
HAL Id: hal-03859719
https://hal.science/hal-03859719

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compact Functional Testing for Neuromorphic
Computing Circuits

Sarah A El-Sayed, Theofilos Spyrou, Luis A Camuñas-Mesa, Haralampos-G.
Stratigopoulos

To cite this version:
Sarah A El-Sayed, Theofilos Spyrou, Luis A Camuñas-Mesa, Haralampos-G. Stratigopoulos. Compact
Functional Testing for Neuromorphic Computing Circuits. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 2023, 42 (7), pp.2391 - 2403. �10.1109/TCAD.2022.3223843�.
�hal-03859719�

https://hal.science/hal-03859719
https://hal.archives-ouvertes.fr

1

Compact Functional Testing for Neuromorphic
Computing Circuits

Sarah A. El-Sayed, Theofilos Spyrou, Luis A. Camuñas-Mesa,
and Haralampos-G. Stratigopoulos, Member, IEEE

Abstract—We address the problem of testing Artificial Intelli-
gence (AI) hardware accelerators implementing Spiking Neural
Networks (SNNs). We define a metric to quickly rank available
samples for training and testing based on their fault detection
capability. The metric measures the inter-class spike count
difference of a sample for the fault-free design. In particular,
each sample is assigned a score equal to the spike count
difference between the first two top classes. The hypothesis is that
samples with small scores achieve high fault coverage because
they are prone to misclassification, i.e., a small perturbation in
the network due to a fault will result in these samples being
misclassififed with high probability. We show that the proposed
metric correlates with the per-sample fault coverage and that
retaining a set of high-ranked samples in the order of ten achieves
near perfect fault coverage for critical faults that affect the SNN
accuracy. The proposed test generation approach is demonstrated
on two SNNs modelled in Python and on actual neuromorphic
hardware. We discuss fault modeling and perform an analysis to
reduce the fault space so as to speed up test generation time.

Index Terms—Neuromorphic computing, spiking neural net-
works, testing, fault modeling, fault simulation.

I. INTRODUCTION

The design of Artificial Intelligence (AI) hardware accel-
erators has attracted significant attention in recent years. On
one hand, AI hardware accelerators are essential for effi-
cient processing of high-dimensional AI workloads, i.e., Deep
Neural Networks (DNNs). On the other hand, technologies
such as edge computing are witnessing growing interest with
several new use cases. Designing lightweight AI hardware
accelerators, i.e., having low energy consumption and form
factor, for performing inference directly on edge devices
can offer significant advantages compared to performing the
computation centrally in the cloud. In particular, performing

Manuscript received July 22, 2022; revised October 31, 2022; accepted
November 6, 2022. This work was supported by the ANR RE-TRUSTING
project under Grant ANR-21-CE24-0015-03 and by Junta de Andalucı́a under
contract US-1260118 (Neuro-Radio). The work of T. Spyrou was supported
by the Sorbonne Center for Artificial Intelligence (SCAI) through Fellowship.
L. A. Camuñas-Mesa was funded by the VI PPIT through the Universidad
de Sevilla. This article was recommended by Associate Editor G. Di Natale.
(Corresponding author: Haralampos-G. Stratigopoulos.)

Sarah A. El-Sayed was with Sorbonne Université, Centre National de la
Recherche Scientifique (CNRS), LIP6, 75005 Paris, France. She is now with
Minia University, 61519 Minia, Egypt (e-mail: sarah.elsayed@lip6.fr).

T. Spyrou and Haralampos-G. Stratigopoulos are with the Sorbonne Uni-
versité, CNRS, LIP6, 75005 Paris, France (e-mail: theofilos.spyrou@lip6.fr;
haralampos.stratigopoulos@lip6.fr).

Luis A. Camuñas-Mesa is with the Instituto de Microelectrónica de Sevilla
(IMSE-CNM), Consejo Superior de Investigaciones Cientı́ficas (CSIC),
Universidad de Sevilla, 41092 Sevilla, Spain (e-mail: camunas@imse-
cnm.csic.es).

Digital Object Identifier 10.1109/TCAD.2023.XXXXXXX

computations closer to the user’s side allows autonomous op-
eration, saves energy and bandwidth by reducing data transfer,
circumvents cloud service latency, and assures data privacy.

High-volume manufacturing of Application-Specific Inte-
grated Circuit (ASIC) AI hardware accelerators is foreseen
in the near future. On-die neural networks have been explored
in the past for building an on-die “test brain” that classifies
chips as functional or faulty [1]. The “inverse” problem, i.e.,
how to efficiently test AI hardware accelerators, however, is
an emerging problem [2]–[4].

In general, existing and proven test methods for traditional
computing devices can be portable to AI hardware acceler-
ators. Nevertheless, the unique architectural features of AI
hardware accelerators make these test methods less efficient
and give rise to new test challenges. For instance, AI hardware
accelerators usually consist of multiple identical cores, e.g.,
the Multiply-and-Accumulate (MAC) units (also referred to
as Processing Elements (PEs)), which are too small to imple-
ment traditional Design-for-Test (DfT) techniques, e.g., scan
test, with reasonable overhead. Another characteristic of AI
hardware accelerators is that they are memory-hungry, with
the memory storage being dominated by the synapse weights
which can be in the order of millions. Testing large embedded
memories with today’s Memory Built-In Self-Test (MBIST)
tools can pose large Power, Performance, and Area (PPA)
penalties.

Traditional fault models, such as stuck-at, delay, and cell-
aware fault models, can be reused as well in the context
of AI hardware accelerator testing, but emerging in-memory
computing architectures based on memristive crossbars [5] or
Spiking Neural Networks (SNNs) [6]–[8] for example, require
new fault models. Moreover, fault models for AI hardware ac-
celerators could be defined in software at a higher-abstraction
behavioral-level, i.e., variations in neuron outputs and synapse
weight values [9], aiming at speeding up test generation.
This is because software and hardware implementations of
neural networks closely match together [10]. Recent fault
injection experiments in AI hardware accelerators [10]–[16]
have shown that there is some inherent fault tolerance since
many faults are benign, i.e., they are masked before their
effect propagates to the output layer or they produce an output
change that is tolerable. This is expected based on the analogy
with biological neural networks which have remarkable fault
tolerance capabilities. Some faults, though, are still critical and
evidently impact the performance, and test efforts can focus
on these critical faults to reduce test time [4].

Test methods that take into account the architectural par-

2

ticularities of AI hardware accelerators have started surfacing
recently. A brief overview of the state-of-the-art is provided
in Section II. In this work, we focus on SNN hardware
accelerators for which the literature on fault modeling, fault
injection experiments, test and reliability methods is still fairly
limited, as it will also be discussed in Section II. More
specifically, we propose a method for generating compact
functional test sets. A functional test is an input, i.e., an image
for Convolutional Neural Networks (CNNs) used in computer
vision, that aims at detecting the presence of a maximum
number of hardware-level faults and their combination thereof,
such that a compact set of few functional tests can detect all
faults. In the context of an AI hardware accelerator device, a
fault is detected if the predictions of the nominal fault-free and
faulty devices differ. The prior art on functional test generation
methods for AI hardware accelerators will be described in
detail in Section VIII.

This article makes the following contributions:

• We use available samples from the training and testing
sets as functional tests. We propose a fault-agnostic metric
that assesses the fault detection capability of each sample
based on how close the sample is to being misclassified.
The underlying hypothesis is that such corner samples lying
close to the classification hyper-boundary will be classified
differently if a fault occurs, thus producing a distinguishing
output compared to the nominal fault-free case.

• We confirm experimentally that the fault detection capability
of a sample is directly correlated with the ranking of the
sample based on the chosen metric.

• Based on this metric, we cumulatively add test samples
according to their ranking and demonstrate that we can
generate compact functional test sets with the size of a few
tens of tests that achieve 100% fault coverage of critical
faults. A good percentage of benign faults can also be
detected, which is beneficial since they are considered as
reliability hazards. Such compact functional test sets can be
used not only for fast post-manufacturing testing, but they
can also be stored on-chip to be re-used for periodical on-
line test in idle times.

• We discuss fault modeling and we perform fault injection
experiments for different fault models identifying critical
fault types and fault locations. These findings, corroborated
on various SNN models, can be used to reduce the effec-
tive fault space and, thereby, the fault simulation time for
computing fault coverage.

• The proposed compact functional test set generation method
is demonstrated for SNNs at behavioral-level and on actual
neuromorphic hardware.

