

Earth's composition was modified by collisional erosion

Paul Frossard, Claudine Israel, Audrey Bouvier, Maud Boyet

▶ To cite this version:

Paul Frossard, Claudine Israel, Audrey Bouvier, Maud Boyet. Earth's composition was modified by collisional erosion. Science, 2022, 377 (6614), pp.1529-1532. 10.1126/science.abq7351. hal-03859736

HAL Id: hal-03859736 https://hal.science/hal-03859736v1

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Title: Earth's composition was modified by collisional erosion

Authors: Paul Frossard^{1,2*}, Claudine Israel¹⁺, Audrey Bouvier^{3,4}, Maud Boyet¹.

3 Affiliations: 4 ¹Université C

- ¹Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans ; F 63000 Clermont-Ferrand, France
- ⁶ ²Institute of Geochemistry and Petrology, ETH Zürich; Zürich, Switzerland
- ⁷ ³Bayerisches Geoinstitut, Universität Bayreuth; 95447 Bayreuth, Germany
- ⁸ ⁴Department of Earth Sciences, University of Western Ontario; London, N6A 5B7, Canada
- 9 †Present address: Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F10 75005 Paris, France
- 11 *Corresponding author. Email: paul.frossard@erdw.ethz.ch
- 12

1

2

Abstract: The ¹⁴⁶Sm-¹⁴²Nd short-lived decay system (half-life of 103 Ma) is a powerful tracer of 13 the early mantle-crust evolution of planetary bodies. However, an elevated ¹⁴²Nd/¹⁴⁴Nd in modern 14 15 terrestrial rocks relative to chondrite meteorites has been proposed to be caused by nucleosynthetic 16 anomalies, obscuring the early Earth's differentiation history. We use step-wise dissolution of 17 primitive chondrites to quantify nucleosynthetic contributions on the composition of chondrites. 18 After correction for nucleosynthetic anomalies, Earth and the silicate parts of differentiated 19 planetesimals contain resolved excesses of ¹⁴²Nd relative to chondrites. We conclude that only 20 collisional erosion of primordial crusts can explain such compositions. This process associated 21 with planetary accretion must have produced substantial loss of incompatible elements including 22 long-term heat producing elements such as U, Th, and K.

23

One-Sentence Summary: Collisions during accretion of planetesimals and Earth produced an
 excess in ¹⁴²Nd.

27 Main Text:

28 Short-lived radioactive systems are used as high-resolution chronometers of early solar system events. Notably, the ¹⁴⁶Sm-¹⁴²Nd pair provides important constraints on mantle-crust evolution of 29 30 the early Earth and its modern composition. In 2005, Boyet and Carlson (1) were the first to find evidence for an offset of 20 parts per million (ppm) in the ¹⁴²Nd /¹⁴⁴Nd ratio between terrestrial 31 32 samples and chondrites that are usually considered to be building blocks of planets. They 33 interpreted the excess of ¹⁴²Nd in Earth as the result of an early differentiation event and subsequent 34 burial and isolation of this early-formed crust, leaving the mantle depleted in incompatible elements and, over time, enriched in ¹⁴²Nd. Alternative scenarios such as collisional erosion of the 35 36 early crust or accretion of the Earth from material with a non-chondritic Sm/Nd ratio have been 37 invoked to explain the observed excess (1, 2, 3).

38 Chronological information from short-lived radioactive systems is complicated by nucleosynthetic 39 anomalies, mass-independent stable isotope variations that are inherited from incomplete mixing of the solar nebula (e.g. 4). Neodymium and Sm isotopes are produced by a mixture of s-, r- and 40 41 *p*-nucleosynthetic processes, corresponding to slow and rapid neutron capture, and proton capture or photodisintegration of large nuclei, respectively. The contribution of p-process to 142 Nd is 42 particularly ill-constrained as it cannot be identified by measuring the Nd isotope composition 43 44 alone. Estimates range from 1 to 20 % according to astrophysical models and cosmochemical constraints (5-11). p-process variation is determined by combining Sm and Nd isotope 45 measurements because 144 Sm is a pure *p*-process nuclide (4, 8). 46

47 A radiogenic origin for the excess of ¹⁴²Nd in Earth was recently argued against based on evidence 48 that Earth lies on the ¹⁴⁶Sm-¹⁴²Nd isochron of the first solids formed in the solar system, the Ca-, 49 Al-rich inclusions *(CAIs; 5)*, as well as on *s*-process mixing lines with chondrites *(6)*. Earth shares 50 closest affinities with the subgroup of EL3 enstatite chondrites *(12)*. Nevertheless, the potential

51 contribution of the *p*-process on ¹⁴²Nd is poorly constrained (*e.g.* 7). Nucleosynthetic compositions 52 identified in meteorites deviate from the astrophysical models of nucleosynthesis and may not be 53 similar in all chondrite groups (8, 13).

54 Here we report a comprehensive set of coupled Nd and Sm isotope compositions of bulk-rocks 55 and of components of unequilibrated chondrites from both the non-carbonaceous (NC, enstatite 56 and ordinary chondrites) and the carbonaceous (CC) groups. Our objective was to identify the 57 sources and variability of nucleosynthetic anomalies, including the *p*-process, potentially affecting the ¹⁴²Nd/¹⁴⁴Nd in bulk meteorites. Mass-independent Nd and Sm isotope composition, normalised 58 to fixed ¹⁴⁶Nd/¹⁴⁴Nd or ¹⁴⁷Sm/¹⁵²Sm ratios, are hereafter expressed as deviations from a synthetic 59 terrestrial standard in parts per million (ppm, $\mu^{i}X = [(^{i}X)^{j}X)_{sample}/(^{i}X)^{j}X_{standard} = 1] \times 10^{6}$; where i and 60 61 j are isotopes of the element X). We used a recently improved mass spectrometric method (14) for 62 Nd isotope analyses of eight bulk chondrites and some of the separated components of chondrites. 63 Pooled chondrules and a single large chondrule (~200 mg) from the ordinary chondrite NWA 8007 (L3) and magnetically separated and sorted fragments of the EH3 chondrite Sahara 97158 were 64 65 analysed only for their Nd isotope compositions. Enstatite (Sahara 97158 - EH3, PCA 91020 -EL3), ordinary (NWA 8007 – L3.2) and carbonaceous (Orgueil – CI) chondrites were sequentially 66 dissolved with increasingly aggressive acids and analysed for their Nd and Sm isotope 67 68 compositions. This procedure produced several fractions (named L1 to L13), thereby isolating the 69 most refractory minerals that include presolar grains with the most extreme isotopic compositions 70 (8, 13, 15).

Leachates from enstatite and carbonaceous chondrites display much larger nucleosynthetic anomalies than bulk chondrites in the range of tens to hundreds of ppm in magnitude (Fig. S1, Table S1). The first leachates have positive $\mu^{145,148,150}$ Nd anomalies whereas those produced by the last and most aggressive dissolutions steps (L6/L7 for EH and EL and L8 to L13 pooled

75	together for CI chondrites) have negative $\mu^{145,148,150}$ Nd anomalies. Leachates L8-L13 of the
76	Orgueil CI chondrite reach extreme compositions, down to μ^{150} Nd of -20336 ± 47 (2 times the
77	standard error, 2SE). In contrast, leachates and chondrules of ordinary chondrites (OC) and
78	separates of the EH3 chondrite exhibit only small variations. Corrections for radiogenic
79	contributions of ^{146}Sm are needed to interpret nucleosynthetic anomalies on $\mu^{142}\text{Nd}.$ Because
80	sequential dissolution may fractionate Sm and Nd (8), we calculated the corresponding
81	¹⁴⁷ Sm/ ¹⁴⁴ Nd ratios using ¹⁴³ Nd/ ¹⁴⁴ Nd of each sample (12) after correction for nucleosynthetic
82	anomalies on the 143 Nd/ 144 Nd ratio (16).

Most leachates of NC chondrites display Sm isotope compositions that are indistinguishable from the terrestrial standard. Small deviations in all Sm isotope ratios are observed for leachates of CC. Variations in μ^{149} Sm and μ^{150} Sm reflect neutron capture reactions, but this effect is negligible for other Nd and Sm isotope ratios (up to 1.9 ppm on μ^{145} Nd; Fig. S2) *(16)*. The largest variations are obtained in L8-13 of the meteorite Orgueil with μ^{144} Sm of -1797 ± 176 and μ^{148} Sm of 8176 ±48 (2SE) (Fig. S2, Table S2).

Nucleosynthetic *p*-process contributions on μ^{142} Nd are constrained using μ^{144} Sm in leachates (Fig. 89 90 1A). Deviations from the trend modelled by NC leachates and L8-13 of Orgueil are solely observed 91 for leachates of CC chondrites and are related to signatures of CAIs that display large deficits in 92 *p*-process ¹⁴⁴Sm and small deficits in ¹⁴²Nd (5, 6, 17, 18). However, no other *p*-process endmember 93 is identified in leachates from all chondrite groups. *s*-process excesses are indistinguishable from 94 *r*-process deficits with Nd and Sm isotope compositions. We constrain endmembers using a mass 95 balance calculation on leachates using presolar SiC that are the only s-process-rich carriers of rareearth elements (REE) identified so far (e.g. 13, 16) (Fig. S3). Small amounts of presolar SiC are 96 97 therefore enough to produce the range of Nd isotope compositions measured in leachates, without 98 invoking a r-process carrier. The CAIs bearing fractionated and unknown nuclear isotope

99 compositions (FUN CAI) display large anomalies (19). They have however a negligeable effect 100 on the Nd and Sm isotope compositions of leachates and bulk-rocks of CC chondrites because of 101 their very rare occurrence in CV chondrites. We also confirm that Nd and Sm *s*-process 102 compositions estimated by astrophysical models are significantly different compared to leachates 103 (Fig. S4 and S5), as pointed out by Saji et al. (20).

104 Given that Nd isotope composition in chondrites is solely related to s-process variations induced 105 by variable amounts of presolar SiC, leachates can be used to define the nucleosynthetic trend by 106 comparing a stable isotope ratio with μ^{142} Nd (Fig. 1B). For consistency and after comparison with 107 previous studies (8, 13, 20) (Fig. S5 and S6), we use only leachates from this study to construct 108 regression lines defining the nucleosynthetic variability in chondrites. We obtain slopes by total least squares regression of μ^{145} Nd or μ^{148} Nd on μ^{142} Nd of -1.599 ± 0.007 and -0.862 ± 0.002 (95 109 110 % confidence interval, 21), respectively. However, the intercepts of the regression lines 111 (theoretical Earth's μ^{142} Nd) are poorly constrained, owing to low precision for many leachates 112 with Nd isotope compositions close to the terrestrial value (Fig. S7).

Bulk chondrites provide the best samples to define accurately the Nd isotope compositions of the Earth because of their much higher precision compared to leachates and their unfractionated Sm/Nd. We critically assessed data from the literature to offer an up-to-date compilation of the highest precision measurements on meteorites (6, 9, 22-25), (Table S1). The compilation gives weighted averages with 2 standard errors (2 SE) of μ^{142} Nd = -9.9 ± 2.5, μ^{145} Nd = 0.5 ± 1.5, μ^{148} Nd = 2.2 ± 1.4 and μ^{150} Nd = 8.0 ± 5.1 for EC and μ^{142} Nd = -13.9 ± 1.8, μ^{145} Nd = 4.4 ± 1.7, μ^{148} Nd = 7.6 ± 1.3 and μ^{150} Nd = 14.9 ± 3.3 for OC.

We used slopes defined by leachate regression lines linking a stable isotope ratio to μ^{142} Nd to calculate the μ^{142} Nd composition of chondrites without nucleosynthetic anomalies relative to the Earth. The theoretical composition of the Earth, assuming NC chondrites are its main building

123 blocks, is calculated in this manner. We corrected EC and OC ¹⁴²Nd isotope compositions for nucleosynthetic anomalies using their measured μ^{145} Nd and μ^{148} Nd. We find very similar results 124 with an average of μ^{142} Nd = -7.9 ± 1.9 (2 times the standard deviation, SD, n=4, Fig. 2A). This 125 negative value of μ^{142} Nd relative to the Earth contrasts with μ^{145} Nd and μ^{148} Nd that lie on the 126 127 leachate regression line passing through the NC chondrites (Fig. 2B). We did not consider CC 128 chondrites because of their depletion in μ^{144} Sm suggesting the presence of *p*-process depleted 129 material, likely related to the presence of CAIs that can substantially alter the theoretical μ^{142} Nd 130 composition of the Earth (Fig. 1A and S8). After correcting μ^{142} Nd for nucleosynthetic anomalies, the corrected data for NC chondrites are resolved from Earth's µ¹⁴²Nd composition using Student's 131 t-tests, with p-values ($\alpha = 0.05$) between 6.7 × 10⁻⁷ to 4.8 × 10⁻⁴. Recent studies (9, 24, 25) reported 132 133 high precision Nd isotope compositions of achondrites sampling early planetesimals. When 134 corrected for nucleosynthetic anomalies, their μ^{142} Nd are in between the Earth and NC chondrites, 135 and more specifically angrites and eucrites are resolved from NC chondrites (p-values < 0.007). The cause of the excess in μ^{142} Nd in Earth and achondrites may be related to several factors, (i) a 136 137 *p*-process excess; (ii) accretion of material with a non-chondritic composition; (iii) early silicate 138 differentiation and isolation of the enriched reservoir. We did not identify any *p*-process-rich 139 carrier in leachates of chondrites and such a carrier is unlikely to be present only in Earth and 140 achondrites. The lack of precision in μ^{144} Sm of bulk chondrites does not allow elimination of this 141 possibility entirely but current datasets imply that a contribution of *p*-process of this magnitude is nevertheless unlikely. Chondrites, despite having been formed 2-3 Ma after the first planetesimals 142 (e.g. 26), are representative of the early solar system composition before differentiation of planet-143 144 size objects. The most likely hypothesis is that the excess of ¹⁴²Nd in the Earth and achondrites 145 reflects an early silicate differentiation of planets and planetesimals producing mantles with 146 superchondritic Sm/Nd. Achondrite parent bodies accreted within 1.5 Ma after the crystallisation

Submitted Manuscript: Confidential

147 of CAI (e.g. 26) and experienced global magma ocean stages. Early crustal material may have 148 been buried and isolated in the mantle of large bodies during overturn of high density cumulates 149 during the evolution of magma oceans (e.g. 27). However, the presence of hidden crustal reservoirs 150 in the mantle of planetesimals is very unlikely as it would imply overturn mechanisms that are 151 difficult to produce on planetesimals (27). The absence of achondrites displaying sub-chondritic 152 Sm/Nd and Hf/Sm variation (28), for instance, also corroborates this interpretation. Destruction of 153 the primordial crust through collisions or explosive volcanism (29) are the more suitable processes 154 to explain the ubiquitous excess in ¹⁴²Nd in both Earth and planetesimal samples (Fig. 3). We 155 favour collisional erosion in the view of overwhelming evidence of common collisions in the early 156 solar system that led to the accretion of planets and the quantification of this process by numerical 157 models (e.g. 30, 31).

158 We estimate the amount of crust lost during collisional erosion using mass balance calculations. 159 Given the antiquity of the early planetesimals, silicate differentiation events most likely occurred 160 very early (<1 Ma for achondrite parent bodies). We assume that collisional erosion for both Earth 161 and planetesimals occurred 4567 Ma ago (32). Given Earth's excess in ¹⁴²Nd of 7.9 ppm compared to NC chondrites, we infer a 147 Sm/ 144 Nd ratio of 0.2012 ± 0.0051 (ϵ^{143} Nd = 3.3 ± 4.4) for Earth's 162 163 modern mantle or Early Depleted Reservoir (EDR), which is higher than the chondritic reference 164 of 0.1960 ± 0.0004 (33). We estimate the mass of crustal material that was removed during 165 collisional erosion events for various crustal compositions (Fig. 4). Considering crusts with a low 166 Sm/Nd and high Nd contents (lunar KREEP, Earth's continental crust and martian crust; 34-36, 167 respectively), the mass balance yields that up to 5 % of the total initial accreted mass needs to be 168 removed. About 4 to 20 % of the total initial mass is required to be eroded using a crust with lower 169 Sm/Nd and Nd contents such as those of the lunar Mg suite (37) and of the achondrite GRA 170 06128/9 (38). Accretion of differentiated planetesimals as building blocks of the Earth is supported

171	by models of collisional erosion that estimate the mass eroded during accretion from about 10 to
172	20 % of the total initial mass of all planetesimals (e.g. 31, 39).
173	The ubiquity of collisional erosion recorded by Nd isotope compositions suggests substantial
174	consequences for the highly incompatible elemental compositions of the Earth and planetesimals.
175	In this regard, Th, U and K are critical as radioactive heat-producing elements (e.g. 40). We are
176	limited in estimating the depletion in K, Th and U in primordial crusts owing to the lack of
177	complete meteorite igneous suites from various parent bodies. Potassium, Th and U are more
178	incompatible than REE and the amount lost during collisional erosion is estimated to be higher
179	than 30 %.
180	Chondrites have long been considered to be the building blocks of the Earth. However, growing
181	evidence suggests that Earth accreted substantial parts of unknown material with s-process
182	excesses compared to both known meteorites and differentiated planetesimals (e.g. 6, 24, 25, 41).
183	While our data are inconclusive in this regard, excesses in ¹⁴² Nd in both Earth and achondrites
184	support the accretion of differentiated planetesimals as Earth's building blocks. Resolving this
185	puzzle may require integrating differentiated planetesimals in accretion models of planets and the
186	impact of preferential incorporation of core and mantle versus crustal materials. Considering this
187	history of collisional erosion may help refining estimates of the bulk composition of planets and
188	their evolution.

189

190 **References:**

- Boyet, M., Carlson, R. W., ¹⁴²Nd evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. *Science 309*, 576-581 (2005).
- 193
 2. Caro, G., Bourdon, B., Halliday, A. N., Quitté, G., Super-chondritic Sm/Nd in Mars, the
 194
 Earth and the Moon. *Nature 452*, 336-339 (2008).
- O'Neill, H. S. C., Palme, H., Collisional erosion and the non-chondritic composition of the terrestrial planets. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366*, 4205-4238 (2008).

198	4.	Andreasen, R., & Sharma, M., Solar nebula heterogeneity in p-process samarium and
199		neodymium isotopes. Science 314, 806-809 (2006).
200	5.	Bouvier, A., Boyet, M., Primitive Solar System materials and Earth share a common initial
201		¹⁴² Nd abundance. <i>Nature 537</i> , 399-402 (2016).
202	6.	Burkhardt, C., Borg, L. E., Brennecka, G. A., Shollenberger, Q. R., Dauphas, N., Kleine,
203		T., A nucleosynthetic origin for the Earth's anomalous ¹⁴² Nd composition. <i>Nature 537</i> ,
204		394-398 (2016).
205	7.	Gannoun, A., Boyet, M., Rizo, H., El Goresy, A., ¹⁴⁶ Sm- ¹⁴² Nd systematics measured in
206		enstatite chondrites reveals a heterogeneous distribution of ¹⁴² Nd in the solar nebula.
207		Proceedings of the National Academy of Sciences 108, 7693-7697, (2011).
208	8.	Qin, L., Carlson, R. W., Alexander, C. M. D., Correlated nucleosynthetic isotopic
209		variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008. Geochimica et
210		Cosmochimica Acta 75, 7806-7828 (2011).
211	9.	Saji, N. S., Wielandt, D., Holst, J. C., Bizzarro, M., Solar system Nd isotope heterogeneity:
212		Insights into nucleosynthetic components and protoplanetary disk evolution. Geochimica et
213		Cosmochimica Acta 281, 135-148, (2020).
214	10.	Arlandini, C., Käppeler, F., Wisshak, K., Gallino, R., Lugaro, M., Busso, M., Straniero, O.,
215		Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance
216		signatures. The Astrophysical Journal 525, 886 (1999).
217	11.	Bisterzo, S., Travaglio, C., Gallino, R., Wiescher, M., Käppeler, F., Galactic chemical
218		evolution and solar s-process abundances: Dependence on the ¹³ C-pocket structure. <i>The</i>
219		Astrophysical Journal 787, 10 (2014).
220	12.	Boyet, M., Bouvier, A., Frossard, P., Hammouda, T., Garçon, M., Gannoun, A., Enstatite
221		chondrites EL3 as building blocks for the Earth: The debate over the ¹⁴⁶ Sm- ¹⁴² Nd
222		systematics. Earth and Planetary Science Letters 488, 68-78 (2018).
223	13.	Boyet, M., Gannoun, A., Nucleosynthetic Nd isotope anomalies in primitive enstatite
224		chondrites. Geochimica et Cosmochimica Acta 121, 652-666 (2013).
225	14.	Garçon, M., Boyet, M., Carlson, R. W., Horan, M. F., Auclair, D., Mock, T. D., Factors
226		influencing the precision and accuracy of Nd isotope measurements by thermal ionization
227		mass spectrometry. Chemical Geology 476, 493-514 (2018).
228	15.	Zinner, E., Amari, S., Lewis, R. S. s-Process Ba, Nd, and Sm in presolar SiC from the
229		Murchison meteorite. The Astrophysical Journal 382, L47-L50 (1991).
230	16.	Materials and methods are available as supplementary materials on Science Online.
231	17.	Brennecka, G. A., Borg, L. E., Wadhwa, M., Evidence for supernova injection into the
232		solar nebula and the decoupling of <i>r</i> -process nucleosynthesis. <i>Proceedings of the National</i>
233	10	Academy of Sciences 110, 17241-17246 (2013).
234	18.	Shollenberger, Q. R., Borg, L. E., Kender, J., Ebert, S., Bischoll, A., Kussell, S. S., Prannacka, G. A. Isotonia apharanae of refractory inclusions from CV and CK mataorites:
235		Evidence from multiple isotope systems. <i>Geochimica et Cosmochimica Acta</i> 228, 62-80
237		(2018).
238	19.	McCulloch, M. T., Wasserburg, G. J., Barium and Neodymium isotopic anomalies in the
239		Allende meteorite. The Astrophysical Journal 220, L15-L19 (1978).

