
HAL Id: hal-03859498
https://hal.science/hal-03859498v1

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unrelated Parallel Machine Scheduling with Job and
Machine Acceptance and Renewable Resource Allocation

Alexandru-Liviu Olteanu, Marc Sevaux, Mohsen Ziaee

To cite this version:
Alexandru-Liviu Olteanu, Marc Sevaux, Mohsen Ziaee. Unrelated Parallel Machine Scheduling with
Job and Machine Acceptance and Renewable Resource Allocation. Algorithms, 2022, 15 (11), pp.433.
�10.3390/a15110433�. �hal-03859498�

https://hal.science/hal-03859498v1
https://hal.archives-ouvertes.fr

����������
�������

Citation: Olteanu, A.-L.; Sevaux, M.;

Ziaee, M. Unrelated Parallel Machine

Scheduling with Job and Machine

Acceptance and Renewable Resource

Allocation. Algorithms 2022, 15, 433.

https://doi.org/10.3390/a15110433

Academic Editors: Colin Johnson and

M. Premkumar

Received: 9 September 2022

Accepted: 15 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Unrelated Parallel Machine Scheduling with Job and Machine
Acceptance and Renewable Resource Allocation
Alexandru-Liviu Olteanu 1 , Marc Sevaux 1,* and Mohsen Ziaee 1,2

1 Lab-STICC, UMR 6285, CNRS, Université Bretagne Sud, F-56100 Lorient, France
2 Department of Industrial Engineering, University of Bojnord, Bojnurd C7PW+8M3, Iran
* Correspondence: marc.sevaux@univ-ubs.fr

Abstract: In this paper, an unrelated parallel machine scheduling problem with job (product) and
machine acceptance and renewable resource constraints was considered. The main idea of this
research was to establish a production facility without (or with minimum) investment in machinery,
equipment, and location. This problem can be applied to many real problems. The objective was
to maximize the net profit; that is, the total revenue minus the total cost, including fixed costs of
jobs, job transportation costs, renting costs of machines, renting cost of resources, and transportation
costs of resources. A mixed-integer linear programming (MILP) model and several heuristics (greedy,
GRASP, and simulated annealing) are presented to solve the problem.

Keywords: scheduling; unrelated parallel machines; job acceptance; machine acceptance; mixed
integer linear programming; heuristics

1. Introduction

Unrelated parallel machine scheduling is the most general setting of parallel machine
scheduling, where n non-preemptive jobs, all available at time zero, have to be processed
on m machines. Each job can be processed by any free machine; however, the processing of
job j on machine i takes an amount of time that has no relation to the processing times on
the other machines. It is assumed that all of the machines are capable of processing all jobs;
nevertheless, if a given machine is not capable of processing a given job, the corresponding
processing time can be set to a very large value [1].

In this paper, an unrelated parallel machine scheduling problem with job (product)
and machine acceptance and with renewable resources (such as manpower, industrial
machines or tools, and computing devices) was considered. The main idea of this research
was to establish a production facility without (or with a minimum) capital or infrastructure.
The machines and resources required for processing the jobs were rented during their
operating time. Each machine or resource can be rented for only one time interval, i.e. even
for their idle times, the renting cost should be paid. Multiple resources of a given type can
be used. The problem is to determine:

1. The set of accepted jobs, considering their revenue, required processing times and
resources, fixed costs, transportation costs, and penalty costs for rejected jobs;

2. The set of machines that will be rented, taking into account their rent cost per time unit;
3. The set of resource units that will be rented, taking into account their rent cost per

time unit and transportation times and costs (typically tools or manpower);
4. The time intervals for renting the selected machines;
5. The time intervals for renting the selected renewable resource units;
6. The assignment of the selected jobs to the selected machines;
7. The start dates for processing the selected jobs.

The objective is to maximize the net profit, which is composed of revenues and costs.
The revenues are given by the selected jobs, and the costs are composed of the penalties of

Algorithms 2022, 15, 433. https://doi.org/10.3390/a15110433 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15110433
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0715-2168
https://orcid.org/0000-0003-3855-9072
https://doi.org/10.3390/a15110433
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15110433?type=check_update&version=1

Algorithms 2022, 15, 433 2 of 17

rejected jobs and various costs of the selected jobs. The latter include the fixed costs of jobs,
transportation costs (jobs and resources), and rent costs (machines and resources).

The real-case application motivating this study comes from a small company renting
co-working spaces in different locations and employing freelance programmers. We are,
however, unable to divulge the name of the company, nor all of the details of its operations.
Broadly speaking, the company acts as a subcontractor in the software development field.
From a scheduling perspective, the jobs correspond to software projects, the machines
correspond to co-working sites, and the resources correspond to the programmers, grouped
based on their core competences. Each time a co-working site is used, the space needs to
be set up for the freelancers, hence the initial transportation time and cost. Projects are
also taken in batches, motivating the use of penalties when jobs are not carried out in the
allotted time frame. Furthermore, we extended certain aspects of the problem, such as
including processing times depending on the selected machine, which was not the case in
the original case study.

The scheduling problem with job acceptance (also called “job selection” or “job rejec-
tion”) has been studied by many papers in the literature [2–8]. The scheduling problem
with machine acceptance (called “not-all-machines” or “optional machines”) has also been
investigated by many researchers [9–19]. The scheduling problem with renewable resource
constraints has also been widely studied in the literature due to its wide applicability to
real problems [20–27]. A cross-disciplinary survey on this subject may be found in [28]. In
many production and non-production organizations, the response time to the customer
demand is very important and is considered as a competitive advantage. One of the very
important factors affecting the response time to the customer is the transportation time.
Consequently, many researchers focus on the integrated transportation and production
planning/scheduling problems [29–31]. A survey of integrated production scheduling
and outbound distribution models is presented in [32], and a review of literature on the
production routing problem (PRP) can be found in [33].

To the best of our knowledge, the scheduling problem with all four mentioned features,
i.e. job and machine acceptance, and renewable resource and transportation constraints,
has never been studied in the past. Only the contributions in [9,13], which consider both
the job and machine selection in a parallel machine environment, are very similar to our
research; however, the renewable resource and job and resource transportation constraints
are additionally taken into account in this paper. This problem is strongly NP-hard, since
the parallel machine scheduling problem with a fixed number of machines and jobs and
without resource constraints is already strongly NP-hard [34].

The remainder of the paper is organized as follows. We begin by presenting the
problem in Section 2 through the aid of an illustrative example. We then continue with an
exact resolution approach based on mixed-integer linear programming and with several
heuristic approaches in Section 3. In Section 4, we evaluate these approaches using artifi-
cially generated datasets (available on request), before finishing with several concluding
remarks in Section 5.

