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The ability to prepare a specific superposition of electronic excited states leading to a transitory
symmetry breaking of the electronic density in complex systems remains a challenging concern.
We investigate how an initial coherence can be controlled by laser fields. The selected molecular
system is a symmetric dimer of phenylene ethynylene presenting different interesting properties: two
bright nearly degenerate excited states coupled through a conical intersection are addressable by
orthogonal transition dipole moments and are well separated from neighboring states. Creating a
superposed state with equal weights corresponds to a right or left electronic localization as in the
double-well system followed by a transitory oscillation between the two wells. To ensure a spectral
bandwidth typically smaller than 0.25 eV, the pulse duration is in the tens of femtoseconds range so
that nuclear motion cannot be neglected. Optimal control theory (OCT) is applied with guess fields
that effectively create the target coherence in the absence of dephasing due to the vibrational baths.
We analyze the field reshaping proposed by the control and we further fit sequence of pulses on the
optimal field. The overall result is efficient and robust disymmetry control over reasonable time scales
of few tens of femtoseconds, exceeding the pulse duration. The monotonically convergent algorithm
is combined with the hierarchical equations of motion (HEOM) able to treat strongly coupled non-
Markovian dynamics. We also check the implementation of the combined OCT-HEOM approach in
the tensor-train (TT) representation with propagation using the time dependent variational method.

I. INTRODUCTION

Controlling electron dynamics and quantum coher-
ence to trigger particular nuclear displacements is the
basic concern of the emerging field of atto-physics and
femto-chemistry [1–7]. The preparation by laser fields of
specific superpositions of excited eigenstates generates
an electron density reorganization or symmetry break-
ing [8, 9] and the correlated directional properties on
the nuclear motion.

The timescale of the light pulse fixes the spectral
bandwidth and this could be prohibitive when the tar-
get is a narrow band of some particular bright excited
states. To avoid interference with additional bright
states, the pulse duration should not be less than few
tens of femtoseconds. It is then similar to some vibra-
tional periods and electronic decoherence will occur dur-
ing the interaction with the laser field. The variation of
the off-diagonal elements of the reduced density matrix
is due to relaxation induced here by the non-adiabatic
transitions and to dephasing caused by the tuning of the
energies. Developing strategies to improve the prepa-
ration of superposed electronic states and to preserve
coherence at least during the pulse remains a challeng-
ing objective in complex molecular systems [10–16]. Our
goal concerns the timely issue of optimizing control pro-
cedures for quantum systems strongly coupled to struc-
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tured environments and leading to non-Markovian re-
duced dynamics. This requires implementing an opti-
mization procedure of the parametric space among nu-
merous available methods [17–24] with an efficient treat-
ment of non-Markovian open systems [16, 25–27]. There
are two main ways to account for the non-Markovianity
reviewed for instance in reference [28]. The dimension
of the active system may be increased by including a
reasonable number of discrete modes while the resid-
ual bath is weakly coupled and Markovian [29–37]. The
other scenario simulates the baths by continuous spec-
tral densities leading to time-local coupled hierarchical
equations of motion (HEOM) [38–41]. In this work, we
combine HEOM with a monotonically convergent al-
gorithm of optimal control theory (OCT) in presence
of dissipation [42]. For non-Markovian dissipation, the
backward propagation to solve the equation with the fi-
nal target condition requires special attention [43]. This
is established at the second order [44] and generalized
for HEOM [27]. We compare the approach using a stan-
dard Cash–Karp Runge–Kutta adaptive algorithm [45]
with a tensor train (TT) representations [37, 46–52] re-
cently implemented in HEOM [53–56].

We consider a symmetric molecular system: a meta-
substituted dimer of phenylene ethynylene (PPE) of C2v

symmetry, which is a building block of tree-like den-
drimers [57–59]. The first excited manifold is composed
of two quasi-degenerate bright states (the gap at the
Franck-Condon geometry is 0.044 eV) of different sym-
metry only radiatively coupled to the ground state. The
two states are coupled through a conical intersection
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[60], characterized in reference [61]. The model is cali-
brated from molecular ab initio data in the framework
of the Linear Vibronic Coupling (LVC) model currently
used to describe conical intersections [62]. The adia-
batic excited states are delocalized over the whole nu-
clear skeleton. Our aim is to create a superposed excited
state with a broken symmetry leading to a transitory lo-
calization on the left or right part of the molecule (see
figure 1).

For the optimization, we first explore guess fields in-
spired from a simplified three-state V-type model with-
out dissipation for which there is an analytical solution
based on simultaneous π/

√
2 pulses with orthogonal po-

larization and equal duration [63]. In a second step, we
use OCT with an optimization on a time grid to offer the
maximum flexibility to the pulse shape. The interpre-
tation of the resulting reshaped optimized field actually
suggests a sequence of few pulses which can further be
designed by shaping techniques. Still another way is to
provide simple analytical forms for the individual pulses
and fit their parameters with the optimized field.

The paper is organized as follows: in Section II, we
present the ab initio data and particularly, the param-
eters of the LVC model of the conical intersection be-
tween the excited states. Section III describes the spec-
tral densities of the tuning and coupling baths, pay-
ing particular attention to the correlation of the tuning
baths. In Section IV, we explicit the strategies for the
field driven dynamics. The results are given in Section
V. All the equations for the OCT-HEOM approach are
summarized in Appendix A and the TT representation
is given in Appendix B. Appendix C provides a list of
the abbreviations.

II. MODEL

The molecular system is a C2v meta-substituted
dimer of phenylene ethynylene (PPE). We focus on the
first excited manifold with two bright excited states S1
(1B2) and S2 (2A1) coupled to the ground S0 (1A1)
state only radiatively through corresponding transition
dipoles. All calculations were performed with the Gaus-
sian16 package (revision A03) [65] using DFT (ground
state, S0) and TD-DFT (excited states, S1 and S2) at
the CAM-B3LYP/6-31+G* level of theory, the valid-
ity of which having been already assessed in previous
works [61, 64]. The electronic-state symmmetries, en-
ergies, and oscillator strengths at the S0 minimum and
S2/S1 Minimum Energy Conical Intersection (MECI)
geometries are provided in the Supplemental Material.
It also contains the geometries of the S0 minimum and
S2/S1 MECI.