- 240 20. Saji, N. S., Schiller, M., Holst, J. C., Bizzarro, M., Isotope Dichotomy from Solar
 241 Protoplanetary Disk Processing of ¹⁵⁰Nd-rich Stellar Ejecta. *The Astrophysical Journal* 242 *Letters 919*, L8 (2021).
- 243 21. Vermeesch, P., IsoplotR: A free and open toolbox for geochronology. *Geoscience Frontiers 9*, 1479-1493 (2018).
- Fukai, R., Yokoyama, T., Neodymium isotope heterogeneity of ordinary and carbonaceous
 chondrites and the origin of non-chondritic ¹⁴²Nd compositions in the Earth. *Earth and Planetary Science Letters 474*, 206-214 (2017).
- 248 23. Fukai, R., Yokoyama, T., Nucleosynthetic Sr–Nd isotope correlations in chondrites:
 249 Evidence for nebular thermal processing and dust transportation in the early Solar System.
 250 *The Astrophysical Journal 879*, 79 (2019).
- 24. Render, J., Brennecka, G. A., Isotopic signatures as tools to reconstruct the primordial
 architecture of the Solar System. *Earth and Planetary Science Letters* 555, 116705 (2021).
- 253 25. Frossard, P., Guo, Z., Spencer, M., Boyet, M., Bouvier, A., Evidence from achondrites for
 254 a temporal change in Nd nucleosynthetic anomalies within the first 1.5 million years of the
 255 inner solar system formation. *Earth and Planetary Science Letters 566*, 116968 (2021).
- 256 26. Sugiura, N., Fujiya, W., Correlated accretion ages and ε^{54} Cr of meteorite parent bodies and 257 the evolution of the solar nebula. *Meteoritics and Planetary Science 49*, 772-787 (2014).
- 258 27. Elkins-Tanton, L. T., Magma Oceans in the Inner Solar System. *Annual Review of Earth* 259 *and Planetary Sciences 40*, 113-139 (2012).
- 260 28. Bouvier, A., Blichert-Toft, J., Boyet, M., Albarède, F., ¹⁴⁷Sm-¹⁴³Nd and ¹⁷⁶Lu-¹⁷⁶Hf
 261 systematics of eucrite and angrite meteorites. *Meteoritics and Planetary Science 50*, 1896262 1911 (2015).
- 263 29. Warren, P.H., A depleted, not ideally chondritic bulk Earth: The explosive-volcanic basalt
 264 loss hypothesis. *Geochimica et Cosmochimica Acta* 72, 2217-2235 (2008).
- 30. Wetherill, G. W., Formation of the Earth. *Annual Review of Earth and Planetary Sciences 18*, 205-256 (1990).
- 31. Stewart, S. T., Leinhardt, Z. M., Collisions between gravity-dominated bodies. II. The
 diversity of impact outcomes during the end stage of planet formation. *The Astrophysical Journal 751*, 32 (2012).
- 270 32. Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D., Ivanova, M. A.,
 271 The absolute chronology and thermal processing of solids in the solar protoplanetary disk.
 272 Science 338, 651-655 (2012).
- 33. Bouvier, A., Vervoort, J. D., Patchett, P. J., The Lu–Hf and Sm–Nd isotopic composition
 of CHUR: constraints from unequilibrated chondrites and implications for the bulk
 composition of terrestrial planets. *Earth and Planetary Science Letters 273*, 48-57 (2008).
- 276 34. Lugmair, G. W., Carlson, R. W., The Sm-Nd history of KREEP in *Lunar and Planetary*277 *Science Conference Proceedings*, vol. 9, 689-704 (1978).
- 278 35. R.L. Rudnick, S. Gao, "Composition of the Continental Crust" in Treatise on
 279 Geochemistry, H. D. Holland, K. K. Turekian, Eds. (Elsevier, 2003), vol. 3, chap. 1.

- 36. Armytage, R. M., Debaille, V., Brandon, A. D., Agee, C. B., A complex history of silicate
 differentiation of Mars from Nd and Hf isotopes in crustal breccia NWA 7034. *Earth and Planetary Science Letters 502*, 274-283 (2018).
- 283 37. Carlson, R. W., Borg, L. E., Gaffney, A. M., Boyet, M., Rb-Sr, Sm-Nd and Lu-Hf isotope
 284 systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of
 285 Moon formation. *Philosophical Transactions of the Royal Society A: Mathematical,*286 *Physical and Engineering Sciences 372*, 20130246 (2014).
- 38. Day, J. M., Walker, R. J., Ash, R. D., Liu, Y., Rumble III, D., Irving, A. J., Goodrich, C.
 A., Tait, K., McDonough, W. F., Taylor, L. A. (2012). Origin of felsic achondrites Graves
 Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by
 partial melting of volatile-rich primitive parent bodies. *Geochimica et Cosmochimica Acta*81, 94-128 (2012).
- 39. Allibert, L., Charnoz, S., Siebert, J., Jacobson, S. A., Raymond, S. N., Quantitative
 estimates of impact induced crustal erosion during accretion and its influence on the
 Sm/Nd ratio of the Earth. *Icarus 363*, 114412 (2021).
- 29540.Sclater, J., Jaupart, C., Galson, D., The heat flow through oceanic and continental crust and296the heat loss of the Earth. *Reviews of Geophysics 18*, 269-311 (1980).
- 41. Fischer-Gödde, M., Elfers, B. M., Münker, C., Szilas, K., Maier, W. D., Messling, N.,
 Morishita, T., Van Kranendonk, M., Smithies, H., Ruthenium isotope vestige of Earth's
 pre-late-veneer mantle preserved in Archaean rocks. *Nature* 579, 240-244 (2020).
- 300
 42. Boyet, M., Carlson, R. W., Borg, L. E., Horan, M., Sm–Nd systematics of lunar ferroan
 301 anorthositic suite rocks: constraints on lunar crust formation. *Geochimica et Cosmochimica*302 *Acta 148*, 203-218 (2015).
- 303
 43. Bonnand, P., Israel, C., Boyet, M., Doucelance, R., Auclair, D., Radiogenic and stable Ce
 304 isotope measurements by thermal ionisation mass spectrometry. *Journal of Analytical*305 *Atomic Spectrometry* 34, 504-516 (2019).
- Kinoshita, N., Paul, M., Kashiv, Y., Collon, P., Deibel, C. M., DiGiovine, B., Greene, J. P.,
 Henderson, D. J., Jiang, C. L., Marley, S. T., Nakanishi, T., Pardo, R. C., Rehm, K. E.,
 Robertson, D., Scott, R., Schmitt, C., Tang, X. D., Vondrasek, R., Yokoyama, A., A
 shorter ¹⁴⁶Sm half-life measured and implications for ¹⁴⁶Sm-¹⁴²Nd chronology in the solar
 system. *Science 335*, 1614-1617 (2012).
- 45. Marks, N. E., Borg, L. E., Hutcheon, I. D., Jacobsen, B., Clayton, R. N., Samarium–
 neodymium chronology and rubidium–strontium systematics of an Allende calcium–
 aluminum-rich inclusion with implications for ¹⁴⁶Sm half-life. *Earth and Planetary Science Letters 405*, 15-24 (2014).
- 46. Fang, L., Frossard, P., Boyet, M., Bouvier, A., Barrat, J. A., Chaussidon, M., Moynier, F.,
 Half-life and initial Solar System abundance of ¹⁴⁶Sm determined from the oldest andesitic
 meteorite. *Proceedings of the National Academy of Sciences 119*, e2120933119 (2022).
- 47. Hoppe, P., Ott, U., Mainstream silicon carbide grains from meteorites. In *American Institute for Physics Conference Proceedings*, vol. 402, 27-58 (1997).
- 48. Dauphas, N., Chen, J. H., Zhang, J., Papanastassiou, D. A., Davis, A. M., Travaglio, C.,
 Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform
 isotopic reservoir in the inner protoplanetary disk. *Earth and Planetary Science Letters*407, 96-108 (2014).

- Meija, J., Coplen, T. B., Berglund, M., Brand, W. A., De Bièvre, P., Gröning, M., Holden,
 N. E., Irrgeher, J., Loss, R. D., Walczyk, T., Prohaska, T., Atomic weights of the elements
 2013 (IUPAC Technical Report). *Pure and Applied Chemistry* 88, 265-291 (2016).
- 327 50. Nguyen, A. N., Zinner, E., Discovery of ancient silicate stardust in a meteorite. *Science* 328 303, 1496-1499 (2004).
- 51. Ebata, S., Nagashima, K., Itoh, S., Kobayashi, S., Sakamoto, N., Fagan, T. J., Yurimoto,
 H., Presolar silicate grains in enstatite chondrites. In *37th Annual Lunar and Planetary Science Conference*, 1619 (2006).
- Bose, M., Zhao, X., Floss, C., Stadermann, F. J., Lin, Y., Stardust material in the paired
 enstatite chondrites: SAH 97096 and SAH 97159. *Proceedings of Science (NIC-XI)*, 138
 (2010).
- Amari, S., Hoppe, P., Zinner, E., Lewis, R. S., Trace-element concentrations in single
 circumstellar silicon carbide grains from the Murchison meteorite. *Meteoritics 30*, 679-693
 (1995).
- Schönbächler, M., Rehkämper, M., Fehr, M. A., Halliday, A. N., Hattendorf, B., Günther,
 D., Nucleosynthetic zirconium isotope anomalies in acid leachates of carbonaceous
 chondrites. *Geochimica et Cosmochimica Acta 69*, 5113-5122 (2005).
- 341 55. Akram, W., Schönbächler, M., Bisterzo, S., Gallino, R., Zirconium isotope evidence for
 342 the heterogeneous distribution of s-process materials in the solar system. *Geochimica et*343 *Cosmochimica Acta 165*, 484-500 (2015).
- 56. Huss, G. R., Lewis, R. S., Presolar diamond, SiC, and graphite in primitive chondrites:
 Abundances as a function of meteorite class and petrologic type. *Geochimica et Cosmochimica Acta 59*, 115-160 (1995).
- 57. Faure, P., Boyet, M., Bouhifd, M. A., Manthilake, G., Hammouda, T., Devidal, J. L.,
 Determination of the refractory enrichment factor of the bulk silicate Earth from metalsilicate experiments on rare Earth elements. *Earth and Planetary Science Letters 554*,
 116644 (2021).
- 58. Dubois, J. C., Retali, G., Cesario, J., Isotopic analysis of rare earth elements by total
 vaporization of samples in thermal ionization mass spectrometry. *International Journal of Mass Spectrometry and Ion Processes 120*, 163-177 (1992).
- Begemann, F., Ludwig, K.R., Lugmair, G.W., Min, K., Nyquist, L.E., Patchett, P.J.,
 Renne, P.R., Shih, C.-Y., Villa, I.M., Walker, R.J., Call for an improved set of decay
 constants for geochronological use. *Geochimica et Cosmochimica Acta* 65, 111–121
 (2001)
- Borg, L. E., Gaffney, A. M., Kruijer, T. S., Marks, N. A., Sio, C. K., Wimpenny, J.
 Isotopic evidence for a young lunar magma ocean. *Earth and Planetary Science Letters* 523, 115706 (2019).
- 361 61. Hezel, D. C., Russell, S. S., Ross, A. J., Kearsley, A. T., Modal abundances of CAIs:
 362 Implications for bulk chondrite element abundances and fractionations. *Meteoritics and*363 *Planetary Science 43*, 1879-1894 (2008).
- Fujii, T., Moynier, F., Albarède, F., Nuclear field vs. nucleosynthetic effects as cause of
 isotopic anomalies in the early Solar System. Earth and Planetary Science Letters 247, 1-9
 (2006).
- Wang, M., Audi, G., Wapstra, A. H., Kondev, F. G., MacCormick, M., Xing, X., and
 Pfeiffer, B., The Ame2012 atomic mass evaluation. *Chinese Physics C 36*, 1603-2014
 (2012).

Fricke, G., Heilig, K., «Nuclear Charge Radii» in Landolt-Börnstein - Group I: Elementary
Particles, Nuclei and Atoms, Schopper, H., Ed. (Springer, 2004), vol. 20.

372

373 Acknowledgements: We thank Delphine Auclair for her help and assistance on the TIMS and 374 the use of the $10^{13} \Omega$ amplifiers. Jean-Luc Piro for his assistance on O-ICP-MS, and Chantal 375 Bosq for her management of the clean lab facilities. We are grateful to Pierre Bonnand for his 376 help with analytical development and for discussions, and Tony Withers for his help in 377 improving the English of the manuscript. PF acknowledges discussions with Marion Garcon, 378 Pierre Faure, Alison Hunt, Mattias Ek and Brad Peters and thanks particularly Maria 379 Schönbächler for allowing him to finalise this study while at ETH Zürich. We thank institutions 380 and people for providing us meteorite samples used in this study: Matthieu Gounelle and 381 Emmanuel Jacquet of the Muséum National d'Histoire Naturelle: the National Museum of 382 Natural History of the Smithsonian Institution, Mare Isakar of the Tartu Ülikool Loodsmuuseum, 383 University of Western Ontario, and the Antarctic Meteorite Collection. US Antarctic meteorite 384 samples are recovered by the Antarctic Search for Meteorites (ANSMET) program which has 385 been funded by NSF and NASA, and characterised and curated by the Department of Mineral 386 Sciences of the Smithsonian Institution and Astromaterials Curation Office at NASA Johnson 387 Space Center. Funding: This project has received funding from the European Research Council 388 (ERC) under the European Union's Horizon 2020 research and innovation program (Grant 389 Agreement No. 6822778) to MB, from the Canada Foundation for Innovation (33353), NSERC 390 Discovery Grant (06310-2014) and Canada Research Chairs programs (950-229061) to AB. This 391 is Laboratory of Excellence ClerVolc contribution n°XX. Author contributions: 392 Conceptualization: PF, MB, AB; Formal Analysis: PF, CI, MB; Investigation: PF, MB, AB; 393 Writing – original draft: PF, MB, AB, CI. Competing interests: Authors declare that they have

- 394 no competing interests. **Data and materials availability:** All data are available in the main text
- 395 or the supplementary materials.

Supplementary Materials

- 397 Materials and Methods
- 398 Supplementary Text
- 399 Figs. S1 to S9
- 400 Tables S1 to S7
- 401 References (*42–65*)

404 405 The regression line is calculated using solely leachates from NC chondrites and leachates L8-13 406 of Orgueil, in order to avoid the contribution of CAIs. μ^{142} Nd compositions of leachates are 407 corrected for the decay of ¹⁴⁶Sm (16). Leachates of NC chondrites do not deviate from the 408 leachate regression line representing the *s*-process, evidencing the homogeneous *p*-process 409 contribution to Nd and the lack of pure *p*-process carriers in NC chondrites. CAI composition is from refs. 5, 6, 17, 18, compiled in ref. 25. (B) Leachates are used to calculate a regression line 410 411 modelling the s-process trend in meteorites, that accurately relates the nucleosynthetic compositions of μ^{148} Nd and μ^{142} Nd. The dashed line represents the mixing line between Earth 412 413 and the s-process estimates from astrophysical models (11). Errors are 2 times the standard error 414 (SE) of a single measurement or 2 times the standard deviation (SD) of the standard processed 415 with similar contents in the same analysis session, whichever is larger. Errors on the regression 416 are 95 % confidence intervals calculated using IsoplotR (21).

417

Fig. 2: s-process nucleosynthetic contributions on Nd isotope compositions of bulk NC
meteorites. Nd isotope compositions of meteorites have been compiled to include only the most
precise and accurate data (Table S3). Averages of meteorite groups are plotted, except for the

423	three ungrouped achondrites. (A) The μ^{142} Nd- μ^{148} Nd space shows the radiogenic excess of ¹⁴² Nd
424	in Earth and NC achondrites. The two lines represent the s-process nucleosynthetic trend with
425	the slope determined with leachates of this study with a terrestrial origin ($\mu^{142}Nd = 0$; black line)
426	and an origin corresponding to the mean of μ^{142} Nd corrected from nucleosynthetic anomalies in
427	NC chondrites (μ^{142} Nd = 7.9 ± 1.9; dashed line). (B) The Earth, NC chondrites and achondrites
428	are all aligned on the nucleosynthetic trend with a terrestrial origin (black line). Earth's mantle
429	composition corresponds to the largest series of JNdi-1 standards measured using the 4-lines
430	dynamic method (2 SE, $n = 18$, Table S5). Errors on averages are 2 SE when $n>4$ or 2 SD
431	otherwise, all in ppm.

446 *Fig. 4:* Sketch of the collisional erosion scenario on planetesimals and Earth. Collisions

between differentiated planetesimals strip off proto-crusts leaving bodies with a mantle enriched in Sm over Nd compared to undifferentiated chondrites (Sm/Nd_{CHUR} = 0.311, CHUR stands for CHondritic Uniform Reservoir, *33*). The Earth accreted from collisionally eroded planetesimals is depleted in incompatible elements and displays a superchondritic Sm/Nd.

Supplementary Materials for

Earth's composition was modified by collisional erosion

Paul Frossard, Claudine Israel, Audrey Bouvier, Maud Boyet

Correspondence to: paul.frossard@erdw.ethz.ch

This PDF file includes:

Materials and Methods Supplementary Text Figs. S1 to S9 Tables S1 to S7

Materials and Methods:

Samples 1

Meteorite samples used for this study were purchased and obtained from museum and other institutions. Orgueil, Saint-Séverin (N°2397 PE2) and Agen (N°1479) were provided by the Muséum National d'Histoire Naturelle in Paris, France; Allende (45NM3529) by the National Museum of Natural History of the Smithsonian Institution in Washington D.C., United States of America; Pillistfer (TUG-552-2) by Tartu Ülikool Loodusmuuseum, Tartu, Estonia; Tagish Lake (MM63,21) by the University of Western Ontario, London, Canada; and Pecora Escarpment (PCA) 91020,88 by the Antarctic Meteorite Collection (NASA), Houston, United States of America. Northwest Africa (NWA) 8007, NWA 10854, Adrar Bous, Sahara 97072 and Sahara 97158 were purchased from private meteorite dealers.

Several samples are from hot and cold deserts and thus may be subject to weathering. All samples, except Orgueil, were cleaned with clean acetone or ethanol to remove traces of weathering for 15 min in ultrasonic bath. Some of the first leachates (L1 to L3) of NWA 8007 (L3.2, W1), PCA 91020 (weathering with evaporites Ce, but with visible metal) and Sahara 97158 contain significant amounts of Ba but these are not correlated to light rare-earth element (REE) enrichments that are typical of terrestrial contamination by weathering. Therefore, Nd and Sm isotope compositions are not affected by weathering.

Methods

Leaching procedure.

The leaching procedure was performed on powder aliquots of Sahara 97158 (1.2 g), PCA 91020 (1.5 g), NWA 8007 (1.5 g) and Orgueil (2.0 g), respectively. Fifteen millilitres, or 20 mL for Orgueil, of various acid solutions were added sequentially to powders in 60 mL PFA jars to maximise the reaction with a large surface in contact of the hotplate and to prevent

clogging of the powder. The leaching procedure was adapted from that of ref. *12*. Orgueil underwent a different procedure because of its mineralogy, otherwise most of the meteorite would have been dissolved in the first steps.