The rest of the article is structured as follows. In Section II,
we discuss the state-of-art on testing AI hardware accelerators
including SNNs. In Section III, we provide a brief overview
of SNNs. In Section IV, we introduce the proposed functional
test generation algorithm. In Section V, we present the SNN
case studies. In Section VI, we discuss fault modeling, fault
simulation frameworks, and fault space reduction. Experimen-
tal results are presented in Section VII. In Section VIII, we
discuss, in more detail, the prior art on functional test genera-

tion for AI hardware accelerators and provide comparisons to
our work. In Section IX, we discuss general properties of the
proposed functional test generation approach and future work
directions. Finally, Section X concludes this article.

II. PRIOR ART ON TESTING AI HARDWARE ACCELERATORS

DfT methods suited for AI hardware accelerators based
on large arrays of small PEs are proposed in [2], [17]. Test
generation algorithms aiming at creating a compact set of
functional tests that can detect the presence of faults are
proposed in [18], [19], [20]. Symptom detectors that detect
some anomaly in intermediate nodes, i.e., high neuron activa-
tion, are proposed in [11], [21]–[23]. Selective Triple Modular
Redundancy (TMR) applied to the most critical neural network
layers is proposed in [22], [24], [25]. Algorithmic-based error
detection and correction methods using checksum arithmetic
are discussed in [13], [26]–[29]. On-line test methods are
proposed in [30] based on Software Test Libraries (STL),
in [31] based on a simplified metric of dynamic power
consumption, and in [32] based on encrypting weights in the
memory with an encryption algorithm that spreads single bit-
flips extending them to multiple bit-flips and checking if the
padding bytes used for the encryption to work properly are
correctly decrypted.

Specifically now for SNNs, behavioral-level fault model-
ing is discussed in [33], [34]. Fault injection experiments
at behavioral-level are described in [22], [23], [33], [35],
[36], while fault injection experiments onto actual neuromor-
phic hardware are described in [16]. In [22], [23], symptom
detectors are designed for the two main catastrophic fault
mechanisms in SNNs. In particular, for synaptic faults it is
proposed to perform weight bounding [23]. If the weight drifts
to a value greater than a threshold, then it is replaced with a
pre-defined value, i.e., zero or maximum weight value from
the nominal SNN. For neuron saturation faults, if an output
spike train is observed while there is no input activity, then
spike generation is disabled and the neuron is silenced [22]. A
similar condition is proposed in [23] where spike generation is
disabled if the membrane voltage stays above the threshold for
more than two clock cycles. A BIST technique for biological
spiking neurons that checks for the appearance of all expected
firing patterns is proposed in [37]. Inherent fault resilience
of SNNs when trained with different algorithms is studied
in [35], in addition to showing how to modify a training
algorithm to improve fault tolerance. Fault-tolerance schemes
to mitigate memory failures in SNNs are proposed in [36],
[38]. And finally, a functional test generation method for SNNs
is proposed in [20], which will be discussed in more detail in
Section VIII.

III. SNNS

Unlike traditional Artificial Neural Networks (ANNs), in-
formation in SNNs flows as spike trains propagating across
network layers asynchronously, which resembles the biological
brain operation. SNNs form the basis of neuromorphic com-
puting pioneered by Carver Mead in the 1980s [39]. One of the
least computationally complex, and hence hardware-friendly,

3

Fig. 1: Functional test generation. The street images are from [41].
The chip image is from [1].

neuron model used to implement SNNs is the Integrate &
Fire (I&F) model [40]. The I&F neuron integrates spikes from
incoming synapses by increasing its membrane’s potential, and
when the potential exceeds a threshold it fires a spike of its
own that propagates through synapses to other neurons. It also
resets the threshold so as to be able to fire again. The I&F
neuron can be equipped with two additional brain-inspired
functionalities, namely a refractory period, i.e., it is allowed to
fire only if a certain time is elapsed since the last output spike,
and a leakage behavior, i.e., the membrane potential decreases
between two consecutive input spikes. The synapse operation
in SNNs also resembles the biological synapse operation
where a synapse receives spikes and, in turn, stimulates the
membrane potential of post-synaptic neurons via a current that
is proportional to the synapse weight. As for decision making
methods at the output of SNNs, the most common method
is based on evaluating the firing rate of output neurons, i.e.,
number of spikes over an observation period. Other coding
schemes have been used, such as the time-to-first-spike. From
a hardware perspective, there is a belief that SNNs offer
faster inference and lower energy consumption compared to
ANNs. However, there are still challenges facing SNNs such
as the complexity of training. In general, the discussion on the
relative performance between ANNs and SNNs is not trivial
due to the different input type, i.e., sequence of static frames
versus continuous-time event flow. For an extensive discussion
on SNNs and their hardware implementation, the readers are
referred to [6]–[8].

IV. PROPOSED FUNCTIONAL TEST GENERATION
ALGORITHM FOR SNNS

Functional test generation aims at either identifying or
generating new input samples that are capable of sensitizing
the fault and propagating its effect to the output, leading
to a different prediction with respect to that of the nominal
fault-free network. As shown in Fig. 1 using as an example
an image recognition cognitive task, these samples could be
original images from training and testing sets [18], [19],
adversarial examples generated from original images [20], or

synthetic images generated from original images [41], [42].
These related works will be described in more detail in Section
VIII. The proposed algorithm for SNNs selects tests from the
set of available samples in the training and testing sets.

Let us consider an SNN employed for an N -class classifi-
cation cognitive task. The SNN has N neurons in the output
layer each corresponding to one class. We consider that the
SNN uses the firing rate as classification criterion, i.e., the
winning class is the one whose corresponding neuron produces
the largest number of spikes within a given duration interval.

Let us consider also a set of input samples of cardinality
M . For a given sample ti, i = 1, · · · ,M , let nj

i denote
the spike count for output neuron j, j = 1, · · ·N . We rank
the values nj

i from high to low, resulting in the ordered
set {n(1)

i , n
(2)
i , n

(3)
i , · · · }, i.e., the neuron that produces n

(1)
i

spikes corresponds to the top-1 class, the neuron that produces
n
(2)
i spikes corresponds to the top-2 class, and so forth.
Then, we define the margin

Xi = n
(1)
i − n

(2)
i , (1)

i.e., Xi is the difference in spike count between neurons
corresponding to the top-1 and top-2 classes. The quality
metric of sample ti is defined by the score

qi =
1

Xi
(2)

The rationale is that samples with high scores (or, equiva-
lently, small margins) are likely to be distinguishing samples,
i.e., they are prone to producing different top-1 class predic-
tions for the nominal and faulty networks. This is based on
the intuition that when the first top classes are close in terms
of firing rate, the network has low confidence in its decision
and it is likely that a fault will alter the class ranking for this
particular sample. In other words, this sample lies close to the
multi-class classification hyper-boundary and is likely to be
misclassified when a fault occurs.

Let us consider now the ranking of samples based on
their scores from high to low, resulting in the ordered set
{t(1), t(2), · · · , t(i), · · · , t(M)}, where t(1) is the sample with
the highest score, and so forth. A functional test set of size
T can be generated by considering the first T higher-score
samples in this ordered set.

As we will see in our experimental results, the score in
Eq. (2) directly correlates with the per-sample fault coverage,
i.e., the samples fault coverage is shown to increase linearly
with the samples score. To this end, the proposed algorithm
first performs M inferences, i.e., one inference per available
sample, on the nominal network, then ranks the samples
according to their score. Next, starting from the top ranked
sample and sequentially adding the next top ranked samples,
it evaluates the cumulative fault coverage. In each step, the
detected faults are dropped from the fault list. Let Nuf (i)
denote the number of undetected faults at the beginning of
iteration i where the i-th ranked sample is examined, i.e.,
Nuf (1) = K for a fault model of size K. The algorithm
stops adding samples when the fault coverage saturates. Our
experimental results show that the size of the resultant test

4

set needs to be in the order of few tens of samples for
reaching 100% fault coverage for critical faults. For a test
set of cardinality T , the total number of inferences which
dominates the test generation time is

Ninf = M +

T∑
i=1

Nuf (i) (3)

where the first term corresponds to test generation and the
second term to fault coverage evaluation.

Finally, for a fault model of size K, let Fk denote fault k.
We define the following indicator function for test ti

Iti(Fk) =

{
1 : Fk is detected
0 : otherwise (4)

where detection means that the responses of the nominal fault-
free network and the faulty network with fault Fk injected
differ, i.e., a different class is predicted.

