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Centre Borelli – École Normale Supérieure Paris-Saclay – Université Paris-Saclay

Abstract

We propose a new method to evaluate image forensics
tools, that characterizes what image cues are being used
by each detector. Our method enables effortless creation of
an arbitrarily large dataset of carefully tampered images
in which controlled detection cues are present. Starting
with raw images, we alter aspects of the image formation
pipeline inside a mask, while leaving the rest of the image
intact. This does not change the image’s interpretation; we
thus call such alterations “non-semantic”, as they yield no
semantic inconsistencies. This method avoids the painful
and often biased creation of convincing semantics. All as-
pects of image formation (noise, CFA, compression pattern
and quality, etc.) can vary independently in both the au-
thentic and tampered parts of the image. Alteration of a
specific cue enables precise evaluation of the many forgery
detectors that rely on this cue, and of the sensitivity of more
generic forensic tools to each specific trace of forgery, and
can be used to guide the combination of different methods.
Based on this methodology, we create a database and con-
duct an evaluation of the main state-of-the-art image foren-
sics tools, where we characterize the performance of each
method with respect to each detection cue. Check
qbammey.github.io/trace for the database and code.

1. Introduction

Digital images play an extensive role in our lives and
forgeries are present everywhere [18]. Creating visually
realistic image alterations is easy. Yet each modification
of the image imprints traces onto it, that are cues of the
tampering. Some forgery detection tools aims at detecting
a specific trace in a suspicious image by finding local in-
consistencies, while other methods, usually learning-based,
are more generic. Semantic analysis of an image can pro-
vide hints, but the rigorous proof of a forgery should not be
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(a) Raw image (b) Forgery mask: M

(c) Pipeline 0: P0 (d) Pipeline 1: P1

(e) Forgery: F =M̄P0 +MP1 (f) Residual |F − P0|

(g) Noiseprint [14] result (h) ManTraNet [45] result

Figure 1: Different image formation pipelines are applied to
the same RAW image to obtain two images, that are com-
bined to obtain a forged image. The authentic and forged
regions present different camera pipeline traces, but are oth-
erwise perfectly coherent. The last row shows the result of
two forensic tools on this image.

solely semantic. The situation is akin to the dilemma aris-
ing from the observations of Galileo, which contradicted the
knowledge of his time. In the words of Bertolt Brecht [7]:

GALILEO: How would it be if your Highness were now
to observe these impossible as well as unnecessary stars
through this telescope?
THE MATHEMATICIAN: One might be tempted to re-
ply that your telescope, showing something which can-
not exist, may not be a very reliable telescope, eh?
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The telescope could have been unreliable, indeed, and a sci-
entific inquiry on the instrument could have been justified.
However, concluding, as the Mathematician does, that the
telescope was unreliable just based on the contents of the
observations is not prudent. Similarly, the proof of a forgery
must be based on image traces, not on semantic arguments,
because the semantics of an image are usually the purpose
and not the means of a forgery.

Image forensics algorithms are mainly evaluated by their
performance in benchmark challenges. This practice has
several limitations: in many cases, the same database is split
into training and evaluation data. As a consequence, algo-
rithms are trained and evaluated on images that have gone
through similar image processing pipelines, forgery algo-
rithms and anti-forensic tools. Hence, there is no guaran-
tee that such learning-based methods will work in the wild,
where those parameters vary much more. Regardless of the
variety of the training set, the question arises of whether the
forgeries are being detected by trained detectors for seman-
tic reasons, or because of local inconsistencies in the image.

With these considerations in mind, we propose a
methodology and a database to evaluate image forensic
tools on images where authentic and forged regions only
differ in the traces left behind by the image processing
pipeline. Using this methodology, we create the Trace
database by adding various forgery traces to raw images
from the Raise [15] dataset, as shown in Fig. 1. This pro-
cedure avoids the difficulties of producing convincing and
unbiased semantic forgeries, which often requires manual
work. We create several datasets, each of which corre-
sponding to a specific pipeline inconsistency, such as a dif-
ferent noise level or compression pattern. This gives us in-
sight into the sensitivity of forensic tools to specific traces,
and thus highlights the complementarity of different meth-
ods.

Our contribution is twofold: 1. we create a database of
“fake” images with controlled inconsistencies in their for-
mation pipeline, 2. using this database, we conduct an eval-
uation of existing forensic tools.