Concerning Sahara 97158, NWA 8007 and PCA 91020, the leaching procedure is the following:

- 1) 0.5 M acetic acid for 24 hours at room temperature (RT).
- 2) 0.5 M nitric acid (HNO₃) for 24 hours at RT.
- 3) 4 M HNO₃ for 72 hours at 40 $^{\circ}$ C on a hotplate.
- 4) 6 M hydrochloric acid (HCl) for 48 hours at 60 °C on a hotplate.
- 5) Mixture of 6 M HCl and 15 M HNO₃ (2:1) for 48 hours at 120 °C on a hotplate.
- 6) For Sahara 97158 and NWA 8007: a mixture of 28 M hydrofluoric acid (HF) and 15 M HNO₃ (2:1) for 96 hours at 150 °C in steel-jacketed Teflon bombs.
 For PCA 91020: a mixture of 28 M HF and 15 M HNO₃ (2:1) for 48 hours at 120 °C on a hotplate.
- For PCA 91020 only: a mixture of 28 M HF and 15 M HNO₃ (2:1) for 96 hours at 150
 °C in steel-jacketed Teflon bombs.

Concerning Orgueil, the procedure is the following:

- 1) 18.2 M Ω ·cm ultra-pure H₂O for 30 minutes at RT.
- 2) 0.1 M acetic acid for 30 minutes at RT.
- 3) 0.5 M acetic acid for 30 minutes at RT.
- 4) 0.1 M HNO_3 for 10 minutes at RT.
- 5) 0.5 M HNO_3 for 30 minutes at RT.
- 6) 1 M HNO₃ for 30 minutes at RT.
- 7) 4 M HNO₃ for 24 hours at RT.
- 8) 1 M HCl for 24 hours at RT.

- 9) 1 M HCl for 24 hours at 80 °C on a hotplate.
- 10) 6 M HCl for 24 hours at 80 °C on a hotplate.
- 11) A mixture of 6 M HCl and 14 M HNO₃ (2:1) for 48 hours at 110 °C.
- 12) A mixture of 28 M HF and 14 M HNO₃ (3:1) for 48 hours at 110 °C.
- 13) A mixture of 28 M HF and 14 M HNO₃ (3:1) for 14 days hours at 150 °C in steeljacketed Teflon.

Leachates 1 to 3 and 8 to 13 were pooled after being processed by ion exchange resin column chromatography and before REE separation with liquid-liquid extraction chromatography resins.

A leachate of Tagish Lake was also produced by leaching powder with 10 mL of 0.5 M HNO₃ for 1 hour at room temperature and centrifuged.

Sample separation and preparation

Sample separation was carried out under clean lab conditions at University of Western Ontario. Chondrules from NWA 8007 were extracted from the slab by gently crushing the meteorite slab in an agate mortar and subsequent handpicking under microscope. Many small chondrules were grouped to obtain a fraction totalling 231 mg. This fraction contains whole chondrules, fragments of chondrules, and some matrix attached to the chondrules that could not be removed. One individual chondrule, identified as C8 and weighing 244 mg, from which matrix was removed with dental tools was analysed individually. Components from the EH3 chondrite Sahara 97158 were also separated after gentle crushing. Due to the stiff nature of enstatite chondrites, the small chondrule size in EH3 and limited REE content, it was not possible to isolate chondrules for REE isotope analyses. Instead, a magnetic separation was performed using a hand magnet. Four fractions were isolated: non-magnetic (NM), strongly magnetic (Mag) and two mildly magnetic fractions (MM #1 and MM #2). Fragments or whole

chondrules that could be isolated under the microscope were included in the non-magnetic fraction. Similarly, metal-sulphide nodules have been added to the magnetic fraction. All non-metallic separates were powdered before acid digestion.

Whole-rock powders for 8 meteorites were produced in an agate mortar dedicated to meteorite work both at the University of Western Ontario and at the Laboratoire Magmas et Volcans. Three enstatite chondrites were dissolved, EH3 Sahara 97072, EH5 Adrar Bous and EL6 Pillistfer. Four ordinary chondrites were dissolved, L3 NWA 8007 and NWA 10854, L6 Saint Séverin and H5 Agen. In addition, two powder aliquots of CV3 Allende were analysed.

All samples were dissolved in a mixture of concentrated HF and HNO₃ (3:1) on a hot plate at 110°C for 5 to 7 days, followed by a dissolution in steel-jacketed Parr bombs with the same mixture for chondrules from NWA 8007, Sahara 97072, NWA 8007, NWA 10854 and one of the Allende samples. Some samples experienced a step in HClO₄ at 135°C to 180°C after dry-down of the HF-HNO₃ mixture to break down fluorides. The samples were dried down and taken up in HCl two times.

From the solution obtained, two aliquots of 1 to 5 % were dedicated to trace elements, the remainder was used for REE isotope analysis (Table S4). Trace element concentrations were obtained using an Agilent 7500 Q-ICP-MS at Laboratoire Magmas et Volcans. Aliquots were evaporated to dryness and taken up in 1.5 mL of a 0.5 M HNO₃-0.1 M HF solution. Concentrations were calibrated using external multi-element synthetic standards of 0.05 ppb, 0.1 ppb, 0.5 ppb, 1 ppb, 10 ppb concentrations. Boyet and Gannoun *(12)* already reported trace element composition of EC leachates with a similar procedure and with larger aliquots. Expecting very low amounts of REE, very small aliquots were used for trace elements of the leachates are therefore qualitative and not of high precision.

REE separation

The chromatographic method used for this study involves ion exchange resin chromatography using AG1-X8 and AG50W-X8 resins to separate the matrix elements from REE and liquidliquid chromatographic extraction methods using LN-resin for separating the REE. Iron was separated from the matrix using the AG1-X8 resin (20 mL in a Biorad column) in order to reduce the number of passes in AG50W-X8 resin columns where REE are isolated. In order to remove Fe from the matrix, the sample is loaded in 6 M HCl : 0.05 M HF and matrix is eluted using this acid mixture while Fe sticks to the resin and is discarded using 1 M HF. The separation of REE from the remaining major and trace elements is performed using a wellestablished method using AG 50W-X8 resin, described in ref. 5 and adapted to a column with 20 mL of resin. Trivalent rare-earths are then separated from Ce using the oxidation method with NaBrO₃, and further purified using AG50W-X8 resin (14; 43). Nd is then separated from the other rare-earths using quartz columns filled with 20-50 µm LN-resin in hydrochloric acid (HCl) medium. The MREE+HREE fractions are processed in quartz columns filled with 50-100 µm LN-Spec resin to isolate Sm. Samarium is further purified using quartz columns filled with 20-50 µm LN-Spec resin to remove any traces of Nd left. After separation and evaporation, all purified fractions were taken up 2 to 3 times in a mixture of concentrated HNO3 and HCl to remove organics before analysis.

REE isotope analysis

Neodymium and Sm isotopes were measured by thermal ionization mass spectrometry using both Triton Plus and Triton instruments in Laboratoire Magmas et Volcans (LMV). The samples were loaded on outgassed zone-refined Re filaments in 2 M HCl with 0.3 μ L of 0.5 M H₃PO₄ for Nd and in 2 M HNO₃ for Sm.

The method developed by Garçon and co-authors (14) was used to analyse samples with more than 200 ng of Nd, whereas samples with lower Nd content were analysed with a static method described in ref. 12. For both methods, a $10^{11} \Omega$ amplifier was used on all detectors and the integration time was set to 8.4 seconds. Nd isotope compositions are corrected for instrumental mass fractionation using an exponential law with $^{146}Nd/^{144}Nd = 0.7219$. Briefly, concerning the 4-line dynamic method, the axial cup is centred at masses 143, 145 (Main), 144 and 146 successively, using zoom optics for all, except the main line. The ratios calculated for each sample are an average of all dynamic ratios of every cycle. A cycle consists of three dynamic ratios for ¹⁴⁵Nd/¹⁴⁴Nd, two for ¹⁴²Nd/¹⁴⁴Nd, ¹⁴³Nd/¹⁴⁴Nd and ¹⁴⁸Nd/¹⁴⁴Nd, and one for ¹⁵⁰Nd/¹⁴⁴Nd. Two sets of JNdi-1 synthetic standards were used from this method and matched the amount of Nd analysed in samples, namely 200 ng and 750 ng. The reproducibility is expressed as 2 times the standard deviation on the individual runs of the JNdi-1 standard (one run always corresponds to one filament). Reproducibility (all in ppm) for the 4-line dynamic method with more than 500 ng is the following: 4.9-6.9 for ¹⁴²Nd/¹⁴⁴Nd, 2.3-4.0 for ¹⁴³Nd/¹⁴⁴Nd, 0.4-2.5 for ¹⁴⁵Nd/¹⁴⁴Nd, 4.5-7.4 for ¹⁴⁸Nd/¹⁴⁴Nd and 18.8-20.5 for ¹⁵⁰Nd/¹⁴⁴Nd. The details of the standards measured are reported in Table S5.

Static measurements are carried out using a single line centred on ¹⁴⁵Nd. Interferences are monitored on mass 140 for Ce and 147 for Sm. Four sets of JNdi-1 standards were analysed to cover the wide range of Nd contents in the leachates, namely 20 ng, 100 ng and 200 ng. The reproducibility (all in ppm) of 100 and 200 ng range from 4.8-10 for ¹⁴²Nd/¹⁴⁴Nd, 6.4-9.1 for ¹⁴³Nd/¹⁴⁴Nd, 2.1-5.5 for ¹⁴⁵Nd/¹⁴⁴Nd, 12-15 for ¹⁴⁸Nd/¹⁴⁴Nd and 16-26 for ¹⁵⁰Nd/¹⁴⁴Nd, whereas for 20 ng loads it ranges from 8-23 for ¹⁴²Nd/¹⁴⁴Nd, 8-19 for ¹⁴³Nd/¹⁴⁴Nd, 16-39 for ¹⁴⁵Nd/¹⁴⁴Nd, 11-36 for ¹⁴⁸Nd/¹⁴⁴Nd and 23-56 for ¹⁵⁰Nd/¹⁴⁴Nd. The lower precision of standards with 20 ng loads is related to the low intensity of the signal of 7×10^{-12} A on ¹⁴²Nd for a small duration corresponding to 320 to 900 cycles (average of 510).

Samarium was analysed in static mode for all the samples, following the method detailed by Bouvier and Boyet (5). Due to low chemical separation yields in a first set of samples, leachates from the OC NWA 8007 (excluding L5) and the first leachates (L1) of both Sahara 97158 and PCA 91020 could not be analysed. All leachates from PCA 91020, Sahara 97158 and NWA 8007 (except L6 of PCA91020 and Sahara 97158) were analysed using Thermo Fisher Scientific $10^{13} \Omega$ resistors because of very low Sm content (< 10 ng). The method is similar to that of ref. 5 but $10^{13} \Omega$ amplifiers were used on all detectors except those counting ¹⁴⁹Sm and ^{150}Sm for which $10^{12}\,\Omega$ amplifiers were used. Interferences are monitored on mass 146 for Nd and mass 156 for Gd (with $10^{13} \Omega$ amplifier). Cycles correspond to 2 seconds of integration. Leachates of Orgueil and whole-rocks were all analysed using only $10^{11} \Omega$ resistors. Reproducibility on repeated measurements of the Sm synthetic standard (Sm ICP standard 1000 ppm, Inorganic Ventures) is calculated as 2 times the standard deviation on individual Sm measurements and corresponds (all in ppm) to 88-176 for ¹⁴⁴Sm/¹⁵²Sm, 16-48 for ¹⁴⁸Sm/¹⁵²Sm, 14-128 for ¹⁴⁹Sm/¹⁵²Sm, 45-162 for ¹⁵⁰Sm/¹⁵²Sm and 25-37 for ¹⁵⁴Sm/¹⁵²Sm for Sm contents of 3 to 20 ng, irrespective of the amplifiers used. Sm isotope compositions are corrected for instrumental mass fractionation using an exponential law with 147 Sm/ 152 Sm = 0.56081. The details of the standards measured are reported in Table S6.

Rock standards were also processed to control the accuracy and external precision of the measurements and data are reported in Table S1 and S2.

Procedural blanks contain 3 to 71 pg of Nd (n=10) and 1 to 4 pg of Sm (n=3). Blank contributions are therefore negligible with respect to the analytical errors, and sample compositions were not corrected from blank contribution.

Supplementary Text:

Nuclear field shift effects

Mass-independent isotope fractionations can occur during sample processing and alter Nd and Sm isotope composition of samples. These effects usually arise from multiple chemical separation with low yields, as isotopes are fractionated during separation for example *(e.g. 14)*. Nuclear field shift produces mass-independent anomalies that are distinct from neutron capture and nucleosynthetic signatures. Effects of the nuclear field shift are greater on ¹⁵⁰Nd and ¹⁴⁴Sm. Neodymium and Sm isotope composition of leachates tightly follow nucleosynthetic trends as expected and do not deviate from that trend towards the nuclear field shift. The variation in Nd and Sm isotope compositions are therefore not due to nuclear field shift effects (Fig. S9).

Neutron capture effects

Neodymium and Sm isotope compositions in meteorites may be affected by neutron capture effects due to the exposure to galactic cosmic rays: the longer the exposure, the higher the deviations. Samarium is particularly sensitive because of the large cross-section of ¹⁴⁹Sm. Hence, neutron capture is observed in Sm isotope compositions by a deficit in ¹⁴⁹Sm and a correlated excess in ¹⁵⁰Sm. Neutron capture produces large variations on these latter isotopes, but the effect on other Nd and Sm isotopes is limited. Considering the largest deviation measured in Orgueil (μ^{149} Sm down to -280 ppm), the effect is of maximum 1.2 ppm on μ^{142} Nd, 1.9 ppm on μ^{145} Nd and 0.3 ppm on μ^{148} Nd. Therefore, deficits produced by neutron capture on these ratios do not significantly alter nucleosynthetic compositions.

Our set of Sm isotope analyses on leachates allows to accurately define the *s*-process-induced nucleosynthetic anomalies on μ^{149} Sm and μ^{150} Sm (Fig. S2) due to the very large excess in the last leachate of Orgueil. Slopes defined in Fig. S2 with μ^{148} Sm can be used to correct nucleosynthetic anomalies.

Radiogenic contribution for ¹⁴²Nd

The μ^{142} Nd isotope composition can be corrected from the decay of ¹⁴⁶Sm in different ways. Boyet et al. (12) discussed the correction in detail using either the measured ¹⁴⁷Sm/¹⁴⁴Nd ratio or the calculated Sm/Nd ratio with ¹⁴³Nd/¹⁴⁴Nd integrated in time and advocate for the use of the latter in order to avoid potential secondary disturbances. The use of the measured ¹⁴⁷Sm/¹⁴⁴Nd to correct the radiogenic contribution on μ^{142} Nd is flawed with respect to leachates because of the nature of the dissolution that may fractionate REE (8, 13). The correction using ¹⁴³Nd/¹⁴⁴Nd is well suited for whole-rock compositions but because leachates display large nucleosynthetic anomalies it is necessary to include the *s*-process contribution on the initial ¹⁴³Nd/¹⁴⁴Nd to accurately correct the radiogenic ingrowth on μ^{142} Nd. In this study, we use the half-life of ¹⁴⁶Sm of 103 Ma as the more recent half-life of 68 Ma determined by Kinoshita and co-authors (44) does not match the meteoritic and lunar data (5, 45, 46). The initial ¹⁴⁶Sm/¹⁴⁴Sm₀ of the solar system used is from ref. 46 (= 0.00840 ± 32) defined using the ungrouped achondrite Erg Chech 002.

The initial ¹⁴³Nd/¹⁴⁴Nd_{CHUR} (= 0.506686 ± 70) of ref. 33 is therefore modified to account for the *s*-process enrichment or depletion obtained with μ^{148} Nd, using the Nd *s*-process composition determined using presolar SiC of ref. 47. The use of μ^{145} Nd to define the *s*-process deficit or excess does not significantly affect the results of the correction. Using the mixing equations of Dauphas and co-authors (48), a coefficient of 0.38 ± 0.05 between μ^{148} Nd and μ^{143} Nd is calculated using the *s*-process composition inferred from SiC of ref. 47. An initial ¹⁴³Nd/¹⁴⁴Nd_{ini.+s} is then determined using the μ^{148} Nd of leachates.

$$\mu^{143} N d_{ini.+s} = 0.38 \times \mu^{148} N d_{sample}$$

The theoretical $^{147}Sm/^{144}Nd_{theo.}$ is calculated using the initial $^{143}Nd/^{144}Nd_{ini.+s}$ adjusted for nucleosynthetic anomalies.

$$\frac{{}^{147}Sm}{{}^{144}Nd}_{theo.} = \frac{\frac{{}^{143}Nd/{}^{144}Nd}_{sample} - {}^{143}Nd/{}^{144}Nd}_{ini.+s}}{e^{\lambda t} - 1}$$

Finally, the corrected $({}^{142}Nd/{}^{144}Nd)_{decay corr.}$ is determined using method B of ref. 12, with ${}^{147}Sm/{}^{144}Nd_{CHUR} = 0.1960 \pm 4$ (33), ${}^{146}Sm/{}^{144}Sm_0 = 0.00840 \pm 32$ (46) and ${}^{144}Sm/{}^{147}Sm = 0.2053$ from natural isotope abundances (49).

$$\begin{split} & \frac{^{142}Nd}{^{144}Nd}_{decay\ corr.} \\ & = \frac{^{142}Nd}{^{144}Nd}_{sample} - \left(\frac{^{146}Sm}{^{144}Sm} \times \frac{^{144}Sm}{^{147}Sm} \times \frac{^{147}Sm}{^{144}Nd}_{theo.}\right) \\ & + \left(\frac{^{146}Sm}{^{144}Sm} \times \frac{^{144}Sm}{^{147}Sm} \times \frac{^{147}Sm}{^{144}Nd}_{CHUR}\right) \end{split}$$

Integrating *s*-process nucleosynthetic anomalies is necessary to define accurately slopes characterising the isotope composition of *s*-process. We use presolar SiC to define the *s*-process as astrophysical estimates of *s*-process may not match the natural *s*-process composition measured in meteorites (20) (Fig. S4 and S5).

Corrected bulk meteorites' μ^{142} Nd did not integrate *s*-process nucleosynthetic anomaly corrections because they are small and do not change the final values.

Regressions on leachates

Regressions are calculated using leachates from this study. Model 3 (maximum likelihood with overdispersion) of IsoplotR (21) is used to account for overdispersion in the data and give conservative errors. All leachates are used for Nd isotope ratios, whereas only leachates from NC chondrites and the last leachate L8-13 of Orgueil are used for Sm isotopes. Carbonaceous chondrites display negative μ^{144} Sm in bulk rock reflecting a *p*-process depletion. Therefore

they are not include to calculate the s-process trend defined by leachates, at the exception of L8-13 of Orgueil that display extreme enrichments matching *s*-process (Fig S4).

Correction of s-process nucleosynthetic anomalies on ¹⁴²Nd

Nucleosynthetic anomalies on μ^{142} Nd are corrected using *s*-process trends. We use the slope of the regression line between μ^{148} Nd and μ^{142} Nd in leachates of our study, -0.862 ± 0.002.

$$\mu^{142} N d_{s-corr} = -0.862 \times \mu^{148} N d_{sample}$$

The slope characterising *s*-process nucleosynthetic variations in the μ^{148} Nd- μ^{142} Nd space is 70fold more precise when determined with leachates compared to SiC (-0.87 ± 0.14). Corrected μ^{142} Nd are also significantly more precise using the slope obtained with leachates. Astrophysical estimates of the *s*-process are not considered due to their imprecision. They may not reproduce natural data and different models do not necessarily agree with each other (Fig S4). Moreover, errors are more difficult to estimate as they are not specified for the model of ref. *11*. The slope obtained from leachates provides the most precise determination of the *s*process-corrected composition of μ^{142} Nd of NC meteorites.

Nucleosynthetic composition of Sm isotope

Our new isotopic data of Sm, particularly Orgueil leachates, allow us to precisely define the *s*process trend for Sm that is otherwise poorly constrained by measurements of presolar silicon carbides (SiC) and by astrophysical models. The *s*-process trend is defined using leachates of NC chondrites and the last leachates (L8-13) of Orgueil to avoid leachates bearing CAI signatures characterised by a depletion in *p*-process that deviate from NC leachates. The regression line fits very well with *s*-process proportions for Sm from Arlandini and co-authors (10) but is significantly different from that of Bisterzo and co-authors (11) (Fig. S3).

Mass-balance with SiC as anomalous endmember

Many endmembers may be invoked to produce the variability in the Nd isotope composition of the leachates. However, the comparison of leachates and presolar grain studies hints at few endmembers for Nd and Sm isotope compositions. First and foremost, presolar SiC appears to be the major presolar carrier of Nd with an anomalous composition. Presolar silicates have also been identified in all chondrite groups including enstatite chondrites and are generally ferromagnesian silicates similar to olivine or pyroxene (50-52). Even though REE contents have not been determined in such grains, they most likely are not the main source of anomalous Nd in comparison to SiC that hosts between 0.8 to 39 ppm (15, 53).

