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Introduction

Hat puzzles were formulated at least since Martin Gardner's 1961 article [START_REF] Gardner | The 2nd Scientific American Book of Mathematical Puzzles & Diversions[END_REF]. They have got an impulse by Todd Ebert in his Ph.D. thesis in 1998 [START_REF] Ebert | Applications of recursive operators to randomness and complexity[END_REF]. Buhler [START_REF] Buhler | Hat tricks[END_REF] stated: "It is remarkable that a purely recreational problem comes so close to the research frontier". Also articles in The New York Times [START_REF] Robinson | Why mathematicians now care about their hat color, The New York Times[END_REF], Die Zeit [START_REF] Blum | Denksport für Hutträger[END_REF] and abcNews [START_REF] Poulos | Could you solve this 1 million hat trick?[END_REF] about this subject got broad attention. This paper studies generalized Ebert's hat problem (symmetric and asymmetric): five distinguishable players are randomly fitted with a colored hat (two colors available), where the probabilities of getting a specific color may be different, but known to all the players. All players guess simultaneously the color of their own hat observing only the hat colors of the other four players. It is also allowed for each player to pass: no color is guessed. The team wins if at least one player guesses his or her hat color correctly and none of the players has an incorrect guess. Our goal is to maximize the probability of winning the game and to describe winning strategies. The symmetric two color hat problem (equal probabilities for each color) with N = 2 k -1 players is solved in [START_REF] Ebert | On the autoreducibility of random sequences[END_REF], using Hamming codes, and with N = 2 k players in [START_REF] Cohen | Covering Codes[END_REF] using extended Hamming codes. Burke et al. [START_REF] Burke | A puzzle to challenge genetic programming[END_REF] try to solve the symmetric hat problem with N = 3, 4, 5, 7 players using genetic programming. Their conclusion: The N -prisoners puzzle (alternative names: Hat Problem, Hat Game) gives evolutionary computation and genetic programming a new challenge to overcome. Lenstra and Seroussi [START_REF] Lenstra | On hats and other covers[END_REF] show that in the symmetric case of two hat colors, and for any value of N , playing strategies are equivalent to binary covering codes of radius one. Combining the result of Lenstra and Seroussi with Tables for Bounds on Covering Codes [START_REF] Kéri | Tables for bounds on covering codes[END_REF], we get: N 2 3 4 5 6 7 8 9 K(N, 1) 2 2 4 7 12 16 32 62 K(N, 1) is smallest size of a binary covering code of radius 1. Maximum probability for Ebert's symmetric Hat Game is 1 -K(N,1)

2 N . Lower bound on K(9, 1) was found in 2001 by Östergård-Blass, the upper bound in 2005 by Östergård. Krzywkowski [START_REF] Krzywkowski | On the hat problem, its variations, and applications[END_REF] describes applications of the hat problem and its variations, and their connections to different areas of science. Krzywkowski [START_REF] Krzywkowski | A more colorful hat problem[END_REF], section 3, gives an optimal solution of the symmetric three person three color hat problem. Johnson [START_REF] Johnson | [END_REF] ends his presentation with an open problem: If the hat colors are not equally likely, how will the optimal strategy be affected? We will answer this question for five persons and two colors and our method gives also interesting results in the symmetric case. In section 2 we define an adequate set. In section 3 we obtain results for the asymmetric five player, two color Hat Game. In section 4 we do the same for the symmetric Hat Game. In all situations all players know the underlying probabilities of each player.

Adequate sets

In this section we have N players and q colors. The N persons in our game are distinguishable, so we can label them from 1 to N . We label the q colors 0, 1, .., q -1. The probabilities of the colors are fixed and known to all players. The probability that color i will be on a hat is p i (i ∈ {0, 1, .., q -1}, q-1 i=0 p i = 1). Each possible configuration of the hats can be represented by an element of

B = {b 1 b 2 . . . b N |b i ∈ {0, 1, . . . , q -1} , i = 1, 2.., N }. The Scode represents what the N different players sees. Player i sees q-ary code b 1 ..b i-1 b i+1 ..b N with decimal value s i = i-1 k=1 b k .q N -k-1 + N k=i+1 b k .q N -
k , a value between 0 and q N -1 -1. Let S be the set of all Scodes: S = {s 1 s 2 . . . s

N |s i = i-1 k=1 b k .q N -k-1 + N k=i+1 b k .q N -k , b i ∈ {0, 1, . . . , q -1}, i = 1, 2, . . . , N }.
Each player has to make a choice out of q + 1 possibilities: 0='guess color 0', 1='guess color 1', . . . ., q -1 ='guess color q -1', q='pass'. We define a decision matrix D = (a i,j ) where i ∈ {1, 2, .., N }(players); j ∈ {0, 1, .., q N -1 -1}(Scode of a player); a i,j ∈ {0, 1, .., q} . The meaning of a i,j is: player i sees Scode j and takes decision a i,j (guess a color or pass). We observe the total probability (sum) of our guesses. For each b 1 b 2 . . . b N in B with n i times color i (i = 0, 1, . . . , q -1, q-1 i=0 n i = N ) we have:

CASE b 1 b 2 . . . b N (Scode player i: s i = i-1 k=1 b k .q N -k-1 + N k=i+1 b k .q N -k ) IF a 1,s 1 ∈ {q, b 1 } AND a 2,s 2 ∈ {q, b 2 } AND ... AND a N,s N ∈ {q, b N } AND NOT (a 1,s 1 = a 2,s 2 = • • • = a N,s N = q) THEN sum=sum+p n 0 0 .p n 1 1 . . . p n q-1 q-1 .
Any choice of the a i,j in the decision matrix determines which CASES b 1 b 2 . . . b N have a positive contribution to sum (we call it a GOOD CASE) and which CASES don't contribute positive to sum (we call it a BAD CASE). Any GOOD CASE has at least one a i,j not equal to q. Let this specific a i,j have value b i 0 . Then our GOOD CASE generates q -1 BAD CASES by only changing the value b i 0 in any value of 0, 1, .., q -1 except b i 0 . Let A be the set of all BAD CASES (given a decision matrix D), then B -A is the set of all GOOD CASES such that for each element x in B -A there are (q -1) elements in A which are equal to x up to one fixed position. We call A an adequate set in relation to B -A and the decision matrix D. The definition of adequate set is the same idea as the concept of strong covering, introduced by Lenstra and Seroussi [START_REF] Lenstra | On hats and other covers[END_REF]. The number of elements in an adequate set will be written as das (dimension of adequate set). Adequate sets are generated by an adequate set generator (ASG) We have implemented an ASG in VBA/Excel (see Appendix A). Given an adequate set, we obtain a decision matrix D = (a i,j ) by the following procedure. Procedure DMG (Decision Matrix Generator): Begin Procedure For each element in the adequate set:

• Determine the q-ary representation b 1 b 2 . . . b N • Calculate Scodes s i = i-1 k=1 b k .q N -k-1 + N k=i+1 b k .q N -k ( i=1,.
.,N) • For each player i: fill decision matrix with a i,s i = b i (i=1,..,N), where each cell may contain several values.

Matrix D is filled with BAD COLORS. We can extract the GOOD COL-ORS by considering all a i,j with q -1 BAD COLORS and then choose the only missing color. In all situations with less than q -1 BAD COLORS we pass. When there is an a i,j with q BAD COLORS all colors are bad, so the first option is to pass. But when we choose any color, we get a situation with q -1 colors. So in case of q BAD COLORS we are free to choose any color or pass. The code for pass is q, but in our decision matrices we prefer a blank, which supports readability. The code for 'any color or pass will do' is defined q + 1, but in our decision matrices we prefer a . End Procedure.

Decision matrices are generated by an Decision Matrix Generator (DMG).We have implemented a DMG in VBA/Excel (see Appendix B).

Asymmetric five person Hat Game

Theorem 1. In asymmetric five person (two color) hat game we have maximal probability Ψ (5, p) of winning the game:

(1)

Ψ (5, p) =        1 -p + 2p 2 -2p 3 + p 5 (0 ≤ p ≤ √ 2 -1) 5p -10p 2 + 6p 3 + p 4 -p 5 ( √ 2 -1 ≤ p ≤ 0.5) 1 -2p + 4p 2 -4p 4 + p 5 (0.5 ≤ p ≤ 2 - √ 2) 1 -2p + 6p 2 -8p 3 + 5p 4 -p 5 (2 - √ 2 ≤ p ≤ 1)
with optimal decision matrices: CASE 0.5 < p ≤ 2 -√ 2:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 * 1 1 0 0 0 * 1 CASE 2 - √ 2 ≤ p < 1:
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1 * 0 0 0 1 1 * 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0
( means: any color or pass; stars are independent)

Proof. We run the application ASG with parameters N =5, p=0.55 and das=7. This yields 320 adequate sets. When we sort these sets by probability, we get 12 different classes (see Appendix C where we show the first element of each class). The adequate set and the number of zero's in each element in an adequate set are independent of p. We note the following structure in Appendix C: 012345 probability 024001 2pq 4 + 4p 2 q 3 + p 5 022210 2pq 4 + 2p 2 q 3 + 2p 3 q 2 + p 4 q 111310 q 5 + pq 4 + p 2 q 3 + 3p 3 q 2 + p 4 q 013210 pq 4 + 3p 2 q 3 + 2p 3 q 2 + p 4 q 102310 q 5 + 2p 2 q 3 + 3p 3 q 2 + p 4 q 012310 pq 4 + 2p 2 q 3 + 3p 3 q 2 + p 4 q 120130 q 5 + 2pq 4 + p 3 q 2 + 3p 4 q 013201 pq 4 + 3p 2 q 3 + 2p 3 q 2 + p 5 012220 pq 4 + 2p 2 q 3 + 2p 3 q 2 + 2p 4 q 031021 3pq 4 + p 2 q 3 + 2p 4 q + p 5 013111 pq 4 + 3p 2 q 3 + p 3 q 2 + p 4 q + p 5 100420 q 5 + 4p 3 q 2 + 2p 4 q