2. Related Works
There is a large literature on image forensics, starting

from the seminal work of Farid [18]. Some methods fo-
cus on the detection of a specific tampering attack such
as copy-move or splicing, but the most classic forgery de-
tection methods aim at detecting local perturbations of the
traces left in the image by the processing chain. Such local
disruptions hint at a local forgery. To do so, these methods
strive to suppress image content and highlight intrinsic arte-
facts left by demosaicking, JPEG encoding, etc. [39]. These
forgery detection methods can therefore be grouped by their
specifically-targeted traces, which we now briefly review.

Noise-level-based methods analyse the noise model of

images (see Section 3) to find regions with a different
amount of noise, that could result from tampering. Mah-
dian and Saic [34] perform local wavelet-based noise level
estimation using a median absolute deviation estimator.
Lyu et al. [33] relies on the kurtosis concentration phe-
nomenon. More recently, Noisesniffer [21] defines a back-
ground stochastic model enabling the detection of local and
statistically-significant noise anomalies. These methods can
potentially detect a relatively wide variety of forgeries, as
each can alter the noise level.

Detecting the specific image demosaicing algorithm
(see Section 3) has not been attempted since the 2005 pi-
oneer paper by Popescu and Farid [40], conceived at a time
where those algorithms were simpler and easier to distin-
guish, although some generic noise-pattern analysis method
can distinguish different algorithms given large enough re-
gions [14]. However, detecting the mosaic pattern has re-
ceived more extensive coverage. Choi et al. [11] used the
fact that sampled pixels were more likely to take extremal
values, while Shin et al. [41] noticed that they had a higher
variance. Bammey et al. [4] combined the translation invari-
ance of convolutional neural networks with the periodicity
of the mosaic pattern to train a self-supervised network into
implicitly detecting demosaicing artefacts. Because demo-
saicing artefacts lie in the high frequencies, they are lost
under a strong JPEG compression or when the image has
been downsampled. As such, they are usually best used on
high-quality images.

JPEG compression leaves blocking effects and quanti-
zation of the DCT coefficient of each block. JPEG forensic
tools can thus be divided into two categories. BAG [29] and
CAGI [25] analyse blocking artefacts, while other methods
analyse the DCT coefficients. More precisely, CDA [31]
and I-CDA [6] are based on the AC coefficient distributions,
while FDF-A [3] is based on the first digit distribution of
AC coefficients. Zero [38] counts the number of null DCT
coefficients in all blocks and deduces the grid origin. These
methods can only work when the forgery was done after a
first JPEG compression. And when this is the case, they
usually yield very good results.

In the past few years, multi-purpose tools were pro-
posed to detect inconsistencies from multiple traces simul-
taneously. Splicebuster [13] uses the co-occurences of noise
residuals as local features revealing tampered image re-
gions. Noiseprint [14] extends on Splicebuster and uses a
Siamese network trained on authentic images to extract the
noise residual of an image, which is then analysed for in-
consistencies. ManTraNet [45] is a bipartite end-to-end net-
work, trained to detect image-level manipulations with one
part, while the second part is trained on synthetic forgery
datasets to detect and localise forgeries in the image. Fi-
nally, Self-consistency [24] analysis also uses a Siamese
network with the goal of detecting whether two patches
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have been processed with the same pipeline. They make
use of N-Cuts segmentation [26] to automatically cluster
and detect relevant traces of forgeries. With these methods,
exhaustiveness is theoretically possible. However, results
are not self-explanatory and those method’s decisions are
harder to justify. Furthermore, learning-based methods can
be limited by the training data, and may fail to generalize
well in uncontrolled scenarios.

There is also considerable literature proposing datasets
for the evaluation of forensic tools. An early example is
the Columbia Dataset [37], which only contains spliced
128 × 128 grayscale blocks for which no masks are pro-
vided. New benchmarks were proposed in 2009 with CA-
SIA V1.0 and V2.0 [17]. These datasets included splicing
and copy-move attacks, with a total of 8000 pristine im-
ages and 6000 tampered images. Post-processing was in-
troduced as a counter-forensics technique. MICC F220 and
F2000 datasets [2] as well as the IMD dataset [12] pro-
vide further benchmarks for copy-move detection. These
datasets were constructed in an automatic way. While the
first two randomly select the region of the image to be
copy-pasted, IMD dataset performed snippets extraction.
Other datasets adressing copy-move forgeries with post-
processing counter attacks are also available [42, 44].

