N
N

N

HAL

open science

A new interval arithmetic to generate the
complementary of contractors

Pierre Filiol, Théotime Bollengier, Luc Jaulin, Jean-Christophe Le Lann

» To cite this version:

Pierre Filiol, Théotime Bollengier, Luc Jaulin, Jean-Christophe Le Lann. A new interval arithmetic
to generate the complementary of contractors. Summer Workshop on Interval Methods, Jul 2022,

Hannover, Germany. hal-03859346v2

HAL Id: hal-03859346
https://hal.science/hal-03859346v2
Submitted on 12 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03859346v2
https://hal.archives-ouvertes.fr

A new interval arithmetic to generate the
complementary of contractors

Pierre Filiol, Théotime Bollengier, Luc Jaulin,
Jean-Christophe Le Lann

Keywords: Intervals, Contractors, complement, Not a Num-
ber

Abstract: Contractor algebra is used to characterize a set
defined as a composition of sets defined by inequalities.
It mainly uses interval methods combined with constraint
propagation. This algebra includes the classical operations
we have for sets such as the intersection, the union and the
inversion. Now, it does not include the complement operator.
The reason for this is probably related to the interval arithmetic
itself. In this paper, we show that if we change the arithmetic
used for intervals adding a single flag, similar to not a number,
we are able to include easily the complement in the algebra
of contractors.

I. INTRODUCTION

Interval analysis [11] is a numerical tool used to solve
nonlinear problems such as non convex optimization [8] or
solving nonlinear equations [13]. In control or robotics, it is
often needed to compute inner and outer approximations for
sets [9] [16].

The algorithms we use to characterize a set X are pavers
that classify areas of the search space using contractors [4]. A
contractor C for the set X C R" is an operator IR" — IR"
which satisfies

C([x]) C [x] (contractance)
[x] Cly] = C(x]) CC([y])- (monotonicity) (1)
C([x)NnX=[x]NnX (consistency)

where TR" is the set of axis-aligned boxes of R™. The paver
bisects boxes and uses C to eliminate parts of the search
space that are outside X. In this paper, sets X of R™ will
be represented in mathbb font and intervals [x] or boxes [x]
within brackets.

If C; and Cy are two contractors, we define the following
operations on contractors:

(Cr N Ca)([x])
(CLUC)(x]) =

C1([x]) N Ca([x]) 2
C1([x]) U Ca([x]) 3)
where [a] L [b] is the smallest box which contains both [a]
and [b].

We also use the contractors to eliminate parts that are inside
the solution set, but we observe some problems in existing

solvers as soon as the domains of the functions involved in
the problem are restricted. We now illustrate thus on a simple
example.

Consider the set

X:{($17$2>|$2+m€[1a2”- (4)

and let us try to compute an inner and outer approximations
of X using an existing solver. For instance, if we use Codac
[15] with the following script:

from codac import =
from vibes import =
X0=IntervalVector ([[-10,10], [-10,10]1)
f = Function("x1","x2","x2+sqgrt (x1+x2)")
S=SepFwdBwd (f, sgr (Interval (1,2)))
vibes.beginDrawing ()
SIVIA(X0,S5,0.01)

We get the paving illustrated by Figure 1 where the blue
boxes are proved to be outside X and the magenta boxes are
supposed to be inside. We observe that this is not the case.
Indeed some boxes are wrongly classified as inside whereas
they are outside. This phenomenon occurs for all existing
solvers which are able to provide an inner approximation.
The reasons for this is that contractor-based methods obtain
an inner approximation by considering a contractor for the
complementary of X as

{($1,$2)|$2+\/l‘1 + X2 ¢ [1,2]} 5

whereas it should be

X = {(@1,22) | @2+ V&1 + 22 & [1,2] or 21 + 35 < 0}. (6)

In the figure, some magenta zones are wrongly classified
as inside because in these zones, v/z1 + x2 is not defined.
The goal of this paper is to provide a rigorous way to build
contractors associated with the complementary of a set in the
case where functions involved in the constraint are not defined
everywhere.

X,,;X-‘\f\\ I N . =

Fig. 1. Left: Paving obtained by classical methods to approximate X; Right:
A zoom on the red box

The paper is organized as follows. Section II explains the
approach that will motivate a new arithmetic. Section III
presents an extension of the arithmetic on real numbers, named
total real arithmetic, and shows the role of a flag named
¢ in the case where partial functions are involved. Section
IV introduces the notion of the total interval arithmetic.
Section IV provides the notion of total contractors and extends
the classical forward-backward contractor to total intervals.
Section VI concludes the paper.