In the light of the leachate compositions, and more specifically the first leachates that display positive anomalies on $\mu^{145,148,150}$ Nd which are opposite to the presolar SiC composition, at least another endmember can be identified. They display anomalies lower in intensity that could be interpreted as either *s*-process depletion or *r*-process excess. In other words, these endmembers correspond either to the bulk chondrite material without anomalous SiC carriers or the existence of a distinct *r*-process rich component in addition to SiC and to the bulk chondrite components as suggested by Schönbächler and co-authors (*54*) and Akram and co-authors (*55*) for Zr. We applied a mass-balance model to enstatite chondrites and Orgueil CI chondrites only. The range of nucleosynthetic anomalies in leachates of the ordinary chondrite NWA 8007 is not sufficient to provide a precise estimate.

In a mass-balance model, two endmembers are defined as presolar SiC and matter without SiC (w/o SiC) and constitute together the whole rock chondrite (WR). The concentration of the SiC endmember ([Nd]_{SiC}) in enstatite chondrites is assumed to be 1.53 ± 0.05 ppm as calculated by Huss and Lewis (56) with Ne isotope composition of Qingzhen, which is relatively close to that of Indarch (1.25 ± 0.03 ppm) which is more equilibrated. CI chondrites contain much more SiC, which is estimated to 14.3 ± 0.8 ppm in ref. 56.

The Nd concentration in SiC varies with two orders of magnitude. Amari and co-authors (53) measured 0.5 to 10 ppm Nd in single SiC grains whereas Zinner and co-authors (15) reported 25 to 39 ppm Nd in SiC separates. Measurements in single grain are less likely to represent the majority of the grains, and larger grains tend to contain less Ba for example (15, 53). Therefore, the estimates from ref. 15 are probably closer to the average SiC composition. Nevertheless, a higher content in larger grains would lower the concentration, the range of 10 ppm to 39 ppm is considered, to be conservative.

The isotope composition of *s*-process SiC (μ^i Nd_{SiC}) used in the calculations is from Hoppe and Ott (47). Whole-rock compositions are averages of the enstatite and CI chondrites reported in Table S3.

It is worth noting that unequilibrated EL chondrites display distinct μ^{142} Nd anomalies compared to other EL chondrites, which are not analysed with dynamic methods and therefore not included in this compilation but are statistically resolved *(12)*. The Nd composition of EH, EL3 and SiC used in the mass-balance calculations are reported in Table S7. Neodymium content in CI, EH and EL groups ([Nd]_{WR}) are sourced from the compilation of Faure and co-authors *(57)*.

The Nd isotope composition of the endmember without SiC is calculated for variable Nd contents in SiC using the following equation:

$$\mu^{i} \mathrm{Nd}_{\mathrm{WR}} = \frac{\mu^{i} N d_{\mathrm{SiC}} \times X_{\mathrm{SiC}} \times [\mathrm{Nd}]_{\mathrm{SiC}} + \mu^{i} N d_{L1} \times (1 - X_{\mathrm{SiC}}) \times [\mathrm{Nd}]_{WR}}{X_{\mathrm{SiC}} \times [\mathrm{Nd}]_{\mathrm{SiC}} + (1 - X_{\mathrm{SiC}}) \times [\mathrm{Nd}]_{WR}}$$

with parameters defined in the previous paragraph.

The Nd isotope composition of the modelled endmember without SiC is supposed to be equal to that of the first leachates of chondrites, but its concentration in Nd is closer to that of the WR as the contribution to the Nd budget is minimal. From this equation, the Nd concentration in SiC and the concentration in SiC of the meteorite are calculated using the first leachate of each meteorite, and broad estimates of the other parameter (see Table S7).

The range of Nd concentrations obtained for leachates of EL3, EH3 and CI chondrites is very narrow despite very different Nd isotope compositions and estimated SiC concentrations (Fig. S4). They range from 13 to 13.1 ppm for Sahara 97158 L1 (EH3), 9.7 to 12.1 ppm for PCA 91020 L1 (EL3) and 10.1 to 13.2 ppm for Orgueil L1-3 (CI). Neodymium concentrations in SiC calculated with the mass-balance budget assuming SiC concentrations in chondrites from ref. *56* are consistent with the order of magnitude of Nd concentrations measured in SiC by refs. *15* and *53*.

When considering a range of Nd content of 10 to 39 ppm (see above), the concentration of SiC is estimated to 0.8 to 2.0 ppm in Sahara 97158 (EH3), 0.6 to 1.9 ppm in PCA 91020 (EL3) and 5.7 to 18.7 ppm in Orgueil (CI). These concentrations agree with the estimated amounts of SiC in EH3 and CI chondrites calculated by ref. *56* (Fig. S4).

The good agreement between the estimated Nd content in SiC and the concentration in SiC in bulk meteorites according to a mass-balance budget with leachates suggests that SiC is the only endmember with an anomalous composition for Nd in chondrites. There is no need to invoke a *r*-process-enriched endmember to explain the isotope composition of the first leachates.

Calculation of the 147 Sm/ 144 Nd and ϵ^{143} Nd of the depleted modern Earth

The Sm/Nd ratio of the bulk Earth can be calculated using the theoretical μ^{142} Nd of the Earth (-7.9 ± 1.9 ppm). It is calculated using the initial ¹⁴⁶Sm/¹⁴⁴Sm ratio of 0.00840 ± 0.00032 of ref. *46*, the terrestrial Sm isotope composition of ref. *58* and ¹⁴⁷Sm/¹⁴⁴Nd of 0.1960 ± 0.0004 of the CHUR (*33*), yielding a ¹⁴⁴Sm/¹⁴⁴Nd of 0.0404 ± 0.0001. The ¹⁴⁷Sm/¹⁴⁴Nd ratio of the bulk Earth is 0.2012 ± 0.0051. The ϵ^{143} Nd is calculated using the decay constant of ¹⁴⁷Sm of 6.54 ± 6 × 10⁻¹² (*59*), the age of the solar system of 4567 Ma from ref. *32* and the CHUR ¹⁴³Nd/¹⁴⁴Nd of ref. *33*. The ϵ^{143} Nd of the bulk Earth is 3.3 ± 4.4.

References:

- 1. Boyet, M., Carlson, R. W., ¹⁴²Nd evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. *Science 309*, 576-581 (2005).
- 2. Caro, G., Bourdon, B., Halliday, A. N., Quitté, G., Super-chondritic Sm/Nd in Mars, the Earth and the Moon. *Nature* 452, 336-339 (2008).
- 3. O'Neill, H. S. C., Palme, H., Collisional erosion and the non-chondritic composition of the terrestrial planets. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366*, 4205-4238 (2008).
- 4. Andreasen, R., & Sharma, M., Solar nebula heterogeneity in p-process samarium and neodymium isotopes. *Science 314*, 806-809 (2006).
- 5. Bouvier, A., Boyet, M., Primitive Solar System materials and Earth share a common initial ¹⁴²Nd abundance. *Nature 537*, 399-402 (2016).
- Burkhardt, C., Borg, L. E., Brennecka, G. A., Shollenberger, Q. R., Dauphas, N., Kleine, T., A nucleosynthetic origin for the Earth's anomalous ¹⁴²Nd composition. *Nature 537*, 394-398 (2016).
- Gannoun, A., Boyet, M., Rizo, H., El Goresy, A., ¹⁴⁶Sm–¹⁴²Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of ¹⁴²Nd in the solar nebula. *Proceedings of the National Academy of Sciences 108*, 7693-7697, (2011).
- 8. Qin, L., Carlson, R. W., Alexander, C. M. D., Correlated nucleosynthetic isotopic variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008. *Geochimica et Cosmochimica Acta* 75, 7806-7828 (2011).
- 9. Saji, N. S., Wielandt, D., Holst, J. C., Bizzarro, M., Solar system Nd isotope heterogeneity: Insights into nucleosynthetic components and protoplanetary disk evolution. *Geochimica et Cosmochimica Acta 281*, 135-148, (2020).
- Arlandini, C., Käppeler, F., Wisshak, K., Gallino, R., Lugaro, M., Busso, M., Straniero, O., Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. *The Astrophysical Journal 525*, 886 (1999).
- Bisterzo, S., Travaglio, C., Gallino, R., Wiescher, M., Käppeler, F., Galactic chemical evolution and solar s-process abundances: Dependence on the ¹³C-pocket structure. *The Astrophysical Journal* 787, 10 (2014).
- Boyet, M., Bouvier, A., Frossard, P., Hammouda, T., Garçon, M., Gannoun, A., Enstatite chondrites EL3 as building blocks for the Earth: The debate over the ¹⁴⁶Sm– ¹⁴²Nd systematics. *Earth and Planetary Science Letters 488*, 68-78 (2018).
- 13. Boyet, M., Gannoun, A., Nucleosynthetic Nd isotope anomalies in primitive enstatite chondrites. *Geochimica et Cosmochimica Acta 121*, 652-666 (2013).
- 14. Garçon, M., Boyet, M., Carlson, R. W., Horan, M. F., Auclair, D., Mock, T. D., Factors influencing the precision and accuracy of Nd isotope measurements by thermal ionization mass spectrometry. *Chemical Geology* 476, 493-514 (2018).
- 15. Zinner, E., Amari, S., Lewis, R. S. *s*-Process Ba, Nd, and Sm in presolar SiC from the Murchison meteorite. *The Astrophysical Journal 382*, L47-L50 (1991).
- 16. Materials and methods are available as supplementary materials on Science Online.

- 17. Brennecka, G. A., Borg, L. E., Wadhwa, M., Evidence for supernova injection into the solar nebula and the decoupling of *r*-process nucleosynthesis. *Proceedings of the National Academy of Sciences 110*, 17241-17246 (2013).
- Shollenberger, Q. R., Borg, L. E., Render, J., Ebert, S., Bischoff, A., Russell, S. S., Brennecka, G. A., Isotopic coherence of refractory inclusions from CV and CK meteorites: Evidence from multiple isotope systems. *Geochimica et Cosmochimica Acta 228*, 62-80 (2018).
- 19. McCulloch, M. T., Wasserburg, G. J., Barium and Neodymium isotopic anomalies in the Allende meteorite. *The Astrophysical Journal 220*, L15-L19 (1978).
- Saji, N. S., Schiller, M., Holst, J. C., Bizzarro, M., Isotope Dichotomy from Solar Protoplanetary Disk Processing of ¹⁵⁰Nd-rich Stellar Ejecta. *The Astrophysical Journal Letters 919*, L8 (2021).
- 21. Vermeesch, P., IsoplotR: A free and open toolbox for geochronology. *Geoscience Frontiers 9*, 1479-1493 (2018).
- 22. Fukai, R., Yokoyama, T., Neodymium isotope heterogeneity of ordinary and carbonaceous chondrites and the origin of non-chondritic ¹⁴²Nd compositions in the Earth. *Earth and Planetary Science Letters* 474, 206-214 (2017).
- Fukai, R., Yokoyama, T., Nucleosynthetic Sr–Nd isotope correlations in chondrites: Evidence for nebular thermal processing and dust transportation in the early Solar System. *The Astrophysical Journal 879*, 79 (2019).
- 24. Render, J., Brennecka, G. A., Isotopic signatures as tools to reconstruct the primordial architecture of the Solar System. *Earth and Planetary Science Letters* 555, 116705 (2021).
- 25. Frossard, P., Guo, Z., Spencer, M., Boyet, M., Bouvier, A., Evidence from achondrites for a temporal change in Nd nucleosynthetic anomalies within the first 1.5 million years of the inner solar system formation. *Earth and Planetary Science Letters 566*, 116968 (2021).
- 26. Sugiura, N., Fujiya, W., Correlated accretion ages and ε^{54} Cr of meteorite parent bodies and the evolution of the solar nebula. *Meteoritics and Planetary Science* 49, 772-787 (2014).
- 27. Elkins-Tanton, L. T., Magma Oceans in the Inner Solar System. *Annual Review of Earth and Planetary Sciences* 40, 113-139 (2012).
- 28. Bouvier, A., Blichert-Toft, J., Boyet, M., Albarède, F., ¹⁴⁷Sm-¹⁴³Nd and ¹⁷⁶Lu-¹⁷⁶Hf systematics of eucrite and angrite meteorites. *Meteoritics and Planetary Science 50*, 1896-1911 (2015).
- 29. Warren, P.H., A depleted, not ideally chondritic bulk Earth: The explosive-volcanic basalt loss hypothesis. *Geochimica et Cosmochimica Acta* 72, 2217-2235 (2008).
- 30. Wetherill, G. W., Formation of the Earth. *Annual Review of Earth and Planetary Sciences 18*, 205-256 (1990).
- 31. Stewart, S. T., Leinhardt, Z. M., Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. *The Astrophysical Journal 751*, 32 (2012).
- 32. Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D., Ivanova, M. A., The absolute chronology and thermal processing of solids in the solar protoplanetary disk. *Science* 338, 651-655 (2012).

- Bouvier, A., Vervoort, J. D., Patchett, P. J., The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. *Earth and Planetary Science Letters 273*, 48-57 (2008).
- 34. Lugmair, G. W., Carlson, R. W., The Sm-Nd history of KREEP in *Lunar and Planetary Science Conference Proceedings*, vol. 9, 689-704 (1978).
- 35. R.L. Rudnick, S. Gao, "Composition of the Continental Crust" in Treatise on Geochemistry, H. D. Holland, K. K. Turekian, Eds. (Elsevier, 2003), vol. 3, chap. 1.
- Armytage, R. M., Debaille, V., Brandon, A. D., Agee, C. B., A complex history of silicate differentiation of Mars from Nd and Hf isotopes in crustal breccia NWA 7034. *Earth and Planetary Science Letters* 502, 274-283 (2018).
- 37. Carlson, R. W., Borg, L. E., Gaffney, A. M., Boyet, M., Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372*, 20130246 (2014).
- 38. Day, J. M., Walker, R. J., Ash, R. D., Liu, Y., Rumble III, D., Irving, A. J., Goodrich, C. A., Tait, K., McDonough, W. F., Taylor, L. A. (2012). Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies. *Geochimica et Cosmochimica Acta 81*, 94-128 (2012).
- 39. Allibert, L., Charnoz, S., Siebert, J., Jacobson, S. A., Raymond, S. N., Quantitative estimates of impact induced crustal erosion during accretion and its influence on the Sm/Nd ratio of the Earth. *Icarus 363*, 114412 (2021).
- 40. Sclater, J., Jaupart, C., Galson, D., The heat flow through oceanic and continental crust and the heat loss of the Earth. *Reviews of Geophysics 18*, 269-311 (1980).
- 41. Fischer-Gödde, M., Elfers, B. M., Münker, C., Szilas, K., Maier, W. D., Messling, N., Morishita, T., Van Kranendonk, M., Smithies, H., Ruthenium isotope vestige of Earth's pre-late-veneer mantle preserved in Archaean rocks. *Nature* 579, 240-244 (2020).
- 42. Boyet, M., Carlson, R. W., Borg, L. E., Horan, M., Sm–Nd systematics of lunar ferroan anorthositic suite rocks: constraints on lunar crust formation. *Geochimica et Cosmochimica Acta 148*, 203-218 (2015).
- 43. Bonnand, P., Israel, C., Boyet, M., Doucelance, R., Auclair, D., Radiogenic and stable Ce isotope measurements by thermal ionisation mass spectrometry. *Journal of Analytical Atomic Spectrometry* 34, 504-516 (2019).
- Kinoshita, N., Paul, M., Kashiv, Y., Collon, P., Deibel, C. M., DiGiovine, B., Greene, J. P., Henderson, D. J., Jiang, C. L., Marley, S. T., Nakanishi, T., Pardo, R. C., Rehm, K. E., Robertson, D., Scott, R., Schmitt, C., Tang, X. D., Vondrasek, R., Yokoyama, A., A shorter ¹⁴⁶Sm half-life measured and implications for ¹⁴⁶Sm-¹⁴²Nd chronology in the solar system. *Science 335*, 1614-1617 (2012).
- 45. Marks, N. E., Borg, L. E., Hutcheon, I. D., Jacobsen, B., Clayton, R. N., Samarium– neodymium chronology and rubidium–strontium systematics of an Allende calcium– aluminum-rich inclusion with implications for ¹⁴⁶Sm half-life. *Earth and Planetary Science Letters 405*, 15-24 (2014).
- 46. Fang, L., Frossard, P., Boyet, M., Bouvier, A., Barrat, J. A., Chaussidon, M., Moynier, F., Half-life and initial Solar System abundance of ¹⁴⁶Sm determined from the oldest

andesitic meteorite. *Proceedings of the National Academy of Sciences 119*, e2120933119 (2022).

- 47. Hoppe, P., Ott, U., Mainstream silicon carbide grains from meteorites. In *American Institute for Physics Conference Proceedings*, vol. 402, 27-58 (1997).
- 48. Dauphas, N., Chen, J. H., Zhang, J., Papanastassiou, D. A., Davis, A. M., Travaglio, C., Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk. *Earth and Planetary Science Letters* 407, 96-108 (2014).
- Meija, J., Coplen, T. B., Berglund, M., Brand, W. A., De Bièvre, P., Gröning, M., Holden, N. E., Irrgeher, J., Loss, R. D., Walczyk, T., Prohaska, T., Atomic weights of the elements 2013 (IUPAC Technical Report). *Pure and Applied Chemistry* 88, 265-291 (2016).
- 50. Nguyen, A. N., Zinner, E., Discovery of ancient silicate stardust in a meteorite. *Science* 303, 1496-1499 (2004).
- 51. Ebata, S., Nagashima, K., Itoh, S., Kobayashi, S., Sakamoto, N., Fagan, T. J., Yurimoto, H., Presolar silicate grains in enstatite chondrites. In *37th Annual Lunar and Planetary Science Conference*, 1619 (2006).
- 52. Bose, M., Zhao, X., Floss, C., Stadermann, F. J., Lin, Y., Stardust material in the paired enstatite chondrites: SAH 97096 and SAH 97159. *Proceedings of Science (NIC-XI)*, *138 (2010)*.
- 53. Amari, S., Hoppe, P., Zinner, E., Lewis, R. S., Trace-element concentrations in single circumstellar silicon carbide grains from the Murchison meteorite. *Meteoritics 30*, 679-693 (1995).
- 54. Schönbächler, M., Rehkämper, M., Fehr, M. A., Halliday, A. N., Hattendorf, B., Günther, D., Nucleosynthetic zirconium isotope anomalies in acid leachates of carbonaceous chondrites. *Geochimica et Cosmochimica Acta 69*, 5113-5122 (2005).
- 55. Akram, W., Schönbächler, M., Bisterzo, S., Gallino, R., Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system. *Geochimica et Cosmochimica Acta 165*, 484-500 (2015).
- 56. Huss, G. R., Lewis, R. S., Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. *Geochimica et Cosmochimica Acta 59*, 115-160 (1995).
- 57. Faure, P., Boyet, M., Bouhifd, M. A., Manthilake, G., Hammouda, T., Devidal, J. L., Determination of the refractory enrichment factor of the bulk silicate Earth from metalsilicate experiments on rare Earth elements. *Earth and Planetary Science Letters* 554, 116644 (2021).
- 58. Dubois, J. C., Retali, G., Cesario, J., Isotopic analysis of rare earth elements by total vaporization of samples in thermal ionization mass spectrometry. *International Journal of Mass Spectrometry and Ion Processes 120*, 163-177 (1992).
- Begemann, F., Ludwig, K.R., Lugmair, G.W., Min, K., Nyquist, L.E., Patchett, P.J., Renne, P.R., Shih, C.-Y., Villa, I.M., Walker, R.J., Call for an improved set of decay constants for geochronological use. *Geochimica et Cosmochimica Acta* 65, 111–121 (2001)
- 60. Borg, L. E., Gaffney, A. M., Kruijer, T. S., Marks, N. A., Sio, C. K., Wimpenny, J. Isotopic evidence for a young lunar magma ocean. *Earth and Planetary Science Letters 523*, 115706 (2019).
- 61. Hezel, D. C., Russell, S. S., Ross, A. J., Kearsley, A. T., Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations. *Meteoritics and Planetary Science 43*, 1879-1894 (2008).

- 62. Fujii, T., Moynier, F., Albarède, F., Nuclear field vs. nucleosynthetic effects as cause of isotopic anomalies in the early Solar System. Earth and Planetary Science Letters 247, 1-9 (2006).
- 63. Wang, M., Audi, G., Wapstra, A. H., Kondev, F. G., MacCormick, M., Xing, X., and Pfeiffer, B., The Ame2012 atomic mass evaluation. *Chinese Physics C 36*, 1603-2014 (2012).
- 64. Fricke, G., Heilig, K., «Nuclear Charge Radii» in Landolt-Börnstein Group I: Elementary Particles, Nuclei and Atoms, Schopper, H., Ed. (Springer, 2004), vol. 20.