Image forgery-detection challenges are another source of
benchmark datasets. The National Institute of Standards
and Technology (NIST) organizes, since 2017, an annual
challenge for which different datasets are released [22]. It
includes automatically and manually generated forgeries of
considerable variety, and can thus be useful to evaluate im-
age forgery detection in uncontrolled scenarios.

Some datasets aim at performing forgeries imperceptible
to the naked eye. A good example is the Korus dataset [27,
28] which contains 220 pristine images and 220 handmade
tampered images targeting object removal or insertion.

The recent DEFACTO dataset [35] is constructed on the
MSCOCO dataset [30] and includes a wide range of forg-
eries such as copy-move, splicing, inpainting and morphing.
Semantically meaningful forgeries are generated automati-
cally but with several biases such as copy-pasting objects
in the same axis or only performing splicing with simple
objects.

Most recent forgery-detection datasets start from pristine
images and perform several sorts of forgeries on them [48].
Since the creation of early datasets [17, 23, 37], the num-
ber of tampering techniques has increased to include new
ones such as colorization [8], inpainting [8, 35] and mor-
phing [35, 49]. Post-processing and counter-forensic tech-
niques have been increasingly used to produce visually im-
perceptible forgeries; but such approaches may also intro-
duce detectable traces.

Efforts have also been made to automatically obtain large
datasets. Yet, the resulting forged images are either seman-
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Figure 2: Evolution of the noise curves when passing
through the successive steps of a (simplified) image pro-
cessing pipeline.

tically incorrect [2, 12] or biased [35]. Both scenarios pose
problems for training neural networks, which risk overfit-
ting on the forgeries’ methods and semantic content.

The variety of forgery methods makes the evaluation of
forensic tools difficult to interpret, as the performance de-
pends on the suitability of the detection tool for the specific
forgery method. In quantitative experiments, using multiple
datasets, and especially datasets with varied forgeries, helps
assess the quality of a forensic tool. However, those results
also become harder to interpret. On the other hand, while
results using the proposed database will not be reflective of
uncontrolled scenarios, they help precisely identify which
traces a forensic tool can and cannot detect.

3. Image formation pipeline
Figure 2 summarises the image processing pipeline [16]

and shows how the noise curves change at its different steps.

Raw image acquisition The value at each pixel can be
modelled as a Poisson random variable [20]. Noise vari-

3753



ance at this step thus follows an affine relation σ2 = A+Bu
where u is the intensity of the ideal noiseless image and A
and B are constants (see Fig. 2). Furthermore, given the na-
ture of the noise sources at this step, noise can be accurately
modelled as uncorrelated, meaning that noise at one pixel is
not related with the noise at any other pixel.

Demosaicing Most digital cameras are equipped with a
single sensor array. In order to obtain a colour image, a
colour filter array (CFA) is placed in front of the sensor
to split incident light components according to their wave-
length. The raw image obtained from the sensor therefore
is a mosaic containing a single colour component per pixel:
red, green, or blue. Demosaicing methods interpolate the
missing colours at each pixel to reconstruct a full colour
image. After demosaicing (Fig. 2), each channel has a dif-
ferent noise curve, and noise becomes spatially correlated.

Colour Correction In order to obtain a faithful represen-
tation of the colours as perceived by the observer, white
balance adjusts colour intensities in such a way that achro-
matic objects from the real scene are rendered as such [32].
This is done by scaling each channel separately, thus also
scaling differently the noise level of each channel. Given
that the relationship between stimulus and human percep-
tion is logarithmic [19], cameras then apply a power law
function to the intensity of each channel. After this step,
known as gamma correction, the noise level is no longer
monotonously increasing with the intensity.

JPEG compression The JPEG image standard is the most
popular lossy compression scheme for photographic im-
ages [43]. The image goes through a colour space transfor-
mation and each channel is partitioned into non-overlapping
8 × 8-pixel blocks. The type-II discrete cosine transform
(DCT) is applied to each of these blocks. The resulting co-
efficients are quantized according to a table and the coeffi-
cients are then compressed without additionnal loss. Due to
the cancellation of high-frequency coefficients, the noise is
reduced after compression.