2. The Problem

As mentioned previously, we consider the problem of unrelated parallel machine
scheduling with job and machine acceptance as well as resource allocation and transporta-
tion constraints. This type of problem can be used in the context of establishing a production
facility without capital or with little capital and no infrastructure. Both machines and re-
sources are rented, while resources need to be transported to and between fixed machine
locations. Jobs are transported to machine locations but not between machines because
they can be operated in parallel.

Let us first describe several parameters that are used to define our problem. We begin
with the general parameters below:

• n, the number of jobs (j = 1, . . . , n);
• m, the number of machines (i = 1, . . . , m);

Algorithms 2022, 15, 433 3 of 17

• k, the number of resource types (r = 1, . . . , k);
• lr, the number units of a resource type r (q = 1, . . . , lr).

Next, we have the parameters that define a job, ∀j ∈ 1 . . . n:

• pj, the selling price of job j;
• pcj, the penalty cost of not selecting job j;
• f cj, the fixed cost of handling job j;
• dj, the due date of job j; finishing the job after this date incurs a tardiness penalty;
• tcj, the tardiness cost of job j per unit of time;
• d̃j, the deadline of job j; a job cannot be finished after this date.

We continue with the parameters that define a machine, ∀i ∈ 1 . . . m:

• rcmi, the renting cost of machine i per unit of time;
• mwtmi, the minimum renting time of machine i. A machine can be rented for a shorter

period of time; however, a minimum renting cost proportional to mwtmi will need to
be paid.

Next, we have the parameters that define the resource types, ∀r ∈ 1 . . . k:

• rcrr, the renting cost of resource type r per unit of time;
• trcrr, the cost of transporting resource r between any two machines;
• trtrr, the time needed to transport resource r between any two machines;

Several parameters depend on both the jobs and the machines, such as, ∀i ∈ 1 . . . m,
∀j ∈ 1 . . . n:

• tij, the processing time of job j on machine i;
• trcjij, the cost of transporting job j to machine i;
• trtjij, the time for transporting job j to machine i.

Finally, a single parameter concerns both the jobs and the resources, ∀j ∈ 1 . . . n,
∀r ∈ 1 . . . k:

• ajr, a binary indicator for job j requiring resource type r in order to be processed.

In order to illustrate the problem, we consider the following example.
An event-planning company rents one or multiple venues in order to set up different

events while, at the same time, taking care of contracting and transporting the performers.
Following a bidding process, the company is awarded four events (jobs in a scheduling con-
text) (n = 4), and three venues (machines in a scheduling context) are available to be rented
in its area (m = 3). Each event requires one or multiple performers of different categories,
such as opera singers and symphony bands, which can be considered as resources in a
scheduling context. Therefore, up to two types of resources (k = 2) are needed, with two
opera singers and three symphony bands currently being available to our event planning
company (l1 = 2 and l2 = 3).

Each job comes with its offer revenue and its set-up costs, but also the associated
running costs. Furthermore, as these jobs have been awarded to the company, a penalty fee
will be incurred if the job is forfeit. Each job comes with a due date for delivery, after which,
penalties will be incurred by our company, as well as a hard deadline. These parameters
may be found in Table 1.

Table 1. Event (job) parameters for the illustrative example.

Jobs J1 J2 J3 J4

Profit (p) 100 k 80 k 150 k 120 k
Penalty (pc) 1500 5000 2500 2000

Fixed cost (f c) 10 k 15 k 10 k 12.5 k
Due date (d) 15 20 12 22

Tardiness cost (tc) 500 700 1000 800
Deadline (d̃) 32 28 20 45

Algorithms 2022, 15, 433 4 of 17

Each venue comes with a rent cost per day together with a minimum rent duration.
The opera singers and symphony bands also have a daily cost, and furthermore require a
certain number of days and a cost in order to be transported and set up in a new location.
These elements may be found in Tables 2 and 3.

Table 2. Venue (machine) parameters for the illustrative example.

Venue M1 M2 M3

Rental cost (rcm) 500 750 650
Minimum rental period in days (mwtm) 25 35 25

Table 3. Performer (resource) parameters for the illustrative example.

Performer Opera Singer Symphony Band

Rental cost (rcr) 1000 1500
Setup cost (trcr) 1500 2500

Setup time in days (trtr) 5 10

Each event has a number of performance days needed, presented in Table 4.

Table 4. Performance time, in days, for each event and each venue (or processing time).

t J1 J2 J3 J4

M1 25 30 20 35
M2 15 10 10 20
M3 35 30 20 40

The company also considers the time and costs needed for the initial setup of each
venue for each event. Once a venue is set up, the time needed to switch to another event is
considered negligible. The setup costs (or transport costs in the general case) are given in
Table 5, whereas the setup times (or transport times in the general case) are given in Table 6.

Table 5. Initial setup (or transport) costs of locations.

trcj J1 J2 J3 J4

M1 1000 1500 1500 2000
M2 2500 1000 1500 2000
M3 1500 3000 2000 1000

Table 6. Initial setup (or transport) times (trtj).

trtj J1 J2 J3 J4

M1 5 10 5 5
M2 10 15 10 15
M3 5 5 10 10

Finally, each event may require one or both types of resources as presented in Table 7.

Table 7. Event resource requirements.

a J1 J2 J3 J4

Opera singer 1 0 1 1
Symphony band 0 1 1 1

Algorithms 2022, 15, 433 5 of 17

Notice that J3 and J4 require both resource types, whereas the other jobs only re-
quire one.

The optimal solution for this problem is illustrated below. We begin by presenting the
solution elements in Table 8, including the start and complete times of jobs, followed by
the venue and resource assignments.

Table 8. Solution indicating start and completion dates of events and venue and resource assignments.

Jobs J1 J2 J3 J4

Start 5 - 10 20
End 30 - 20 40

Venue M1 - M2 M2

Resource Opera singer R1,1 - - R1,2
Symphony band - - R2,1 R2,1

We have also used several Gantt charts, starting with the one indicating the locations
use in Figure 1.

t0 10 20 30 40

M1

M2

M3

d1 d2d3 d4

d̃1d̃2d̃3 d̃4

J1
J3 J4

Figure 1. Solution indicating the venue use.

Notice that only the first two venues are used. Furthermore, the second job does
not appear at all, meaning that it was not selected. This may be due to it having a small
profit, a relatively short deadline, and long initial setup times for the first two venues.
Furthermore, as illustrated below, adding J2 would require mobilizing a second symphony
band, therefore further increasing the costs.

We investigate the resource use by looking at Figures 2 and 3.

t0 10 20 30 40

R1,1

R1,2

d1 d2d3 d4

d̃1d̃2d̃3 d̃4

J1
J4

Figure 2. Solution indicating the opera singers use.

t0 10 20 30 40

R2,1

R2,2

R2,3

d1 d2d3 d4

d̃1d̃2d̃3 d̃4

J3 J4

Figure 3. Solution indicating symphony bands use.