The molecule is planar and positionned according to
Mulliken’s axis convention for C2v symmetry (as shown
in figure 1). More precisely, z (A1) is the C2 rotation
axis, y (B2) lies within the molecular plane, and x (B1)
is orthogonal to it. The vertical energies and the dipole
transition moments at the ground equilibrium geometry

(minimum of S0) are given in figure 1. The two excited
states are coupled through a conical intersection that
has been recently characterized [61]. This induces an
ultrafast nonadiabatic funneling between these states.
We consider the A1 and B2 in-plane motions by dis-
carding soft out-of-plane torsions, which are expected to
play a secondary role. The S1 and S2 states may cross
in C2v symmetry. The S1 state exhibits two equivalent
minima in CS geometry connected by B2 deformations.
A scheme of the adiabatic potential energy surfaces is
given in figure 1. This adiabatic representation may
be described in terms of two interesting diabatic basis
sets leading to the so-called delocalized or localized di-
abatic states respectively [66]. The delocalized states
are adapted to the A1 or B2 symmetries. They coincide
with the adiabatic states along symmetry conserving A1
motions, which are the tuning modes making fluctuate
the energy gap. They are coupled by a potential elec-
tronic coupling along B2 modes, which are the coupling
modes. In the LVC model, the two excited delocalized
diabatic states are written in mass weighted coordinates
by choosing the Franck-Condon geometry as a reference
point and by neglecting any Duchinsky rotation of the
normal modes. Accordingly, the N normal modes qj

are the same in each electronic state, only their equilib-
rium position q

(m)
j,0 depends on the electronic state m.

The N normal modes are separated in tuning and cou-
pling classes N = Nt + Nc according to their symmetry,
the corresponding modes being denoted qj,t or qj,c re-
spectively. The Hamiltonian matrix in the delocalized
diabatic basis set reads:

Hdeloc
mm = ε

(m)
F C +1/2

∑N

j

(
p2

j + ω2
j q2

j,t/c

)
−

∑Nt

j
d

(m)
j qj,t

(1)

Hdeloc
mm′ =

∑Nc

j
c

(mm′)
j qj,c (2)

where ε
(m)
F C is the energy at the Franck-Condon geom-

etry. In the harmonic model, the gradients d
(m)
j =

ω2
j q

(m)
j,t,0 are related to the distance qj,t,0 between the

minimum position of the excited state and the refer-
ence point. A good agreement of the two values is a
validation of the harmonic hypothesis. The gradients
of the coupling are computed by a method detailed in
reference [67]. The components of relevant shifts and
gradients in terms of in-plane normal modes (A1 and
B2) are listed in the Supplemental Material. They lead
to the definition of collective coordinates ensuring the
whole coupling to the electronic system

X
(m)
t =

∑Nt

j
d

(m)
j qj,t/D

(m)
0t (3)

and

X(mm′)
c =

∑Nc

j
c

(mm′)
j qj,c/D

(mm′)
0c (4)

with D(m)
0t

=
∑Nt

j d
(m)2
j and D

(mm′)
0c =

∑Nc

j c
(mm′)2
j .

In figure 1, we illustrate the main vibrational tuning
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Figure 1. Upper panel: 3D-schematic view of the conical intersection between the adiabatic excited states S1 and S2 (left
panel) and of the corresponding localized diabatic states DL and DR with their corresponding electronic LUMO orbitals
[61, 64] (right panel). Lower panel: ab initio energies and transition dipole moments at the minimum geometry of the ground
state S0 (left part). The x, y and z-axes convention together with the main vibrational mode Xt of A1 symmetry belonging
to the tuning bath and the main antisymmetric coupling bath mode Xc of B2 symmetry are illustrated in the right part.

and coupling modes contributing to the effective coor-
dinates. They are the high-frequency stretching modes
of the two triple bonds connecting the phenyl rings with
the symmetric A1 deformation for X

(m)
t and the anti-

symmetric B2 one for X
(mm′)
c respectively.

By transforming the two-by-two subspace of the ex-
cited delocalized diabatic basis set by a π/4 rotation
matrix, the equilibrium positions of the diabatic local-
ized states DL and DR correspond to those of the adi-
abatic lowest state, which displays a double well profile
along a B2 displacement. Each localized diabatic state
corresponds to the localization of the excited electronic
density on one or the other side of the dimer as illus-
trated in figure 1.

III. OPEN QUANTUM SYSTEM

According to the open quantum system approach, the
full vibronic space is partitioned into an active subsys-
tem explicitly treated quantum mechanically and its
surrounding addressed as a bath. The choice of the
partition is a key ingredient to get a computationally
tractable master equation. Hierarchical equations of
motion (HEOM) are one of the standard strategies to
solve the system-bath dynamical equations in a numeri-
cally exact way provided that the bath is harmonic and
linearly coupled to the system. Different partitions have
been used in HEOM applications with a conical inter-
section by including in the active system the main tun-

ing and coupling modes and the corresponding potential
energy surfaces coupled to residual baths [68], or only
the electronic subsystem at a reference geometry (here
the equilibrum geometry of the ground electronic state)
[63, 69, 70], the baths being all the nuclear tuning or
coupling vibrational modes at thermal equilibrium at
the reference point. We adopt the second strategy. The
full Hamiltonian is then rewritten as:

H = HS + HSB + HB (5)

where HS is the diabatic delocalized symmetry adapted
electronic Hamiltonian at the Franck-Condon geometry.
At this reference point, the diabatic and adiabatic en-
ergies coincide and the coupling vanishes. The energies
are given in figure 1. The transformation to the local-
ized diabatic representation

H loc
S = U†HSU (6)

involves the matrix

U =

1 0 0
0 1/

√
2 −1/

√
2

0 1/
√

2 1/
√

2

 . (7)

The system-bath coupling is HSB =
∑

b SbBb where
b = t, c designates the bath. Sb and Bb are operators
of the electronic and of the complementary vibrational
spaces respectively. The linear coupling is induced by
the antisymmetric coupling modes, which are coupled
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off-diagonally by the operator Sc = |S1⟩ ⟨S2|+ |S2⟩ ⟨S1|.
The tuning baths inducing fluctuation of the energy
gaps are often considered as independent when they
gather modes belonging to different molecular sites em-
bedded in complex structures as in light harvesting
complexes. The operator relating each tuning bath is
then the projector on the corresponding electronic state
St,m = |m⟩ ⟨m| and the total contribution to the cou-
pling term is St,m1Bb1 + St,m2Bb2 . In the case of the
conical intersection in a single molecular system, the
modes are assumed to be the same in the excited elec-
tronic states. When some modes lead to different gra-
dients in the different states, they are correlated and
make appear cross terms in the correlation function of
the bath modes. An approximate way of accounting for
bath correlation is to work with a single bath coupled
via a composite operator St = |m⟩ ⟨m| + w |m′⟩ ⟨m′|.
Limit values w = 1 or w = −1 correspond to fully cor-
related or anticorrelated baths, i.e. each mode leads
to the same gradient or the opposite gradient in the
two electronic states [71]. We take a model with a con-
stant correlation factor fixed by the principal A1 mode
leading the largest gradient and we use the operator
St = |S1⟩ ⟨S1| + 0.893 |S2⟩ ⟨S2| as discussed below when
we present the bath spectral densities. A more sophis-
ticated method introducing a frequency dependent cor-
rection of the spectral density has been used recently
[72].

The bath operators are collective modes having the
dimension of an energy. For the correlated tuning baths
involving the composite operator St, we use the tun-
ing collective mode Bt =

∑Nt

j d
(S1)
j qj,t = D

(S1)
0t X

(S1)
t

where d
(S1)
j are the S1 gradients at the reference point.