Figure 1 shows the dominance relations between this 12 different classes. 2)+b( 3)+b( 4)+b(5) ≥ a(0)+a( 1)+a( 2)+a( 3)+a( 4)+a( 5)

The last inequality may be omitted (we have das ≥ das). The dominance relation is transitive. The arrows A,B,C and D needs some attention. We use as symbol for dominance. A: 022210 111310 If p > q > 0 then -q 5 + pq 4 + p 2 q 3 -p 3 q 2 = -q 5 + pq 4 + p 2 q 3 -p 3 q 2 = -q 2 (p -q) 2 < 0 B and C: 102310 120310 and 013201 031021 if p>q >0 then -2pq 4 + 2p 2 q 3 + 2p 3 q 2 -2 p 4 q = -2pq(p -q) 3 < 0 D: If 2 -√ 2 < p < 1 then 022210 024001 and if 0.

5 < p < 2 - √ 2 then 024001 022210 -2p 2 q 3 + 2p 3 q 2 + p 4 q -p 5 = p 2 2p 3 -9p 2 + 8p -2 = p 2 (2p -1) p 2 -4p + 2 = p 2 (2p -1) (p -2 - √ 2)(p -2 + √
2) Let Ψ (N, p) be the maximum probability of correct guessing. If 2 -√ 2 < p < 1 then 022210 024001 and

Ψ (5, p) = 1 -2pq 4 + 2p 2 q 3 + 2p 3 q 2 + p 4 q = 1 -2p + 6p 2 -8p 3 + 5p 4 -p 5
If 0.5 < p < 2 -√ 2 then 024001 022210 and

Ψ (5, p) = 1 -2pq 4 + 4p 2 q 3 + p 5 = 1 -2p + 4p 2 -4p 4 + p 5
By changing the roles of p and q we get: (1) Graph of Ψ (5, p): We remark: minimum is at ( 1 2 , 25 32 ) and Ψ (5, p)

is not differentiable at 1 2 , √ 2 -1 and 2 - √ 2.
When N =5 we have 320 adequate sets. Using the program ASG p=0.55 das=7 we get after sorting on sum: when 0.5 < p < 2 -√ 2 we have 10 optimal adequate sets. Using the program ASG p=0.9 das=7 we get after sorting on sum: when 2 -√ 2 < p < 1 we have 30 optimal adequate sets. When p = 2 -√ 2 : 40 optimal adequate sets (the union of the two foregoing adequate sets). Using procedure DMG , we give the first element in each case: CASE 0.5 < p < 2 -√ 2 : adequate set {0,7,11,19,28,29,30}; Use: DMG p=0.55 to obtain the decision matrices. Note: players 1,2,3 have same strategy; players 4 and 5 also. CASE 2 -√ 2 < p < 1 : adequate set {1,6,14,22,24,27,29};

Use DMG to obtain the decision matrices. Note: players 1,2 have same strategy, players 3,4 also; player 5 has her own strategy. CASE p = 2 -√ 2: we get the union of 10 optimal sets in case of 0.5 < p < 2 -√ 2 and 30 optimal sets in case of 2 -√ 2 < p < 1 .

We call two solutions isomorphic when we can transform one solution to the other by renumbering the players. Observing all 40 decision matrices and making use of the positions (players) of the stars in these matrices, we get the result in Appendix D, where the column STARS gives the positions of the two stars and the column CYCLES gives the renumbering to obtain the same solution. This can be verified by writing each adequate set in the binary representation and then applying the cycles. Appendix D shows that there are only two non-isomorphic solutions (these two solutions can't be isomorphic for isomorphic sets have always the same probability).

The last point here is to convince ourselves that any adequate set with das>7 doesn't yield better solutions. The last inequality may be omitted (we have b ≥ a -(a -b).) These dominance relations are implemented as procedure dom() in ASG.

Run the program ASG with das=8,9,. . . 32. where we have 5 calls to dom() (see figure 1; we omitted the S patterns, for they are detected by the procedure). No (dominant) adequate sets are found. Conclusion: das = 7 is optimal and {(022210), (024001)} dominates all adequate sets.