We observe that only two opera singers and one symphony band are used.
The overall profit (or fitness of the solution) is 159,350, and is given by:

Algorithms 2022, 15, 433 6 of 17

• The income from selected jobs, i.e., all except the second one (370,000);
• The fixed costs of selected jobs (932,500);
• The penalty cost of rejected jobs, i.e., the second one (95000);
• The tardiness cost of late jobs, i.e., 15 × 500 for J1, 8 × 1000 for J3, and 18 × 800

(929,900);
• The renting cost of venues, corresponding to 25 days for the first venue and 35 days

for the second, as it is used for 30 only when the minimum required is 35 (938,750);
• The renting cost of resources, i.e., (25 + 20)× 1000 for the opera singers and (10 +

30)× 1500 for the symphony band (9105,000);
• The initial setup costs (or transport costs) of venues, i.e. 2× 1500 for the two opera

singers and 2500 for the symphony band (95500);
• The transfer costs of resources between venues, which amount to 0 since all resources

are set up and stay in only one location (0).

3. Resolution Approaches
3.1. Exact Approach

We present, in this subsection, the mixed-integer linear program (MILP) proposed for
solving the presented problem.

The variables of the model are presented in Table 9.

Table 9. Variables of the MILP.

Xj binary : 1 if job j is selected and 0 otherwise, ∀j ∈ 1 . . . n
Tj continuous : tardiness of job j, ∀j ∈ 1 . . . n
Wi binary : 1 if machine i is used for some jobs and 0 otherwise, ∀i ∈ 1 . . . m
Yij binary : 1 if job j is processed on machine i and 0 otherwise,

∀i ∈ 1 . . . m, ∀j ∈ 1 . . . n
Cij continuous : completion time of job j on machine i, ∀i ∈ 1 . . . m, ∀j ∈ 1 . . . n
STMi continuous : starting time of renting machine i, ∀i ∈ 1 . . . m
FTMi continuous : finishing time of renting machine i, ∀i ∈ 1 . . . m
RTMi continuous : renting time of machine i, ∀i ∈ 1 . . . m
STRrq continuous : starting time of renting resource q of type r, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr
FTRrq continuous : finishing time of renting resource q of type r, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr
NTRrq continuous : number of transfers of resource q of type r between machines,

∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr
Zirq binary : 1 if machine i uses resource q of type r to process some jobs

and 0 otherwise, ∀i ∈ 1 . . . m, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr
Vjj′ binary : 1 if job j precedes job j′ when both use the same machine

and 0 otherwise, ∀j, j′ ∈ 1 . . . n, j < j′

Uii′rq binary : 1 if resource q of type r is used by machine i before machine i′,
and 0 otherwise
∀i, i′ ∈ 1 . . . m, i < i′, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr

Gjrq binary : 1 if job j uses resource q of type r and 0 otherwise
∀j ∈ 1 . . . n, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr

The MILP can be formulated as follows:

max
n

∑
j=1

pjXj 9
n

∑
j=1

f cjXj 9
n

∑
j=1

tcjTj 9
n

∑
j=1

pcj(1 9 Xj)9

v
m

∑
i=1

rcmiRTMi 9
k

∑
r=1

lr

∑
q=1

rcrr(FTRrq 9 STRrq)9

n

∑
j=1

m

∑
i=1

trcjijYij 9
k

∑
r=1

lr

∑
q=1

trcrr NTRrq (1)

s.t. :

Algorithms 2022, 15, 433 7 of 17

Yij 6 Zirq + (1 9 Gjrq) ∀i ∈ 1 . . . m, ∀j ∈ 1 . . . n, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr (2)

NTRrq >
n

∑
i=1

Zirq 9 1 ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr (3)

Ci′ j′ + trtrr 6 Cij 9 tij + M(4 9Yij 9Yi′ j′ 9 Gjrq 9 Gj′rq) + MUii′rq

∀i, i′ ∈ 1 . . . m, i < i′, ∀j, j′ ∈ 1 . . . n, j < j′, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr (4)

Cij + trtrr 6 Ci′ j′ 9 ti′ j′ + M(4 9Yij 9Yi′ j′ 9 Gjrq 9 Gj′rq) + M(1 9Uii′rq)

∀i, i′ ∈ 1 . . . m, i < i′, ∀j, j′ ∈ 1 . . . n, j < j′, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr (5)

STRrq 6
m

∑
i=1

Cij 9
m

∑
i=1

tijYij + M(1 9 Gjrq)

∀j ∈ 1 . . . n, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr (6)

FTRrq >
m

∑
i=1

Cij 9 M(1 9 Gjrq) ∀j ∈ 1 . . . n, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr (7)

Cij 9 tij > Cij′ 9 MVjj′ 9 M(2 9Yij 9Yij′)

∀i ∈ 1 . . . m, ∀j, j′ ∈ 1 . . . n, j < j′ (8)

Cij′ 9 tij′ > Cij 9 M(1 9 Vjj′) 9 M(2 9Yij 9Yij′)

∀i ∈ 1 . . . m, ∀j, j′ ∈ 1 . . . n, j < j′ (9)
n

∑
j=1

Yij 6 nWi ∀i ∈ 1 . . . m (10)

STMi 6 Cij 9 tij + M(1 9Yij) ∀i ∈ 1 . . . m, ∀j ∈ 1 . . . n (11)

FTMi > Cij 9 M(1 9Yij) ∀i ∈ 1 . . . m, ∀j ∈ 1 . . . n (12)
m

∑
i=1

Yij = Xj ∀i ∈ 1 . . . m, ∀j ∈ 1 . . . n (13)

m

∑
i=1

Cij′ 6
m

∑
i=1

Cij 9
m

∑
i=1

tijYij + M(2 9 Gjrq 9 Gj′rq) + MVjj′

∀j, j′ ∈ 1 . . . n, j < j′, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr (14)
m

∑
i=1

Cij 6
m

∑
i=1

Cij′ 9
m

∑
i=1

tij′Yij′ + M(2 9 Gjrq 9 Gj′rq) + M(1 9 Vjj′)

∀j, j′ ∈ 1 . . . n, j < j′, ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr (15)
m

∑
i=1

Cij 9
m

∑
i=1

(tij + trtjij)Yij > 0 ∀j ∈ 1 . . . n (16)

m

∑
i=1

Cij 6 d̃j ∀j ∈ 1 . . . n (17)

Cij 6 MYij ∀i ∈ 1 . . . m, ∀j ∈ 1 . . . n (18)

Tj >
m

∑
i=1

Cij 9 dj ∀j ∈ 1 . . . n (19)

Tj > 0 ∀j ∈ 1 . . . n (20)

FTMi > STMi ∀i ∈ 1 . . . m (21)

FTRrq > STRrq ∀r ∈ 1 . . . k, ∀q ∈ 1 . . . lr (22)
lr

∑
q=1

Gjrq = ajrXj ∀j ∈ 1 . . . n, ∀r ∈ 1 . . . k (23)

RTMi > FTMi 9 STMi ∀i ∈ 1 . . . m (24)

RTMi > mwtmiWi ∀i ∈ 1 . . . m (25)

Algorithms 2022, 15, 433 8 of 17

The objective function (1) is set to maximize the net profit, which consists of the
total revenue minus the total costs, including job fixed costs, tardiness costs, job rejection
costs, renting cost of machines, renting cost of resources, and transportation cost of jobs
and resources.