The coupling collective mode is Bc =
∑Nc

j c
(S1S2)
j qj,c =

D
(S1S2)
0c Xc where c

(S1S2)
j are the gradients of the inter-

state coupling.
The key tool is the spectral density

Jt/c(ω) = π

2
∑

j
f2

j ω−1
j δ(ω − ωj) (8)

where f2
j is the strength of the coupling at each fre-

quency and fj = dj or fj = cj for t/c respec-
tively. It is linked to the so-called thermal spectral den-
sity JT

t/c (ω) = Jt/c (ω)
(
eβω − 1

)−1 with β = 1/kBT .
JT

t/c (ω) is used in different approaches with discrete
modes to account for the temperature. In the con-
tinuous approach, the master equation involves the
Fourier transform Ct/c(t) =

∫ ∞
−∞ dωJT

t/c (ω)e−iωt that
is the two-time correlation function of the collective
modes Ct/c(t) =

〈
Bt/c(t)Bt/c(0)

〉
eq

where Bt/c(t) is
the Heisenberg representation of the operator and ⟨�⟩eq
denotes the average over a Boltzmann distribution at
temperature T . The delta distribution of the discrete
spectral density is broadened by a Lorentzian smooth-
ing function δ(ω − ωj) → 1

π
Γ

(ω−ωj)2+Γ2 [73–75]. In this
work, we used Γ with a wave number 160 cm−1. The

Figure 2. Discrete spectral densities (Eq.(8)) broadened by a
Lorentzian function with a width of wave number 160 cm−1.
Panel(a): JS1 and JS2 of the tuning baths: panel(b): JS1S2
of the coupling bath.

tuning spectral densities of the two excited states de-
noted JS1 and JS2 are given in figure 2(a). Figure 2(b)
displays the spectral density of the coupling bath JS1S2 .
The smooth spectral densities have been fitted by three
two-pole Tannor-Meier Lorentzians [76].

Jt/c(ω) =
∑Nl,t/c

i

piω[
(ω + Ωi)2 + Γ2

i

] [
(ω − Ωi)2 + Γ2

i

]
(9)

where Nl,t/c is the number of two-pole Lorentzians in the
tuning or coupling bath. The fitted functions and their
parameters are given in the Supplemental Material. The
main components are the high frequency modes corre-
sponding to the symmetric (wave number 2367.4 cm−1)
and antisymmetric (wave number 2366.5 cm−1) streches
of the acethylenic bond (see Fig.1). The central peaks
at wave number 1692.1 cm−1 for the tuning modes and
wave number 1681.9 cm−1 for the coupling ones are as-
sociated to A1 or B2 in-plane deformations of the central
benzene ring. The third peak corresponds to secondary
contributions to the tuning (A1 at 1199 c cm−1) and
to the coupling (B2 at 1160 c cm−1) modes. They de-
scribe in-phase and out-of-phase stretches of the bonds
linking the acetylenic moieties to the benzenic ones, re-
spectively, with induced in-plane triangular distortions
of the rings.

We assume a positive correlation between the S1 and
S2 tuning baths independent of the frequency and fixed
by the high frequency modes with wave number 2367
cm−1. This approximation seems reasonable and re-
duces the computational effort by introducing a single
tuning bath and a composite system-bath operator.

The partition of the electronic system leads to highly
non-Markovian dynamics. The non-Markovianity is re-
lated with the flow-back of information from the baths
to the system. In the case of this electronic partition,
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it results from the possible recurrence of a partial vi-
brational wave packet in the initial Franck-Condon re-
gion during the non-adiabatic dynamics. This leads to
a signature in different measures of non-Markovianity
[27, 77, 78]. It is related to the shape of the correlation
function, which is the Fourier transform of the thermal
spectral density and therefore depends on the occurence
of sharp peaks leading to a long oscillatory decay of C(t)
and thus a long memory timescale. This strong interac-
tion between the system and the baths requires efficient
non-Markovian approaches and is dealt with the HEOM
method. The key point is the expression of the corre-
lation function of each bath b as a sum of ncor,b decay
modes associated to the poles of the thermal spectral
density (poles of the spectral density and of the Bose
function also called Matsubara frequencies)

Ct/c(t) =
∑ncor,t/c

k=1
αt/c,keiγt/c,kt. (10)

The HEOM method is well documented in the littera-
ture [38, 40, 41, 53, 56, 79–84]. We adapt the HEOM
algorithm by using a particular definition of the com-
plex conjugate in which the rates remain the same in
both expressions

C∗
t/c(t) =

∑ncor,t/c

k=1
α̃t/c,keiγt/c,kt. (11)

Analytical expressions of the αk, α̃k and γk are given in
references [76] and [85]. We summarize the operational
equations in Appendix A, paying a particular attention
to the backward propagation used in OCT. The corre-
sponding expressions in the TT representation are given
in appendix B.

Methods similar to HEOM operate by tracing out the
bath degrees of freedom. However, even if the vibra-
tional dynamics is not completely resolved, important
information pertaining to the bath is available, for in-
stance heat current or fluxes [81, 82, 86, 87]. The ex-
traction and visualization of the time dependent ther-
mal probability distributions Pm(Xb, t) of each collec-
tive mode b = t, c in each electronic state m is an inter-
esting tool to analyze non–Markovian dynamics [70, 88].
Pm(Xb, t) is expanded in the basis set of the eigenfunc-
tions of the Ornstein–Uhlenbeck operator of the stochas-
tic Liouville equation

Pm(Xb, t) =
∑

l
am,b,l(t)Φl(Xb) (12)

with Φl(Xb) = 1√
2π

√
2ll!

Hl

(
Xb/

√
2Cb(0)

)
e

−
X2

b
2Cb(0)

where the Hermite polynomials are weighted by a tem-
perature dependent factor via the initial value of Cb(t),
which is the integral of the thermal spectral density.
The computation may require HEOM at a high level
when the distribution is far from the equilibrium Gaus-
sian distribution. The expression of the am,b,l(t) coeffi-
cients is given in Appendix A.

In particular, this first moment providing the average
position of the coupling effective mode in each electronic

state ⟨Xm
b ⟩ is obtained from the auxilliary density op-

erators (ADO) of the first level for each bath

Bb(t) = −
∑

n
ρn(t) (13)

where the sum runs over all the collective index n for
which

∑
k nk,b = 1 with b = t or b = c respectively.

The average in each electronic state is then given by
the corresponding diagonal element〈

X
(m)
b

〉
= 1

D
(m)
0b

(Bb)mm (14)

where D0b is given by D2
0t/c = (2/π)

∫ ∞
0 Jt/c(ω)ωdω.