Fig. S1. Nd isotope composition of leachates. Insets represent data on a much larger scale with the leachate L8-13 of Orgueil. Errors are 2 times the standard error (SE) of a single measurement or 2 times the standard deviation (SD) of the standard processed with similar contents in the same analysis session, whichever is larger. The regression lines and their 95 % confidence intervals are calculated using IsoplotR *(21)*.

Fig. S2. Sm isotope composition of leachates. Insets represent data on a much larger scale with the leachate L8-13 of Orgueil. Regression lines involving μ^{144} Sm are calculated using solely leachates from non-carbonaceous chondrites and leachates L8-13 of Orgueil, in order to avoid contributions of CAI. Neutron capture trend in the graph showing μ^{150} Sm versus μ^{149} Sm is calculated from data of ref. 60. Errors are 2 times the standard error (SE) of a single measurement or 2 times the standard deviation (SD) of the standard processed with similar contents in the same analysis session, whichever is larger. The regression lines and their 95 % confidence intervals are calculated using IsoplotR (21).

Fig. S3. Results of the mass-balance calculations. Nd content in SiC ([Nd]_{SiC}) is obtained to fit the isotope composition of the first leachates of PCA 91020, Sahara 97158 and Orgueil, using concentrations of SiC from the literature (see Supplementary Text and Tables). The concentration in SiC (X_{SiC}) is also calculated using first leachates but using a range of Nd concentrations in SiC reported in the literature (see Supplementary Text and Tables). The range of composition is determined with the minimum value obtained using μ^{142} Nd, μ^{145} Nd and μ^{148} Nd and the range in [Nd]_{SiC}. The dashed lines correspond to the concentration in X_{SiC} in Orgueil (CI) and Qingzhen (EH3). The parameters X_{SiC} and [Nd]_{SiC} calculated using first leachates of the CI, EL3 and EH3 meteorites correspond very well to the range determined in the literature. This validates the hypothesis behind the mass-balance budget and shows that the Nd isotope composition in leachates can be explained by only two endmembers that are presolar SiC and material excluding SiC, no *r*-process carrier.

Fig. S4: μ^{144} Sm and μ^{148} Sm compositions of leachates. Leachates define a trend with a slope of -0.22 ± 0.02. The regression line is calculated using solely leachates from non-carbonaceous chondrites and leachates L8-13 of Orgueil, in order to avoid contributions of CAI. Nd isotope compositions of CAI from refs. 5, 6, 17 and 18, compiled in ref. 25 excluding CAI without nucleosynthetic anomalies from ref. 5. Leachates do not deviate from the leachate regression line, evidencing the absence of *p*-process carriers. The slope of the regression line is identical within error to astrophysical estimates of the *s*-process of ref. 10 but is significantly different from that of ref. 11. L8-13 of Orgueil is therefore enriched in *s*-process-rich material and the regression line can be used as a proxy for the *s*-process trend in meteorites. Errors are 2 times the standard error (SE) of a single measurement or 2 times the standard deviation (SD) of the standard processed with similar contents in the same analysis session, whichever is larger. Errors on the regression are 95 % confidence intervals calculated using IsoplotR (21).

Fig. S5: Comparison of the slopes obtained with leaching experiments in this study and from the literature. Data from this study and the literature (lighter symbols) (8, 13, 20) are reported. Slopes are obtained using the Nd isotope composition (μ^{142} Nd decay-corrected versus μ^{148} Nd and μ^{148} Nd versus μ^{145} Nd) of leachates from individual chondrites. NWA 8007 leachates display a limited range of nucleosynthetic anomalies and does not give any reliable nucleosynthetic information. Slopes characterising nucleosynthetic composition differ from the astrophysical estimates represented as a black star (10, 11).

Fig. S6. Nd isotope composition of leachates from the literature (light symbols, refs. 8, 13, 20) and the present study (darker symbols). Scatter along in the leachate data from the literature is much larger than this study as indicated by the y-dispersion. Errors are 2 times the standard error (SE) of a single measurement or 2 times the standard deviation (SD) of the standard processed with similar contents in the same analysis session, whichever is larger. The regression lines and their 95 % confidence intervals are calculated using IsoplotR (21).

Fig. S7. Residuals ($\Delta \mu^{142}$ Nd) relative to the regression line between μ^{142} Nd and μ^{148} Nd with leachates from this study. The regression line itself is represented as a grey line with its 95 % confidence interval in grey. The intercept of the regression line and the error associated do not reflect accurately the actual μ^{142} Nd for μ^{148} Nd = 0. Indeed, errors on the μ^{142} Nd in leachates are much larger and the residues $\Delta \mu^{142}$ Nd show that they spread more around μ^{148} Nd = 0 than the error on the regression line. The intercept cannot be used to constrain the μ^{142} Nd of chondrites without nucleosynthetic anomalies (terrestrial value) and should be used with caution.

Fig. S8: μ^{148} Nd and μ^{142} Nd compositions of bulk meteorites including those from the carbonaceous reservoir. Nd isotope composition of meteorites are sourced from Table S1. μ^{142} Nd are corrected for the radioactive decay of ¹⁴⁶Sm. The grey area represents Earth's mantle, defined from the largest series of JNdi-1 standards measured using the 4-line dynamic method (2 SE, n=18). The black line represents the *s*-process nucleosynthetic trend with the slope determined with leachates of this study with a terrestrial origin (μ^{142} Nd = 0; black line). Nd isotope composition of CC meteorites is reported in Table S3 with references. CC chondrites have also been corrected for CAI contributions according to the modal abundances of ref. 61, except CI chondrites and Tagish Lake that contain very low amounts of CAI, and Nd isotope compositions of CAI from refs. *5, 6, 17 and 18*, compiled in ref. *25* excluding CAI without nucleosynthetic anomalies from ref. *5*. Errors on averages are 2 SE when n>4 or 2 SD otherwise.

Fig. S9. Effect of the nuclear field shift on Nd (A) and Sm (B) isotope compositions compared to nucleosynthetic s-process. Samples do not deviate from the s-process trends, shown as the mixing line between presolar SiC and Earth for μ^{148} Nd and μ^{150} Nd, or between astrophysical estimates (10, 11) for μ^{148} Sm and μ^{144} Sm. Leachates are not affected by nuclear field shift effects. Nuclear field shift effects are calculated using the equations of ref. 62, nuclei masses of ref. 63 and mean-squared nuclear charge radii of ref. 64.

Table S1. Nd isotope composition of terrestrial standards, mineral separates, leachates and whole-rocks of chondrites.

Samples	Standards associated	I142Nd (V)	n	146Nd/144Nd	142Ce/142Nd (ppm)	¹⁵⁰ Sm/ ¹⁵⁰ Nd (ppm)	µ ¹⁴² Nd	2σ (ppm)	µ ¹⁴³ Nd	2 RSE (ppm)	μ^{145} Nd	2 RSE (ppm)	μ^{148} Nd	2 RSE (ppm)	μ ¹⁵⁰ Nd	2 RSE (ppm)	$\mu^{142}Nd_B$	µ ¹⁴² Nd _{B s-process}
BCR-2	200 ng Dynamic 4L	1.6	480	0.7229	0.3	8.4	7.3	9.9	1022.3	4.0	1.9	3.5	-1.6	5.9	-3.1	15.1		
BCR-2	100 ng Static #1	2.3	1380	0.7222	0.6	5.4	3.3	10.0	1023.6	6.4	3.1	5.5	2.1	11.6	-3.9	15.9		
BCR-2	100 ng Static #1	3.2	1060	0.7227	0.9	4.2	7.6	10.0	1027.3	6.4	1.0	5.5	8.1	11.6	7.3	15.9		
BCR-2	20 ng Static #2	1.1	600	0.7227	0.5	7.4	17.1	22.5	1021.4	19.0	-0.3	35.1	-11.6	31.4	-19.2	41.1		
BHVO-2	100 ng Static #2	3.8	540	0.7227	0.5	10.6	9.9	8.1	1708.6	8.1	-0.2	24.7	-2.3	8.9	-3.4	17.9		
BCR-2	500-1000 ng Dynamic 4L	9.0	540	0.7219	0.2	0.5	0.6	4.9	1020.3	2.3	-0.1	2.2	-1.7	7.4	-4.2	18.8		
BHVO-2	500-1000 ng Dynamic 4L	6.9	540	0.7215	0.1	0.7	1.3	4.9	1698.1	2.3	0.4	2.2	0.5	7.4	-3.4	18.8		
Sahara 97158 NM	100 ng Static #1	1.3	420	0.7223	1.0	16.3	-33.7	10.2	492.9	8.6	-3.6	7.8	5.8	12.6	-15.1	17.2	-20.0	-19.2
Sahara 97158 Mag	100 ng Static #1	1.9	420	0.7221	0.5	7.5	-16.0	10.0	996.0	6.5	-1.4	6.0	-0.8	11.6	7.0	15.9	-15.1	-14.5
Sahara 97158 IM+	100 ng Static #1	1.4	280	0.7226	0.7	7.8	-8.6	12.1	1051.2	9.6	0.1	83	-4.6	16.0	-23.8	22.9	-9.0	-8.5
Sahara 97158 IM-	100 ng Static #1	2.6	1620	0.7216	0.4	13.1	-14 7	10.0	893.0	6.4	-3.2	5.5	-1.0	11.6	-5.9	15.9	-11.1	-10.6
									0.010									
NWA 8007 Chondrules	250 ng Static	2 74	900	0.7217	1.8	7 5	-10.0	4.8	1101.9	9.1	57	3.2	23	14 7	4 1	26.1	-11.6	-11.1
NWA 8007 C8	250 ng Static	3.1	1800	0.7214	0.6	6.5	-1.9	4.8	1035.7	9.1	5.7	2.3	-0.8	14.7	0.7	26.1	-1.9	-1.4
111110007 60	200 ng ounie	5.1	1000	0.7211	0.0	0.0			100011		5.7	2.5	0.0	• • • •	0.7	2011	,	
Sahara 97158 L1	200 ng Dynamic 4L	1.8	300	0.7225	0.4	9.9	-33.5	9.9	1918.6	4.0	25.9	3.5	44.0	7.6	78.0	20.4	-557	-55.0
Sabara 97158 I 2	200 ng Bynanie 11	0.9	400	0.7217	6.7	12.3	-93.0	18.7	-967.6	18.2	20.0	16.2	0.5	35.9	-2.8	56.3	-42.6	-41.3
Sahara 97158 I 3	100 ng Static #1	1.0	380	0.7226	2.3	12.5	-118.6	11.9	-2522.1	9.7	-6.0	8.8	2.9	16.1	-5.5	21.6	- 29.1	- 27.3
Sahara 97158 I 4	20 ng Static #1	0.5	300	0.7212	6.6	17.6	-91.9	18.5	-623.7	18.2	2.8	16.2	26.4	35.9	10.5	56.3	-20.1	-48.8
Sabara 97158 I 5	20 ng Static #1	1.2	520	0.7212	5.8	9.1	-53.0	18.7	-302.5	18.2	0.2	16.2	5.4	35.9	-34.3	56.3	-19.4	-18.3
Sahara 97158 I.6	100 ng Static #1	1.2	440	0.7224	2.6	12.4	232.5	10.0	73.4	83	-181.2	7.3	-328.2	12.7	-374.0	17.4	256.7	254.4
5anara 77150150	100 ng State #1	1.5	440	0.7224	2.0	12.4	232.3	10.0	75.4	0.5	-101.2	7.5	-520.2	12.7	-574.0	17.4	250.7	254.4
PCA 91020 I 1	750 og Dynamic 4I	5 5	540	0.7216	0.0	0.3	16.1	5 5	1054.2	3.5	17.7	1.0	35.2	5 5	37.3	10.2	30.3	38 7
PCA 91020 L2	20 ng Static #1	0.6	320	0.7210	2.3	19.2	-53.9	18.7	-531.4	18.2	13.1	16.6	-6.1	35.9	-3.5	56.3	-14.5	-13.5
PCA 91020 L2	20 ng Static #1	0.8	420	0.7216	2.5	18.3	136.6	18.7	3266.7	18.2	7.4	16.2	23.0	35.0	24.8	56.3	28.5	-15.5
PCA 91020 L3	20 ng Static #1	1.0	240	0.7210	2.2	12.1	57.1	18.7	750.8	18.2	1.0	16.2	-2.5.5	35.0	18.2	56.3	11.0	-20.0
DCA 01020 L4	20 ng Static #1	0.0	540	0.7217	2.5	17.0	- 57.1	10.7	1967 7	10.2	-1.0	16.2	12.0	35.9	=10.2	56.3	-11.9	-10.9
PCA 91020 L5	20 ng Static #1	0.9	000	0.7214	2.2	17.0	-0/.0	10.7	-1007.7	10.2	-0.1	10.2 E E	-15.0	11.6	-31.4	15.0	-14.0	-13.3
PCA 91020 L0	20 ng Static #1	2.2	700	0.7213	0.3	0.7	75.5	10.0	-2236.0	10.0	-115.0	25.1	-203.3	21.4	-239.2	13.9	157.0	157.4
PCA 91020 L7	20 ng 5tauc #2	0.5	700	0.7219	1.1	0.5	11.3	22.3	-1933.1	19.0	-01.4	55.1	-194.4	51.4	-230.4	41.1	152.0	151.7
NWA 8007 I 1	20 pg Static #1	0.7	440	0.7209	17	15.5	102.2	187	1573.3	18.2	15.5	16.2	3.8	35.0	23.0	56.3	36.6	35.1
NWA 8007 L 2	20 ng Static #1	0.7	540	0.7209	1.7	12.1	78.0	10.7	-1575.5	0.5	2.7	7.7	2.0	13.5	-20.0	19.6	25.0	-33.1
NWA 8007 L2	100 ng Static #1	1.7	000	0.7219	0.5	13.1 o E	-/0.2	10.0	-000.0	6.5	10.7	/./	10 6	13.5	20.2	15.0	-33.0	-34.0
NWA 8007 L4	100 ng Static #1	1.7	540	0.7215	2.0	0.2	-07.2	10.0	1274.9	7.5	2.5	5.5 6 E	12.7	11.0	12.0	15.9	27.0	-32.9
NWA 8007 L4	200 as Duramia 41	2.4	320	0.7215	2.0	9.2	-20.4	10.0	-13/4.0	1.5	2.3	2.5	12.7	5.0	12.2	13.9	-57.0	-30.3
NWA 8007 LG	200 ng Dynamic 4L	2.4	1200	0.7225	1.1	7.1	26.0	2.2	4075.4	4.0	-1.0	5.5	-0.0	3.9	-13.5	15.9	-5.7	-0.2
INWA 8007 L0	100 lig Static #1	1.0	1800	0.7225	1.1	/.1	30.9	10.0	2102.0	0.4	-50.5	5.5	-20.7	11.0	-3.9	13.9	0.5	0.4
Onemail I 1 2	20 no Statia #2	2.6	540	0.7220	60.1	45.2	310.0	0.1	671.2	0.2	175.0	29.6	242.2	10.5	205.6	22.2	201.7	207.8
Orguei L1-5	20 ng Static #3	2.0	1090	0.7229	09.1	43.3	-310.9	0.1	0/1.5	0.5	175.0	36.0	202.0	10.5	272.0	23.3	-301.7	-297.0
Orguei L4	100 ng Static #2	2.8	1080	0.7222	1.2	15.9	-300.2	8.1	805.1	8.1	175.0	24.7	323.2	8.9	271.7	17.9	-294.4	-290.7
Orguei L5	500-1000 ng Dynamic 4L	3.5	425	0.7222	0.8	1.0	-311.5	4.9	747.2	2.5	175.0	2.2	327.0	/.4	3/1./	18.8	-304.2	-300.4
Orgueil L6	100 ng Static #2	2.2	1080	0.7229	3.3	10.8	- 30 3.2	8.1	709.1	8.1	1/3.0	24.7	325.4	8.9	384.6	17.9	-295.0	-291.2
Orguei L/	20 ng Static #5	0.9	580	0.7228	3.2	10.2	-202.5	9.9	2226.5	8.0 10.7	105.5	38.0	310.6	14.5	20226 4	23.5	-502.0	-300.5
Orguei L8-L15	20 ng Static #5	0.6	100	0.7214	1.0	24.9	15129.0	20.7	3330.5	19.7	-9329.0	38.0	-1/30/.3	50.1	-20556.4	47.2	150/1./	14905.8
Tagish Lake L1	100 ng Static #2	2.6	1080	0.7223	0.8	10.2	-64.4	8.1	1881.8	8.1	43.6	24.7	68.3	8.9	79.9	17.9	-84.3	-84.8
Allende #1	400-600 ng Dynmic 4L	5.6	533	0.7221	3.5	41.6	-32.7	6.9	870.1	4.0	2.8	2.5	11.3	4.5	5.0	20.5	-28.6	
Allende #2	400-600 ng Dynmic 4L	3.7	393	0.7225	0.4	0.0	-34.0	6.9	851.7	4.0	-0.4	2.5	18.6	4.5	18.1	20.5	-29.4	
Sahara 97072	400-600 ng Dynmic 4L	3.7	533	0.7216	0.0	0.0	-12.7	6.9	957.1	4.0	-2.3	2.5	-1.5	4.5	-1.3	20.5	-10.7	
NWA 10854	400-600 ng Dynmic 4L	2.4	1073	0.7219	0.0	0.0	-20.7	6.9	938.1	4.0	2.2	2.5	5.8	4.5	1.6	20.5	-18.2	
Adrar Bous	400-600 ng Dynmic 4L	2.3	368	0.7229	0.0	0.0	-18.2	6.9	775.1	4.0	1.3	2.5	-2.7	7.0	-12.1	34.7	-11.7	
Pillistfer	500-1000 ng Dynamic 4L	6.0	470	0.7228	0.4	1.3	-3.8	4.9	1264.7	2.3	0.4	2.2	1.7	7.4	-4.3	18.8	-9.0	
Agen	500-1000 ng Dynamic 4L	6.9	485	0.7221	0.8	4.8	-18.5	4.9	1010.7	2.3	4.5	2.2	6.3	7.4	3.4	18.8	-17.2	
St Severin	500-1000 ng Dynamic 4L	5.2	360	0.7221	0.4	1.6	-1.0	4.9	1565.4	2.3	7.2	2.2	7.0	7.4	8.2	18.8	-13.7	
NWA 8007	500-1000 ng Dynamic 4L	6.9	540	0.7224	0.3	1.3	-14.9	4.9	1039.4	2.3	4.2	2.2	3.0	7.4	-1.0	18.8	-14.4	
	~ .																	

Table S2. Sm isotope composition of terrestrial standards, leachates and whole-rocks of chondrites.