Constraints (2) set the binary variable Zirq to 1 if machine i uses the q′th resource of
type r for processing some jobs, and sets it to 0 otherwise. According to these constraints,
if the q′th resource of type r is used by job j (Gjrq = 1), then this job (j) can be assigned to
machine i (Yij = 1) if this resource (r,q) is used by and assigned to machine i (Zirq = 1).

Constraints (3) use variable Zirq to determine the number of transfers needed for each
resource (NTRrq). Constraints (4) and (5) ensure that each resource is transferred to each
machine at most once. In other words, if a resource is transferred to a machine, then it
can be transferred from this machine to another machine only after finishing its work on
the first machine, i.e., after finishing the processing of all jobs that need this resource on
the first machine. Moreover, the work of the resource on the second machine is started
only after it is transferred to the machine. Using these constraints, the number of resource
transfers between the machines is minimized. Uii′rq is a binary variable taking value 1 if
the jobs processed by the q′th resource of type r on machine i precede the jobs processed by
this resource on machine i′, and 0 otherwise.

Constraints (6) and (7) determine the starting time and finishing time of the operation
(renting) of resources (STRrq,FTRrq), respectively. Constraints (8) and (9) take care of the
requirement that no two jobs processed on a same machine can be performed at the same
time. According to constraints (10), jobs can be assigned to and processed by machine i
only if the machine is selected to be rented (Wi = 1).

Constraints (11) and (12) determine the starting time and finishing time of the oper-
ation (renting) of machines (STMi,FTMi), respectively. Constraints (13) guarantee that if
job j is selected to be processed (Xj = 1), then it is assigned to and processed by exactly
one machine. According to constraints (14) and (15), no two jobs processed by the same
resource can be executed at the same time because of resource restriction. Constraints (16)
guarantee that the processing of each job j has to be started after it is transferred to the
machine that processes it. Constraints (17) impose that the completion time of each job will
not surpass its deadline. Constraints (18) link the completion time variables (Cij) and the
binary variables (Yij), i.e., if job j is not assigned to and processed by machine i (Yij = 0),
then the corresponding completion time (Cij) should be equal to zero. Constraints (19) and
(20) define the tardiness of each job j.

Constraints (21) state that, for each machine i, FTMi should not be less than STMi.
Constraints (22) are similar to constraints (21) and state that, for each resource (r, q), FTRrq
should not be less than STRrq. According to constraints (23), if job j is not selected to be
processed (Xj = 0) or does not need a resource type r (ajr = 0), then no resource of type r
should be assigned to this job. Constraints (24) and (25) set the renting time of a machine
as the maximum between its actual use (FTMi 9 STMi) and its minimum renting time
(mwtmi).

3.2. Approximate Approaches

Due to the complexity of the problem, the exact resolution approach will only be
effective for small-sized instances. Therefore, in order to be able to handle larger instances
of practical interest, we turn our attention toward heuristic approaches.

3.2.1. Greedy Constructive Heuristic

We begin with a greedy constructive heuristic based on a list algorithm.
A solution to our problem will contain:

• The starting times (STJj) and finish times (FTJj) of jobs, ∀j ∈ 1 . . . n;
• The starting times (STMi) and finish times (FTMi) of machines, ∀i ∈ 1 . . . m;
• The starting times (STRrq) and finish times (FTRrq) of resources, ∀r ∈ 1 . . . k, ∀q ∈

1 . . . lr;

Algorithms 2022, 15, 433 9 of 17

• The assignments of machines to jobs (AMJj), ∀j ∈ 1 . . . n;
• The assignment of resources to jobs (ARJjr), ∀j ∈ 1 . . . n, ∀r ∈ 1 . . . k.

Algorithm 1 illustrates the constructive heuristic.

Algorithm 1: Greedy constructive heuristic

1 S← EmptySolution()
2 g′ ← ComputeCriterionA()
3 ordj← OrderJobs(g′)
4 for j ∈ ordj do
5 s′ ← GetStartDates()
6 q′ ← GetResourceAssignments()
7 g′′ ← ComputeCriterionB(s′, q′)
8 ordi← OrderMachines(g′′)
9 for i ∈ ordi do

10 if s′i + tij < d̃j ∧ g′′i > 9pcj then
11 S← UpdateSolution(S, s′i, q′i)
12 break

13 return S

We begin by initializing the solution S. It is initially empty, with its elements (STJ,
FTJ, STM, FTM, STR, FTR, AMJ, ARJ) set to 0, i.e., 0 starting and completion times for all
jobs, machines, and resources, as well as no assignments of jobs to machines and resources.

We then compute a first criterion in order to evaluate each job (line 2 of Algorithm 1,
called by function ComputeCriterionA()). This criterion consists of two sub-criteria:

• Tardiness-related aspects;
• Cost-related aspects.

The first sub-criterion is given as:

tcj

dj · t′j ·m′j
, ∀j ∈ 1 . . . n

where t′j is the average processing time of task j on all of the machines that can process it
and m′j is the number of such machines.

If we were to order tasks in decreasing order of this sub-criterion, we would give
priority to tasks with a high tardiness cost, small due date, and small average processing
time.

The second sub-criterion is given as:

pj 9 f cj 9
k

∑
r=1

ajr · rcrr · t′j + pcj

Ordering tasks in decreasing order of this sub-criterion gives priority to high-paying
and high-penalty jobs.

We combine the two sub-criteria by normalizing the first and multiplying it with
the second.

This first criterion is then used to sequence the jobs in decreasing order (line 3 of
Algorithm 1).

For each job j in this order, we proceed to construct a sequence of machines to which it
should be assigned. In order to construct this sequence, we first go through several steps.