The fault coverage of test ti indicates the percentage of
faults detected by this particular test. It is defined as

FC(ti) =

∑K
k=1 I

ti(Fk)

K
(5)

Considering a test set of cardinality T denoted by
{t1, · · · , tT }, its global fault coverage is defined as

FC =

∑K
k=1 min(1,

∑T
i=1 I

ti(Fk))

K
(6)

V. SNN CASE STUDIES

As case studies, we use three convolutional SNNs perform-
ing three different cognitive tasks, namely an SNN trained
to classify the N-MNIST dataset [43], an SNN trained to
classify IBM’s DVS gesture dataset [44], and an SNN trained
to classify the 4 poker card symbols [45]. Their architectures
are shown in Figs. 2, 3, and 4, respectively. In each case, the
winning class is declared based on the most triggered neuron
at the output layer.

In CNNs, a convolutional layer is composed of several
feature maps each forming a channel [46]. A feature map
is a plane of neurons where each neuron is connected to
the outputs of spatially nearby neurons contained in a lower-
dimensional plane of the prior layer, referred to as a receptive
field. Each neuron has a different receptive field located at
different coordinates of the prior layer. In a given feature map,
all neurons are constrained to share the same synaptic weights,
whereas synaptic weights change from one feature map to
another. Convolutional layers may be alternated with sub-
sampling layers which are used to down-sample the output of
the preceding convolutional layer. There are different types of
sub-sampling, such as max pooling and average pooling. Max
pooling captures the maximum value of the receptive field and
processes it to the output, whereas average pooling calculates
the average value. CNNs allow synapse reuse and reduce
the number of synapses compared with a Fully Connected
(FC) network. The last convolutional or sub-subling layer is
flattened, i.e., each feature map is essentially a single neuron.
Thereafter, there is a number of FC layers to perform the

0

1

2

9

Convolution
layer #1
14x14

Convolution
layer #2

5x5 Convolution
layer #3

1x1

Fully Connected
Layer
n = 50

Output
n = 10

6 Channels 16 Channels 120 Channels

Input
34x34

2 Channels

F
la

tte
ne

d
D

a
ta

: n
 =

 1
20

5

5

7
7

5
5

Stride = 2

Stride = 2

SC1
SC2

SC3
SF5

SF4

Fig. 2: Architecture of the N-MNIST SNN.

A

Arm
Roll

Hand
Clap

Air
Guitar

Other

Convolution layer
#1

32x32
Convolution

layer #2
16x16

Fully Connected Layer
n = 512

Output Layer
n = 11

2 Channels

F
la

tte
ne

d
D

a
ta

: n
 =

 2
04

8

Padding=2

SC1
SC2

SF4

SF3

Input
128x128

Pooling layer
#1

32x32 Pooling
layer #2
16x16

Pooling
layer #3

8x84
4

5
5

3
3

16 Channels 32 Channels

SP0

SP1 SP2

Padding=1

2
2

2
2

Fig. 3: Architecture of the IBM DVS Gesture SNN.

classification. In FC networks, the neurons of a new layer are
connected via synapses to the outputs of all neurons in the
prior layer.

The N-MNIST and IBM’s DVS gesture SNNs are designed
and simulated in Python, while the poker card-symbols SNN is
running on an FPGA-based neuromorphic hardware platform.

A. SNN models in Python

The SNN models designed in Python are based on the open-
source Spike LAYer Error Reassignment (SLAYER) [47] and
PyTorch [48] frameworks, and run on a Graphics Processing
Unit (GPU) accelerator. They are trained using batch learning
with a variation of back-propagation, incorporating the dropout
technique [49]. The SLAYER framework uses the Spike Re-
sponse Model (SRM) [50] to model spiking neurons, which is
a generalized form of the ubiquitous I&F model.

1) N-MNIST SNN: The N-MNIST dataset [43] is a neuro-
morphic version of the handwritten digits MNIST dataset. The
SNN achieves a 98.08% classification accuracy on the testing
set, which is comparable to the performance of state-of-the-art
level-based ANNs.

2) IBM DVS Gesture SNN: The IBM’s DVS gesture dataset
[44] is created directly in spiking form using a 128 × 128
Dynamic Vision Sensor (DVS). It consists of 29 individuals
performing 11 hand and arm gestures in front of the DVS,
such as hand waving and air guitar. The SNN performs with
an 82.5% accuracy on the testing set.

B. SNN hardware implementation

The poker card symbols dataset is created by presenting a
deck of poker cards in front of a DVS sensor. The events are
recorded and processed to extract a 32 × 32 pixel window

5

SC1
Convolution

Layer #1
28x28

Input
32x32

6 Nodes
6 Channels

8 Nodes
8 Channels

4 Nodes
4 Channels

4 Nodes
4 Channels

SP1
Pooling
Layer #1
14x14

SC2
Convolution

Layer #2
10x10

SP1
Pooling
Layer #2

5x5

SC3
Convolution

Layer #3
1x1

SC4
Convolution

Layer #4
1x1

2
2

5
5

1
1

5
5

2
2

1
1

Fig. 4: Architecture of the poker card-symbols SNN.

E
a
st P

o
rtW

es
t

P
o

rt

North Port

South Port

C
O

N
F

IG
U

R
A

T
IO

N
 B

L
O

C
K

Parameters

Weights

Kernel Memory Neuron Memory
Rate Saturation

Memory

Input FIFO Output FIFO

SPI Slave

Input

events
Output

events

Configuration

Parameters
Address Calculation Block

Leakage Counter

Controller Block

Pixel Array

ROUTER

R
O

U
T

E
R

CONVOLUTIONAL UNIT

Fig. 5: Configurable convolutional node.

that shows only the centered symbol. The hardware imple-
mentation of the poker card-symbols SNN uses as a fun-
damental building block a generic event-driven configurable
convolutional node that constitutes one feature map [45]. As
shown in Fig. 5, each node consists of three main blocks,
namely a convolutional unit that encompasses a 128 × 128
I&F neuron (pixel) array and is responsible for the convolution
calculations, an internal configuration block that receives and
interprets the configuration data of the convolutional node,
and a router responsible for handling the transmission of
the events from their origin to their destination according to
a predefined routing scheme. Using this building block, the
SNN of Fig. 4 is designed in VHDL and implemented on a
Zynq®UltraScale+TM MPSoC ZCU104 FPGA board.

VI. FAULT MODELING

Fault models can be defined either at behavioral-level using
an abstract representation of the neural network, e.g., a Python
model, or at hardware-level. Performing test generation at
behavioral-level rather than at hardware-level, is faster and
the derived tests are still actual samples, i.e., images, which
are directly portable to the hardware. The disadvantage is that

the resultant fault coverage may deviate from the true one
computed on the actual hardware implementation. However,
as it will be discussed in Section VI-C, for both options
the fault space quickly explodes even for small-size neural
networks, making fault sampling strategies essential. In this
regard, performing test generation at the hardware-level yields
approximative fault coverage. Similar to testing of traditional
chips, fault coverage metrics should be reported by specifying
the used underlying fault model.

A. Behavioral-level fault modeling

For the purpose of this analysis, faults are inserted in the
main operators that support the neural computational task, i.e.,
neurons and synapses, assuming that neurons and synapses can
fail independently [51].

1) Neurons: In [34], detailed transistor-level fault simula-
tions were performed on a spiking neuron so as to deduce the
possible output faulty behaviors. Main behavioral-level faults
include: (i) dead neuron faults, i.e., the neuron halts spiking
even in the presence of input activity; (ii) saturated neuron
faults, i.e., the neuron fires spikes non-stop even at the absence
of input activity; and (iii) timing variations, i.e., variations
in the firing rate and the time-to-first-spike. Such neuron
behavioral-level fault types are in agreement with recent works
[20], [22], [23], [33] and encompass other fault types that have
been considered in the past, such as stuck-at neurons and errors
in the activation values [9].

2) Synapses: Common synapse faults considered in the
literature include disabled synapses, stuck-weight synapses or
saturated synapse weights [20], [35]. However, this synapse
fault model is not realistic from a hardware perspective since
real-weighted synapses after model training in software are
quantized and stored as digital words in an on-die memory.
Herein, we use a hardware-aware synapse fault model where
we quantize the weight value given the data type in hardware,
i.e., 8-bit integer in the neuromorphic hardware used in this
work, we perform bit-flips across bit positions and then we
map back the binary value to a real value. This fault model
essentially corresponds to synapse weight perturbation that
could be major if one or more Most Significant Bits (MSBs)
are flipped.

3) Fault injection framework: For the neuron behavioral-
level faults we use a fault injection framework described in
[22], which is built on top of the SLAYER [47] and PyTorch
[48] frameworks. Neuron faults are inserted by modifying
the SRM model or by customizing the flow of computations
in the frameworks. Synapse faults are inserted by modifying
the weight values using as root-cause bit-flips as described
above. Fault simulation is accelerated by creating a faulty SNN
instance, then mapping it on a GPU to perform inference.