Samples	Standards associated	I ¹⁴⁹ Sm (V)	cycles	¹⁴⁷ Sm/ ¹⁵² Sm	¹⁴⁴ Nd/ ¹⁴⁴ Sm (ppm)	¹⁵⁴ Gd/ ¹⁵⁴ Sm (ppm)	μ^{144} Sm	2 RSE (ppm)	μ^{148} Sm	2 RSE (ppm)	μ^{149} Sm	2 RSE (ppm)	μ^{150} Sm	2 RSE (ppm)	$\mu^{154}Sm$	2 RSE (ppm)
BHVO-2	200 ng	2.17	720	0.564694	66	1	29.3	20.8	-2.1	3.2	-6.7	2.7	-3.7	3.7	0.0	2.9
BHVO-2	200 ng	2.78	380	0.564104	1330	1	18.0	20.8	0.6	3.4	-14.6	3.2	-5.3	3.7	-0.9	3.6
BCR-2	200 ng	2.20	320	0.562343	749	6	25.5	20.8	-4.5	4.7	-22.0	3.8	-6.8	5.0	1.4	4.2
BCR-2	200 ng	0.45	360	0.564849	116	1	-32.3	19.7	-10.4	8.5	-2.4	8.0	3.8	10.6	-6.8	8.5
PCA 91020 L2	3 ng	0.05	1500	0.563748	1045	76	-16	145	-37	27	-69	128	-3	140	22	37
PCA 91020 L3	3 ng	0.03	530	0.564037	9224	5	-61	145	94	44	41	128	77	140	44	44
PCA 91020 L4	3 ng	0.02	1900	0.566352	2713	87	56	145	47	34	11	128	44	140	-96	37
PCA 91020 L5	3 ng	0.03	900	0.563122	1440	210	24	145	33	38	24	128	61	140	3	43
PCA 91020 L6	20 ng	0.27	180	0.563682	237	0	-64	88	111	17	-33	14	138	45	-30	29
PCA 91020 L7	3 ng	0.03	2200	0.564683	1387	8	-89	145	70	27	-72	128	21	140	-14	37
Sahara 97158 L2	3 ng	0.05	1750	0.564597	526	5	30	145	10	27	102	128	104	140	25	37
Sahara 97158 L3	20 ng	0.23	80	0.561752	1469	1	24	88	35	32	-41	26	38	45	3	29
Sahara 97158 L4	3 ng	0.03	600	0.562474	3222	28	46	154	2	58	-24	128	76	142	50	48
Sahara 97158 L5	3 ng	0.04	2190	0.564803	1646	10	27	145	-24	27	-67	128	9	140	-2	37
Sahara 97158 L6	20 ng	0.18	220	0.564111	1503	2	24	88	180	20	-67	19	224	45	-29	29
NWA 8007 L6	20 ng	0.33	200	0.564282	143	0	30	88	28	16	-20	14	25	45	2	29
OL1-3	5 ng	0.14	220	0.564793	471	1.3	10.6	175.9	-156.2	47.6	-282.3	45.8	287.7	162.5	40.9	25.0
OL4	200 ng	0.57	800	0.564588	76	0.1	9.4	20.8	-160.8	7.4	-251.5	20.0	318.7	6.2	12.1	8.1
OL5	200 ng	1.05	900	0.565825	38	0.3	31.0	20.8	-158.3	7.4	-259.6	20.0	315.6	6.2	15.6	8.1
OL6	5 ng	0.37	320	0.565220	106	0.5	104.8	175.9	-157.8	11.5	-240.6	45.8	337.5	162.5	31.1	25.0
OL7	5 ng	0.20	300	0.564504	309	0.0	-19.9	175.9	-128.6	47.6	-216.2	45.8	312.5	162.5	21.2	25.0
OL8-13	5 ng	0.06	220	0.564567	648	3.0	-1796.9	175.9	8175.9	47.6	-1080.4	45.8	7725.7	162.5	-2153.8	37.6
TL leach	200 ng	0.29	320	0.565011	223	0.5	-49.3	36.1	-13.1	12.8	-89.4	20.0	97.2	15.4	-2.7	11.3
Adrar Bous	200 ng	1.47	480	0.563828	78	0.3	38.6	20.8	-3.4	7.4	-146.6	20.0	247.5	6.2	-8.1	8.1
Agen	200 ng	2.40	840	0.563722	44	0.2	46.7	20.8	-2.6	7.4	-34.6	20.0	61.6	6.2	-4.5	8.1
NWA 10854	200 ng	2.03	660	0.564021	43	0.0	46.5	20.8	-4.5	7.4	-108.9	20.0	170.5	6.2	-0.3	8.1
NWA 8007	200 ng	2.17	680	0.563654	101	0.2	47.8	20.8	-5.6	7.4	-11.4	20.0	-1.1	6.2	-0.9	8.1
Yilmia	200 ng	2.30	660	0.565169	37	0.2	33.3	20.8	-6.2	7.4	-11.3	20.0	0.3	6.2	-2.2	8.1
Pillistfer	200 ng	1.91	500	0.564592	44	0.0	20.8	20.8	-1.5	7.4	-32.4	20.0	46.1	6.2	-5.5	8.1
Saint-Séverin	200 ng	1.05	720	0.565344	38	0.0	54.1	20.8	-3.2	7.4	-31.1	20.0	46.1	6.2	0.1	8.1

Table S3. Compiled Nd isotope compositions of meteorites. Data from this study and from the literature has been compiled, keeping only the most reliable Nd isotope analysis methods. This includes dynamic methods but highprecision Nd isotope compositions obtained with MC-ICP-MS (Saji et al., 2020; ref. 9). Errors were homogeneised throughout this compilation. They consist of either 2 standard errors (2 SE) on the sample or 2 times the standard deviation (2 SD) on standards analysed in the same session of analysis, whichever is larger. Errors (2 SE) reported by Saji et al. (2020; ref. 9) for data obtained with MC-ICP-MS is different from that of TIMS due to different practices with these instruments. Therefore, in order to compare and avoid overweighting data on MC-ICP-MS, 2 standard deviations are reported here for the sake of homogeneity.

ENSTATITE CHONDRITES

Sample	Туре	µ ¹⁴² Nd measured	±	μ ¹⁴² Nd decay corrected	±	$\mu^{145} Nd$	±	$\mu^{148} Nd$	<u>+</u>	$\mu^{150} Nd$	±	
Hvittis (1)	EL6	-6.0	5.0	-12.0	5.0	5.0	9.0	2.0	5.0	-10.0	24.0	Burkhardt et al. (2016)
Hvittis (2)	EL6	-3.0	6.0	-7.0	6.0	2.0	6.0	4.0	7.0	26.0	24.0	Burkhardt et al. (2016)
Hvittis (3)	EL6	-10.0	8.0	-14.0	8.0	7.0	13.0	0.0	15.0	1.0	31.0	Burkhardt et al. (2016)
Saint Sauveur	EH6	-10.0	5.0	-9.0	5.0	5.0	9.0	5.0	5.0	-5.0	24.0	Burkhardt et al. (2016)
Abee (1)	EH4	-19.0	6.0	-6.0	6.0	-3.0	6.0	3.0	7.0	8.0	24.0	Burkhardt et al. (2016)
Abee (2)	EH4	-5.0	8.0	3.0	8.0	8.0	13.0	1.0	15.0	22.0	31.0	Burkhardt et al. (2016)
Indarch (1)	EH4	-14.0	6.0	-12.0	6.0	-1.0	6.0	3.0	7.0	0.0	24.0	Burkhardt et al. (2016)
Indarch (2)	EH4	-16.0	8.0	-14.0	8.0	7.0	13.0	2.0	15.0	12.0	31.0	Burkhardt et al. (2016)
Y-691	EH3	-14.0	5.7	-12.0	5.7	Removed	-	8.8	7.5	11.0	12.0	Fukai and Yokoyama, 2019
Y-980223	EH6	-24.0	5.1	-15.0	5.1	Removed	-	5.7	5.9	15.0	11.0	Fukai and Yokoyama, 2019
Sahara 97159	EH3	-17.1	9.2	-12.6	9.2	3.9	11.9	7.2	22.1	10.8	18.6	Saji et al. (2020)
Pillistfer	EL6	-3.8	4.9	-9.0	2.3	0.4	2.2	1.7	7.4	-4.3	18.8	This study
Sahara 97072	EH3	-12.7	6.9	-10.7	6.9	-2.3	2.5	-1.5	4.5	-1.3	20.5	This study
Adrar Bous	EL5	-18.2	6.9	-11.7	6.9	1.3	2.5	-2.7	7.0	-12.1	34.7	This study
NWA 8552	EL6	Removed	-	Removed	-	1.2	15.9	0.0	33.5	15.0	40.2	Saji et al. (2020)
Atlanta (1)	EL6	Removed	-	Removed	-	2.0	6.0	2.0	7.0	-3.0	24.0	Burkhardt et al. (2016)
Atlanta (2)	EL6	Removed	-	Removed	-	2.0	13.0	-2.0	15.0	15.0	31.0	Burkhardt et al. (2016)
Blithfield (1)	EL6	Removed	-	Removed	-	4.0	6.0	-1.0	7.0	11.0	24.0	Burkhardt et al. (2016)
Blithfield (2)	EL6	Removed	-	Removed	-	4.0	13.0	5.0	15.0	22.0	31.0	Burkhardt et al. (2016)
	Mean Weight 2SD 2SE 95% co n	ed mean nf.		-10.1 -9.9 9.2 2.5 2.4 14		2.7 0.5 6.4 1.5 1.5 17		2.3 2.2 6.3 1.4 1.4 19		7.0 8.0 22.4 5.1 5.0 19		
ORDINARY CHO	NDRITI	ES		110								
Sample	Туре	µ ¹⁴² Nd measured	±	μ ¹⁴² Nd decay corrected	±	$\mu^{145} Nd$	±	$\mu^{148}Nd$	±	$\mu^{150} Nd$	±	
Queens Mercy	H6	-20.0	5.0	-18.0	5.0	2.0	9.0	6.0	5.0	16.0	24.0	Burkhardt et al. (2016)
Allegan	H5	-16.0	5.0	-15.0	5.0	5.0	9.0	11.0	6.0	25.0	24.0	Burkhardt et al. (2016)
Forest City	Н5	-19.0	5.0	-16.0	5.0	5.0	9.0	4.0	6.0	7.0	24.0	Burkhardt et al. (2016)
Pultusk	H5	-20.0	8.0	-16.0	8.0	13.0	13.0	11.0	15.0	18.0	31.0	Burkhardt et al. (2016)
Sainte Marguerite (1)	H4	-16.0	6.0	-16.0	6.0	10.0	6.0	11.0	7.0	21.0	24.0	Burkhardt et al. (2016)

Sainte Marguerite (2	2) H4	-24.0	8.0	-23.0	8.0	10.0	13.0	6.0	15.0	18.0	31.0	Burkhardt et al. (2016)
Bruderheim	L6	-19.0	5.0	-16.0	5.0	2.0	9.0	1.0	5.0	12.0	24.0	Burkhardt et al. (2016)
Farmington (2)	L5	-16.0	6.0	-13.0	6.0	10.0	6.0	10.0	7.0	24.0	24.0	Burkhardt et al. (2016)
Dhurmsala	LL6	-14.0	5.0	-15.0	5.0	0.0	9.0	9.0	5.0	22.0	24.0	Burkhardt et al. (2016)
Chelyabinsk	LL5	-18.0	5.0	-19.0	5.0	2.0	9.0	3.0	4.0	8.0	24.0	Burkhardt et al. (2016)
Kesen	H4	-12.0	4.9	-12.0	4.9	Removed	-	15.0	4.9	27.0	12.0	Fukai and Yokoyama 2017
Forest city	H5	-12.0	7.4	-12.0	7.4	Removed	-	11.0	7.6	17.0	19.0	Fukai and Yokoyama 2017
Saratov	L4	-14.0	5.1	-13.0	5.1	Removed	-	13.0	5.9	20.0	11.0	Fukai and Yokoyama 2017
Etter	L5	-16.0	4.0	-15.0	4.0	Removed	-	8.9	4.6	19.0	7.4	Fukai and Yokoyama 2017
Modoc (1905)	L6	-19.0	5.1	-13.0	5.1	Removed	-	8.1	5.9	6.0	11.0	Fukai and Yokoyama 2017
Hamlet	LL4	-7.5	4.9	-7.2	4.9	Removed	-	10.0	5.1	35.0	12.0	Fukai and Yokoyama 2017
Tuxtuac	LL5	-11.0	5.1	-12.0	5.1	Removed	-	6.4	5.9	13.0	11.0	Fukai and Yokoyama 2017
St. Séverin	LL6	-12.0	7.8	-8.9	7.8	Removed	-	10.0	12.0	23.0	12.0	Fukai and Yokoyama 2017
Agen	H5	-18.5	4.9	-17.2	4.9	4.5	2.2	6.3	7.4	3.4	18.8	This study
St Severin	L6	-1.0	4.9	-13.7	4.9	7.2	2.2	7.0	7.4	8.2	18.8	This study
NWA 8007	L3	-14.9	4.9	-14.4	4.9	4.2	2.2	3.0	7.4	-1.0	18.8	This study
NWA 10854	L3	-20.7	6.9	-18.2	6.9	2.2	2.5	5.8	4.5	1.6	20.5	This study
NWA 5697 (1)	L3	-16.0	3.8	-13.4	3.8	4.6	2.0	7.7	11.9	9.4	8.3	Saji et al. (2020)
NWA 5697 (2)	L3	-14.9	7.3	-12.0	7.3	5.2	9.2	9.7	11.4	16.1	15.5	Saji et al. (2020)
NWA 5697 (3)	L3	-12.0	7.2	-7.8	7.2	-0.1	9.4	7.8	8.9	12.5	8.0	Saji et al. (2020)
Sahara 97172	L5	-6.7	5.7	-3.7	5.7	0.5	4.4	4.6	11.1	9.3	27.8	Saji et al. (2020)
	Mean Weight 2SD 2SE 95% co n	ed mean nf.		-13.9 -13.9 8.1 1.6 1.5 26		4.9 4.6 7.7 1.8 1.8 1.8		7.9 7.6 6.6 1.3 1.3 26		15.0 15.7 17.1 3.4 3.3 26		
ANGRITES												
		142		μ^{142} Nd								
Sample	Туре	μ Nd measured	1 ±	decay corrected	±	$\mu^{145}Nd$	±	$\mu^{148}Nd$	±	$\mu^{150} Nd$	±	
Sahara 99555	Angrite			Removed	-	5.2	15.2	16.6	25.6	26	37.9	Saji et al. (2020)
Angra dos Reis	Angrite			-15.1	3.9	5.9	3.6	17.9	4.1	86	20	Render and Brennecka (2020)
D'Orbigny	Angrite			-17.3	3.9	7.7	3.6	9.4	4.1	3	20	Render and Brennecka (2020)
NWA 4590	Angrite			-14.8	4.2	8.2	3.6	9.3	4.1	67	20	Render and Brennecka (2020)
NWA 6291	Angrite			-14.2	5.5	9.6	3.6	16.5	6.1	62	21	Render and Brennecka (2020)
	Mean			-15.4		7.3		13.9		48.8		
	Weight	ed mean		-15.5		7.8		12.8		52.4		
	2SD			2.7		3.6		8.5		67.1		
	2SE			1.4		1.6		3.8		30.0		
	95% co	nf.		1.3		1.6		3.7		29.4		
				4		5		5		5		

Note: Sahara 99555 from Saji et al. (2020) has been corrected using the age of 4564 Ma in agreement with corrected ages from Tissot et al. (2017) and has a μ^{142} Nd of -3.4 which is very different from other angrites. The μ^{142} Nd may

EUCRITES

Sample	Туре	µ ¹⁴² Nd measured	±	μ ¹⁴² 1 deca correc	Vd 1y :ted	±	$\mu^{145} Nd$		±	$\mu^{148} Nd$		±	$\mu^{150}Ne$	đ	±	
Tirhert	Eucrite			-13.1	4.6		8.4	1.2		9.3	5.1		8.2		15.9	Frossard et al. (2021) Only dyn 4L
NWA 11001	Eucrite			-14.3	8.5		6.3	1.0		13.2	5.1		22.3		15.9	Frossard et al. (2021)
Bouvante	Eucrite			-17.5	3.7		8.3	3.6		13.2	4.1		23.0		20.0	Render and Brennecka (2020)
Juvinas	Eucrite			-18.0	3.9		8.4	3.6		15.4	4.1		44.0		20.0	Render and Brennecka (2020)
Millbillillie	Eucrite			-9.9	3.7		8.4	3.6		10.6	4.1		61.0		20.0	Render and Brennecka (2020)
Petersburg	Eucrite			-14.2	3.7		6.3	3.6		9.1	4.1		-10.0		20.0	Render and Brennecka (2020)
Stannern	Eucrite			-17.4	3.7		6.4	3.6		14.0	4.1		15.0		20.0	Render and Brennecka (2020)
	Mean			-14.9			7.5			12.1			23.4			
	Weighted	l mean		-15.1			7.3			12.2			22.2			
	2SD			5.9			2.2			4.9			46.6			
	2SE			2.2			0.8			1.9			17.6			
	95% conf	•		2.2			0.8			1.8			17.3			
	n			7			7			7			7			
OTHER ACHON	DRITES															
Sample	Туре	µ ¹⁴² Nd measured	±	μ ¹⁴² h deca correc	Nd 1y :ted	±	$\mu^{145}Nd$		±	$\mu^{148} Nd$		±	$\mu^{150}N$	đ	±	
NWA 5363	Ung. ach.			-16.0	5.9		11.0	6.0		17.1	7.3		39.0		24.0	Burkhardt et al. (2016)
NWA 11119	Ung. ach.			-10.6	13.	7	6.9	2.9		14.3	8.3		28.7		22.5	Frossard et al. (2021) 2SD but n=2
NWA 12338	Ung. ach.			-9.7	4.6		7.0	1.7		12.1	7.0		19.9		15.9	Frossard et al. (2021)
Bunburra Rockhole	Ung. ach.			-6.3	4.4		7.6	3.6		11.9	5.7		79.0		20.0	Render and Brennecka (2020)
Erg Chech 002 (1)	Ung.ach.			-14.8	3.4		9.3	2.5		11.0	3.6		correc	ted fo	or neutron capture, no data	on Fang et al. (2022)
Erg Chech 002 (2)	Ung.ach.			-15.4	3.4		8.5	2.5		12.9	3.6		correc	ted fo	or neutron capture, no data	on Fang et al. (2022)
			Mean	-15.1	3.4		8.9	2.5		12.0	3.6					
NWA 6704	Carb. ung.	ach.		-24.1	1.9		8.9	1.7		18.3	1.2		34.4		8.6	Frossard et al. (2021)
Tafassasset	Carb. ung.	ach.		-33.2	2.4		10.6	2.1		17.1	1.4		12.8		11.9	Frossard et al. (2021)
CARBONACEOU	S CHOND	RITES		142												
Sample	Туре	μ ¹⁴² Nd measured	±	μ ¹⁺²] deca correc	Nd 1y :ted	±	$\mu^{145} Nd$		±	$\mu^{148} Nd$		±	$\mu^{150}N$	đ	±	
Allende (2)	CV3	-30.0		5.0	-30.0	5.	0	2.0		9.0	9.0		4.0	8	.0 24.0	Burkhardt et al. (2016)
Allende (3)	CV3	-30.0		6.0	-31.0	6.	0	5.0		6.0	4.0		7.0	-6	.0 24.0	Burkhardt et al. (2016)

Allende (4)	CV3	-33.0	8.0	-31.0	8.0	8.0	13.0	16.0	15.0	11.0	31.0	Burkhardt et al. (2016)
Allende	CV3	-32.0	7.5	-31.0	7.5 Ren	noved -		19.0	16.0	27.0	26.0	Fukai and Yokoyama 2017
Dho 1432	CR2	-28.0	3.8	-30.0	3.8 Ren	noved -		18.0	5.4	26.0	9.5	Fukai and Yokoyama 2017
Murchison	CM2	-31.0	7.4	-31.0	7.4 Ren	noved -		23.0	13.0	24.0	24.0	Fukai and Yokoyama 2017
DaG 190	CO3	-34.0	4.0	-34.0	4.0 Ren	noved -		22.0	4.6	27.0	7.4	Fukai and Yokoyama 2017
Kainsaz	CO3	-35.0	4.8	-35.0	4.8 Ren	noved -		21.0	5.6	26.0	10.0	Fukai and Yokoyama, 2019
Tagish Lake	C2 ung.	-18.0	5.1	-16.0	5.1 Ren	noved -		3.2	5.9	8.7	11.0	Fukai and Yokoyama 2017
Orgueil	CI	-21.0	4.8	-21.0	4.8 Ren	noved -		2.0	5.6	-2.1	10.0	Fukai and Yokoyama, 2019
Ivuna	CI	-14.6	11.0	-14.5	11.0	-0.1	5.1	0.4	4.7	3.7	10.5	Saji et al. (2020)
Tagish Lake	C2 ung.	-15.8	4.2	-12.4	4.2	-0.4	8.3	5.3	15.4	0.0	9.8	Saji et al. (2020)
Jbilet Winselwan	CM2	-26.8	4.4	-21.8	4.4	6.5	4.1	20.9	3.8	24.9	12.0	Saji et al. (2020)
Sahara 99544	CO3	-15.2	2.7	-14.2	2.7	5.9	4.2	9.3	4.9	10.9	11.2	Saji et al. (2020)
CV		-31.3	3.0	-30.8	1.0	5.0	6.0	12.0	13.6	10.0	27.1	
СМ		-28.9	5.9	-26.4	13.0	6.5	4.1	22.0	3.0	24.5	1.3	
CO		-28.1	22.3	-27.7	23.5	5.9	4.2	17.4	14.1	21.3	18.0	
CI		-17.8	9.1	-17.8	9.2	-0.1	5.1	1.2	2.3	0.8	8.2	
CR		-28.0	3.8	-30.0	3.8			18.0	5.4	26.0	9.5	
Tagish Lake		-16.9	3.1	-14.2	5.1	-0.4	8.3	4.3	3.0	4.4	12.3	

Table S4. Trace element contents (ng or µg) in leachates and concentrations (ppb or ppm) for mineral separates of Sahara 97158 and chondrules of NWA 8007 (in italics). n.a.: not analysed; b.d.l.: below detection limit; NM: non-magnetic; Mag: magnetic; MM: midly magnetic.