We start by identifying the earliest starting date for job j on each machine i that can
process it (line 5 of Algorithm 1):

Algorithms 2022, 15, 433 10 of 17

s′i = max

(
trtjij, FTMi, max

r∈1...k

(
ajr · min

q∈1...lr

(
FTRrq + trtr′irq

)))
,

where

trtr′irq =

trtrr , if i 6= AMJj′ where j′ = arg max

j′′∈1...n
ARJj′′r=q

FTJj′′

0 , otherwise

A job j will start on machine i no earlier that the time needed to transport it to the
machine and the time the machine and the resources that it requires become available.

When estimating the availability time of resources, we consider all resources and use
ajr to reduce this value to 0 if the resource type r is not required to process job j. For all
needed resource types (ajr = 1), we estimate their available time and select the largest
value, since they all need to be available throughout the duration of the job. For each
resource type r, we look at all units of this resource (q ∈ 1 . . . lr) and select the one that
would be available first using its complete date FTRrq and adding a transport time if this
resource was last used on a different machine than i.

Estimating whether a transport time is required is carried out using trtr′irq. If the last
task using resource q of type r is performed on a different machine than i, then a transport
time is required; otherwise, this time is set to 0.

We also record the resource units that were selected when constructing s′ using q′ (line
6 of Algorithm 1):

q′ir = arg min
q∈1...lr

(FTRrq + trtr′irq)

Using s′ and q′, we then evaluate each machine i using a second criterion (line 7 of
Algorithm 1, called by function ComputeCriterionB(s′, q′)), which is given as:

pj 9 f cj 9 trcjij 9 rcmi · tij 9 ircmi 9
k

∑
r=1

ajr · (rcrr · tij + ircrir) 9 tcj ·max(0, s′i + tij 9 dj),

where

ircmi =

{
rcmi · (s′i 9 FTMi) , if FTMi > 0
0 , otherwise

ircrir =

{
rcrr · (s′i 9 FTRrq′ir

) , if FTRrq′ir
> 0

0 , otherwise

This criterion computes the net gain from selecting job j to be processed on machine
i at time s′i using its required resources q′ir, ∀r ∈ 1 . . . k. This criterion includes the selling
price of the job (pj), its fixed costs (f cj), the cost of transporting the job to the machine
(trcjij), the renting cost of the machine while executing the job (rcmi · tij), the idle time
of renting the machine if it was used to process other jobs (ircmi), the renting cost of the
required resources during the job processing but also during idle times for resources that
have been used to process other jobs, and, finally, the tardiness costs.

Estimating the idle cost of machine i is carried out by checking whether FTMi is
greater than 0, and, in this case, ircmi is equal to the cost of renting the machine per unit of
time multiplied with the time between its latest complete date (FTMi) and the estimated
start date of job j (s′i).

Estimating the idle cost of a resource r (ircrir) is carried out in a similar way, considering
the resource that should be selected in order to process job j.

Using the second criterion, we sequence the machines in decreasing order (line 8 of
Algorithm 1). We then consider each machine from this list and select the first that does not
lead the job to overshoot its deadline nor lead to a loss that is worse than if the job were
not processed at all (line 10 of Algorithm 1). Once a machine fulfilling these conditions is
found, we update the solution (line 11 of Algorithm 1) and jump to the next job (line 12

Algorithms 2022, 15, 433 11 of 17

of Algorithm 1). If there is no machine that can fulfil these conditions, then the job is not
processed.

3.2.2. Simulated Annealing

We consider a third heuristic for solving this problem: the simulated annealing proce-
dure [35].

This approach starts from an initial solution and then moves to close neighbors across
multiple iterations. During each iteration, the neighboring solution replaces the current
one if it improves the objective function. Non-improving solutions may also replace the
previous solution with a probability that is proportional to the performance difference
and taking into account a temperature parameter. This parameters is initially set to a high
value and decreases at each iteration. High values increase the probability of accepting non-
improving solutions, and low values do not. Therefore, the approach starts by exploring
the search space and ends by intensifying its search.

The performance of the simulated annealing approach is heavily dependent on the
choice of the initial temperature and the rate at which it decreases, also called an annealing
schedule. Usually, the annealing schedule requires a significantly time-consuming tuning
phase in order for the approach to perform well on a new problem.

Variants of this approach, where the annealing schedule adapts and requires no tuning,
have been proposed, and we therefore consider one such approach here. Namely, we focus
on the adaptive annealing schedule known as modified LAM [36].

This adaptive simulated annealing (ASA) using the modified LAM annealing schedule
is outlined in Algorithm 2.

Algorithm 2: Adaptive simulated annealing using the modified LAM annealing
schedule
1 S← GenerateInitialSolution()
2 S′ ← S
3 T ← 0.5
4 AcceptRate← 0.5
5 for it ∈ 1 . . . iterations do
6 S′′ ← PickNeighbor(S′)

7 if Cost(S′′) > Cost(S′) or Random(0, 1) < e
Cost(S′′)9Cost(S′)

T then
8 S′ ← S′′

9 AcceptRate← 1
500 (499 · AcceptRate + 1)

10 else
11 AcceptRate← 1

500 (499 · AcceptRate)

12 if it
iterations < 0.15 then

13 LamRate← 0.44 + 0.56 · 5609it/iterations/0.15

14 else if it
iterations < 0.65 then

15 LamRate← 0.44

16 else
17 LamRate← 0.44 · 4409(it/iterations90.65)/0.35

18 if AcceptRate > LamRate then
19 T ← 0.999 · T
20 else
21 T ← T/0.999

22 if Cost(S′) > Cost(S) then
23 S← S′

24 return S

Algorithms 2022, 15, 433 12 of 17

The algorithm starts by initializing the solution S using the greedy constructive heuris-
tic presented in Section 3.2.1 (line 1). A copy is also generated in the form of S′ (line 2). The
temperature parameter T and an AcceptRate parameter are both set to 0.5 (lines 3 and 4).

Throughout this algorithm, a solution of the problem is encoded using:

• ordj: the sequence of jobs;
• AMJ: the assignment of machines to jobs;
• ARJ: the assignment of resources to jobs.

For the initial solution, these elements correspond to those used by the constructive
heuristic from Section 3.2.1. In order to evaluate a solution, a decoding function that
generates all of the elements of the solution (STJ, FTJ, STM, FTM, STR, FTR, AMJ, ARJ)
is used; however, for simplicity, we do not include these elements in the presentation of
the algorithm. Initial values for the temperature and the acceptance rate are also set at
this point.

We continue with the main loop of the algorithm (line 5 onward), which performs a
preset number of iterations. Each iteration begins by generating a neighbor of solution S′.
In our case, generating a neighbor of S′ consists of applying, with equal probability, one of
the following operators:

• Swap two randomly selected jobs in ordj;
• Randomly change the machine assignment of one randomly selected job in AMJ;
• Randomly change the resource assignment of one randomly selected job in AMJ.