B. Hardware-level fault modeling

The neuromorphic hardware used in this work is re-
configurable storing all the main SNN parameters in on-
die memories, including: (i) synapse weights; (ii) feature
maps size and center-shift; (iii) neuron threshold, leakage,
and refractory period; (iv) router parameters that configure

6

the architecture and direct spiking events; and (v) splitter
parameters that define the input event copies to be sent to
the first layer nodes. Each parameter has an 8-bit integer
representation. We consider as fault model (i) single bit-flips
for all parameters and across all bit positions and (ii) multiple
bit-flips across the entire memory with different Bit Error Rate
(BER) probabilities.

C. Fault space reduction

The common conclusion of several published fault injection
and reliability experiments for ANNs [10]–[15] and SNNs
[16], [20], [22], [23], [33], [35], [36] is that not all faults
are equal. A large number of faults are either completely
masked or they induce a negligible drop in the network
classification accuracy. Such benign faults can be excluded
to reduce the fault space and speed up fault simulation that
is invoked several times during test generation. Including all
faults can quickly make fault simulation intractable, even
for small-size networks. For example, for the N-MNIST and
IBM DVS Gesture SNNs the number of neurons is 1756 and
25099, respectively, and the number of synapses is 57488 and
1059616, respectively. Consequently, a prudent elimination of
benign faults is required so as to avoid inadvertently excluding
critical faults.

In the context of this work, we define benign and critical
faults in a more strict fashion. A fault is considered benign
if the response of the nominal network and the network in
the presence of the fault match on a sample-by-sample basis
with a certain tolerance, e.g., a 0% tolerance requires an exact
match between both responses. If the number of mismatched
samples between the nominal network response and that of the
faulty network is above the tolerance, the fault is considered
critical.

1) Behavioral-level fault model: For SNNs, in [22], it is
shown that training with dropout [49] offers proactive fault
resilience against dead neuron faults and neuron timing varia-
tions. Dropout was originally proposed to prevent over-fitting
and reduce the generalization error on unseen data. It has its
roots on the observation that model combination, a.k.a. en-
semble learning, nearly always improves performance. In this
regard, it temporarily removes neurons and their associated
synapse connections during training with some probability that
could vary from one layer to another, which is equivalent to
combining many “thinned” scaled-down models during one
training session. Dropout achieves fault resilience because it
equalizes the importance of neurons and distributes the neuron
activity across the network. Thus, if a neuron becomes dead or
it presents timing variations, the impact is inherently tolerated
[22]. In contrast, a neuron saturation fault is not compensated
because a neuron constantly firing is likely to severely perturb
the propagating spike trains [22], [23].

As an example, Fig. 6 shows for the N-MNIST SNN the
effect of neuron faults in the last 3 layers on the network
classification accuracy. Each row corresponds to a layer and
each rectangle within a row corresponds to a neuron in this
layer. The color of the rectangle shows the accuracy when this
particular neuron is faulty based on the color map shown at

(a) Dead neuron faults.

(b) Saturated neuron faults.

0 10 20 30 40 50 60 70 80 90 100

Fig. 6: Effect of neuron faults on the classification accuracy of the
N-MNIST SNN.

the bottom of Fig. 6. As it can be seen, dead neuron faults
are benign except in the last layer. Layers SC1 and SC2 are
not shown due to their high neuron count. Similarly, timing
variations are proven benign apart from the last layer [22].
The same findings were obtained for the IBM DVS Gesture
SNN.

As for synapse faults, fault space reduction becomes of
utmost importance since the number of synapses can be in the
order of several millions. In [20], only the last layer synapse
faults were considered arbitrarily. In this work, we performed
an analysis for the N-MNIST SNN to validate this hypothesis.
The result is shown in Fig. 7. We assumed extreme synapse
faults, namely dead synapses and positively saturated weights.
Each box in Fig. 7 corresponds to one synapse connecting two
neurons in two subsequent layers j−1 and j, with the neuron
numbers for layers j−1 and j shown in the row and columns,
respectively. The classification accuracy in the presence of a
synapse fault is shown with the box color according to the
color map at the bottom of Fig. 7. As it can be seen, only
positively saturated weights appear to be critical, and this holds
primarily for the synapses connecting the last two layers SF4-
SF5, while few such critical synapse faults are observed for
layers SC3-SF4. Synapse faults in previous layers have no
impact and are excluded from Fig. 7. The reason behind this
observation is that positive saturated weights could cause the
post-synaptic neuron to always fire, i.e, saturate. In contrast,
dead synapses just reduce the firing activity of the post-
synaptic neuron, while we know that with dropout dead neuron
faults are benign. These findings were corroborated on the
IBM DVS Gesture SNN as well. Note that such extreme faults
are not realistic from a hardware perspective as explained
in Section VI-A2. Using the hardware-aware synapse fault
model, i.e., bit-flips on quantized weights resulting in weight
perturbation, has a smaller impact as shown in Fig. 8 for the
IBM DVS Gesture SNN considering synapses connecting the
last two layers SF3-SF4. We observe that only bit flips in the
first two MSBs 7 and 6 can be critical, while for bit 5 the
baseline accuracy is observed. Bit-flips for bit positions 0-4
are benign and are not shown in Fig. 8.

From these fault injection experiments we can conclude
about the criticality of fault types occurring at different lo-
cations in the network. Critical faults most likely can only
be neuron saturation faults at any point in the network, dead

7

(a) Dead synapses between SC3-SF4.

(b) Positively saturated synapses between SC3-SF4.

(c) Dead synapses between SF4-SF5.

(d) Positively saturated synapses between SF4-SF5.

0 10 20 30 40 50 60 70 80 90 100

Fig. 7: Effect of synapse faults on the classification accuracy of the
N-MNIST SNN.

neuron faults in the last two layers, and synapse faults in the
last two layers. Still, many of these faults will end up being
benign. The rest of the faults are benign with a very high
probability and could be excluded from fault simulation.

2) Hardware-level fault model: A detailed reliability anal-
ysis for the poker card symbols SNN implemented on neu-
romorphic hardware was presented in [16]. The used fault
model is the one described in Section VI-B and fault injection
was performed on the actual hardware. Critical bit-flip faults
were located across different network parameters and bit
positions. For example, it was shown that bit-flips in the 4
Least Significant Bits (LSBs) of synapse weights are benign
which can help to significantly reduce the fault space by nearly
50% since synapse weights occupy most of the memory size.

VII. RESULTS

Thanks to the acceleration of fault injection on hardware,
i.e., using a GPU for the N-MNIST and IBM DVS Gesture
SNNs and the FPGA-based SNN hardware accelerator for the

(a) Bit 7 (MSB).

(b) Bit 6.

(c) Bit 5.

0 10 20 30 40 50 60 70 80 90 100

Fig. 8: Effect of bit-flip synapse faults between SF3-SF4 for the IBM
DVS Gesture SNN.

poker card symbols SNN, we considered a conservative fault
space reduction only for the synaptic faults and only in the
N-MNIST and IBM DVS Gesture SNNs. In particular, we
considered only the synapse faults in the last two layers. The
results are grouped per SNN in Figs. 9-11.

8

0 2 4 6 8 10
Margin Value

0

10

20

30

40

50

60

S
am

p
le

 F
au

lt
 C

o
ve

ra
g

e
%

Saturated Neuron Faults
Dead Neuron Faults
Synapse Faults

(a) Relationship between the margin
of a sample and the percentage of

faults it covers.

10-1 100 101
Tolerance (%)

102

103

104

105

o

f
B

en
ig

n
 F

au
lt

s

101

102

103

104

o

f
C

ri
ti

ca
l F

au
lt

s

Saturated Neurons

Dead Neurons

Synapses

Benign Critical

(b) Change in number of critical &
benign faults with the tolerance.

(c) Cumulative fault coverage of
benign synaptic faults.

(d) Cumulative fault coverage of
critical synaptic faults.

0 20 40 60 80 100

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
0.05% Tol
0.1% Tol
0.2% Tol
0.5% Tol
1% Tol

(e) Cumulative fault coverage of
benign dead neuron faults.

0 50 100 150

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
0.05% Tol
0.1% Tol
0.2% Tol
0.5% Tol
1% Tol

(f) Cumulative fault coverage of
critical dead neuron faults.