This average is an interesting information about the vi-
brational relaxation and the evolution towards equilib-
rium. By expressing all the density matrices in Eq.(13)
in the basis set of the localized diabatic states DL/R via
the transformation matrix U given in Eq.(7), one gets
the average position in each left or right diabatic wells
showing the dissymmetry of the damped wave packet
when the superposition |±⟩ = (|S1⟩ ± |S2⟩) /

√
2 is cre-

ated. The electronic dissymmetry is estimated by the
following parameter:

∆X = 1
tlim

∫ tlim

0

(〈
X(DR)

c

〉
+

〈
X(DL)

c

〉)
dt (15)

where tlim has been fixed at 100 fs in this application.
The HEOM equations summarized in Appendix A

are propagated at T = 298K by the Cash-Karp-Runge-
Kutta algorithm [45] by a home-made parallelized for-
tran code. In Section V D we explore the implemen-
tation referring to the Tensor-Train approach. The
HEOM equations adapted to this formulation are given
in Appendix B. The propagation in the TT represen-
tation is made by the projector-splitting KSL scheme
[48, 89, 90], designated by the three letters given to
the three steps of the symmetrized splitting of second-
order scheme also implemented in the ttpy package
(tt.ksl.ksl) [91]. The number of matrices for K de-
cay modes (Eq.(A2)) is then N = (L+K)!

L!K! . In the TT
approach, nmax is the same for each mode leading to a
larger number of matrix N ′ = nK

max. The representa-
tion in TT is expected to reduce the storage resources
(see Appendix B).

IV. FIELD DRIVEN DYNAMICS

Our objective is the depletion of the initial ground
state and the creation of a coherent superposition of the
excited states |±⟩ = (|S1⟩ ± |S2⟩) /

√
2. States S1(1B2)

and S2(2A1) are excited by orthogonal transition dipole
moments µy = 3.96 ea0 and µz = - 1.83 ea0 respectively,
the axes being defined in Fig.1. The molecule is in the
plane Oyz orthogonal to the propagation direction Ox
of the electromagnetic waves, as indicated in Fig.1. The
time-dependent system Hamiltonian becomes HS(t) =
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HS + V (t) where the interaction with the electromag-
netic field E⃗(t) is written in length gauge and within
the dipole approximation. In a V-type system at frozen
equilibrium geometry, the superposition could be pre-
pared by two pulses with orthogonal polarizations and
integrated Rabi frequencies equal to π/

√
2 in the ab-

sence of interference with another bright state. This has
been shown for pulses of duration τ and sine square en-
velopes Ey/z(t) = E0,y/zsin2 (

πt
τ

)
cos

(
ωy/zt + ϕy/z

)
[63].

The maximum amplitudes are then given by E0,y/z =√
2π/(µy/zτ). When the pulses have the same dura-

tion, the field amplitudes are then in the inverse ratio
of the dipole transition moments. However, for ultra-
short pulses with one or two optical cycles, one must
ensure a zero-area laser pulse [92, 93]. The field

Ey/z(t) = −
∂Ay/z(t)

∂t
(16)

is then derived from the vector potential Ay/z(t) =(
E0,y/z

ω

)
sin2

(
π(t−ti)

τ

)
sin (ω(t − ti) + ϕ), where ti is the

initial time of the pulse.
The best superposition would be obtained by ultra-

short pulses to fight against the decoherence induced
by the baths. However, the spectral band should not
exceed 0.25 eV to avoid any contamination with neigh-
boring states. We therefore focus on pulses of some
tens of femtoseconds during which interaction with the
vibrational motions occurs. The first strategy involves
positive or negative chirp pulses with a linear variation
of the carrier frequency. For commodity, we introduce a
factor f that remains close to one and the time depen-
dent frequency is expressed by:

ω(t) =
ωy/z

f
−

(
ωy/z/f

)
− fωy/z

τ
t (17)

where ωy/z is the carrier frequency in resonance
with the two transitions. The chirp rate ω′ =[(

ωy/z/f
)

− f × ωy/z

]
/τ is positive or negative accord-

ing to f > 1 or f < 1.
In a second step, the best chirped pulses are taken as

guess fields for optimization by OCT [42, 94]. The opti-
mal field is built iteratively to maximize the cost func-
tional also called performance index or objective index

I = Re(Tr
[
ρ†(τ)ρtarget

]
) (18)

at a final time τ with constraints to restrain the field
intensity and to fulfill the master equation at any time.
The corresponding Lagrange multipliers are denoted α
and χ(t) respectively. The optimal field is obtained from
the system matrix density propagated by the master
equation with initial condition ρ(t = 0) = ρini and from
the Lagrange multiplier propagated with a final condi-
tion χ(τ) = ρtarget. The HEOM equations adapted for
forward or backward propagations are given in the Ap-
pendix A and the corresponding TT representation in
Appendix B. The field at each iteration k is obtained

by ε(k) = ε(k−1) + ∆ε(k) where ∆ε(k) is estimated by

∆ε(t) = 1
α

ℑm
{

Tr (ρ(t)χ(t)) Tr
(

χ(t)
[∑

p
µp, ρ(t)

])}
(19)

where p = y, z here [42].

V. RESULTS

A. Field free case

Figure 3 compares the field free dynamics with the full
or the truncated spectral density (see Fig.2) by retain-
ing only the highest frequency region for the two baths
around 2360 ccm−1 (denoted 1L), the two highest peaks
by adding those around 1700 c cm−1 (2L) and the full
density (3L). This is the so-called ideal case when the
initial condition is the superposition

|+⟩ = (|S1⟩ + |S2⟩) /
√

2 (20)

corresponding to a population in the right side DR. We
compare the populations of the excited states PS1(t) and
PS2(t) (Fig.3(a)), the average position of the coupling
mode in the localized DL and DR states (Fig.3(b)) and
the modulus of the coherence |ρS1S2(t)| (Fig.3(c)). The
coherence

ρS1S2(t) = ρ∗
S2S1

(t) (21)

is the off-diagonal element corresponding to the two ex-
cited states denoted S1 and S2 of the system reduced
density matrix

ρ(t) = TrB [ρtot(t)] , (22)

which is the trace over the bath modes of the full den-
sity matrix. In the target state (Eq.(20)) the coher-
ence is |ρS1S2 | = 0.5. During the first ten femtoseconds,
dynamics are dominated by the high frequency mode.
After this early relaxation, the population exchange is
reduced when the lower frequency around 1700 c cm−1

is considered. The modifications induced by the low-
est frequency region are less significant and we adopt a
compromise by retaining two peaks for each bath (2L)
in order to reduce the computational cost. Indeed, the
partition adopted here leads to a very high system-bath
coupling demanding a high level in the HEOM propaga-
tion [69, 70]. HEOM is carried out at level 12 without
Matsubara terms in the correlation function. Retaining
only two Lorentzians per bath (2L) involves 1.3 × 105

matrices versus 2.7 × 106 matrices in the 3L model. In
the field free case, the thermal equilibrium populations
of the excited manifold are reached in 250 fs. The final
populations are 0.39 for S2 and 0.61 for S1. We have ver-
ified that the equilibrium populations are the same for
any intial excited state. These values do not correspond
to a thermal Boltzmann mixture since the ground state
is not coupled by non-adiabatic couplings with the ex-
cited states and the radiative decay is neglected. When
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Figure 3. Field free so-called ideal case where the system is
prepared in the superposed state |+⟩ = (|S1⟩ + |S2⟩) /

√
2.