3.1. Computational complexity. We consider the number of strategies to be examined to solve the hat problem with N players and two colors. Each of the N players has 2 N -1 possible situations to observe and in each situation there are three possible guesses: white, black or pass. So we have (3 2 N -1 ) N possible strategies. Krzywkowski [START_REF] Lenstra | On hats and other covers[END_REF] shows that is suffices to examine (3 2 N -1 -2 ) N strategies. The adequate set method has to deal where {i 1 , i 2 , .., i das } with 0 ≤ i 1 < i 2 < .. < i das ≤ 2 N -1.

The number of strategies for fixed das is the number of subsets of dimension das of {0,1,. . . , 2 N -1}:

2 N das . But we have to test all possible values of das. So the correct expression is:

das 2 N das = 2 (2 N ) .
To get an idea of the power of the adequate set method, we compare the number of strategies (brute force, Krzywkowski and adequate set method):

N das (3 2 N -1 ) N (3 2 N -1 -2 ) N 2 (2 N ) 5 7 1.50E+38 2.50E+33 4.29E+09 4 

. Symmetric two color five person Hat Game

In this section with five persons the two colors have the same probability: p = q = 1 2 . Theorem 2. The maximal probability for symmetric five person two color Hat Game is 25 32 . All 12 non-isomorphic optimal decision matrices are given in Appendices E and F.

Proof. Running ASG with any value of p gives 320 adequate sets. When p = 0.5 all these sets are optimal (with probability 25 32 ). We split the 320 sets in 12 probability classes (see section 3). In Appendices E and F we give the first element of each class, the decision matrix and the number of isomorphic elements in each class, where isomorphic sets can be detected in the same way (STARS, CYCLES) as in section 3. All 320 decision matrices are generated by procedure DMG . 

Figure 1 .

 1 Figure 1. Dominance relations

  Let b = das(b()), a = das(a()). When e = a -b ≥ 0 then we delete the 'cheapest' a -b elements from a(), which gives a 'cheaper' situation. We get: b(0)≥ a(0)-e b(0)+b(1) ≥ a(0)+a(1)-e ... ... b(0)+b(1)+b(2)+b(3)+b(4)+b(5) ≥ a(0)+a(1)+a(2)+a(3)+a(4)+a(5)-e

  The 12 probability classes generates 12 non-isomorphic decision matrices.

		Appendix D. Q=2, N=5, two isomorphic sets		
	No.	adequate sets						STARS		CYCLES
	1	0	7	11	19	28	29	30	45	(1)
	2	0	7	13	21	26	27	30	35	(34)
	3	0	7	14	22	25	27	29	34	(35)
	4	0	7	15	23	25	26	28	12 (14)(25)
	5	0	11	13	22	23	25	30	25	(24)
	6	0	11	14	21	23	26	29	24	(25)
	7	0	11	15	21	22	27	28	13 (14)(35)
	8	0	13	14	19	23	27	28	23 (24)(35)
	9	0	13	15	19	22	26	29	14	(15)
	10	0	14	15	19	21	25	30	25	(24)
	1	1	6	14	22	24	27	29	12	(1)
	2	1	6	15	23	24	26	28	34 (13)(24)
	3	1	10	14	20	23	26	29	13	(23)
	4	1	10	15	20	22	27	28	24	(14)
	5	1	12	14	18	23	27	28	14	(24)
	6	1	12	15	18	22	26	29	23	(13)
	7	2	5	13	21	24	27	30	12	(45)
	8	2	5	15	23	24	25	28	35 (13)(25)
	9	2	9	13	20	23	25	30	13	(23)
	10	2	9	15	20	21	27	28	25	(15)
	11	2	12	13	17	23	27	28	15	(25)
	12	2	12	15	17	21	25	30	23	(13)
	13	3	4	11	19	24	29	30	12	(35)
	14	3	4	15	23	24	25	26	45 (14)(25)
	15	3	7	8	19	20	29	30	13	(23)
	16	3	7	11	12	16	29	30	23	(13)
	17	3	8	15	20	21	22	27	45 (14)(25)
	18	3	12	13	14	16	23	27	45 (14)(25)
	19	4	9	11	18	23	25	30	14	(24)
	20	4	9	15	18	19	26	29	25	(15)
	21	4	10	11	17	23	26	29	15	(25)
	22	4	10	15	17	19	25	30	24	(14)
	23	5	7	8	18	21	27	30	14	(24)
	24	5	7	10	13	16	27	30	24	(14)
	25	5	8	15	18	19	22	29	35 (13)(25)
	26	5	10	11	14	16	23	29	35 (13)(25)
	27	6	7	8	17	22	27	29	15	(25)
	28	6	7	9	14	16	27	29	25	(15)
	29	6	8	15	17	19	21	30	34 (13)(24)
	30	6	9	11	13	16	23	30	34 (13)(24)