4. The Proposed Methodology
We created a database of “forged” images which leaves

the semantics of the images intact. The overall idea of our
method is to take a raw image, process it with two differ-
ent pipelines, and merge the two processed images as fol-
lows: the first image is used for the authentic region and the
second image for the “forged” area determined by a mask,
as can be seen in Fig. 1. As a base we use the RAISE-1k
dataset [15], which contains one thousand pristine raw im-
ages of varied categories, taken from three different cam-
eras. We note that the variety of source cameras is not
important to our database, as we erase the previous cam-
era traces by downsampling the image, then resimulate the
whole image processing pipeline ourselves, as explained

Figure 3: Details of the same image with forgeries made us-
ing the two masks. On the left, the endomask coincides with
the image’s structure, here a tree. The forgery is less con-
spicuous than on the right where the exomask is in the sky,
where the borders do not coincide with the images’ content.

below. Furthermore, our open source generation code can
be applied on any other source of images, to automatically
generate arbitrarily large quantities of “forged” images.

Methodology for the creation of the database A raw
image already contains noise, furthermore its pixels are all
sampled in the same CFA pattern. In order to reduce the
noise and eliminate the CFA pattern, we start by downsam-
pling each image by a factor 2. This enables us to choose
the amount of noise to be added, and to mosaic the image
in any of the four possible patterns. Once the image has
been downsampled, we process the image with two differ-
ent pipelines. The two images are then merged as explained
above.

Forgery masks For each image we construct two differ-
ent kinds of masks, which we shall call endomasks and
exomasks. Since inconsistencies in the image processing
pipeline are usually most visible at the border of the forgery,
endomasks are obtained as regions of a segmentation of the
image. To do this, we segment the original images with
EncNet [47]. For each image, we take a pixel at random,
and select the image region it belongs to. We accept the
mask if its size is less than half the image’s, otherwise we
pick another pixel until we find a suitable mask. This en-
sures that each image has only one forgery, whose size is at
most half the image’s. Using such endogenous masks or en-
domasks corresponding to a region of the segmented image
ensures almost invisible forgeries. Indeed their borders are
natural image borders, as shown in Fig. 3.

The exomasks are instead unrelated to the image’s con-
tent. To determine them, we start by pairing the images of
the dataset according to their endomasks’ sizes. Then, the
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Endomask Image Exomask

Figure 4: For each image, we use an endomask (left) taken
from the image’s segmentation, and an exomask (right)
taken from another image and thus decorrelated from the
image’s contents. The last two images were paired during
mask creation, thus the endomask of each becomes the ex-
omask of the other.

endomask of each image is used as the exogenous mask, or
exomask, of its paired image. Using a mask from another
image ensures that the mask is not linked to the image’s se-
mantic. The chosen pairing enables comparisons separately
on each image, as the size of the masks is similar. See Fig. 4
for examples of endo- and exomasks.

Multiple datasets One of our goals is to determine which
inconsistencies each forensic tool is sensitive to. Changes
in the image processing pipeline, done at different steps of
the chain, lead to different inconsistencies (see Section 3).
In consequence, we created five specific datasets, each of
which features a specific change in the image processing
pipeline. For each image, we started by randomly choosing
the three parameters that are used for this image across all
datasets:

• The mosaic pattern, chosen among the four possible
offsets of the camera’s Bayer pattern.

• The demosaicing algorithm, chosen randomly among
those available in the LibRaw library [1].

• The gamma-correction power.

The gamma correction is the same for both regions of the
image, and the mosaic pattern is the same except for the
CFA Grid, CFA Algorithm and Hybrid datasets. For each
image, both the endo- and exomasks, constructed as ex-
plained above, are the same across all datasets.

Raw Noise Level dataset In this dataset we add random
noise to each raw image before processing it. As pointed
out in Section 3, noise variance in raw images follows a lin-
ear relation given by σ2 = A + Bu, where A and B are
constants and u is the noiseless image. We start by ran-
domly selecting two different pairs of constants (A0, B0)
and (A1, B1), in a range that ensures the resulting images
look natural. Both images are then processed with the same
pipeline. This dataset mimics the inconsistencies in noise
models that could be found in spliced images.

CFA Grid dataset In this dataset we only change the mo-
saic pattern of the forged image inside the mask. Thus, the
original image and the forged one would be identical if not
for their mosaic grid origins. This kind of trace may ap-
pear (with probability 3

4 ) when the forgery was an internal
copy-move.