Once a neighbor S′′ is generated, it is accepted as the new solution and replaces S′ if it

is better or if a randomly selected value between 0 and 1 is lower than e
Cost(S′′)9Cost(S′)

T (lines
7 and 8). Otherwise, the same solution S′ will be used during the next iteration.

The AcceptRate and LamRate parameters correspond to the modified LAM annealing
schedule from [36], which the interested reader is referred to for further insight. Briefly
speaking, this annealing schedule adapts the temperature so that the acceptance rate
linearly decreases from 100% to 44% during the first 15% iterations of the algorithm, then
fixes it at 44% during the following 50% iterations, while, for the remaining 35%, it drops
linearly towards 0%.

4. Empirical Validation

In order to validate the algorithmic approaches for solving the presented problem, we
devised a series of experiments.

4.1. Benchmark Generation

For a given problem size (n, m, and k are known), we built 20 instances where the
problem parameters are generated as integer values using the following rules:

• pj ∼ U(1000, 10, 000), ∀j ∈ 1 . . . n;
• pcj = α · pj, ∀j ∈ 1 . . . n, where α ∼ U(0.1, 0.5);
• f cj = β · (pj 9 pcj), ∀j ∈ 1 . . . n, where β ∼ U(0.2, 0.5);
• dj ∼ U(50, 200), ∀j ∈ 1 . . . n;
• d̃j = γ · dj, ∀j ∈ 1 . . . n, where γ ∼ U(1, 1.2);
• tcj ∼ U(1, 10), ∀j ∈ 1 . . . n;
• rcmi ∼ U(10, 50), ∀i ∈ 1 . . . m;
• mwtmi ∼ U(10, 100), ∀i ∈ 1 . . . m;
• lr ∼ U(1, 5), ∀r ∈ 1 . . . k;
• rcrr ∼ U(10, 50), ∀r ∈ 1 . . . k;
• trcrr ∼ U(10, 50), ∀r ∈ 1 . . . k;
• trtrr = δ · trcrr, where δ ∼ U(0.1, 0.3), ∀r ∈ 1 . . . k;
• tij ∼ U(5, 50), ∀j ∈ 1 . . . n, ∀i ∈ 1 . . . m;
• trcjij ∼ U(10, 50), ∀j ∈ 1 . . . n, ∀i ∈ 1 . . . m;
• trtjij = θ · trcjij, where θ ∼ U(0.1, 0.3), ∀j ∈ 1 . . . n, ∀i ∈ 1 . . . m;

Algorithms 2022, 15, 433 13 of 17

• ajr ∼ U(0, 1), ∀j ∈ 1 . . . n, ∀r ∈ 1 . . . k.

When generating parameter a, we made sure that each resource type r is required by
at least one job.

4.2. Experiments and Results

We present below the results from several numerical experiments using the exact and
approximate approaches for solving the proposed scheduling problem. The experiments
were conducted on an Intel Xeon Gold CPU with 80 cores at 2.00 GHz, and with 64 Gb
RAM. All algorithms were implemented in julia 1.6.1 [37]. The MILP approach used
the JuMP package and the the Gurobi 9.0.1 solver [38]. It was also allowed to use up to 16
cores and as much as 32 GB RAM, whereas, when executing each heuristic approach, we
only used a single core.

We considered problem instances containing between 10 and 50 jobs (n), 10 and 20
machines (m), and 5 resource types (k). A total of 20 instances of each size were generated
(all instances are available at github.com/aolteanu/UPMSP-NAJ-NAM-RR, accessed on
15 November 2022.) and tested, and the execution times were limited to 3600 seconds.

We begin by reporting the average gap and its standard deviation for all approaches
in Table 10. The gap is given here by best9actual

best , where actual is the objective value given
by one algorithm execution on one problem instance, and best is the best objective value
found by any algorithm on that problem instance. The best average values are indicated in
bold face.

Table 10. Gap from best solution in percentage (best results depicted in bold).

n m k MILP Greedy SA (104 iter.) SA (105 iter.)
avg std avg std avg std avg std

10 10 5 3 9 35 12 5 5 3 3
20 10 5 4 5 37 11 8 4 5 3
30 10 5 13 7 39 17 11 6 5 3
40 10 5 67 41 40 14 12 6 6 3
50 10 5 96 35 50 18 18 7 8 5

10 20 5 2 4 29 12 4 3 2 2
20 20 5 7 6 39 11 7 4 4 3
30 20 5 76 41 48 12 12 5 6 3
40 20 5 87 36 43 16 13 6 7 4
50 20 5 126 31 43 17 15 7 8 4

We observe that, on small problem instances (10 and 20 jobs on 10 machines and 10
jobs on 20 machines), the MILP approach performs, as expected, better than most heuristic
approaches. The simulated annealing approach with a large number of iterations, however,
ties the MILP approach in the average gap value while also reporting a lower standard
deviation. The MILP was, in fact, not able to prove the optimality of the solution, nor even
find the best one for all problem instances within the allotted time. The performance of the
MILP quickly degrades as the size of the problem instances grows, performing even worse
than the greedy constructive heuristic.

Among the three tested heuristic approaches, the greedy constructive heuristic is con-
sistently the worst performing, whereas the simulated annealing performs better, especially
when increasing the number of iterations it performs. These remarks are also confirmed
by the results from Table 11, where the MILP is able to find the best solutions for more
problem instances when the number of jobs stays low (n = 10); however, it gets quickly
overtaken by the simulated annealing approach with 106 iterations for n > 10.

github.com/aolteanu/UPMSP-NAJ-NAM-RR

Algorithms 2022, 15, 433 14 of 17

Table 11. Number of best solutions found (best results depicted in bold).

n m k MILP Greedy SA (104 iter.) SA (105 iter.)

10 10 5 15 0 3 5
20 10 5 6 0 0 14
30 10 5 0 0 2 18
40 10 5 0 0 0 20
50 10 5 0 0 0 20

10 20 5 11 0 7 11
20 20 5 0 0 2 18
30 20 5 0 0 0 20
40 20 5 0 0 0 20
50 20 5 0 0 0 20

The execution times required for each tested approaches are illustrated in Table 12.

Table 12. Execution time in seconds (best results depicted in bold).

n m k MILP Greedy SA (104 iter.) SA (105 iter.)
avg std avg std avg std avg std

10 10 5 3606 9 2 0 8 4 71 18
20 10 5 3612 9 2 0 11 4 106 19
30 10 5 3623 9 2 0 14 6 139 30
40 10 5 3638 10 2 0 18 6 162 26
50 10 5 3659 15 2 0 21 6 171 34

10 20 5 3612 9 2 0 8 4 72 17
20 20 5 3643 9 2 0 11 4 104 21
30 20 5 3720 26 2 0 15 4 136 33
40 20 5 3846 81 2 0 17 5 150 39
50 20 5 4130 238 2 0 22 6 176 35

We observe that the MILP always reaches its 3600-second time limit. Since, even for
small-sized instances, it was not able to find the best solution overall, we conclude that
more than one hour, or more computational resources, are needed for this approach. The
constructive heuristic is the fastest, while the execution times of the simulated annealing
are of the order of a few seconds when performing fewer iterations, and several minutes
when performing more.