Comparison of the dynamics with three spectral density
models by retaining for each bath the highest frequency peak
(1L, displayed in thin solid line), the two highest frequency
peaks (2L, displayed as thick solid line) and the full density
(3L, displyed in dashed line) (see Fig.2). Panel (a): Popula-
tion in the excited electronic states S1 (red) and S2 (blue);
panel (b): average position of the coupling mode in the lo-
calized diabatic states DR (red) and DL (blue); panel (c):
modulus of the electronic coherence between the two excited
states (Eqs.(21) and (22)).

we describe the excitation by laser pulses in the follow-
ing sections, the population at equilibrium are different
when the ground state is not completely depleted. The
coherence decays in about 100 fs and the dissymmetry
remains during the same period before leading finally to
an equilibrium symmetric distribution in each well. The
full distribution PDL

(Xc, t) and PDR
(Xc, t) (Eq.(12)) of

the coupling mode in the DL and DR states is given in
figures 4 (a) and 4 (b). This requires performing HEOM
at least at level 15 to converge the expansion of Eq.(12).
For this ideal case, the right side is populated and the
oscillation persists during 40 fs before the transition to-
wards the left side. For a simple statistical mixture with
equal weights of the two states and no coherence, the
population is always identical in both localized states.

B. Chirped laser pulses

Figures 4(c) and 4(d) give the distributions
PDL

(Xc, t) and PDR
(Xc, t) when the system is initially

in the ground electronic state with the vibrational baths
at thermal equilibrium at the equilibrium geometry and
excited by two polarized pulses along y or z with τ = 10
fs and amplitudes satisfying the π/

√
2 rule. When the

system is excited by the pulses, one has a first delay of
about 5fs during the depopulation of the ground state
before observing a notable density in the right side and
the symmetry breaking has a lifetime shorter than in

Figure 4. Distributions PDL (Xc, t) and PDR (Xc, t) of the
coupling collective mode in the localized excited states
(model 2L). Panels (a) and (b): ideal case with the ini-
tial condition |+⟩ = (|S1⟩ + |S2⟩) /

√
2 corresponding to a

population in the right site DR; panels (c) and (d): excita-
tion from the ground state by two polarized pulses of 10 fs
and amplitudes satisfying the π/

√
2 condition. The colorbar

gives P × 102.

the field free ideal case.
The first control against the decoherence during the

interaction with the field is done by chirped pulses. For
different pulse durations τ , the amplitudes of the two
pulses are fixed by the π/

√
2 rule and we impose a pos-

itive or negative frequency chirp with a rate fixed by
the f factor (Eq.(17)). The efficiency is measured by
the dissymmetry parameter ∆X (Eq.(15)) presented in
figure 5. ∆X= 2.30 m

1/2
e a0 for the ideal case. A neg-

ative value does not mean that the initial localization
is not on the right side but that later transitions may
induce large oscillation in the left side. Whatever the
sign, a non-zero value confirms the existence of a dis-
symmetry linked to a residual coherence. The positive
chirp increases the dissymmetry only for τ in the range
10-35 fs. For longer pulses (35-50 fs) that exceed the co-
herence lifetime of the ideal case, the efficiency is very
weak in the absence of any chirp (f = 1). Negative
chirps slightly improve the result.

In the following subsection, we select three pulses of
50, 15 and 10 fs with the chirp factor f giving the max-
imum absolute value of ∆X . The first is longer than
the decoherence time of the ideal case and the second
one corresponds to the vibrational period of the effective
coupling mode. These pulses are guess fields for an op-
timization by OCT to check which kind of restructuring
is finally obtained.
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Figure 5. Electronic dissymetry ∆X (in m
1/2
e a0) defined by

Eq.(15) for two polarized pulses along y or z with positive
(f > 1) and negative (f < 1) chirps. The f factor determin-
ing the chirp rate is given in Eq.(17).

C. Optimal control

The target reduced density matrix ρtarget at the end
of the pulses τ is the one corresponding to the super-
position |+⟩ = (|S1⟩ + |S2⟩) /

√
2 with zero population

in the initial equilibrium ground state. Our strategy
is to let OCT optimize the y and z fields on a time
grid. The objective index I (Eq.(18)) is never 100%
(i.e. |ρS1S2 | = 0.5) because we limit the field amplitude
to an upper value of 10−2 a.u. (5.1422 ×109 Vm−1) cor-
responding to an intensity of 3.51 ×1012 Wcm−2. The
OCT fields obtained from the 50, 15 and 10 fs chirped
guess fields and their fits are presented in figures 6, 8
and 10 respectively. We then fit the optimal fields for
each polarization with a sequence of NG simple Gaus-
sian pulses with central time TM

EF it
y/z (t) =

∑NG

i
ε0i

e
−

(t−tMi
)2

2σ2
i cos(ωi(t − tMi

)). (23)

The optimally fitted parameters ε0i , tMi , σi, ωi are
given in the Supplemental Material. We use Trust Re-
gion Reflective algorithm (TRR) of the python module
scipy.optimize to fit the optimal fields. The algorithm
uses non-linear least squares to fit data to a functional
form [95, 96]. In each case, OCT strongly reshapes the
simple chirped pulses and suggests a sequence of pulses
with nearly the same delay for both polarisations. The
RMS of the fits is very good. It is given with all the
parameters in the Supplemental Material. The fitted
fields with a pulse sequence are not fully identical but
they retain the main features of the dynamics as seen
in figures 7, 9 and 11 where dynamics are compared .

(i) In the 50 fs case, the penalty factor is α = 5 × 103

(Eq.(19)). The performance index (Eq.(18)) after 50 it-
erations is I = 84% providing a coherence of 0.34. Mod-
ifying α only influences the rate of convergence but the

Figure 6. Optimal fields Ey (black thin line) and Ez (thick
red line) obtained when the guess fields are the pulses of 50
fs with a negative chirp with f = 0.962 (Eq.(17)). The fit
is obtained with six Gaussian pulses for each polarisation.
The parameters are given in the Supplemental Material.

optimal coherence never exceeds about 0.35 but never-
theless remains three time higher than the value given
by the guess field. The creation of the coherence is more
difficult for long pulses. However, the dissymetry of the
average value of the coupling mode in both sides is more
striking for the long pulses. OCT notably improves the
depletion of the ground state, the residual population
being about 0.05 versus 0.62 with the chirped pulse.
The OCT field consists of six pulses (around 5, 10, 17
and 29 fs) roughly corresponding to two pulses per vi-
brational period (14 fs).

(ii) In the 15fs case, with α = 1 × 104 one gets I=
89% and a coherence of 0.42 after 150 iterations. The
creation of the coherence is better for the short pulses;
i.e. 0.42 as compared to 0.28. The residual population
in the ground state is about 0.05 versus 0.38. The re-
shaping is particularly striking in this case leading to
two main pulses for each polarisation.