II. APPROACH

Contractor algebra as defined in [4] does not allow any non-
monotonic operation. It means that if a contractor C is defined
by an expression £ of other contractors C; then we always
have

Vi,C; C C = E(C1,Ca,...) C E (c;,cg,...).)

As a consequence the complementary C of a contractor C or
the restriction C; \ C2 of two contractors Cy,Co (which both
correspond to non-monotonic operations) is not defined.

To be more precise, contractor algebra allows us to con-
struct a contractor for expressions of sets defined by union,
intersection and inversion of other sets. Take for instance the
set

X =X; Uf Xy NX3). ®)

We can represent its expression by the tree of Figure 2 or
equivalently by the following expressions

X = XjuUB
B = f1(a))
A = XonNX;

The intermediate sets A and B correspond to nodes of the
tree. In practice, the leaves X; of the tree are set reverse (or
equivalently inequality constraints) of the form

Xi = o7 H([yil) = {xi | @i(xi) € [yi]} (10)

where ¢; is a function defined by an algorithm and [y;] is a
box of R™. A contractor for X; is usually built by a forward-
backward procedure as for instance HC'4-revised [1]. The
contractor associated with the constraint ¢(x) € [y] is denoted

1
by €2y

Fig. 2. Contractor tree for X3 U f~1 (X2 N X3)

Once the contractor for X is built from the tree, a paver
[9] is called to provide an outer approximation for X. More
precisely, the paver generates boxes [x] of R™ that have
to be contracted by the available contractors. The resulting
procedure for contracting the set X defined by (8) is given by
the following algorithm.

Algorithm 1 Contractor for X = X; U f~1(Xy N X3)

Input: [x]
I [xa] = Cx, (X))
2 [b]=[x]
3 [a] =f([b])
4 [xa] = Cx,([a])
5 [xs] = Cx,([al])
6 [a] = [x2] N [x3]
7 [b] = Cf o (b))
8 [x] =[] U[b]
9 return [x]

This procedure is approximately what is performed by IBEX
[3] even if IBEX does not admit a set expression as an input.
To express the complement X we need to use the De
Morgan’s laws which states that:
o the complement of the union of two sets is the same as
the intersection of their complements
« the complement of the intersection of two sets is the same
as the union of their complements
We get
X=X;n (fF(X; UX3) Udomf) . (11)

Note that we had to introduce the domain of f, denoted by
domf, to take into account the fact that f may be a partial
function (i.e., not defined everywhere)c.

If we define the set-valued function f~1 : P(R™) s P(R")
as

£=1(Y) = £~(Y) U domf, (12)

then we have

X=Xin (f—l(XQ u&)) . (13)

The decomposition for X is defined by

X = X\nB
B = f_l(K) (14)
A = Xg U Xg

which corresponds to the tree of Figure 3.

T & &

Contractor tree for the complementary of X; U f~1 (X2 NX3)

Fig. 3.

Since the sets X; were defined by o;(x;) € [yi], the
complement is by

Xi=¢; (v
To implement, the complementary of a contractor using the

De Morgan’s low, the only brick we need is the forward-
backward contractor for the set

£ ([y]) = £7'([y]) U domf

5)

(16)

Now, the set £~ ([y]) is not a set reverse as defined by (10) and
thus we cannot apply a forward-backward contractor without
an extension which will be proposed in this paper.

III. TOTAL EXTENSION
A. Definitions

In mathematics, a function f : X — Y which is defined
for all x € X is said to be total. Equivalently, a function
f: X —Y is total if

Va € X,3y € Y such that f(z) = y. 17)

A function f which is not defined for all x is said to be partial.
Given a partial function f, the total extension is obtained by
adding an element to Y, say ¢ which collects all « ¢ domf.
To be more precise, we give the following definition.

Definition 1. The total extension of the partial function f :
X—=Yis f=XU{t} =Y U{t} with

oy ={ 117

Note that since ¢ ¢ domf, we have f(1) = ..

if z € domf

otherwise (18)

B. Illustration

Consider the partial function f as given in Figure 4. We
have

YY) = {Bv.e}
fHY) = {o} (19)
domf = {a,f,7,¢}

Now, since f({v,0}) C Y, some would classify ¢ inside
f71(Y) which is wrong. This is would be true if f were total.

f

I X
A— B
Fig. 4. A partial function f

Introducing the indeterminate NaN (Not a number), denoted
by ¢, in the sets allows us to get rid of the problem involved
by the partiality of f.