In order to evaluate the performance of the proposed approaches on instances of a
more realistic size, we performed additional tests for problem instances with between 100
and 500 jobs, 50 machines, and 10 resource types.

Following the results from the smaller problem instances, we tested here only the
heuristic approaches. We report the results on the gap and execution time in Table 13.

Table 13. Gap from best solution in percentage and execution time (best results depicted in bold).

n m k
Gap Execution Time

Greedy SA (104 iter.) Greedy SA (104 iter.)
avg std avg std avg std avg std

100 50 10 35 12 5 3 6 0 112 16
200 50 10 42 20 5 3 20 2 232 29
300 50 10 37 38 5 4 44 4 469 50
400 50 10 33 24 6 4 73 8 779 74
500 50 10 24 21 8 6 116 14 1202 107

Algorithms 2022, 15, 433 15 of 17

We observe that the simulated annealing approach again performs the best, finding
the best solution for each problem instance, although not for all of its 50 executions, as
can be noticed from the average gap not being equal to 0. We can also conclude that the
execution times for this approach remain reasonable for larger problem instances, which
could be attributed to the increase in resource types (k = 10), making it potentially easier to
assign the needed resources when constructing a solution.

5. Conclusions and Perspectives

In this paper, a novel scheduling problem consisting of job and machine acceptance,
the assignment of jobs to unrelated parallel machines, the scheduling of jobs on selected
machines, and multiple-resource allocation was considered. The machines and renewable
resources (such as manpower, industrial machines or tools, and computing devices) re-
quired for the processing of jobs were rented during their operating time. The objective
was to maximize the overall profit. One practical application of the proposed problem
consisted of establishing a production facility without (or with minimum) investment (in
machinery and equipment) or location. Modeling existing infrastructure and manpower,
in this case, can be easily achieved by reducing the renting costs and setup times to 0 for
a given set of machines or resources. Another application corresponds to the illustrated
event-planning problem.

In order to tackle this problem, we developed an exact approach based on mixed-
integer linear programming as well as several heuristic approaches. Due to the complexity
of the problem and following our experimental results, the exact approach may only be
useful for smaller-sized problem instances. When larger, more realistic problem instances
are considered, a self-adapting simulated annealing approach should be favored.

Additional work may consist of adapting the proposed approaches for other machine
configurations, such as flowshop, or considering other real-world constraints, such as:

• Machine unavailability;
• Machine or resource renting discount based on the duration of their use;
• Resource transport duration dependent on machine and resource location;
• Ready times for jobs or resources;
• etc.

Author Contributions: Conceptualization, M.Z.; methodology, A.-L.O., M.S. and M.Z.; software,
A.-L.O.; validation, A.-L.O., M.S. and M.Z.; investigation, A.-L.O.; data curation, A.-L.O.; writing—
original draft preparation, M.Z.; writing—review and editing, A.-L.O., M.S. and M.Z.; visualization,
A.-L.O.; supervision, M.S.; project administration, A.-L.O., M.S. and M.Z.; All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The entire set of generated problem instances used in this article can
be found at github.com/aolteanu/UPMSP-NAJ-NAM-RR.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fanjul-Peyro, L. Models and an exact method for the unrelated parallel machine scheduling problem with setups and resources.

Expert Syst. Appl. X 2020, 5, 100022. [CrossRef]
2. Cao, Z.; Yang, Y. A ptas for parallel batch scheduling with rejection and dynamic job arrivals. Theor. Comput. Sci. 2009, 410,

2732–2745. [CrossRef]
3. Fiszman, S.; Mosheiov, G. Minimizing total load on a proportionate flowshop with position-dependent processing times and

job-rejection. Inf. Process. Lett. 2018, 132, 39–43. [CrossRef]
4. Gerstl, E.; Mosheiov, G. Scheduling on parallel identical machines with job-rejection and position-dependent processing times.

Inf. Process. Lett. 2012, 112, 743–747. [CrossRef]

github.com/aolteanu/UPMSP-NAJ-NAM-RR
http://doi.org/10.1016/j.eswax.2020.100022
http://dx.doi.org/10.1016/j.tcs.2009.04.006
http://dx.doi.org/10.1016/j.ipl.2017.12.004
http://dx.doi.org/10.1016/j.ipl.2012.06.009

Algorithms 2022, 15, 433 16 of 17

5. Jiang, J.; Tan, J. Scheduling with job rejection and nonsimultaneous machine available time on unrelated parallel machines. Theor.
Comput. Sci. 2016, 616, 94–99. [CrossRef]

6. Li, S.; Yuan, J. Parallel-machine scheduling with deteriorating jobs and rejection. Theor. Comput. Sci. 2010, 411, 3642–3650.
[CrossRef]

7. Naderi, B.; Roshanaei, V. Branch-relax-and-check: A tractable decomposition method for order acceptance and identical parallel
machine scheduling. Eur. J. Oper. Res. 2019, 286, 811–827. [CrossRef]

8. Shabtay, D.; Karhi, S.; Oron, D. Multipurpose machine scheduling with rejection and identical job processing times. J. Sched. 2015,
18, 75–88. [CrossRef]

9. Fanjul-Peyro, L.; Ruiz, R. Scheduling unrelated parallel machines with optional machines and jobs selection. Comput. Oper. Res.
2012, 39, 1745–1753. [CrossRef]

10. Finke, G.; Lemaire, P.; Proth, J.; Queyranne, M. Minimizing the number of machines for minimum length schedules. Eur. J. Oper.
Res. 2009, 199, 702–705. [CrossRef]

11. Gerstl, E.; Mosheiov, G. A two-stage flow shop batch-scheduling problem with the option of using not-all-machines. Int. J. Prod.
Econ. 2013, 146, 161–166. [CrossRef]

12. Gerstl, E.; Mosheiov, G. The optimal number of used machines in a two-stage flexible flowshop scheduling problem. J. Sched.
2014, 17, 199–210. [CrossRef]

13. Kong, M.; Pei, J.; Liu, X.; Lai, P-.; Pardalos, P.M. Green manufacturing: Order acceptance and scheduling subject to the budgets of
energy consumption and machine launch. J. Clean. Prod. 2020, 248, 119300. [CrossRef]

14. Kravchenko, S.A.; Werner, F. Minimizing the number of machines for scheduling jobs with equal processing times. Eur. J. Oper.
Res. 2009, 199, 595–600. [CrossRef]