Meteorite			Sahara	97158		NWA 8007								
#	L1	L2	L3	L4	L5	L6	L1	L2	L3	L4	L5	L6		
Sc (µg)	0.496	0.013	1.86	0.24	2.011	1.131	0.194	0.927	1.657	0.904	4.03	1.80		
Ti (μg)	0.929	0.213	252	16.9	86.7	145	0.512	25.7	108	110	282	315		
V (µg)	0.719	0.630	35.7	1.36	9.80	11.8	0.231	4.72	13.5	6.10	31.2	36.9		
Cr (µg)	41.1	131	2495	69.4	395	461	26.8	123	302	170	1683	2516		
Co (µg)	6.09	35.8	943	14.4	1.45	3.08	19.9	31.4	190	231	10.0	7.55		
Ni (µg)	26.6	73.2	20403	344	30.9	78.9	447	528	3526	3312	116	23.3		
Cu (µg)	0.052	0.026	209	4.53	2.94	7.09	2.79	12.7	26.8	73.0	3.11	1.49		
Zn (µg)	0.355	0.414	326	4.54	3.58	6.20	0.53	3.55	7.40	4.95	55.3	11.4		
Rb (ng)	319	336	387	81.6	474	1705	129	312	609	268	318	1102		
Sr (ng)	1585	990	3065	432	916	1211	10430	6459	23859	9442	2395	3209		
Y (ng)	1024	54.1	146	32.5	151	179	87.7	197	396	340	903	498		
Zr (ng)	146	b.d.l.	1404	220	818	1283	17.1	108	817	1398	1623	2249		
Nb (ng)	2.9	b.d.l.	24.3	16.0	12.1	204.1	0.3	0.4	4.0	25.0	34.9	427.3		
Cs (ng)	5.2	2.4	61.6	6.8	36.2	103.5	2.3	18.3	41.3	18.4	13.8	41.0		
Ba (ng)	639	551	828	97.4	270	296	1335	4487	8103	2074	421	521		
La (ng)	180	13.4	31.9	3.7	10.1	19.7	14.8	48.0	130	66.2	71.7	82.5		
Ce (ng)	474	27.5	81.2	11.2	27.4	50.4	36.2	124	292	179	225	220		
Pr (ng)	71.4	3.9	11.5	1.8	4.3	7.8	5.6	17.5	39.1	27.3	39.7	32.8		
Nd (ng)	376	18.7	55.5	7.6	26.2	45.5	28.3	84.9	172	138	239	176		
Sm (ng)	134	3.6	14.6	1.2	5.4	12.3	8.4	23.4	45.5	40.0	89.1	58.1		
Eu (ng)	40.9	2.8	11.8	1.2	2.1	5.6	4.1	11.0	21.4	26.8	19.6	20.5		
Gd (ng)	166	7.5	22.5	4.7	16.4	23.2	12.5	29.1	56.9	57.6	131	82.6		
Tb (ng)	28.3	1.2	4.4	0.8	3.3	4.5	1.9	4.7	9.9	9.4	23.9	14.5		
Dy (ng)	197	10.4	27.7	6.1	24.6	35.9	12.9	34.8	67.0	66.6	170	107		
Ho (ng)	40.0	1.8	5.9	1.1	4.7	7.4	2.9	7.4	14.6	13.4	35.2	22.0		
Er (ng)	120	7.2	19.2	3.6	18.7	23.9	8.7	25.0	46.3	43.1	108	71.7		
Tm (ng)	17.5	1.0	2.8	0.6	2.9	3.1	1.3	3.4	7.1	6.0	15.6	9.7		
Yb (ng)	140	7.2	14.1	2.4	11.9	16.3	8.1	25.0	46.4	41.9	104	67.4		
Lu (ng)	16.5	1.2	3.3	0.6	3.6	4.0	1.4	3.6	7.5	6.5	14.3	10.1		
Hf (ng)	1.1	b.d.l.	13.5	5.5	33.8	56.4	0.4	2.4	18.5	31.5	43.0	75.1		
Ta (ng)	0.4	b.d.l.	0.3	b.d.l.	b.d.l.	10.1	0.3	0.2	0.2	b.d.l.	0.1	22.1		
W (ng)	b.d.l.	b.d.l.	104	28.7	6.9	12.9	b.d.l.	b.d.l.	6.5	118	49.2	48.4		
Pb (ng)	0.4	b.d.l.	2292	42.8	34.2	54.2	1.1	68.6	396	184	19.9	17.5		
Th (ng)	4.0	b.d.l.	14.3	0.9	3.5	4.8	0.7	3.0	12.8	12.6	7.6	5.5		
U (ng)	0.3	0.1	5.6	0.5	0.4	1.2	8.1	9.5	8.7	5.1	2.4	3.6		

Meteorite			Р	CA 9102	20					Sahara	97158	
#	L1	L2	L3	L4	L5	L6	L7		IM+	IM-	NM	Mag
Sc (µg)	0.127	0.014	0.323	0.233	0.919	0.913	2.23	Sc (ppm)	0.343	0.466	7.35	1.11
Ti (µg)	5.84	0.84	364	16.7	23.5	158	10.5	Ti (ppm)	390	390	439	342
V (µg)	1.84	19.1	27.0	0.916	2.32	11.7	3.22	V (ppm)	48.7	51.2	56.6	46.5
Cr (µg)	39.3	520	2398	54.0	71.9	394	129	Cr (ppm)	2241	2293	2336	2248
Co (µg)	4.77	29.1	808	9.72	0.331	1.73	0.204	Co (ppm)	852	669	160	1288
Ni (µg)	57.4	159	16886	213	8.60	59.0	n.a.	Ni (ppm)	n.a.	n.a.	n.a.	n.a.
Cu (µg)	0.026	0.024	145	2.27	0.380	2.10	0.371	Cu (ppm)	197	183	213	245
Zn (µg)	8.95	2.67	226	3.35	0.282	1.06	0.581	Zn (ppm)	272	236	186	395
Rb (ng)	54.5	52.7	112	66.5	154	3128	239	Rb (ppb)	2457	1689	3590	1605
Sr (ng)	2116	676	1283	736	1109	3994	948	Sr (ppb)	5501	5259	8922	3985
Y (ng)	1534	37.6	43.2	51.1	104	199	205	Y (ppb)	1107	1178	1708	842
Zr (ng)	33.4	b.d.l.	1152	569	527	1605	1253	Zr (ppb)	3235	3496	4114	2571
Nb (ng)	2.0	4.6	66.0	41.3	18.9	195.4	2.8	Nb (ppb)	253	248	252	257
Cs (ng)	1.3	0.4	9.2	3.5	9.1	177.3	19.3	Cs (ppb)	71.4	15.1	172.3	42.1
Ba (ng)	121	152	272	192	331	1355	619	Ba (ppb)	2428	2523	4721	2582
La (ng)	265	10.2	11.0	8.8	13.7	36.0	9.5	La (ppb)	185	186	265	192
Ce (ng)	703	24.4	26.2	19.9	32.1	80.8	26.6	Ce (ppb)	476	490	686	466
Pr (ng)	106	3.4	3.7	3.0	4.9	12.5	3.6	Pr (ppb)	72.6	75.2	102.0	65.4
Nd (ng)	558	15.4	18.7	15.8	27.0	72.3	19.2	Nd (ppb)	366	389	514	307
Sm (ng)	197	4.4	3.5	3.4	5.7	17.3	5.1	Sm (ppb)	121	123	160	98
Eu (ng)	52.0	2.8	4.3	2.2	3.6	15.0	4.1	Eu (ppb)	44.4	46.8	54.6	40.9
Gd (ng)	244	5.5	7.0	6.6	12.8	37.6	13.2	Gd (ppb)	162	180	236	121
Tb (ng)	41.9	1.1	1.2	1.3	2.4	6.7	2.9	Tb (ppb)	28.4	31.7	40.9	21.1
Dy (ng)	292	8.0	8.3	9.0	18.3	49.0	21.2	Dy (ppb)	205	219	293	150
Ho (ng)	60.2	1.8	1.8	2.0	4.1	10.7	5.0	Ho (ppb)	43.1	45.1	62.0	31.3
Er (ng)	185	5.3	5.4	6.3	12.3	34.1	17.7	Er (ppb)	135	144	197	94.8
Tm (ng)	25.6	0.8	0.7	0.9	1.9	4.8	3.2	Tm (ppb)	18.7	18.9	27.4	13.1
Yb (ng)	206	5.5	3.6	3.9	7.9	21.3	14.8	Yb (ppb)	124	120	162	104
Lu (ng)	24.4	0.7	0.8	1.0	2.2	5.5	4.2	Lu (ppb)	18.6	18.1	28.3	13.4
Hf (ng)	1.0	b.d.l.	7.1	9.6	15.0	77.3	49.9	Hf (ppb)	113	96.1	118	61.0
Ta (ng)	0.6	0.1	2.7	0.1	b.d.l.	15.2	0.2	Ta (ppb)	21.4	40.5	3891	42.1
W (ng)	0.5	2.1	121	31.2	4.3	8.3	1.8	W (ppb)	138	109	702	181
Pb (ng)	3.7	b.d.l.	1770	37.1	25.0	48.3	41.7	Pb (ppb)	1736	1625	1902	1647
Th (ng)	0.6	b.d.l.	5.4	2.5	5.2	6.0	11.7	Th (ppb)	12.4	13.3	36.6	41.2
U (ng)	0.5	b.d.l.	6.2	0.5	0.7	2.7	0.4	U (ppb)	6.1	6.3	9.4	4.7

Meteorite							Orgueil						
#	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13
Sc (µg)	0.004	0.028	0.160	0.706	2.75	1.37	4.50	1.08	0.229	0.049	0.029	0.077	0.069
Ti (µg)	0.033	0.050	0.080	1.46	15.3	20.2	177	119	100	166	128	0.428	0.018
V (µg)	0.007	0.009	0.033	0.681	3.85	4.99	58.1	14.9	3.63	0.762	0.475	n.a.	n.a.
Cr (µg)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2.01	8.02
Co (µg)	5.63	10.3	17.6	37.3	87.3	93.5	423	103	26.6	4.86	3.44	0.104	0.028
Ni (µg)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Cu (µg)	0.045	0.466	1.60	16.0	30.6	19.9	65.9	20.6	23.4	17.4	14.8	n.a.	n.a.
Zn (µg)	0.613	4.61	8.29	29.7	58.7	54.9	252	65.9	19.2	4.48	1.41	0.078	0.088
Rb (ng)	1566	676	480	564	334	135	305	86.6	25.3	5.2	3.4	1.7	3.4
Sr (ng)	3612	1752	2682	3976	1355	170	75.7	19.5	28.1	25.7	8.8	2.3	1.0
Y (ng)	2.0	19.1	53.1	588	1363	315	93.0	23.2	5.3	5.1	6.1	n.a.	n.a.
Zr (ng)	b.d.l.	b.d.l.	b.d.l.	b.d.l.	30.4	83.0	780	287	216	319	1945	143	80.3
Nb (ng)	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.1	0.3	3.0	1.6	3.3	34.4	194	26.4	12.6
Cs (ng)	26.7	12.1	8.5	24.6	55.8	51.7	82.9	22.1	5.7	1.2	0.9	n.a.	n.a.
Ba (ng)	173	294	458	1371	634	130	117	47.2	239	449	172	1.2	0.3
La (ng)	0.5	4.8	10.5	84.5	228	52.8	10.5	2.7	0.9	1.7	0.9	0.5	0.3
Ce (ng)	0.4	8.6	20.6	214	584	140	29.6	7.5	2.4	2.9	1.5	0.9	0.5
Pr (ng)	0.1	1.0	2.8	31.3	87.8	21.4	4.6	1.2	0.2	0.3	0.2	0.2	0.1
Nd (ng)	0.3	4.7	13.0	164	455	110	24.9	7.0	1.9	1.4	1.0	0.2	0.1
Sm (ng)	0.1	1.7	4.0	54.1	146	33.4	9.0	2.6	0.6	0.6	0.3	b.d.l.	b.d.l.
Eu (ng)	0.1	0.6	1.7	22.3	54.9	12.6	3.6	0.9	0.3	0.2	b.d.l.	0.1	b.d.l.
Gd (ng)	0.1	2.4	6.4	75.8	187	43.8	12.3	3.2	1.0	0.8	0.5	0.1	b.d.l.
Tb (ng)	b.d.l.	0.3	1.0	13.7	33.4	7.8	2.2	0.6	0.1	0.1	0.1	0.1	b.d.l.
Dy (ng)	0.2	2.3	6.5	94.8	234	55.1	15.6	4.0	1.2	0.9	0.7	0.2	b.d.l.
Ho (ng)	b.d.l.	0.4	1.3	19.7	48.4	11.7	3.3	0.9	0.2	0.1	0.1	0.2	b.d.l.
Er (ng)	0.1	1.2	3.4	59.1	147	36.4	11.2	3.1	0.7	0.6	0.6	0.3	b.d.l.
Tm (ng)	b.d.l.	0.1	0.4	8.8	22.1	5.7	1.7	0.5	0.1	b.d.l.	b.d.l.	b.d.l.	0.1
Yb (ng)	0.1	1.0	2.9	58.2	148	38.2	12.6	3.8	0.7	0.5	0.2	b.d.l.	b.d.l.
Lu (ng)	b.d.l.	0.1	0.4	8.3	21.7	5.5	1.9	0.5	0.1	0.1	0.1	0.3	b.d.l.
Hf (ng)	b.d.l.	b.d.l.	b.d.l.	0.2	1.1	2.0	19.2	6.2	4.5	15.2	49.0	2.9	2.1
Ta (ng)	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.2	0.1	0.1	b.d.l.	b.d.l.	b.d.l.	b.d.l.	n.a.	n.a.
W (ng)	b.d.l.	b.d.l.	b.d.l.	0.2	0.5	0.3	5.1	3.4	10.7	37.6	52.7	n.a.	n.a.
Pb (ng)	b.d.l.	1.6	7.3	306	1331	860	787	222	43.5	10.7	12.8	0.9	2.1
Th (ng)	b.d.l.	b.d.l.	b.d.l.	0.3	10.4	10.0	9.8	2.5	0.7	0.3	0.1	n.a.	n.a.
U (ng)	b.d.l.	0.1	0.7	2.7	2.9	1.0	1.3	0.7	0.7	0.3	0.1	n.a.	n.a.

Table S5. Nd isotope composition of JNdi-1 synthetic standards with various Nd contents in different sessions of analyses.

Standards	Mass (ng)	I ¹⁴² Nd (V)	cycles	¹⁴² Nd/ ¹⁴⁴ Nd	2 SE	2 RSE (ppm)	¹⁴³ Nd/ ¹⁴⁴ Nd	2 SE	2 RSE (ppm)	¹⁴⁵ Nd/ ¹⁴⁴ Nd	2 SE	2 RSE (ppm)	148Nd/144Nd	2 SE	2 RSE (ppm)	¹⁵⁰ Nd/ ¹⁴⁴ Nd	2 SE	2 RSE (ppm)	¹⁴⁶ Nd/ ¹⁴⁴ Nd
20 ng JNd	i-1 Static #1																		
#1	20	0.7	580	1.141843	0.000015	13.0	0.512104	0.000006	11.8	0.348400	0.000004	11.4	0.241571	0.000004	18.3	0.236440	0.000006	24.5	0.7227
#2	20	0.5	340	1.141817	0.000022	18.9	0.512095	0.000008	16.6	0.348404	0.000005	15.0	0.241578	0.000006	25.4	0.236456	0.000008	33.8	0.7226
#3	20	0.9	420	1.141831	0.000014	11.8	0.512104	0.000005	9.5	0.348397	0.000004	10.3	0.241576	0.000004	15.0	0.236449	0.000005	22.9	0.7229
#4	20	1.0	500	1.141827	0.000013	11.2	0.512102	0.000005	10.2	0.348399	0.000003	8.8	0.241569	0.000004	14.6	0.236449	0.000005	20.2	0.7224
			Mean	1.141829	0.000021	18.7	0.512101	0.000009	18.2	0.348400	0.000006	16.2	0.241573	0.000009	35.9	0.236449	0.000013	56.3	0.7227
20 ng JNd	i-1 Static #2																		
#1	20	0.5	900	1.141825	0.000014	11.9	0.512099	0.000005	10.2	0.348395	0.000003	9.6	0.241584	0.000004	16.4	0.236447	0.000005	22.7	0.7219
#2	20	1.0	360	1.141826	0.000014	12.0	0.512103	0.000005	10.4	0.348390	0.000003	9.4	0.241581	0.000004	15.5	0.236458	0.000005	21.6	0.7234
#3	20	0.9	260	1.141842	0.000014	12.5	0.512108	0.000005	10.4	0.348395	0.000003	9.8	0.241576	0.000004	16.3	0.236451	0.000005	21.1	0.7231
#4	20	0.3	900	1.141810	0.000017	14.8	0.512097	0.000007	13.6	0.348404	0.000004	12.9	0.241578	0.000005	22.5	0.236448	0.000007	30.2	0.7215
			Mean	1.141826	0.000026	22.5	0.512102	0.000010	19.0	0.348396	0.000012	35.1	0.241580	0.000008	31.4	0.236451	0.000010	41.1	0.7225
20 ng JNd	i-1 Static #3	0.7	5.40	1 1 1 1 0 1 0	0.000010		0.510105	0.000007	10.0	0.040204	0.00000	0.0	0.044555	0.000004		0.00(110	0.000005	21.0	0 5000
#1	20	0.7	200	1.141843	0.000013	12.1	0.512107	0.000006	10.9	0.348381	0.000003	9.9	0.241577	0.000004	16.4	0.236449	0.000005	21.0	0.7228
#2	20	1.8	540	1.141851	0.000014	12.1	0.512107	0.000005	10.6	0.348384	0.000003	9.4	0.241574	0.000004	18.2	0.236445	0.000006	23.3	0.7235
#3	20	0.8	540	1.141841	0.000012	10.9	0.512104	0.000005	9.1	0.348391	0.000003	8.6	0.241574	0.000004	15.9	0.236451	0.000005	19.3	0.7223
#4	20	0.9	360 Maar	1.141844	0.000015	12.8	0.512105	0.000006	0.2	0.3483/5	0.000003	9.5	0.241574	0.000004	18.4	0.236445	0.000006	24.4	0.7229
			Mean	1.141645	0.000009	6.1	0.512105	0.000004	8.5	0.348383	0.000013	38.0	0.241375	0.000003	10.5	0.230448	0.000006	23.5	0.7229
100 ng IN	di-1 Static #1	1																	
#1	100	2.9	760	1 141816	0.000006	4 9	0 512097	0.000002	43	0 348400	0.000001	3.9	0 241577	0.000002	6.9	0 236447	0.000002	9.0	0.7218
#2	100	3.7	460	1.141815	0.000006	5.7	0.512099	0.000002	4.8	0.348400	0.000001	4.1	0.241575	0.000002	7.5	0.236446	0.000002	10.2	0.7225
#3	100	2.6	780	1.141820	0.000006	4.9	0.512096	0.000002	4.5	0.348399	0.000001	3.6	0.241578	0.000002	6.7	0.236449	0.000002	9.4	0.7223
#4	100	2.3	680	1.141821	0.000006	5.4	0.512100	0.000002	4.7	0.348400	0.000001	4.2	0.241576	0.000002	7.3	0.236448	0.000002	10.3	0.7216
#5	100	2.2	360	1.141826	0.000009	7.8	0.512099	0.000004	6.9	0.348400	0.000002	6.1	0.241575	0.000003	10.5	0.236448	0.000003	13.6	0.7215
#6	100	1.9	360	1.141830	0.000008	7.2	0.512099	0.000003	5.8	0.348401	0.000002	5.1	0.241575	0.000002	9.7	0.236449	0.000003	12.1	0.7223
#7	100	2.0	500	1.141817	0.000008	7.3	0.512098	0.000003	6.5	0.348400	0.000002	5.7	0.241576	0.000002	9.6	0.236447	0.000003	13.5	0.7222
#8	100	1.8	840	1.141826	0.000006	5.6	0.512098	0.000002	4.7	0.348400	0.000001	4.3	0.241575	0.000002	7.7	0.236446	0.000002	10.4	0.7221
#9	100	1.8	880	1.141823	0.000006	5.5	0.512098	0.000002	4.7	0.348399	0.000002	4.3	0.241575	0.000002	7.5	0.236449	0.000002	10.1	0.7217
#10	100	1.9	900	1.141818	0.000006	5.3	0.512099	0.000002	4.4	0.348401	0.000001	4.1	0.241577	0.000002	7.2	0.236451	0.000002	9.6	0.7222
#11	100	1.5	440	1.141817	0.000010	8.4	0.512099	0.000004	7.3	0.348398	0.000002	6.5	0.241574	0.000003	10.8	0.236449	0.000004	15.7	0.7223
#12	100	1.3	820	1.141827	0.000008	6.8	0.512097	0.000003	5.8	0.348401	0.000002	5.7	0.241577	0.000002	9.1	0.236453	0.000003	12.5	0.7227
#13	100	1.4	560	1.141833	0.000009	7.6	0.512103	0.000003	6.5	0.348401	0.000002	6.1	0.241573	0.000003	11.1	0.236450	0.000003	14.4	0.7220
			Mean	1.141822	0.000011	10.0	0.512099	0.000003	6.4	0.348400	0.000002	5.5	0.241576	0.000003	11.6	0.236449	0.000004	15.9	0.7221