Given a set A, we define the extended total set as A =
AU{:}. Thus, f : A — B is the total extension of f: A — B
as illustrated by Figure 5. Following Definition 1, extended
functions can be used to set as follows:

e [T
ﬂ“‘{ﬂ@um

where X C A. Note that, in the figure, whereas f({v,d}) =
{3} C Y, we have f({7y,0}) ={3,:} Z Y.

if X C domf

otherwise (20)

o

A

il

Fig. 5. Introduction of Not a Number ¢

C. Properties

For total functions, we have some properties that will be
useful in our algorithms.

Proposition 1. If f is a total extension of f, we have

F7HE) = fHY) (i)

FX)cY=>Xcfly) (i) @1
fof Y (Y)=Y)
Proof: Let us prove (ii) only. We have:
XMy & fX)nY=0
& e fX)nfiE) =0
—— ~——
% =F-1 (22)
= XN 1Y) =0
& X c fU(Y)
|

Proposition 2. If f , g are total extensions of f, g then the
total extension of fogis fog.

Proof: If h = f o g, we have

: ., v | fog(x) if z € domg and g(z) € domf
fogx)= { L otherwise
(23)
Now, since
domh = domf o g = domg N g~ (domf) (24)
We get
: .. v | h(z) if z € domh
Jeglw) = {) if « ¢ domh (25)
which corresponds to h(z). [|
Example. To illustrate the proposition, take
fl) = Vi—=x
glr) = Va1 2o
Note that (]
domf = (—o0,1
domg = [1,00) @7
We have
hz)=foglx)=\1—-vVz—-1 (28)
Since
domh = domgN g~ !(domf)
= [L00)Ng~!((=00,1]) (29)
= [l,00)N]0,2] =[1,2]
we get
}a(m){ I-Va—1 ifzell2] (30)
L otherwise

D. Total real arithmetic

We define the total extension of the classical arithmetic on

real numbers. Consider the extended total set of reals:
R=RU{}. 31)

Adding such a special value for real numbers is now classical
since it has been introduced by the IEEE 754 floating-point

standard in 1985. Operations on real numbers can be extended
to R as follows:

flx)=1 if x ¢ dom(f)
fl) =1 (32)
LoxT =1

where f is any partial function and x € R and any binary
operator <.

Note that we do not define comparisons, which means that
if we have the relation ¢ < b then both a and b belong to R
(or equivalently neither a nor b can be equal to ¢).

Proposition 3. Consider a partial function f R” +—
R™ given by an expression f(x1,...,x,) including elemen-
tary functions (sin, v log,...) and elementary operators
(+,—,%,/,...). An expression for f can be obtained by the
total real arithmetic.

Proof: The proof is a direct consequence of the fact that

the total extension is preserved by composition. o n

An element of the Cartesian product R® =R x --- x R is
called a total vector.

E. Link with the complex number 1

The set of complex numbers C extends the set of real
numbers by adding a number i such that i = —1. The
extension preserves some properties such that the fact C is
a group with respect to the addition. Due to this, ¢ has an
opposite: —i. Indeed, i + (—i) = 0.

Take now the set R and let us check if ¢ has an opposite.
We solve ¢ +x = 0 and we get no solution for . This means
that R is not anymore a group and many properties we had
for R are lost. As a consequence, symbolic resolution and
group-based simplifications are not allowed in R.

Moreover, adding i to build C involves the addition of many
numbers of the form a+ib. In R, we just add a single number:
L.

There exists a tiny link between R and C in the construction
since we add one number. But the link stops here. Whereas
complex numbers can be used to build a huge numbers of
theorems and theories, the total numbers will be used as a
tool to build the complementary of contractors.

IV. TOTAL INTERVALS

In this section, we introduce the notion of intervals for HD%,
called rotal intervals.

A. Intervals in unions of lattices

On a lattice (A, <4), we can define the notion of intervals,
interval hull and contractors. This has been used for several
types of lattices such as real numbers, integers, trajectories,
graphs, etc. To be able to use interval methods, the lattice
structure is required. We show here that it is not strictly
necessary by considering union of lattices.

Definition. Consider two lattices (A, <,) and (B, <p) that
are disjoint. Denote by [A and IB, the set of all intervals of
A and B. We can define intervals of C = A UB as subsets C
which have the form

(33)

where [a] € IA and [b] € IB.
Indeed, the set (C,<c) can be equipped with an order
relation:

reAyeAr<,y

or reByeB,z<py (34

r<cy<& {
Now, C is not a lattice, i.e., if z € A, y € B we cannot define
z Ay and x Vy. This is due to the fact that we cannot provide
a common lower or upper bounds for x,y.