15. Lei, D.; Guo, X. Hybrid flow shop scheduling with not-all-machines options via local search with controlled deterioration.
Comput. Oper. Res. 2016, 65, 76–82. [CrossRef]

16. Li, S.-S.; Chen, R.-X.; Feng, Q.; Jiao, C.-W. Parallel-machine scheduling with job-dependent cumulative deterioration effect and
rejection. J. Comb. Optim. 2019, 38, 957–971. [CrossRef]

17. Mor, B.; Mosheiov, G.; Shapira, D. Flowshop scheduling with learning effect and job rejection. J. Sched. 2019, 23, 1099–1425.
[CrossRef]

18. Yildirim, M.B.; Barut, M.; Cakar, T. A neuro-genetic algorithm for parallel machine scheduling to determine the number of
machines and priority scheduling rules. In Proceedings of the International Conference on Productivity and Quality Research,
10th Commemorative International, Miami, FL, USA, 16–19 February 2004.

19. Yu, G.; Zhang, G. Scheduling with a minimum number of machines. Oper. Res. Lett. 2009, 37, 97–101. [CrossRef]
20. Abbaszadeh, N.; Asadi-Gangraj, E.; Emami, S. Flexible flow shop scheduling problem to minimize makespan with renewable

resources. Sci. Iran. 2019, 28, 1853–1870. [CrossRef]
21. Alharkan, I.M.; Qamhan, A. Optimize unrelated parallel machines scheduling problems with multiple limited additional

resources, sequence-dependent setup times and release date constraints. IEEE Access 2019, 7, 171533–171547. [CrossRef]
22. Angelelli, E.; Bianchessi, N.; Filippi, C. Optimal interval scheduling with a resource constraint. Comput. Oper. Res. 2014, 51,

268–281. [CrossRef]
23. Angelelli, E.; Filippi, C. On the complexity of interval scheduling with a resource constraint. Theor. Comput. Sci. 2011, 412,

3650–3657. [CrossRef]
24. Blazewicz, J.; Brauner, N.; Finke, G. Scheduling with discrete resource constraints. In Handbook of Scheduling-Algorithms, Models,

and Performance Analysis; Leung, J.Y.-T., Ed.; Chapman and Hall/CRC, New York, NY, USA, 2004.
25. Fleszar, K.; Hindi, K.S. Algorithms for the unrelated parallel machine scheduling problem with a resource constraint. Eur. J. Oper.

Res. 2018, 271, 839–848. [CrossRef]
26. Józefowska, J. Weglarz, J. Scheduling with resource constraints-continuous resources. In Handbook of Scheduling-Algorithms,

Models, and Performance Analysis; Leung, J.Y.-T., Ed.; Chapman and Hall/CRC: New York, NY, USA, 2004.
27. Kovalyov, M.Y.; Shafransky, Y.M. Uniform machine scheduling of unit-time jobs subject to resource constraints. Discret. Appl.

Math. 1998, 84, 253–257. [CrossRef]
28. Lombardi, M.; Milano, M. Optimal methods for resource allocation and scheduling: A cross-disciplinary survey. Constraints 2012,

17, 51–85. [CrossRef]
29. Lee, C.-Y.; Chen, Z.-L. Machine scheduling with transportation considerations. J. Sched. 2001, 4, 3–24. [CrossRef]
30. Li, K.; Sivakumar, A.I.; Ganesan, V.K. Analysis and algorithms for coordinated scheduling of parallel machine manufacturing

and 3pl transportation. Int. J. Prod. Econ. 2008, 115, 482–491. [CrossRef]
31. Liu, L.; Li, W.; Li, K.; Zou, X. A coordinated production and transportation scheduling problem with minimum sum of order

delivery times. J. Heuristics 2020, 26, 33–58. [CrossRef]
32. Chen, Z.-L. Integrated production and outbound distribution scheduling: Review and extensions. Oper. Res. 2010, 58, 130–148.

[CrossRef]
33. Adulyasak, Y.; Cordeau, J.-F.; Jans, R. The production routing problem: A review of formulations and solution algorithms.

Comput. Oper. Res. 2015, 55, 141–152. [CrossRef]
34. Garey, M.R.; Johnson, D.S. Computers and Intractability; A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,

NY, USA, 1979.

http://dx.doi.org/10.1016/j.tcs.2015.12.020
http://dx.doi.org/10.1016/j.tcs.2010.06.008
http://dx.doi.org/10.1016/j.ejor.2019.10.014
http://dx.doi.org/10.1007/s10951-014-0386-9
http://dx.doi.org/10.1016/j.cor.2011.10.012
http://dx.doi.org/10.1016/j.ejor.2006.11.050
http://dx.doi.org/10.1016/j.ijpe.2013.06.018
http://dx.doi.org/10.1007/s10951-013-0343-z
http://dx.doi.org/10.1016/j.jclepro.2019.119300
http://dx.doi.org/10.1016/j.ejor.2008.10.008
http://dx.doi.org/10.1016/j.cor.2015.05.010
http://dx.doi.org/10.1007/s10878-019-00429-7
http://dx.doi.org/10.1007/s10951-019-00612-y
http://dx.doi.org/10.1016/j.orl.2009.01.008
http://dx.doi.org/10.24200/sci.2019.53600.3325
http://dx.doi.org/10.1109/ACCESS.2019.2955975
http://dx.doi.org/10.1016/j.cor.2014.06.002
http://dx.doi.org/10.1016/j.tcs.2011.03.025
http://dx.doi.org/10.1016/j.ejor.2018.05.056
http://dx.doi.org/10.1016/S0166-218X(97)00138-8
http://dx.doi.org/10.1007/s10601-011-9115-6
http://dx.doi.org/10.1002/1099-1425(200101/02)4:1<3::AID-JOS57>3.0.CO;2-D
http://dx.doi.org/10.1016/j.ijpe.2008.07.007
http://dx.doi.org/10.1007/s10732-019-09420-1
http://dx.doi.org/10.1287/opre.1080.0688
http://dx.doi.org/10.1016/j.cor.2014.01.011

Algorithms 2022, 15, 433 17 of 17

35. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
36. Boyan, J.A. Learning Evaluation Functions for Global Optimization. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA,

USA, 1998.
37. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98.

[CrossRef]
38. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2022. Available online: https://www.gurobi.com (accessed on

8 September 2022).

http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1137/141000671
https://www.gurobi.com

	Introduction
	The Problem
	Resolution Approaches
	Exact Approach
	Approximate Approaches
	Greedy Constructive Heuristic
	Simulated Annealing

	Empirical Validation
	Benchmark Generation
	Experiments and Results

	Conclusions and Perspectives
	References