(iii) In the 10 fs case, α = 2 × 104, I= 87% with a
coherence of 0.43 versus 0.29 after 30 iterations. The
improvement is less sepctacular. Even for this short
duration, OCT reshapes the field suggesting a central
shorter pulse of higher amplitude in a train of three
pulses.

In all the previous examples, the simultaneous ad-
dressing of the two electronic states by the two polar-
izations is maintained in the OCT fields. To check the
stability of this result, we also use a sequence of pulses
with the two alternating polarizations and the same du-
ration. Without bath, a first π/2 pulse polarized along
z makes a superposition of the ground and one excited
state. Then a π pulse polarized along y in resonance
with the second transition inverts the population of the
ground and the second excited state. This guess field
is less efficient than the simultaneous chirped pulses.
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Figure 7. Comparison between the dynamics driven by the
chirped y and z pulses of 50 fs with f = 0.962 (Eq.(17)), the
optimal pulses obtained with these guess fields and the se-
quence of six Gaussians pulses fitting each OCT pulse. Panel
(a): Population in the ground S0 (black) and the excited
electronic states S1 (red) and S2 (blue); panel (b): average
position of the coupling mode in the localized diabatic states
DR (black) and DL (red); panel (c): modulus of the elec-
tronic coherence between the two excited states (Eqs.(21)
and (22)).

Figure 8. Optimal fields Ey and Ez obtained when the guess
fields are the pulses of 15 fs with a positive chirp with f
= 1.03 (Eq.(17)). The fit is obtained with three Gaussian
pulses for each polarisation. The parameters are given in the
Supplemental Material.

The interesting result is that OCT reshapes the fields
by mixing the polarization from the beginning. This is
illustrated for a sequence of total duration 15 fs in the
Supplemental Material.

Figure 9. Comparison between the dynamics driven by the
chirped y and z pulses of 15 fs with f = 1.03 (Eq.(17)),
the optimal pulses obtained with these guess fields and the
sequence of three Gaussians pulses fitting each OCT pulse.
Panel caption as in Fig.(7).

Figure 10. Optimal fields Ey and Ez obtained when the guess
fields are the pulses of 10 fs with a positive chirp with f
= 1.04 (Eq.(17)). The fit is obtained with three Gaussian
pulses for each polarisation. The parameters are given in the
Supplemental Material.

D. OCT by Tensor Trains

Finally, in the 10 fs case (see Fig.(11)) we compare
the simulations with the usual Cash-Karp-Runge-Kutta
(denoted HEOM) and the TT implementation (denoted
TT-HEOM) described in Appendix B. For these fast dy-
namics, the behavior is nearly similar when the spectral
densities are approximated by one or two Lorentzians,
namely the models 1L or 2L discussed above (see fig-
ure 3). In the 1L case, the optimization is made in 50
iterations with α = 2 × 104. In the 2L case, we con-
sider 30 iterations with α = 1 × 104 (α is decerased to



10

Figure 11. Comparison between the dynamics driven by the
chirped y and z pulses of 10 fs with f = 1.04 (Eq.(17)),
the optimal pulses obtained with these guess fields and the
sequence of three Gaussians pulses fitting each OCT pulse.
Panel caption as in Fig.(7).

speed up the optimization rate). The HEOM level is 8
in each example. Dynamics are compared in figure 12,
left panels (a,c,e) for 1L and right panels (b,d,f) for 2L.
As one could notice, adaptative Runge Kutta method
HEOM, displayed in solid thin lines, and TT simula-
tions in dotted line give roughly the same fields, same
populations, and same coherences. For both cases 1L
and 2L, we obtain similar encouraging results. How-
ever, it is difficult to ensure a good convergence when
the spectral density presents several peaks. The order-
ing of the modes may be an important factor influencing
the efficiency of Time Dependent Variational Principle
(TDVP) methods [97]. Further improvements are cur-
rently underway to consider the reorganization of the
modes [72, 98], rank adaptative methods [37, 56, 99–
101] or hierarchical tensor train approach [55].

VI. CONCLUSION

This work addresses the laser control of the electronic
symmetry breaking inducing a localization and a tran-
sitory oscillation on a given side of a symmetric dimer.
The target initial electronic state is a superposed state
of two nearly degenerate bright states coupled through a
conical intersection. An initial superposition with equal
weigths of the delocalized excited adiabatic states in
phase (plus sign) or out of phase (minus sign) corre-
sponds to a localized diabatic state with electronic den-
sity on one or the other side of the symmetric dimer.
Preparing a superposition means maintaining the elec-
tronic coherence during the control process. Ultra-short
pulses with broad energy band are a priori more fa-
vorable but they may interfere with additional bright
states. We mainly consider control extending on some

Figure 12. Comparison between the dynamics performed
by the adaptative Runge Kutta method (HEOM) and TT
simulation (TT-HEOM) with 10 fs pulse duration when the
spectral densities are approximated by one (1L) or two (2L)
Lorentzians. The HEOM level is 8. OCT is driven in 50
iterations with α = 2 × 104 for 1L and 30 iterations with
α = 1 × 104 for 2L.

tens of femtoseconds to ensure a width of about 0.25
eV. Then decoherence occurs during the pulses due to
vibrational motions.

The control targets are the highest possible popula-
tion in the excited manifold and the highest possible
coherence (0.5 in our case) corresponding to the ex-
pected superposition, which induces the maximum dis-
symetry. Based on experimental constraints concerning
pulse shaping (frequency chirping rate, leading intensi-
ties), and the property of the V-type system with or-
thogonal transition dipole moments, we consider three
steps. (i) We examine guess fields inspired from mecha-
nisms whose efficiency is well known in absence of baths:
simultaneous pulses linearly polarized along orthogonal
directions with negative or positive linear chirps, and
fulfilling for their amplitudes the π/

√
2 time integration

condition, or sequence of π/2 and π pulses with alter-
native polarization. (ii) We use these guess fields to
initiate an optimal control scheme to see the suggested
reshaping. (iii) We check the robustness of such fields by
fitting them with a sequence of simple Gaussian pulses.

It is worthy to note that the dissymetry towards the
right or the left side may be easily reversed by changing
the sign of the pulse with polarization z coupling to
state S2 through µz. This phase inversion generates the
superposed state with the minus sign and changes the
populated localized side. This is verified for the guess
field and for the corresponding OCT field.

TT is a very promising approach for solving HEOM
as it tackles the dimensionality curse with respect to the
necessary memory space. Moreover, TT appraoch is a
background for future implementation of deap learning
algorithms [98]. We have explicited the TT representa-
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tion of the HEOM equations for OCT. However, it turns
out that the present molecular system is particularly
demanding since the electron-nuclei partition leads to
strong system-bath coupling and a high hierarchy level
with the ensuing large number of ADOs and a struc-
tured spectral density with at least two important peaks
per nath. We face several numerical difficulties and in-
stabilities when addressing structured spectral densities.
An adaptative rank is necessary during the propagation.
We have improved the results by a mixed strategy in-
cluding steps with the Runge-Kutta algorithm in the
variational time dependent KSL procedure to increase
the ranks. Further developments with other adaptative
methods are on going [99, 100].