0 20 40 60 80 100

Number of Samples

0

20

40

60

80

100

G
lo

ba
l F

au
lt

C
ov

er
ag

e
%

0% Tol
0.05% Tol
0.1% Tol

0.2% Tol
0.5% Tol
1% Tol

(g) Cumulative fault coverage of
benign saturated neuron faults.

0 20 40 60 80 100

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
0.05% Tol
0.1% Tol
0.2% Tol
0.5% Tol
1% Tol

(h) Cumulative fault coverage of
critical saturated neuron faults.

Fig. 9: N-MNIST SNN.

0 5 10 15 20

Margin Value

0

10

20

30

40

50

60

70

S
am

p
le

 F
au

lt
 C

o
ve

ra
g

e
%

Saturated Neuron Faults
Dead Neuron Faults
Synapse Faults

(a) Relationship between the margin
of a sample and the percentage of

faults it covers.

Saturated Neurons

Dead Neurons

Synapses

Benign Critical

(b) Change in number of critical &
benign faults with the tolerance.

0 10 20 30 40 50 60 70

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
0.5% Tol
1% Tol
2% Tol
4% Tol
10% Tol

(c) Cumulative fault coverage of
benign synaptic faults.

0 10 20 30 40 50 60 70

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
0.5% Tol
1% Tol
2% Tol
4% Tol
10% Tol

(d) Cumulative fault coverage of
critical synaptic faults.

0 10 20 30 40 50 60 70

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
1% Tol
2% Tol
4% Tol

10% Tol

(e) Cumulative fault coverage of
benign dead neuron faults.

0 10 20 30 40 50 60 70

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
1% Tol
2% Tol
4% Tol

10% Tol

(f) Cumulative fault coverage of
critical dead neuron faults.

0 10 20 30 40 50 60 70

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
1% Tol
2% Tol
4% Tol

10% Tol

(g) Cumulative fault coverage of
benign saturated neuron faults.

0 10 20 30 40 50 60 70

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
1% Tol
2% Tol
4% Tol

10% Tol

(h) Cumulative fault coverage of
critical saturated neuron faults.

Fig. 10: IBM DVS gesture SNN.

0 5 10 15

Margin Value

0

10

20

30

40

50

60

70

S
am

p
le

 F
au

lt
 C

o
ve

ra
g

e
%

Single Bit-Flip Faults
Multiple Bit-Flip Faults

(a) Relationship between the margin
of a sample and the percentage of

faults it covers.

0 2 4 6 8 10
Tolerance (%)

101

102

103

104

o

f
B

en
ig

n
 F

au
lt

s

101

102

103

104

o

f
C

ri
ti

ca
l F

au
lt

s

Single Bit-Flips

Multiple Bit-Flips
BER = 10-4

Benign Critical

(b) Change in number of critical &
benign faults with the tolerance.

0 5 10 15
Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
2.5% Tol
5% Tol

10% Tol

Critical Benign

(c) Cumulative fault coverage of
single bit-flip faults.

0 5 10 15

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e
%

0% Tol
2.5% Tol
5% Tol

10% Tol

Critical Benign

(d) Cumulative fault coverage of
multiple bit-flip faults at BER=10−4.

Fig. 11: Poker card symbols SNN.

9

Figs. 9(a), 10(a), and 11(a) show the average per-sample
fault coverage as a function of the margin value. Samples
with identical margin values are grouped. For each sample, the
average fault coverage is computed across all faults separately
for each fault type, i.e., dead neuron, saturated neuron, and
synapse faults for the N-MNIST and IBM DVS Gesture SNNs,
and single bit-flip and multiple bit-flip faults with BER=10−4

for the poker card symbols SNN. Then, fault coverage values
are averaged again across all samples within the same group.
A clear trend is observed, i.e., samples with low margin,
or equivalently with high score, tend to achieve a higher
fault coverage. This proves the suitability of the chosen fault-
agnostic metric for ranking samples according to their fault
detection capability. We also observe that the fault coverage
rapidly increases when the margin decreases for small margin
values, while for large margin values, fault coverage values
are flattened or show a small fluctuation. This means that
input samples with relatively large margin values may show
small deviation in their fault detection capability, whereas for
input samples with small margin values, the deviation can be
significant. Note also that a flat fault coverage curve does
not necessarily imply that adding more samples with larger
margins to the test set is meaningless since they may be
achieving the same fault coverage, but at the same time they
may be detecting a different set of faults compared to the faults
already detected by samples of higher ranking.

Figs. 9(b), 10(b), and 11(b) show for the different fault
types the number of benign and critical faults by varying the
error tolerance. By increasing the tolerance from 0%, some
critical faults are labelled as benign, thus the number of benign
faults increases and the number of critical faults drops. The
number of truly benign faults, i.e., none of the samples is
misclassifed when these faults occur, is shown in Figs. 9(b),
10(b), and 11(b) for tolerance 0%. Fault type criticality for
a given tolerance value can be assessed by examining the
percentages of benign and critical faults. For tolerance 0%
we observe that for all fault types, faults turn out to be more
critical than benign, while for dead neuron faults, as expected,
the critical and benign fault populations are more balanced.
For all fault types, we observe that there is a tolerance value
for which the critical and benign curves cross, which means
that there is a certain tolerance value for which benign faults
start outnumbering critical faults.

In Figs. 9(c)-(h), 10(c)-(h), and 11(c)-(d) we rank the
samples in an ascending order according to their scores, and
we show the global cumulative fault coverage as we add
samples in the test set for the different fault types. Two general
conclusions can be drawn here. First, for the critical faults, the
global cumulative fault coverage curves quickly reach 100%,
while the convergence speed in general increases with the
tolerance. This is because higher tolerance means less critical
faults and, thereby, smaller test effort to reach 100% fault
coverage. The number of samples required to achieve 100%
coverage varies from one SNN to another and from one fault
type to another. Second, for the benign faults, the global
cumulative fault coverage is not expected to reach 100% since
many faults are truly benign. For tolerance 0%, the benign
fault coverage is by definition zero. We also observe that the

%
Tol

Neuron Faults Synapse Faults
Dead Saturated Benign CriticalBenign Critical Benign Critical

0 - 150 - 33 - 1
0.2 92 36 33 33 1 1
0.5 92 36 17 9 1 1

(a) NMNIST SNN.

%
Tol

Neuron Faults Synapse Faults
Dead Saturated Benign CriticalBenign Critical Benign Critical

0 - 32 - 25 - 66
2 13 28 31 19 35 35
4 13 28 31 15 32 28

(b) IBM DVS gesture SNN.

%
Tol

Single Bit-Flips Multiple Bit-Flips
Benign Critical Benign Critical

0 - 6 - 6
2.5 6 6 6 6
5 6 6 6 6

(c) Poker card symbols SNN.

TABLE I: Number of samples needed to reach the maximum fault
coverage for different fault types at different tolerance values.

global cumulative fault coverage curves quickly saturate. The
number of samples at the saturation point corresponds to the
number of samples needed for detecting all benign faults that
are not truly benign.

Table I extracts some representative results from Figs.
9(c)-(h), 10(c)-(h), and 11(c)-(d), summarizing for each SNN
and for three representative tolerance values the two most
interesting quantities, i.e., the number of samples required to
reach 100% fault coverage for critical faults and the number
of samples required to detect all benign faults that are not
truly benign. For example, for the N-MNIST SNN, we observe
that the most highly ranked sample alone can detect all
critical synapse faults for any tolerance value. To reach 100%
fault coverage for critical dead neuron and saturated neuron
faults for 0% tolerance, 150 and 33 samples are required,
respectively. The required number of samples drops as the
tolerance increases, i.e., for 0.2% tolerance 36 and 33 samples
are required and for tolerance 0.5% 36 and 9 samples are
required. Also from the cumulative benign fault coverage
curves, we observe that, in general, for any tolerance value,
the saturation point is reached before the maximum number
of 150 samples required for detecting all critical faults at
0% tolerance, i.e., for 0.2% tolerance saturation is observed
from 92, 33, and 1 samples onwards for benign dead neuron,
saturated neuron, and synapse faults, respectively. For the IBM
DVS gesture SNN, the number of samples required to achieve
100% critical fault coverage is 66, 35, and 28, for tolerance
values 0%, 2%, and 4%, respectively. For these test sets,
maximum coverage for not truly benign faults is achieved,
except for tolerance 4% where an additional 31-28=3 samples
from the ordered list need to be included. For the poker card
symbols SNN, 6 samples suffice to detect all critical and not
truly benign faults for any fault type.