CFA Algorithm dataset In this dataset, the two pro-
cessing pipelines use different demosaicing algorithms.
The demosaicing pattern is chosen independently for each
pipeline. Thus there is a 1

4 chance that they are aligned. A
new mosaic pattern is also randomly chosen, thus having a
3
4 chance of being different from the one of the main image.
This dataset represents the change in the mosaic that would
occur from splicing, as two different images most likely do
not share the same demosaicing algorithms, and the align-
ment of their patterns after splicing is random.

JPEG Grid dataset In this dataset we only change the
compression grid origin. Similarly to the CFA Grid dataset,
if the forgery is an internal copy-move, the JPEG grid of
the forged region is different from the grid in the authentic
region, with probability 63

64 . The JPEG compression quality
used in both pipelines is then chosen randomly, keeping the
values in a range that is typical of most compressed images
and challenging enough for JPEG-based algorithms.

JPEG Quality dataset In this dataset, both the authentic
and forged regions are processed with the same pipeline, ex-
cept for the JPEG compression which is done in the two re-
gions with different quality factors, again chosen uniformly
between 75 and 100. Like with the CFA Algorithm dataset
or the JPEG grid data, a new JPEG grid pattern is also ran-
domly chosen, which has a 63

64 chance of being different
from the main region’s grid. This dataset simulates the ef-
fect of the splicing of an image onto another, both images
being compressed at different quality factors.

The hybrid dataset One could argue that although
generic learning-based forensics tools may not be able to
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point out a single inconsistency in an image, they might be
best suited to find multiple inconsistencies stacked together.
Clearly, a splicing may introduce joint inconsistencies in
noise level, JPEG encoding and demosaicing; while a direct
copy-move can introduce alterations in the JPEG and CFA
grids. To investigate such possibilities, in addition to the
five specific datasets described above, we created a sixth,
hybrid dataset. In this dataset, forgeries combine noise, de-
mosaicing and/or JPEG compression traces. At least two of
those traces are altered in each images.

See the supplementary materials for more details on the
parameters selection.

5. Experiments
5.1. Evaluated methods

We used the constructed database to conduct an eval-
uation of image forensics tools. We tested both classic
and SOTA forgery detection methods pertaining to differ-
ent traces: noise-level-based detection methods Noisesnif-
fer [21], Lyu [33, 46] and Mahdian [34, 46]; CFA-grid de-
tection methods Bammey [4], Shin [41] and Choi [5, 11];
JPEG-based methods Zero [38], CAGI [25, 46], FDF-A [3,
46], I-CDA [6, 46], CDA [31, 46] and BAG [29, 46], as
well as generic methods Splicebuster [13], Noiseprint [14],
ManTraNet [45] and Self-Consistency [24].

5.2. Evaluation Metrics

We evaluated the results of these methods using the
Matthews correlation coefficient (MCC) [36]. This met-
ric varies from -1 for a detection that is complementary to
the ground truth, to 1 for a perfect detection. A score of 0
represents an uninformative result and is the expected per-
formance of a random classifier. The MCC is more repre-
sentative than the F1 and IoU scores [9, 10], partly as it is
less dependant on the proportion of positives in the ground
truth, which is especially important given the large variety
of forgery mask sizes in the database.

The MCC was computed for each image, and then av-
eraged over each dataset. As most surveyed methods do
not provide a binary output but a continuous heatmap, we
weighted the confusion matrix using the heatmap. See the
supplementary materials for more details, as well as for the
score tables with the F1 and IoU metrics.

5.3. Results

The complete results are given in Table 1. Visualization
of the detection by several methods on one image across
all datasets can be seen in Figure 5. In the CFA and JPEG
datasets, state-of-the-art methods that focus on those spe-
cific traces, such as Bammey [4] for CFA and ZERO [38]
for JPEG, perform much better than generic tools. This
is partly expected, as those methods aim to detect exactly

this specific trace. This observation is more nuanced in the
Noise Level dataset where, depending on the type of mask
considered, Noisesniffer [21] and Self-Consistency [24]
achieve the best results. Indeed, exomasks cover a wider
range of intensities enabling a better comparison between
noise models, which is exploited by Noisesniffer. Also, half
of the forgeries present in this database are undetectable for
this method since it is only able to detect forgeries having
lower noise levels.

On the hybrid dataset, the scores of the specific meth-
ods are lower than on the specific datasets. For the JPEG-
based methods, this is explained by the fact that one sixth
of this dataset does not feature JPEG compression traces.
For the CFA and Lyu and Mahdian noise-based methods,
this is made worse by the fact that JPEG compression alters
the previous noise and demosaicing artefacts, as shown in
Fig. 2. In particular, CFA-based methods are notoriously
weak on JPEG images, since JPEG compression removes
the high frequencies, in which mosaic artefacts lie. This
can be seen in Fig. 5, where the CFA-based method Bam-
mey cannot make any prediction on the hybrid image, where
the main and forged region were compressed with quality
factors of 93 and 75, respectively.

