O(d ε ) with ũε (x iε,ε ) bounded, then for all sequences j ε such that d(x jε ,ε , x 1,ε ) = O(d ε ), ũε (x jε ,ε ) is bounded.Indeed, if there exists a sequence j ε such that d(x jε ,ε , x 1,ε ) = O(d ε ) and ũε (x jε ,ε ) → +∞ as ε → 0, thanks to Claim 2.1, we can apply Proposition 1.1 with x ε = xjε,ε and ρ ε = dε 3 . We obtain that up to a subsequence ũε → 0 in C 1

	where x = lim	loc (B(x, 2 3 )) \ {x},

ε→0 xjε,ε . But (ũ ε ) is uniformly bounded in B(ỹ,

1 2 

  the second case, (4.2) is clearly true while in the first, using the definition of x p , we have that|x p -x|u 2 (x) ≤ |x p -x|u 2 (x p ) < 1 ,which proves that (4.2) also holds. As already sais, this proves the lemma.4.2.Green function of ∆ + h. We prove here some basic estimates on Green's functions of operators ∆ + h where h is of low regularity.Lemma 4.2. Let Ω be a smooth bounded domain of R 3 . Let h ∈ L p (Ω) for some p > 3. Then there exists δ > 0 such that if

	h -3 2 < δ ,	(4.3)

then the operator ∆ + h admits a positive Green function G h which verifies the following estimates :

|x -y|G h (x, y) -1 ω 2 ≤ C|x -y| and |x -y| 2 |∇G h (x, y)| -1 ω 2 ≤ C|x -y|

for all x = y ∈ Ω, where C is a positive constant depending only on Ω, h p and δ.

  < x, ∇u > and integrating by parts, one easily gets that1 2 Ω hu 2 + h < x, ∇u 2 > dx = B 1 + B 2 ,Integrating by parts again, we get the Pohožaev identity in its usual form :In a similar way, multiplying the equation by ∇u and integrating by parts, one can derive the following Pohožaev's identity :

											(4.4)
	where									
	B 1 =	∂Ω	< x, ∇u > ∂ ν u +	1 2	u∂ ν u-< x, ν >	|∇u| 2 2	dσ and
	B 2 =	∂Ω	< x, ν >	u 6 6	dσ .	
	Hence, if u = 0 on ∂Ω, we get that		
	1 2 Ω	h u 2 + < x, ∇u 2 > dx =	∂Ω	< x, ν > (∂ ν u) 2 dσ .	(4.5)
	Ω	h +	< x, ∇h > 2	u 2 dx = -	∂Ω	< x, ν > (∂ ν u) 2 dσ .	(4.6)
		∂Ω		|∇u| 2 2	ν -∂ ν u∇u +	u 6 6	ν dσ =	Ω	h	∇u 2 2	dx .	(4.7)

The symmetry is precisely the following : if we see uε as a function of x 1 , x 2 , ε and λ, namely uε (x 1 , x 2 , ε, λ), one has that uε x 2 , x 1 , λε, λ -1 = uε (x 1 , x 2 , ε, λ).

4.4. Pohožaev's identity for Green functions. In this section, we prove a useful Pohožaev identity for a sum of Green's functions. First of all, we easily derive the following Lemma from standard elliptic theory : Lemma 4.3. Let Ω be a smooth bounded domain in R 3 . Let y ∈ Ω and let g be a weak solution in H 1 (Ω) of

Then g is continuous and can be written as

where γ y ∈ C 1 (Ω) satisfies γ y (y) = 0.

Applying the previous decomposition lemma to Green's functions, we get the following Pohožaev identity on the regular parts of them. Lemma 4.4. Let Ω be a smooth bounded domain in R 3 , star-shaped with respect to 0 and let h ∈ C 1 (Ω) which satisfies (0.

2). Let G h be the Green function of

Then, using lemma 4.3, we write G in a neighbourhood of x i as

where m i ∈ R and γ i ∈ C 1 (Ω) satisfies γ i (0) = 0. Then we have that

Proof of lemma 4.4. We let δ > 0 be such that the B(x i , δ) are disjoint and do not intersect the boundary of Ω and we set

Multiplying the equation satisfied by G by < x, ∇G > after some integrations by parts, we obtain that

where ν denotes the outer normal to ∂Ω and to ∂B (x i , δ) respectively. Noting that G = 0 on ∂Ω, we have that

since Ω is star-shaped. Since h satisfies (0.2), we arrive to

In order to estimate the remaining terms, we write that ∂B(xi,δ)

Then, thanks to the expansion of G in a neighbourhood of x i , one can easily check that ∂B(xi,δ)

as δ → 0. Combining the above results gives the desired inequality.