Overall, results show that in all cases a compact functional
test set is found that is capable of detecting all critical faults
for any tolerance value, and as an auxiliary benefit it detects
all benign faults that result in even the smallest accuracy drop,
i.e. one sample is misclassified. Taking as an example the N-
MNIST SNN for which 70, 000 samples are available from

10

the training and testing sets, the functional test set required
to achieve 100% critical fault tolerance for all fault types is
compacted to 150/(7 · 104) = 0.214% and 36/(7 · 104) =
0.051% of the combined size of the training and testing sets
for tolerance 0% and tolerance > 0%, respectively, where the
maximum number of required samples across the three fault
types is used.

VIII. RELATED WORK ON FUNCTIONAL TEST GENERATION
FOR AI HARDWARE ACCELERATORS AND COMPARISON

The DeepXplore [42] and DeepTest [41] algorithms gener-
ate error-inducing corner test cases, which are then used for re-
training the ANN aiming at improving classification accuracy.
The criterion is maximizing neuron coverage, such that ideally
for each neuron there is a test that makes it highly active. In
the end, the generated synthetic samples represent real-world
samples. For example, [41] starts with a subset of the testing
set, called “seeds”, then performs realistic transformations of
seed images, such as changing brightness, changing contrast,
rotation, blurring, fog effect, rain effect, etc. These test gen-
eration algorithms target improving classification performance
and not hardware-level fault detection. However, it would be
interesting to investigate whether synthetic samples generated
in this fashion can also achieve high fault coverage.

In [18], a methodology to derive a diminutive set of func-
tional test patterns for systolic array-based ANN accelerators
is proposed. Two functional test pattern generation algorithms
are proposed, namely an ANN model-agnostic algorithm and
an ANN model-aided confidence-based algorithm. The ANN
model-agnostic algorithm rates samples in the testing set based
on their similarity to other samples belonging to different
output classes. The similarity metric used is average pixel
intensity. The ANN model-aided confidence-based algorithm
searches for samples in the testing set that have been predicted
correctly but with least confidence score. The proposed method
in our work concerns SNNs and chooses samples that are
prone to misclassification based on a different SNN-specific
similarity metric defined based on the output spike trains.

In [19], it is proposed to rank and select a small subset
of samples from the training set making the hypothesis that
samples that require more neural network parameter tuning
during training than others will be more sensitive to changes
in neural network parameters due to faults. Tuning effort per
sample is approximated with the change in the loss function in
each training step. In the case where the model is pre-trained,
a black-box approach is proposed to rank samples based on
the difference in the loss function of a randomly initialized
neural network instance and the pre-trained neural network.
The methodology is demonstrated for memristive crossbar-
based ANN hardware accelerators.

A functional test generation algorithm for SNNs is proposed
in [20]. The algorithm produces a test set containing a mixture
of available samples and adversarial examples. An adversarial
example is generated by perturbing available samples by
adding a minimum amount of noise such that the predictions of
the nominal and faulty SNNs are differentiated. The algorithm
starts by injecting a fault and examining if any of the available

samples detects it. If not, up to D adversarial examples are
generated, where D is a user-defined variable, aiming at
finding one that detects the fault. If any available sample or
adversarial example is found that detects the fault, then this
successful test is tried out on all faults. It is placed in the
kept list and the detected faults are dropped from the list. The
algorithm reiterates targeting the next undetected fault. Since
the number of synapse faults is too high, to solve the scalability
issue only the last layer synapse faults are considered. In this
work, we performed an experiment in Section VI-C to justify
fault space reduction. Furthermore, the algorithm in [20]
follows a greedy approach where tests are repeatedly evaluated
on the undetected faults, combining test generation with fault
coverage estimation. Thus, the number of inferences required,
i.e., the test generation time, is a summation over tests and
faults. On the contrary, the proposed algorithm in this paper
dissociates test generation with fault simulation. Tests are first
ranked by performing inference on the fault-free network,
then fault coverage is computed only for the highly ranked
tests. Thanks to the fault model agnostic ranking, the proposed
method reduces dramatically the number of inferences. Finally,
in the algorithm in [20], adversarial examples are useful for
detecting benign faults since all critical faults are covered
by original samples before entering the adversarial example
generation loop. Adversarial example generation can be also
seemingly added to the proposed algorithm in our work as a
second step to boost benign fault detection.

IX. DISCUSSION

A. Generality

The proposed functional test generation method is generic,
treating the SNN architecture as a black-box. In this regard,
the method is virtually applicable to any SNN hardware
accelerator and neuromorphic computing hardware platform,
including for example the SpiNNaker [52], TrueNorth [53],
Loihi [54], BrainScaleS [55], Neurogrid [56], FPGA-based im-
plementations [45], and application-specific small-scale chips
[57]–[62].

B. Test generation effort

The proposed test generation algorithm can be decomposed
into two steps: (a) the ranking of available input samples
according to their fault coverage ability; and (b) the fault
coverage assessment of a test set composed of highly ranked
input samples.

Step (a) is agnostic to the fault model, using only inference
data, i.e., number of spikes per output class for each sample
in the training and testing sets from a pre-trained SNN model.
This information is already available from the training phase,
thus step (a) can be completed very fast independently of the
SNN and dataset sizes.

Step (b) requires fault simulation, thus the effort is propor-
tional to the SNN size. The number of fault locations increases
with the increase in the SNN size and, thereby, the number of
functional tests required to achieve the desired fault coverage
is likely to increase as well. For large SNNs, fault simulation
effort may rapidly explode as explained in Section VI-C. For

11

this reason, the fault space needs to be conservatively reduced
by considering the impactful fault locations, i.e., neurons in
last layer, saturation neuron faults, and synaptic connections
in the last layers. Note, however, that the highest ranked input
sample will detect a very high number of faults and in each
step, by adding the next highest ranked input sample, the
cumulative global fault coverage rises quickly. This behavior
was observed in the results in Section VII. In each step, we
exclude from the simulation the faults already detected by
previous input samples in the ranked order. This way, fault
simulation is not exhaustively repeated for every input sample
and it can become tractable even for large size SNNs. Note
also that step (b) is an one-time effort and can be significant
for traditional computing chips as well. Once the functional
test set is generated, it will be used as a fixed test program in
high-volume production. As a final observation, the effort in
step (b) is not related to the dataset size. A large dataset size
means more input samples, thus a larger pool of functional
tests to choose from. In fact, a larger dataset size may lead to
a more compact functional test set.

C. Other metrics for grading functional tests

The metric used for grading functional tests is based on
spike-count difference for the first two top classes, i.e., the only
relevant aspect of a spike train is its total number of spikes.
In principle, any metric that quantifies the distance between
two spike trains can be used. Several such metrics have been
proposed in the past generalizing the distance measure to
include the temporal structure in the spike trains [63]–[67].
For example, in the Victor-Purpura metric [63], the distance
is defined as the minimum cost required to transform one
spike train into the other via a path of elementary steps.
The cost equals the sum of the costs assigned to each of the
allowed elementary steps. In our context, the cost is inversely
proportional to the score of the functional test. There are two
kinds of elementary steps: (a) adding or deleting a spike which
is assigned a cost of 1; and (b) shifting in time the occurrence
of a single spike by an amount ∆t which is assigned a cost
of q ∗ |∆t|, where q is a parameter that expresses the relative
sensitivity of the metric to precise timing of spikes. The two
extreme cases are q = 0 and q = ∞ (or very large q). By
setting q = 0, we recover the spike-count difference metric
used in this work. This is because for two spike trains with
number of spikes n1 and n2 > n1, we can align the first n1

spikes with zero cost, then transform the second spike train to
the first by deleting its last n2 −n1 spikes with cost n2 −n1.
In the limit q = ∞, it is less costly to add or delete spikes
than to shift a spike and so the distance between two spike
trains becomes the total number of non-synchronous spikes.

X. CONCLUSIONS

We presented a method to generate compact functional test
sets for SNN hardware accelerators. A fault-agnostic metric is
proposed to rank the available samples based on their fault
coverage capability without performing any fault injection
experiments. The functional test set is generated by performing
inference only once for each sample on the nominal network

and recording the output neuron spiking activity, i.e., an
effort that is spent already during training. Thereafter, fault
injection experiments are performed using only the highly
ranked samples to compute fault coverage given a fault model.
Results collected from three SNNs, one of which is mapped to
neuromorphic hardware implemented on an FPGA, show that
the proposed method generated highly compact functional test
sets that can detect all faults resulting in even the smallest
accuracy drop, i.e., one sample is misclassified.

REFERENCES

[1] D. Maliuk, H.-G. Stratigopoulos, H. Huang, and Y. Makris, “Analog
neural network design for RF built-in self-test,” in Proc. IEEE Int. Test
Conf. (ITC), Nov. 2010, Paper 23.2.