While multi-purpose forensic methods can, to some ex-
tent, detect noise-level inconsistencies, in the demosaicing
algorithm and in the JPEG quality, they are blind to shifts in
both the JPEG and CFA grids. This is not entirely surpris-
ing; with the exception of Splicebuster, the tested generic
tools are based on mostly-convolutional neural networks,
which are invariant to translation. Although Noiseprint [14]
adapts its training scheme to be able to detect shifts in peri-
odic patterns, it cannot see the demosaicing and JPEG com-
pression grids, although it is sensitive to JPEG quality in-
consistencies and to some extent to demosaicing algorithm
changes as well.

Most methods perform similarly on the endomask and
exomask datasets. Two notable exceptions are Noisesniffer
which underperforms on endomasks, and Self-Consistency,
which works much better on endomasks. Both observations
are easily explained: the noise model is better estimated by
Noisesniffer on a flat region. The same explanation is valid
for Noiseprint, which also loses performance with endo-
masks. In contrast, Self-consistency’s content-awareness is
lost when segmenting forgeries with exomasks. Regardless
of the dataset considered, the scores obtained by all of the
methods have a high standard deviation with respect to their
mean value. This suggests that, given a dataset, the scores
in each individual image are not concentrated around the
mean but rather spread on a large range of values. Hence,
even for methods having low scores, some good detections
are likely to happen.
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Dataset

Noise Level CFA Grid CFA Algorithm JPEG Grid JPEG Quality Hybrid

N
oi

se
-l

ev
el

-b
as

ed Noisesniffer [21] 0.128 (0.228)0.128 (0.228) -0.008 (0.070) 0.029 (0.153) -0.007 (0.076) 0.052 (0.179) 0.098 (0.210)0.098 (0.210)
0.091 (0.198)0.091 (0.198) -0.011 (0.073) 0.005 (0.111) -0.009 (0.082) 0.020 (0.140) 0.061 (0.182)0.061 (0.182)

Lyu [33] 0.010 (0.090)0.010 (0.090) 0.002 (0.093) 0.002 (0.094) 0.000 (0.089) 0.002 (0.091) 0.012 (0.097)0.012 (0.097)
0.007 (0.137)0.007 (0.137) 0.010 (0.157) 0.009 (0.159) 0.007 (0.148) 0.013 (0.156) 0.018 (0.150)0.018 (0.150)

Mahdian [34] 0.046 (0.146)0.046 (0.146) 0.005 (0.082) 0.039 (0.128) 0.005 (0.086) 0.036 (0.132) 0.055 (0.158)0.055 (0.158)
0.055 (0.171)0.055 (0.171) 0.023 (0.159) 0.057 (0.183) 0.014 (0.146) 0.052 (0.180) 0.067 (0.191)0.067 (0.191)

C
FA

-b
as

ed

Bammey [4] 0.007 (0.084) 0.682 (0.329)0.682 (0.329) 0.501 (0.427)0.501 (0.427) 0.023 (0.095) 0.029 (0.091) 0.133 (0.288)0.133 (0.288)
0.021 (0.153) 0.665 (0.349)0.665 (0.349) 0.491 (0.429)0.491 (0.429) 0.018 (0.107) 0.020 (0.100) 0.128 (0.290)0.128 (0.290)

Shin [41] 0.007 (0.101) 0.104 (0.166)0.104 (0.166) 0.085 (0.172)0.085 (0.172) -0.002 (0.042) -0.001 (0.043) 0.015 (0.109)0.015 (0.109)
0.004 (0.123) 0.099 (0.171)0.099 (0.171) 0.084 (0.179)0.084 (0.179) -0.005 (0.058) -0.006 (0.059) 0.012 (0.114)0.012 (0.114)

Choi [5, 11] 0.026 (0.025) 0.603 (0.203)0.603 (0.203) 0.420 (0.208)0.420 (0.208) 0.001 (0.002) -0.001 (0.003) 0.156 (0.114)0.156 (0.114)
0.030 (0.018) 0.575 (0.191)0.575 (0.191) 0.385 (0.210)0.385 (0.210) -0.001 (0.002) 0.001 (0.001) 0.139 (0.116)0.139 (0.116)