100 ng J	Ndi-1 Static #	¥2																	
#1	100	2.5	540	1.141833	0.000006	5.4	0.512102	0.000002	4.6	0.348384	0.000002	4.7	0.241577	0.000002	7.5	0.236445	0.000002	9.8	0.7210
#2	100	3.8	540	1.141843	0.000006	5.4	0.512105	0.000002	4.6	0.348379	0.000001	4.0	0.241574	0.000002	7.8	0.236444	0.000002	10.3	0.7225
#3	100	3.0	540	1.141836	0.000006	5.5	0.512101	0.000002	4.6	0.348393	0.000001	4.1	0.241575	0.000002	7.4	0.236449	0.000002	9.9	0.7221
#4	100	3.6	540	1.141845	0.000006	5.1	0.512106	0.000002	4.5	0.348385	0.000001	3.9	0.241576	0.000002	6.8	0.236449	0.000002	9.3	0.7221
#5	100	4.8	540	1.141840	0.000005	4.6	0.512105	0.000002	4.0	0.348386	0.000001	3.2	0.241575	0.000001	6.0	0.236444	0.000002	8.1	0.7215
#6	100	3.4	540	1.141843	0.000006	5.3	0.512105	0.000002	4.6	0.348385	0.000001	3.7	0.241575	0.000002	6.4	0.236446	0.000002	8.7	0.7216
			Mean	1.141840	0.000009	8.1	0.512104	0.000004	8.1	0.348386	0.000009	24.7	0.241575	0.000002	8.9	0.236446	0.000004	17.9	0.7218
200 ng J	Ndi-1 Dynam	nic 4 lines																	
#1	200	1.8	540	1.141828	0.000003	2.8	0.512099	0.000001	1.9	0.348404	0.000001	1.8	0.241578	0.000001	5.1	0.236450	0.000003	12.1	0.7214
#2	200	2.0	300	1.141820	0.000004	3.7	0.512096	0.000001	2.3	0.348402	0.000001	2.2	0.241578	0.000002	7.0	0.236451	0.000004	17.1	0.7217
#3	200	1.9	460	1.141830	0.000004	3.1	0.512098	0.000001	2.0	0.348403	0.000001	1.9	0.241577	0.000001	5.6	0.236447	0.000003	13.9	0.7218
#4	200	1.8	280	1.141820	0.000004	3.8	0.512098	0.000001	2.7	0.348404	0.000001	2.6	0.241578	0.000002	7.0	0.236448	0.000004	16.6	0.7216
#5	200	2.5	340	1.141833	0.000005	4.5	0.512099	0.000002	3.2	0.348404	0.000001	2.4	0.241578	0.000002	6.4	0.236449	0.000003	14.3	0.7218
#6	200	2.2	540	1.141831	0.000003	2.5	0.512098	0.000001	1.6	0.348403	0.000001	1.7	0.241577	0.000001	4.7	0.236448	0.000003	11.7	0.7213
			Mean	1.141827	0.000011	9.9	0.512098	0.000002	4.0	0.348403	0.000001	3.5	0.241578	0.000001	3.7	0.236449	0.000003	13.9	0.7216
250 ng J	Ndi-1 Static																		
#1	250	2.1	1280	1.141828	0.000005	4.1	0.512102	0.000002	3.5	0.348398	0.000001	3.2	0.241577	0.000001	5.7	0.236451	0.000002	7.7	0.7220
#2	250	2.9	1800	1.141829	0.000003	2.9	0.512101	0.000001	2.6	0.348398	0.000001	2.3	0.241577	0.000001	3.9	0.236449	0.000001	5.4	0.7221
#3	250	1.6	660	1.141825	0.000008	6.7	0.512098	0.000003	5.8	0.348398	0.000002	4.9	0.241577	0.000002	9.2	0.236449	0.000003	12.4	0.7214
#4	250	1.9	740	1.141832	0.000006	5.4	0.512104	0.000002	4.4	0.348398	0.000001	3.9	0.241581	0.000002	6.9	0.236456	0.000002	9.6	0.7230
#5	250	3.3	880	1.141830	0.000004	3.9	0.512100	0.000002	3.3	0.348397	0.000001	2.9	0.241579	0.000001	4.9	0.236452	0.000002	6.9	0.7226
			Mean	1.141829	0.000006	4.8	0.512101	0.000005	9.1	0.348398	0.000001	2.1	0.241578	0.000004	14.7	0.236451	0.000006	26.1	0.7222
750 ng I	Ndi-1 Dynam	nic 4 lines																	
#1	750	4.3	540	1.141823	0.000002	1.9	0.512097	0.000001	1.3	0.348403	0.000000	1.2	0.241578	0.000001	3.5	0.236450	0.000002	8.1	0.7218
#2	750	6.6	540	1.141829	0.000002	1.6	0.512099	0.000001	1.0	0.348403	0.000000	0.9	0.241579	0.000001	2.5	0.236450	0.000002	6.9	0.7227
#3	750	4.8	540	1.141830	0.000002	1.8	0.512099	0.000001	1.2	0.348403	0.000000	1.2	0.241577	0.000001	3.6	0.236448	0.000002	8.6	0.7212
#4	750	4.6	540	1.141832	0.000002	1.8	0.512099	0.000001	1.1	0.348403	0.000000	1.1	0.241578	0.000001	3.1	0.236450	0.000002	7.7	0.7221
#5	750	2.4	540	1.141830	0.000003	2.4	0.512098	0.000001	1.6	0.348403	0.000000	1.4	0.241578	0.000001	4.4	0.236454	0.000003	10.9	0.7223
			Mean	1.141829	0.000006	5.5	0.512098	0.000002	3.5	0.348403	0.000000	0.4	0.241578	0.000001	5.5	0.236450	0.000005	19.2	0.7220
400-600	ng INdi-1 Du	mamic 4 li	nes																
#1	600	4.0	520	1.141830	0.000002	1.8	0.512098	0.000001	1.1	0.348403	0.000000	1.1	0.241579	0.000001	3.1	0.236455	0.000002	8.1	0.7228
#1 #2	600	2.5	460	1.141838	0.000003	2.4	0.512099	0.000001	1.6	0.348403	0.000001	1.5	0.241578	0.000001	4.4	0.236456	0.000003	10.7	0.7223
#3	600	3.7	740	1.141831	0.000002	1.7	0.512098	0.000001	1.1	0.348403	0.000000	1.1	0.241578	0.000001	3.1	0.236451	0.000002	7.5	0.7228
#4	600	2.4	510	1.141840	0.000003	2.5	0.512100	0.000001	1.7	0.348403	0.000001	1.6	0.241578	0.000001	4.6	0.236456	0.000003	10.7	0.7222
#5	600	4.7	540	1.141826	0.000002	1.9	0.512098	0.000001	1.2	0.348403	0.000000	1.1	0.241578	0.000001	3.0	0.236450	0.000002	9.1	0.7217
#6	600	2.7	400	1.141837	0.000003	2.8	0.512098	0.000001	1.7	0.348402	0.000001	1.7	0.241578	0.000001	4.5	0.236454	0.000003	12.1	0.7225

#7	600	5.0	540	1.141831	0.000002	1.7	0.512099	0.000001	1.1	0.348403	0.000000	1.0	0.241578	0.000001	2.9	0.236453	0.000002	7.3	0.7228
#8	600	2.4	1080	1.141833	0.000002	2.1	0.512100	0.000001	1.4	0.348404	0.000000	1.4	0.241578	0.000001	3.7	0.236449	0.000002	9.1	0.7222
#9	400	2.3	480	1.141832	0.000003	2.7	0.512100	0.000001	1.8	0.348403	0.000001	1.7	0.241578	0.000001	4.6	0.236451	0.000003	12.1	0.7228
#10	400	1.5	410	1.141836	0.000004	3.3	0.512100	0.000001	2.3	0.348404	0.000001	2.2	0.241579	0.000001	6.1	0.236453	0.000003	14.7	0.7231
#11	400	3.2	510	1.141833	0.000003	2.2	0.512098	0.000001	1.5	0.348403	0.000000	1.4	0.241578	0.000001	3.7	0.236452	0.000002	9.1	0.7224
			Mean	1.141833	0.000008	6.9	0.512099	0.000002	4.0	0.348403	0.000001	2.5	0.241578	0.000001	4.5	0.236453	0.000005	20.5	0.7225
500-1000 r	ng JN di-1 D	ynamic 4 li	ines																
#1	1000	4.79	540	1.141835	0.000003	2.5	0.512102	0.000001	1.6	0.348405	0.000001	1.5	0.241580	0.000001	3.9	0.236453	0.000003	10.9	0.7215
#2	1000	7.53	417	1.141833	0.000002	1.6	0.512101	0.000001	1.0	0.348404	0.000000	1.0	0.241578	0.000001	2.7	0.236452	0.000002	7.1	0.7226
#3	1000	5.95	454	1.141832	0.000002	1.8	0.512101	0.000001	1.2	0.348404	0.000000	1.0	0.241578	0.000001	2.9	0.236449	0.000002	7.7	0.7220
#4	1000	5.95	540	1.141831	0.000002	1.6	0.512101	0.000001	1.0	0.348405	0.000000	1.0	0.241578	0.000001	2.8	0.236450	0.000002	6.9	0.7213
#5	500	4.24	540	1.141835	0.000002	1.9	0.512102	0.000001	1.2	0.348405	0.000000	1.1	0.241578	0.000001	3.3	0.236449	0.000002	8.1	0.7220
#6	500	6.14	540	1.141836	0.000002	1.5	0.512102	0.000001	1.0	0.348404	0.000000	0.9	0.241579	0.000001	2.6	0.236452	0.000002	6.7	0.7230
#7	750	7.86	540	1.141837	0.000002	1.4	0.512102	0.000000	0.9	0.348405	0.000000	0.8	0.241579	0.000001	2.4	0.236454	0.000002	7.6	0.7226
#8	750	3.76	385	1.141840	0.000003	2.4	0.512103	0.000001	1.5	0.348404	0.000001	1.5	0.241580	0.000001	4.2	0.236453	0.000002	10.4	0.7232
#9	1000	6.49	198	1.141838	0.000003	2.5	0.512102	0.000001	1.6	0.348404	0.000001	1.6	0.241581	0.000001	4.0	0.236459	0.000002	10.2	0.7225
#10	1000	7.52	273	1.141835	0.000002	2.1	0.512102	0.000001	1.3	0.348404	0.000000	1.3	0.241580	0.000001	3.3	0.236453	0.000002	9.3	0.7230
#11	1000	5.54	540	1.141841	0.000002	1.9	0.512102	0.000001	1.2	0.348405	0.000000	1.1	0.241579	0.000001	3.0	0.236454	0.000005	22.6	0.7228
#12	1000	4.79	540	1.141834	0.000002	1.7	0.512102	0.000001	1.1	0.348405	0.000000	1.0	0.241579	0.000001	2.8	0.236453	0.000002	7.3	0.7227
#13	1000	5.82	540	1.141834	0.000002	1.6	0.512101	0.000001	1.0	0.348404	0.000000	1.0	0.241580	0.000001	2.7	0.236454	0.000002	7.2	0.7220
#14	1000	4.27	540	1.141838	0.000002	2.0	0.512103	0.000001	1.1	0.348404	0.000000	1.2	0.241580	0.000001	3.0	0.236453	0.000002	8.4	0.7222
#15	1000	4.98	540	1.141832	0.000002	1.8	0.512101	0.000001	1.2	0.348405	0.000000	1.1	0.241579	0.000001	3.1	0.236453	0.000002	8.0	0.7223
#16	1000	5.05	540	1.141835	0.000002	1.7	0.512101	0.000001	1.1	0.348405	0.000000	1.1	0.241579	0.000001	2.9	0.236450	0.000002	7.2	0.7223
#17	1000	5.74	540	1.141838	0.000002	1.6	0.512102	0.000001	1.1	0.348404	0.000000	0.9	0.241580	0.000001	2.7	0.236456	0.000002	6.7	0.7224
#18	1000	8.46	540	1.141835	0.000001	1.2	0.512101	0.000000	0.8	0.348404	0.000000	0.7	0.241579	0.000000	1.8	0.236453	0.000001	5.0	0.7228
			Mean	1.141835	0.000006	4.9	0.512102	0.000001	2.3	0.348404	0.000001	2.2	0.241579	0.000002	7.4	0.236453	0.000004	18.8	0.7224

Table S6. Sm isotope composition of Sm ICP synthetic standards with various Nd contents in different sessions of analyses.

Standards	Mass (ng	g) I ¹⁴⁹ Sm (V)	cycles	$^{144}Sm/^{152}Sm$	2 SE	2 RSE (ppm)	$^{148}\!{\rm Sm}/^{152}\!{\rm Sm}$	2 SE	2 RSE (ppm)	$^{149}{ m Sm}/^{152}{ m Sm}$	2 SE	2 RSE (ppm)	$^{150}{ m Sm}/^{152}{ m Sm}$	2 SE	2 RSE (ppm)	$^{154}\!{ m Sm}/^{152}\!{ m Sm}$	2 SE	2 RSE (ppm)	$^{147}Sm/^{152}Sm$
20 ng Sm	ICP stan	ndard																	
#1	20	0.17	680	0.114980	0.000003	29.4	0.420441	0.000005	12.2	0.516845	0.000005	10.3	0.275994	0.000004	14.4	0.850804	0.000009	10.6	0.5640
#2	20	0.28	240	0.114973	0.000004	34.2	0.420438	0.000006	15.3	0.516840	0.000007	13.6	0.275990	0.000005	19.0	0.850805	0.000013	15.6	0.5642
#3	20	0.13	420	0.114967	0.000005	46.1	0.420433	0.000008	18.1	0.516848	0.000007	14.4	0.275993	0.000006	21.6	0.850791	0.000014	16.0	0.5634
#4	20	0.16	360	0.114973	0.000005	42.4	0.420436	0.000008	18.1	0.516848	0.000008	15.4	0.276004	0.000006	22.0	0.850779	0.000013	15.2	0.5647
			Mean	0.114973	0.000010	87.9	0.420437	0.000007	15.7	0.516845	0.000007	14.4	0.275995	0.000012	45.0	0.850794	0.000025	28.8	0.5641
3 ng Sm	ICP stand	lard	1700	0.44.4000	0.000010	00.2	0.400404	0.00004.4	22.4	0.54 (0.24	0.000001	10.1	0.075000	0.00004.0	(2.1	0.050514	0.00000	20.0	0.5417
#1	3	0.021	1700	0.114988	0.000010	88.2	0.420434	0.000014	32.4	0.516831	0.000021	40.4	0.275993	0.000018	03.4	0.850714	0.000026	30.9	0.564/
#2	2	0.025	4000	0.114960	0.000006	55.1	0.420441	0.000008	19.6	0.516809	0.000015	24.8	0.275959	0.000010	57.5	0.850750	0.000016	18.5	0.5649
#3	3	0.022	2500	0.114972	0.000008	/3.0	0.420440	0.000011	26.2	0.516833	0.000016	31.9	0.275996	0.000014	51.2	0.850719	0.000021	24.5	0.5655
#4 #5	2	0.034	1000	0.114975	0.000010	80.3 71.0	0.420442	0.000014	32.9	0.516875	0.000022	42.5	0.276022	0.000017	62.4	0.850706	0.000027	31.2	0.5655
#5	2	0.044	850 2700	0.114985	0.000008	/1.8	0.420458	0.000015	30.5	0.516857	0.000018	35.8	0.275994	0.000014	52.4	0.850725	0.000025	29.4	0.5654
#6 #7	3	0.022	2700	0.1149//	0.000008	70.5	0.420450	0.000011	26.0	0.516851	0.000017	31.9	0.276002	0.000014	49.0	0.850712	0.000020	23.7	0.5653
#/	2	0.028	2000	0.114982	0.000009	/4.6	0.420448	0.000012	27.6	0.516884	0.000017	32.9	0.275991	0.000015	55.8	0.850735	0.000025	20.8	0.5655
#8	3	0.029	2000	0.114978	0.000008	66.6	0.420435	0.000011	25.7	0.516833	0.000016	31.4	0.275981	0.000013	47.0	0.850746	0.000020	23.4	0.5639
#9	3	0.032	1700	0.114969	0.000008	67.1	0.420435	0.000011	26.2	0.516775	0.000016	31.6	0.275963	0.000013	48.8	0.850752	0.000021	25.1	0.5624
			Mean	0.114976	0.000017	144.6	0.420440	0.000011	27.1	0.516838	0.000066	128.1	0.275989	0.000039	140.3	0.850726	0.000031	37.0	0.5645
200 ng Si	n ICP sta	undard																	
#1	200	0.51	540	0.114971	0.000002	19.9	0.420436	0.000003	7.0	0.516828	0.000003	6.1	0.275995	0.000002	8.2	0.850783	0.000006	6.8	0.5676
#2	200	1.4340453	860	0.114972	0.000001	8.9	0.420439	0.000001	3.2	0.516828	0.000002	3.0	0.275994	0.000001	3.7	0.850786	0.000003	3.1	0.5672
#3	200	1.1211177	900	0.114974	0.000002	14.0	0.420440	0.000002	3.6	0.516838	0.000002	3.2	0.275993	0.000001	3.9	0.850793	0.000003	3.5	0.5648
#4	200	0.860187	900	0.114973	0.000001	11.2	0.420440	0.000002	4.4	0.516826	0.000002	3.9	0.275993	0.000001	4.9	0.850787	0.000003	3.9	0.5669
#5	200	1.0470093	900	0.114973	0.000001	9.7	0.420438	0.000002	3.9	0.516824	0.000002	3.4	0.275993	0.000001	4.4	0.850790	0.000003	3.6	0.5656
#6	200	1.6246496	540	0.114974	0.000001	10.9	0.420438	0.000002	3.8	0.516833	0.000002	3.2	0.275994	0.000001	4.2	0.850789	0.000003	3.6	0.5647
			Mean	0.114973	0.000002	20.8	0.420438	0.000003	7.4	0.516829	0.000010	20.0	0.275994	0.000002	6.2	0.850788	0.000007	8.1	0.5661
F 6		11																	
5 ng 5m #1	5	0 0574463	340	0 114980	0.000017	151.9	0 420442	0.000018	42.4	0 516829	0.000017	31.0	0 276017	0.000012	44.8	0.850784	0.000028	33.4	0.5655
#1 #2	5	0.0652320	340	0.114050	0.000017	134.1	0.420472	0.000016	37.3	0.516840	0.000017	33.3	0.276015	0.000012	48.3	0.850784	0.000028	32.0	0.5666
#2 #3	5	0.1608740	180	0.114939	0.000013	60.5	0.4204423	0.000010	24.7	0.516845	0.000017	21.0	0.2750015	0.000013	30.0	0.850763	0.000027	20.8	0.5653
#J #4	5	0.0860903	320	0 114980	0.000013	116.3	0.420435	0.000012	27.6	0.516818	0.000013	25.6	0.275969	0.0000009	39.7	0.850773	0.000018	25.4	0.5658
11.1	5	0.0007705	Mean	0.114974	0.000020	175.9	0.420437	0.000020	47.6	0.516833	0.000024	45.8	0.275999	0.000045	162.5	0.850777	0.000022	25.0	0.5658

Table S7. Nd isotope composition of the bulk EH and EL3 chondrites and SiC (Hoppe and Ott, 1997; ref. 46), corrected for mass fractionation to 146 Nd/ 144 Nd = 0.7219. Chondrites compositions are obtained using µiNd compositions reported in the different studies to JNdi-1 standard and ratios are calculated using the composition of JNdi-1 from Garçon et al. (2018; ref. 14). Nd concentrations in chondrite groups are sourced from the compilation of Faure et al. (2021; ref. 56). Nd concentrations in SiC are the upper limit of Amari et al. (1995; ref. 52) in large individual grains and the higher limit of Zinner et al. (1991; ref. 15) in bulk SiC separate.

	EH	EL	CI	SiC
142 Nd/ 144 Nd	1.1418207	1.1418207	1.1418117	2.24
±	0.0000028	0.0000028	0.0000105	0.14
¹⁴⁵ Nd/ ¹⁴⁴ Nd	0.3484032	0.3484032	0.348403	0.156
<u>+</u>	0.0000005	0.0000005	0.0000018	0.01
148 Nd/ 144 Nd	0.2415815	0.2415815	0.2415813	0.023
<u>+</u>	0.0000003	0.0000003	0.0000005	0.01
150 Nd/ 144 Nd	0.2364539	0.2364539	0.2364522	
<u>+</u>	0.0000012	0.0000012	0.0000019	
[Nd] (ppm)	0.433	0.509	0.496	11-39
X _{SiC} (ppm)	1.53 ± 0.05	1.53 ± 0.05	14.2 ± 0.8	