[2] Y. Huang and R. Singhai, “Tutorial 1B: AI chip technologies and DFT
methodologies,” in Proc. IEEE Int. Syst.-on-Chip Conf. (SOCC), Sep.
2019.

[3] S. Motaman, S. Ghosh, and J. Park, “A perspective on test methodologies
for supervised machine learning accelerators,” IEEE Trans. Emerg. Sel.
Topics Power Electron., vol. 9, no. 3, pp. 562–569, Aug. 2019.

[4] A. Gebregiorgis and M. B. Tahoori, “Testing of neuromorphic circuits:
Structural vs functional,” in Proc. IEEE Int. Test Conf. (ITC), Nov. 2019,
Paper 3.2.

[5] A. Ankit, I. Chakraborty, A. Agrawal, M. Ali, and K. Roy, “Circuits
and architectures for in-memory computing-based machine learning
accelerators,” IEEE Micro, vol. 40, no. 6, pp. 8–22, Nov./Dec. 2020.

[6] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: oppor-
tunities and challenges,” Front. Neurosci., vol. 12, Oct. 2018, Article
774.

[7] L. A. Camuñas-Mesa, B. Linares-Barranco, and T. Serrano-Gotarredona,
“Spiking neural networks and their memristor-CMOS hardware imple-
mentations,” Materials, vol. 12, no. 17, Aug. 2019, Article 2745.

[8] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz,
E. Vianello, and E. Beigne, “Spiking neural networks hardware imple-
mentations and challenges: A survey,” ACM J. Emerg. Technol. Comput.
Syst., vol. 15, no. 2, Apr. 2019.

[9] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” IEEE Access, vol. 5, pp. 17322 – 17341, Aug.
2017.

[10] Y. He, P. Balaprakash, and Y. Li, “FIdelity: Efficient resilience
analysis framework for deep learning accelerators,” in Proc. 53rd Annu.
IEEE/ACM Int. Symp. Microarchit. (MICRO), Oct. 2020, pp. 270–281.

[11] G. Li et al., “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal. (SC), Nov. 2017.

[12] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in Proc. 55th ACM/ESDA/IEEE Design Autom.
Conf. (DAC), Jun. 2018.

[13] F. F. dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of
convolutional neural networks on GPUs,” IEEE Trans. Reliab., vol. 68,
no. 2, pp. 663–677, Jun. 2019.

[14] M. A. Neggaz, I. Alouani, S. Niar, and F. Kurdahi, “Are CNNs reliable
enough for critical applications? An exploratory study,” IEEE Des. Test,
vol. 37, no. 2, pp. 76–83, Apr. 2020.

[15] A. Ruospo, A. Bosio, A. Ianne, and E. Sanchez, “Evaluating convolu-
tional neural networks reliability depending on their data representation,”
in Proc. 23rd Euromicro Conf. Digit. Syst. Des. (DSD), Aug. 2020, pp.
672–679.

[16] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Reliability analysis of a spiking
neural network hardware accelerator,” in Proc. Design Autom. Test
Europe Conf. (DATE), Mar. 2022.

[17] A. Chaudhuri, C. Liu, X. Fan, and K. Chakrabarty, “C-testing and
efficient fault localization for AI accelerators,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 41, no. 7, pp. 2348–2361, Jul.
2022.

[18] S. Kundu, S. Banerjee, A. Raha, S. Natarajan, and K. Basu, “Toward
functional safety of systolic array-based deep learning hardware accel-
erators,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29, no.
3, pp. 485–498, Jan. 2021.

12

[19] S. T. Ahmed and M. B. Tahoori, “Campact functional test generation for
memristive deep learning implementations using approximate gradient
ranking,” in Proc. IEEE Int. Test Conf. (ITC), Sep. 2022, pp. 239–248.

[20] H.-Y. Tseng, I-W. Chiu, M.-T. Wu, and J. C.-M. Li, “Machine learning-
based test pattern generation for neuromorphic chips,” in IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2021.

[21] L.-H. Hoang, M. A. Hanif, and M. Shafique, “FT-ClipAct: Resilience
analysis of deep neural networks and improving their fault tolerance
using clipped activation,” in Proc. Design Autom. Test Europe Conf.
(DATE), Mar. 2020, p. 1241–1246.

[22] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Neuron fault tolerance in spiking
neural networks,” in Proc. Design Autom. Test Europe Conf. (DATE),
Feb. 2021.

[23] R. V. W. Putra, M. A. Hanif, and M. Shafique, “SoftSNN: Low-cost
fault tolerance for spiking neural network accelerators under soft errors,”
in Proc. 59th Design Autom. Conf. (DAC), Jul. 2022, p. 151–156.

[24] G. Gambardella, J. Kappauf, M. Blott, C. Doehring, M. Kumm, P. Zipf,
and K. Vissers, “Efficient error-tolerant quantized neural network
accelerators,” in Proc. IEEE Int. Symp. Defect Fault Toler. VLSI
Nanotechnol. Syst. (DFT), Oct. 2019.

[25] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga,
C. Frost, and P. Rech, “Selective hardening for neural networks in
FPGAs,” IEEE Trans. Nucl. Sci., vol. 66, no. 1, pp. 216–222, Jan.
2019.

[26] Z. Xu and J. Abraham, “Safety design of a convolutional neural network
accelerator with error localization and correction,” in Proc. IEEE Int.
Test Conf. (ITC), Nov. 2019, Paper 12.3.

[27] M. Liu, L. Xia, Y. Wang, and K. Chakrabarty, “Algorithmic fault
detection for RRAM-based matrix operations,” ACM Trans. Des. Autom.
Electron. Syst., vol. 25, no. 3, pp. 29:1–29:31, May 2020.

[28] E. Ozen and A. Orailoglu, “Low-cost error detection in deep neural
network accelerators with linear algorithmic checksums,” J. Electron.
Test.: Theory Appl., vol. 36, no. 6, pp. 703–718, Dec. 2020.

[29] S. Hari, M. Sullivan, T. Tsai, and S. Keckler, “Making convolutions
resilient via algorithm-based error detection techniques,” IEEE Trans.
Dependable Secure Comput., vol. 19, no. 4, pp. 2546–2558, Jul./Aug.
2022.

[30] A. Ruospo, D. Piumatti, A. Floridia, and E. Sanchez, “A suitability
analysis of software based testing strategies for the on-line testing of
artificial neural networks applications in embedded devices,” in Proc.
IEEE Int. Symp. On-Line Test. Robust Syst. Des. (IOLTS), 2021.

[31] M. Liu and K. Chakrabarty, “Online fault detection in ReRAM-based
computing systems by monitoring dynamic power consumption,” in
Proc. IEEE Int. Test Conf. (ITC), Nov. 2020.

[32] N. I. Deligiannis, R. Cantoro, M. Sonza Reorda, M. Traiola, and
E. Valea, “Towards the integration of reliability and security mechanisms
to enhance the fault resilience of neural networks,” IEEE Access, vol.
9, pp. 155998–156012, Nov. 2021.

[33] E. Vatajelu, G. Di Natale, and L. Anghel, “Special session: Reliability of
hardware-implemented spiking neural networks (SNN),” in Proc. IEEE
VLSI Test Symp. (VTS), Apr. 2019.

[34] S. A. El-Sayed, T. Spyrou, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Spiking neuron hardware-level
fault modeling,” in Proc. 26th IEEE Int. Symp. On-Line Test. Robust
Syst. Des. (IOLTS), Jul. 2020.

[35] C. D. Schuman et al., “Resilience and robustness of spiking neural
networks for neuromorphic systems,” in Proc. Int. Jt. Conf. Neural
Netw. (IJCNN), Jul. 2020.

[36] R. V. W. Putra, M. A. Hanif, and M. Shafique, “ReSpawn: Energy-
efficient fault-tolerance for spiking neural networks considering unreli-
able memories,” in Proc. ACM/IEEE Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2021.

[37] S. A. El-Sayed, L. A. Camuñas-Mesa, B. Linares-Barranco, and H.-G.
Stratigopoulos, “Self-testing analog spiking neuron circuit,” in Proc.
Int. Conf. Synth. Model. Anal. Simulat. Methods Appl. Circuit Design
(SMACD), Jul. 2019.

[38] R. V. W. Putra, M. A. Hanif, and M. Shafique, “SparkXD: A framework
for resilient and energy-efficient spiking neural network inference using
approximate DRAM,” in Proc. 58th Design Autom. Conf. (DAC), Dec.
2021, p. 379–384.