JP
E

G
-b

as
ed

Zero [38] 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.796 (0.349)0.796 (0.349) 0.732 (0.413)0.732 (0.413) 0.638 (0.451)0.638 (0.451)
0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.756 (0.387)0.756 (0.387) 0.708 (0.421)0.708 (0.421) 0.624 (0.453)0.624 (0.453)

CAGI [25] 0.004 (0.045) 0.000 (0.027) 0.002 (0.033) 0.038 (0.077)0.038 (0.077) 0.044 (0.080)0.044 (0.080) 0.031 (0.071)0.031 (0.071)
0.003 (0.052) 0.000 (0.042) 0.001 (0.044) 0.023 (0.077)0.023 (0.077) 0.028 (0.082)0.028 (0.082) 0.021 (0.073)0.021 (0.073)

FDF-A [3] 0.031 (0.139) -0.004 (0.087) -0.003 (0.085) 0.226 (0.242)0.226 (0.242) 0.228 (0.249)0.228 (0.249) 0.203 (0.244)0.203 (0.244)
0.014 (0.169) -0.015 (0.139) -0.017 (0.139) 0.216 (0.265)0.216 (0.265) 0.216 (0.273)0.216 (0.273) 0.187 (0.264)0.187 (0.264)

I-CDA [6] 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.416 (0.417)0.416 (0.417) 0.422 (0.407)0.422 (0.407) 0.381 (0.407)0.381 (0.407)
0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.423 (0.408)0.423 (0.408) 0.414 (0.414)0.414 (0.414) 0.385 (0.408)0.385 (0.408)

CDA [31] -0.001 (0.034) 0.000 (0.055) 0.000 (0.052) 0.485 (0.339)0.485 (0.339) 0.474 (0.344)0.474 (0.344) 0.401 (0.360)0.401 (0.360)
-0.004 (0.068) -0.003 (0.098) -0.005 (0.097) 0.449 (0.351)0.449 (0.351) 0.442 (0.350)0.442 (0.350) 0.378 (0.354)0.378 (0.354)

BAG [29] 0.000 (0.015) 0.006 (0.078) 0.009 (0.079) 0.232 (0.461)0.232 (0.461) 0.229 (0.458)0.229 (0.458) 0.171 (0.430)0.171 (0.430)
0.002 (0.029) 0.025 (0.164) 0.026 (0.164) 0.227 (0.459)0.227 (0.459) 0.223 (0.455)0.223 (0.455) 0.161 (0.430)0.161 (0.430)

M
ul

ti-
pu

rp
os

e
to

ol
s Noiseprint [14] 0.127 (0.200)0.127 (0.200) -0.001 (0.069)-0.001 (0.069) 0.066 (0.149)0.066 (0.149) 0.013 (0.087)0.013 (0.087) 0.178 (0.248)0.178 (0.248) 0.153 (0.230)0.153 (0.230)

0.108 (0.232)0.108 (0.232) 0.002 (0.114)0.002 (0.114) 0.060 (0.179)0.060 (0.179) 0.016 (0.140)0.016 (0.140) 0.138 (0.279)0.138 (0.279) 0.128 (0.261)0.128 (0.261)

ManTraNet [45] 0.049 (0.091)0.049 (0.091) 0.000 (0.040)0.000 (0.040) 0.074 (0.169)0.074 (0.169) 0.004 (0.023)0.004 (0.023) 0.095 (0.164)0.095 (0.164) 0.112 (0.169)0.112 (0.169)
0.032 (0.099)0.032 (0.099) -0.004 (0.065)-0.004 (0.065) 0.053 (0.165)0.053 (0.165) 0.000 (0.043)0.000 (0.043) 0.086 (0.171)0.086 (0.171) 0.107 (0.176)0.107 (0.176)

Self- 0.082 (0.323)0.082 (0.323) 0.028 (0.261)0.028 (0.261) 0.036 (0.270)0.036 (0.270) 0.011 (0.262)0.011 (0.262) 0.078 (0.335)0.078 (0.335) 0.138 (0.370)0.138 (0.370)
-Consistency [24] 0.154 (0.429)0.154 (0.429) 0.077 (0.393)0.077 (0.393) 0.082 (0.403)0.082 (0.403) 0.060 (0.386)0.060 (0.386) 0.151 (0.440)0.151 (0.440) 0.246 (0.425)0.246 (0.425)