As the molecular system is of moderate size, in princi-
ple, full quantum dynamics with the LVC model could
be performed by the variational ML-MCTDH (Multi-
Layer Multi-configuration Time-Dependent Hartree
[102] with thermal average over initial conditions. Sim-
ilar results are expected for very short laser pulses,
mainly before the so-called Zeno time [103]. However,
it is not clear whether the thermalization is treated on
an equal foot in wave packet with initial time average
and in the open quantum system. Noise could also be
introduced in a stochastic time-dependent Schrödinger
equation with an improved treatment of the thermaliza-
tion [104].

On general grounds, one observes that OCT suggests
interesting strategies that could eventually be quite
diffrent from an intial guess. For the very smooth simul-
taneous y and z chirps at resonance, OCT reshapes the
fields in a sequence of few pulses of 5 or 10 fs, slightly off-
resonance and addressing again simultaneously the two
excited states. When the guess is a sequence of π and
π/2 pulses addressing successively the two states, OCT
confirms our first strategy based on simultaneous use of
the two polarizations by mixing from the very beginning
the y and z polarizations. OCT suggests the number of
individual pulses and the simultaneous use of the polar-
isations. In this work, we have fitted Gaussian pulses on
the OCT fields. However, the OCT fields do not fully
reach the target. The following step in prospect is op-
timizing the parameters (amplitude, frequency, central
position and width) imposing only the number of pulses
suggested by OCT.

SUPPLEMENTARY MATERIAL

The supplemental material gives the Cartesian coor-
dinates of the atoms at the ground state equilibrium ge-
ometry computed at the CAM-B3LYP/6-31+G* level of
theory. It gives the gradients of the discrete LVC model
and the parameters of the Tannor-Meier fit (Eq.(9)) of
the spectral densities. We also gather the parameters
of the Gaussian pulses fitting the OCT fields. An im-
portant part is devoted to a pedagogical survey showing
the way the super-operators involved in the TT-HEOM
formalism are written as illustrated on a simple case.
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Appendix A: HEOM equations for forwards and
backwards propagation

The non-Markovian master equation for the reduced
density matrix of the system ρ̇(t) = − i

ℏTrB

[
Ĥ, ρtot(t)

]
,

where ρtot(t) is the full density matrix, is solved by a
time local system of coupled equations among auxiliary
matrices arranged in a hierarchical structure. Each aux-
iliary matrix has the dimension of ρ(t) and is labelled
by a collective index

n = {n1, · · · , nK} (A1)

specifying the phonon occupation number of each decay
mode in each bath b,

K =
∑NB

b
ncor,b (A2)

where NB is the number of baths, here NB = 2 and
b = t, c (see Eq.(10)). The system density matrix has
the index n = {0, · · · , 0}. Matrices with an occupation
number rising or descending by one unit are the only
ones connected in the hierarchy.

The non-Markovian forward equation of OCT is an
equation with initial condition, which may be written
ρ̇(t) = LSρ(t) +

∫ t

0 K(t, t′)ρ(t′)dt′. The corresponding
coupled equations of HEOM with correlation functions
(Eqs.(10) and(11)) and with ℏ = 1 are:

ρ̇n = LSρn + i

NB∑
b

ncor,b∑
k=1

nk,bγk,bρn − i

NB∑
b

[
Sb,

ncor,b∑
k=1

ρn+
k,b

]

− i

NB∑
b

ncor,b∑
k=1

nk,b

(
αk,bSbρn−

k,b
− α̃k,bρn−

k,b
Sb

)
(A3)

where LS � = −i [HS(t), �] and the αk, α̃k, γk pa-
rameters are defined in Eqs.(10) and (11). The ana-
lytical expressions as a function of the spectral den-
sity parameters are given in references [76, 85]. The
Sb operators are defined in section III. The rising
n+

k = {n1, · · · , nk + 1, . . . , nncor
} and descending n−

k =
{n1, · · · , nk − 1, . . . , nncor

} matrices are those for which
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the occupation number differs by one unit in the hier-
archy nk → nk ± 1. The initial condition is assumed to
be factorized ρtot(t0) = ρ(t0)ρeq where ρeq is the Boltz-
mann equilibrium distribution at the chosen tempera-
ture. The separable initial condition is justified because
the vibrational bath is initially at equilibrium and the
electronic system is in the ground state decoupled from
the excited manifold. It may also be valid in the case of
an ultra-fast Franck-Condon excitation.

The Lagrange multiplier of OCT is propagated with
a final condition χ(tf ) = ρtarget at the time t = tf

(end of the laser pulse). The non-Markovian equation
with a final equation involves a different memory term
χ̇(t) = LSχ(t) −

∫ tf

t
K†(t, t′)χ(t′)dt′ corresponding to

the following coupled equations:

χ̇n = LSρn − i

NB∑
b

ncor,b∑
k=1

nk,bγk,bρn − i

NB∑
b

[
Sb,

ncor,b∑
k=1

ρn+
k

]

+ i

NB∑
b

ncor,b∑
k=1

nk

(
αk,bρn−

k
Sb − α̃k,bSbρn−

k

)
(A4)

In practice they are solved backwards starting from
χ(tf ) = ρtarget and all the auxiliary matrices set equal
to zero. The factorized condition is less obvious than
for the forward preparation but the final condition does
not correspond to a new equilibrium state of the baths.

For each electronic state m the coefficients am,b,l(t)
in the expansion of the time dependent thermal proba-
bility distributions Pm(Xt/c, t) of each collective mode
(Eq.(12)) are the corresponding diagonal element of a
matrix built from the auxiliary operators Ab,l(t) =

(−1)l√
l!Cl

b
(0)

∑
n

l!
Πnk,b

ρn(t) where the sum
∑

k nk,b = l [70,

81, 82] runs over the index n for which the partial level
of bath b is equal to l.

Appendix B: Tensor trains

As already suggested by Shi [53–55] and later by
Borelli [56], we investigate solving the hierarchical equa-
tions of motion (Eqs.(A3) and (A4)) by using the so-
called Tensor Train (TT) decomposition (also referred
to as matrix product state (MPS) in the quantum
physics community [37, 46–50, 52, 97, 105]. The usual
truncation of the hierarchy retains all the ADOs up to
a level L so that the sum of the occupation number is
equal to L.

1. Tensor train representation of the density
matrices

HEOM formalism relies on a set of auxiliary matrices
which is basically a multidimensional array ρn where n
and K are defined in Eqs.(A1) and (A2) respectively.
Instead of considering a set of density matrices of di-
mension n × n with n being the number of states in the

Figure 13. Tensor train decomposition schematization. Ak

are the cores of the tensor, α runs from 1 to n2 where n is
the number of states in the system and nk is the index for
each decay mode that runs from 0 to nmax.

system Hamiltonian HS , we flatten each matrix as a n2

vector without loss of generality. This "vectorized" den-
sity matrix will be denoted ρ̄n and each of its element
α (α ∈

[
1, n2]

) written in TT-format as :

ρ̄α
n ≈

∑
j0

∑
j1

· · ·
∑
jk

· · ·
∑

jK+1

A0(j0, α, j1)A1(j1, n1, j2) · · ·

Ak(jk, nk, jk+1) · · · AK(jK , nK , jK+1)
(B1)

Here, jk goes from 1 to rk where rk is the kth rank of
the tensor (note that r0 = rK+1 = 1 for dimensionality
consistency). Ak are called cores and consist in arrays
of dimension rk × ne × rk+1 where ne = n2 for k = 0
and ne = nHEOM = nmax + 1 for k ̸= 0 (nHEOM is the
hierarchy order) .