[39] C. Mead, Analog VLSI and Neural Systems, Addison Wesley, 1989.
[40] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Front.

Neurosci., vol. 5, May 2011, Article 73.
[41] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing of

deep-neural-network-driven autonomous cars,” in Proc. IEEE/ACM Int.
Conf. Softw. Eng. (ICSE), May/Jun. 2018, p. 303–314.

[42] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated whitebox
testing of deep learning systems,” in Proc. 26th ACM Symp. Oper. Syst.
Princ. (SOSP), Oct. 2017.

[43] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting
static image datasets to spiking neuromorphic datasets using saccades,”
Front. Neurosci., vol. 9, Nov. 2015, Article 437.

[44] A. Amir et al., “A low power, fully event-based gesture recognition
system,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017.

[45] L. A. Camuñas-Mesa, Y. L. Domı́nguez-Cordero, A. Linares-Barranco,
T. Serrano-Gotarredona, and B. Linares-Barranco, “A configurable
event-driven convolutional node with rate saturation mechanism for
modular convnet systems implementation,” Front. Neurosci., vol. 12,
Feb. 2018, Article 63.

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no.
11, pp. 2278–2324, Nov. 1998.

[47] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassign-
ment in time,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2018,
pp. 1412–1421.

[48] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, Eds., pp. 8024–8035. Curran Associates, Inc., 2019.

[49] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jun.
2014.

[50] W. Gerstner, “Time structure of the activity in neural network models,”
Phys. Rev. E, vol. 51, pp. 738–758, 1995.

[51] E. M. El Mhamdi and R. Guerraoui, “When neurons fail,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May/Jun. 2017, pp.
1028–1037.

[52] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
Project,” Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[53] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Science, vol. 345, no.
6197, pp. 668–673, Aug. 2014.

[54] M. Davies et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb.
2018.

[55] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May/Jun.
2010, pp. 1947–1950.

[56] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations,” Proc. IEEE, vol. 102, no. 5,
pp. 699–716, Apr. 2014.

[57] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jimenez,
and B. Linares-Barranco, “A neuromorphic cortical-layer microchip for
spike-based event processing vision systems,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 53, no. 12, pp. 2548–2566, Dec. 2006.

[58] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sum-
islawska, and G. Indiveri, “A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128K synapses,”
Front. Neurosci., vol. 9, Apr. 2015, Article 141.

[59] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore
architecture with heterogeneous memory structures for dynamic neuro-
morphic asynchronous processors (DYNAPs),” IEEE Trans. Biomed.
Circuits Syst., vol. 12, no. 1, pp. 106–122, Nov. 2018.

[60] D. Ma et al., “Darwin: A neuromorphic hardware co-processor based
on spiking neural networks,” J. Syst. Archit., vol. 77, pp. 43–51, Jun.
2017.

[61] G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Kr-
ishnamurthy, “A 4096-neuron 1M-synapse 3.8-pJ/SOP spiking neural
network with on-chip STDP learning and sparse weights in 10-nm
FinFET CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 4, pp. 992–
1002, Apr. 2019.

[62] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, “A 0.086-mm2

12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking
neuromorphic processor in 28-nm CMOS,” IEEE Trans. Biomed.
Circuits Syst., vol. 13, no. 1, pp. 145–158, Feb. 2019.

[63] J. D. Victor and K. P. Purpura, “Nature and precision of temporal coding
in visual cortex: a metric-space analysis,” J. Neurophysiol., vol. 76, no.
2, pp. 1310–1326, Aug. 1996.

[64] M. C. W. van Rossum, “A novel spike distance,” Neural Comput., vol.
13, no. 4, pp. 751–763, Apr. 2001.

13

[65] T. Kreuz, J. S. Haas, A. Morelli, H. D.I. Abarbanel, and A. Politi,
“Measuring spike train synchrony,” J. Neurosci. Methods, vol. 165, no.
1, pp. 151–161, Sep. 2007.

[66] T. Kreuz, D. Chicharro, C. Houghton, R. G. Andrzejak, and F. Mormann,
“Monitoring spike train synchrony,” J. Neurophysiol., vol. 109, no. 5,
pp. 1457–1472, Mar. 2013.

[67] E. Satuvuori et al., “Measures of spike train synchrony for data with
multiple time scales,” J. Neurosci. Methods, vol. 287, pp. 25–38, Aug.
2017.

Sarah A. El-Sayed received her B.Sc. Degree in
Electrical and Electronic Engineering from Minia
University, Egypt, in 2009. From 2010 to 2017, she
was a teaching/research assistant at the faculty of
Engineering at Minia University, Egypt, where she
also got her M.Sc. degree in microelectronics in
2015, in collaboration with the National Telecom-
munications Institute, NTI, in Cairo, Egypt. She
received her Ph.D. degree from Sorbonne Univer-
sité in Paris, France, in 2021. And in 2022, she
was a post-doctoral researcher with the Laboratoire

d’Informatiques de Paris 6, LIP6, at Sorbonne Université in Paris, France. She
is now an associate professor at the faculty of Engineering, Minia University,
Egypt. Her research interests include bio-inspired computing, spiking neural
networks and analog circuit testing.

Theofilos Spyrou received his diploma of Electri-
cal and Computer Engineering from the Faculty of
Engineering of Aristotle University of Thessaloniki,
Thessaloniki, Greece, in 2019. He is a PhD candidate
at the Laboratoire d’Informatique de Paris 6 (LIP6)
at Sorbonne Université. His work is supported by the
Sorbonne Center of Artificial Intelligence (SCAI)
through fellowship. His PhD dissertation is on the
reliability and functional safety of AI Hardware and
his research interests include spiking neural net-
works, neuromorphic computing, and AI hardware

accelerators, among others.

Luis A. Camuñas-Mesa received the B.S. degree in
electrical engineering, the M.S. degree in microelec-
tronics, and the Ph.D. degree in event-based vision
systems from the University of Sevilla, Seville,
Spain, in 2003, 2005, and 2010, respectively. From
2004 to 2010, he was with the Sevilla Microelec-
tronics Institute (IMSE-CNM), Spanish Research
Council (CSIC), Seville, where he was involved
in the VLSI implementation of event-driven AER
vision processing systems. In 2006, he was a Visit-
ing Student with the Institute of Neuroinformatics,

Zurich, Switzerland. From 2010 to 2013, he was an Associate Postdoctoral
Researcher with the Centre for Systems Neuroscience, University of Leicester,
Leicester, U.K., where he was involved in olfactory sensing and processing,
spike detection and sorting, and simulation of extracellular recordings. Since
2013, he has been with IMSE-CNM, CSIC, where he received the “Juan
de la Cierva” Postdoctoral Fellowship. His current research interests include
bioinspired circuits and systems, real-time event-based vision sensing and
processing chips, neuromorphic stereo vision, and nanoscale memristor-based
AER circuits for STDP learning. He is an Associate Editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: BRIEF PAPERS.

Haralampos-G. Stratigopoulos (Member, IEEE)
received the Diploma degree in electrical and com-
puter engineering from the National Technical Uni-
versity of Athens, Athens, Greece, in 2001, and
the Ph.D. degree in electrical engineering from
Yale University, New Haven, CT, USA, in 2006.
Since 2020 he is Research Director with the French
National Center for Scientific Research (CNRS) at
the LIP6 Laboratory, Sorbonne Université, Paris,
France. Before he was a Researcher with the CNRS
at TIMA Laboratory, Université Grenoble Alpes,

Grenoble, France, from 2008 to 2015, and at LIP6 Laboratory, Sorbonne
Université, Paris, France, from 2015 to 2020. His main research interests
include hardware security, neuromorphic computing, and design-for-test for
analog, mixed-signal, and RF circuits and systems. He was the General Chair
of the 2015 IEEE International Mixed-Signal Testing Workshop (IMSTW)
and the 2021 and 2022 AI Hardware: Test, Reliability and Security (AI-
TREATS) Workshop and the Program Chair of the 2017 IEEE European
Test Symposium (ETS). He has served on the Technical Program Committees
for the Design, Automation, and Test in Europe Conference (DATE), Design
Automation Conference (DAC), IEEE International Conference on Computer-
Aided Design (ICCAD), IEEE European Test Symposium (ETS), IEEE
International Test Conference (ITC), IEEE VLSI Test Symposium (VTS), and
several others international conferences. He has also served as an Associate
Editor for IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS, IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS—I:REGULAR PAPERS, IEEE DESIGN AND
TEST, and Journal of Electronic Testing: Theory and Applications (Springer).