Splicebuster [13] 0.099 (0.188)0.099 (0.188) 0.003 (0.085)0.003 (0.085) 0.075 (0.157)0.075 (0.157) 0.005 (0.083)0.005 (0.083) 0.084 (0.175)0.084 (0.175) 0.101 (0.192)0.101 (0.192)
0.100 (0.217)0.100 (0.217) 0.012 (0.157)0.012 (0.157) 0.072 (0.202)0.072 (0.202) 0.006 (0.135)0.006 (0.135) 0.082 (0.220)0.082 (0.220) 0.099 (0.215)0.099 (0.215)

Table 1: Results of different state-of-the-art forensics tools on our six datasets, using the Matthews Correlation Coefficient
(MCC), detailed in Sec. 5.2. The methods, on the left, are grouped by categories. As a baseline, a random classifier is
expected to yield a score of 0. The mean of the MCC scores over each image of the dataset, as well as the standard deviation
in parentheses, are shown for the exogenous mask and endogenous mask datasets. Grayed-out numbers represent results of
methods on datasets that are irrelevant to said methods. The best two scores are underlined for each database.

6. Discussion

Most methods yield similar results on exo- and endo-
masks. While one kind is usually sufficient, comparing the
results on both shows some methods are content-aware.

The goal of this evaluation was not to rank different
methods, but to offer a rigorous insight on the capabilities
of each. Knowing to which kind of inconsistencies forensic
tools are sensitive helps understand and explain its detec-
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Noise Level CFA Grid CFA Algorithm JPEG Grid JPEG Quality Hybrid

Splicebuster [13]

Bammey [4]

ZERO [38]

Noiseprint [14]

ManTraNet [45]

Figure 5: Visualization of the results of several methods for one image on all the datasets. Some methods, such as Noiseprint
or Bammey, correctly detect the forgeries in the relevant images, but tend to make noise-like false detections in the images
for which they cannot see the forgery. Automatically selecting the relevant detections of an algorithm would make it easier
to use without needing interpretation. The image and mask can be seen in Fig. 1.

tions in uncontrolled cases, and can help efforts to combine
different methods. In that sense, the proposed database is
complementary to more traditional databases.

Even though many methods can yield decent scores, the
standard deviations of theses scores over all images of the
same dataset is often very high. Even though algorithms
perform well on many forgeries, they also often yield false
positives that require interpretation to be distinguished from
true detections, such as Fig. 1. This phenomenon is further
evidenced in the supplementary material. This is a critical
point for many methods, as it makes them usable only to a
trained eye.

7. Conclusion

Image forensics datasets are usually grouped according
to forgery types (eg. splicing, inpainting, or copy-moves),
and do not separate the semantic content from the actual
traces left by the forgery. In this paper, we proposed to
remove the semantic value of forgeries and to focus only
on the traces. We designed a methodology to automati-
cally create image “forgeries” that leave no semantic traces,
by introducing controlled changes in the image processing
pipeline. We built datasets by focusing on noise-level in-
consistencies, mosaic and JPEG artefacts, and conducted an
evaluation of some image forensics tools using this dataset.

Although we focused on three kinds of changes in the

forgeries, the same methodology can be applied to more
traces, including PRNU inconsistencies, multiple compres-
sion, or image manipulations such as resampling. In fact,
we can address all forgeries where two different camera
pipelines are involved. This includes copy-move, splicing
and some methods of inpainting. Further work would in-
corporate other traces, such as those left by synthesis meth-
ods. Although not surveyed here, the same methodology
can be applied to study robustness of detection under ad-
verse events such as global JPEG compression, by pass-
ing the images through compression before analysis. Our
images were not post-processed, except for inconsistencies
linked to JPEG compression. This makes it easy to assess
the robustness to any kind of post-processing.

Note that there are no authentic images in the dataset.
Testing the frequency of false positives is for now com-
plementary to the proposed methodology, but could be in-
cluded in further work by comparing the response of foren-
sic tools to the forged images and their authentic counter-
parts, otherwise-processed with the same pipeline.

Our method can transform automatically large sets of
images into forged images with fully controlled tampering
cues and no bias that might cause overfitting. Besides eval-
uation of existing image forensics tools, this methodology
could also be used to train forgery detection methods, al-
though care would be needed so as not to overfit if using the
same methodology for both training and evaluation.
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