Tensor trains are often schematized as shown in fig-
ure 13 with the tensor network displaying a train shape
where several cars are successively connected. Such
decomposition is exact as long as the tensor ranks rk

grow without limitation. In practise, rk are parameters
during the simulation and one has to carefully check
the convergence over them. Details on the mathemat-
ical background are not the scope of this article but
they can be found in refs [47, 48, 51]. We heavily rely
on the library ttpy developed in Python and Fortran
by Oseledets and co-workers [91]. It provides a user-
friendly interface to build tensor trains, convert matri-
ces (tt.matrix) and vectors (tt.vector) in TT-format
and deal with the algebra of basic arithmetic operations
(+,−,etc) and Kronecker products (tt.kron) on TT-
format objects.

To compute the system density matrix, we avoid a
full expansion of ρ̄α

n to overcome memory limitations.
Instead, we make use of projectors in TT-format :

Pα = Pα ⊗
K∏

j=1
Vj (B2)

where Pα is a vector of dimension n2 with elements
Pα,l = δα,l and Vj a vector of dimension nHEOM with
elements Vj,1 = 1 if l = 1 and = 0 if l ̸= 1. Thus, the
elements of the system density vector writes :

ρ̄α
n={0,··· ,0,··· ,0} = Pα · ρ̄n (B3)
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2. Time evolution

We solve the dynamic problem by using the projector-
splitting KSL scheme [48, 89, 90] implemented in the
ttpy package (tt.ksl.ksl) [91]. To use this algorithm,
one has to provide a single super-operator which acts
on the full TT-converted vector ρ̄n (or χ̄n in the case
of backward propagation) representing all the auxiliary
density operators such that:

d

dt
ρ̄n = Lρ̄n (B4)

d

dt
χ̄n = Lbχ̄n. (B5)

The Liouvillian super-operators L and Lb can be de-
rived from the hierarchical set of equations of motions
for both the forward (Eq.(B4)) and backward (Eq.(B5))
propagations. We provide below a summary of the es-
sential equations to build these Liouvillian operators. It
is noteworthy to mention that all the necessary arith-
metic operations can be performed in TT-format.

a. Forward propagation

For the forward propagation, the associated Liouvil-
lian (Eq.(B6) denoted in our case as a super-operator L
writes :

L = LS +
K∑

k′=1
(Lk′ + Lk′− + Lk′+) (B6)

Here, k′ = (k, b) is a collective index which adresses
both the index of the correlation function terms (k ∈
[1, ncor,b]) (see Eq.(10)) and index of bath (b ∈ [1, NB ]).
Each of the terms in Eq.(B6) can be further derived
as Kronecker products of various operators. In the fol-
lowing expressions, In denotes the identity matrix with
dimensions n × n, ⊗ is a matrix Kronecker product for
two matrices, ⊗

∏
is an ordered (from left to right)

sequence of Kronecker products and δl,m is a delta Kro-
necker symbol (δl,m = 1 if l = m ; 0 if l ̸= m).

The system Liouvillian writes:

LS = −i(HS ⊗ In − In ⊗ HS) ⊗
K∏

k′′=1
InHEOM

(B7)

The "damping" term is:

Lk′ = iγk′,t/cIn2 ⊗
K∏

k′′=1
Mk′′ (B8)

where Mk′′ = InHEOM
if k′′ ̸= k′ and Mk′′,lm = (l −

1)δl,m if k′′ = k′ (l, m ∈ [1, nHEOM ]).
The superoperator connecting the ADOs with an up-

per layer in the hierarchy is:

Lk′+ = −i(Sk′ ⊗ In − In ⊗ Sk′) ⊗
K∏

k′′=1
M ′

k′′ (B9)

where M ′
k′′ = InHEOM

if k′′ ̸= k′ and M ′
k′′,lm = δl+1,m

if k′′ = k′ (l, m ∈ [1, nHEOM ]).
The superoperator connecting ADOs with a lower

layer in the hierarchy is:

Lk′− = −i(αk′,t/cSk′ ⊗ In − α̃k′,t/cIn ⊗ Sk′) ⊗
K∏

k′′=1
M ′′

k′′

(B10)
where M ′′

k′′ = InHEOM
if k′′ ̸= k′ and M ′′

k′′,lm = (l −
1)δl−1,m if k′′ = k′ (l, m ∈ [1, nHEOM ]).

Finally, for pedagogical purpose, we provide in the
SM, a step-by-step through derivation of the superop-
erators with a simplified two-dimensional system, and a
single tuning bath treated by HEOM at level 2.

b. Backward propagation

The very same procedure can be applied for the back-
ward propagation. Thus, the backward Liouvillian Lb

writes :

Lb = LS +
K∑

k′=1
(−Lk′ + Lbk′− + Lk′+) (B11)

where the superoperator acting on a lower layer is
slightly modified as:

Lbk′− = i(αk′,t/cIn ⊗ Sk′ − α̃k′,t/cSk′ ⊗ In) ⊗
K∏

k′′=1
M ′′

k′′

(B12)
One can check by expanding L (Eq.(B6)) and Lb

(Eq.(B11)) that Eq.(B4) and Eq.( B5) are equivalent
to Eq.(A3)and Eq.(A4) respectively.

Appendix C: List of abbreviations

We summarize the list of the abbreviations with the
section of their definition.

HEOM Hierarchical Equations of Motion (Sec.I)
OCT Optimal Control Theory (Sec.I)
TT Tensor Train (Sec.I)
ML-MCTDH Multi-Layer Multi-configuration Time-

Dependent Hartree (Sec.VI)
LVC Linear Vibronic Coupling (Sec.I)
TRR Trust Region Reflective algorithm (Sec.V C)
RMS Root Mean Square (Sec.V C)
TDVP Time Dependent Variational Principle

(Sec.V D)
KSL name of an algorithm based on an integration

scheme that successively updates three component ma-
trices: K, S, and L [48, 89, 90] (Sec.III)

MPS Matrix Product State (Sec.B)
ADO Auxiliary Density Operator (Sec.III)
PPE Phenylene Ethynylene (Sec.I)
DFT Density Functional Theory (Sec.II)
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TD-DFT Time Dependent Density Functional The-
ory (Sec.II)

CAM-B3LYP Coulomb Attenuated Method Becke,3-
parameetr,Lee-Yang-Parr (Sec.II)

MECI Minimum Energy Conical Intersection (Sec.II)
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