Example. Consider the case where A = R the set of real
numbers and B = {a, b, ¢, ..., z} the set of letters. Both can be
equipped with an order relation and both are lattices. Examples
of intervals for the set C = AUB are

[c1] = [2, 5]

{CQ} FQ 5]; g’{h} frg,h}

c Ule, f, 9,

[ci] [4,9] U {g, h, f} (35)
les5]) =0

[c6] =AUB

It is easy to check that the intervals of C is closed under inter-
section. It is thus a Moore family [10][2]. As a consequence,
contractor methods can be used.

B. Total intervals

Consider the singleton {¢} which is equipped with the trivial
order relation : ¢ < ¢ . The set of all intervals of {¢} is {0, {¢}}.
The set R can be equipped with a partial order relation <p
derived from R:

gt (36)
acR,beR then a<zbiff a<pb
Total intervals are denoted by [Z].
Examples of intervals of R are:
[a] = [1,00)
[B] = [~1,0] U {¢}
(37
&= {1}
[d] =0,
as illustrated by Figure 10.
7N\
N

Fig. 6. Total intervals are intervals of R = R U {.}

The set of total intervals is denoted by IR. We define the
hull of a subset of X of R as the smallest total interval [7]
which encloses X. We will write [¢] = [X]. For instance

[[{1’273}]] = [173]
[{1,2,3,:}] = [1,3]U{} (38)
[{:}] = {e}.

C. Total interval arithmetic

Consider a partial function f : R — R. We define its rotal
interval extension as follows

] = [{f (&), & € [2]}]. (39)
For instance +/[—1,4] = [0,2] U {¢}.
In the same manner, if ¢ € {+, —, -, /}, we define
] o [= [{aob,a € [a],b € [B]}] (40)

D. Total interval vector

The set of 1nterva1 vectors R™ is a lattice [6]. We can thus
deﬁne 1ntervals of R™. The set of interval vectors has the form
IR" = IR x --- x IR. We define the hull of a subset of X
of R" as the smallest [%] which encloses X. We will write
[%] = [X]. For instance,

[([1, 2] < {e}) U([3,4] x

[5,6])] = [1,4] < ([5,6]U{e}). (41)

V. TOTAL CONTRACTORS

This section extends the notion of contractor to total in-
tervals. We first consider the case of elementary contractors
built from elementary functions. Then, we consider the case
of contractors defined from elementary operators.

A. Total directed contractor for a binary constraint

Consider a constraint of the form y = f(x), where f : R —
RR: is a partial function with domain domf. We can extend the
constraint to R by the following decomposition

i = £(#) j= f(i), & € domf, j € R
zeR &< or zeR\domf, g=1
g€ R or T=1L0y=1
(42)
This means that « = f(x) is considered as true only if

and only if z = ¢ or if x ¢ domf. We define the forward
directional contractor as

Chli)) = [y 3 € (@ = F@)] @)
and the backward directional contractor
Er(@), 19) = [{& € (]| 39 € [3), 9 = F@)]. @4
Proposition 4. The forward directional contractor associated
with f is
Cr([#]) = LA (ENR)] U ([{N{e}) U ([EIN(R \dom), (45)
where 1 is the constant function , i.e,
U(A) :{ y gﬁiig (46)
Proof: Since
z edomf = y=f(2)
T =1 = y=1 47)
ze€R\domf = g=1

we have
f([2]) = f([#] ndom f) U ¢([£] N {c}) U ¢([Z] N (R\ domf)).
f([Z]NR) =[z]n{:}

(48)

Thus

Cr) = [{9)3% €@ o= f(2))]
= [f(z]nR)] U ([z] N {c}) (49)
Ue([z] N (R \ dom f))

|]

As a consequence, the following algorithm implements

Cr([4)):

_>
Algorithm 2 Forward directional contractor C¢

Input: f, [z]
I [y =[f([g]NR)]
2 [l=Wu(En{})
3 if [2] ¢ dom f, [§] = [g] U {¢}
4 return [y]

Proposition 5. The backward directional contractor associ-
ated with f is

E (@), [g) = [#] N (I~ NR)] U I([g))) (50)
where
= { UE D o
Proof: We have
JeER & @€ f1({y})
y=t & (z=1¢)V(z€R\dom}f) (52)
< ze{t}U(R\ dom f)
|

As a consequence, the following algorithm implements

Cr (], [i):

Algorithm 3 Backward directional contractor gf

Input: £~ [2], [§]
1 [r]=0
2 if [y] =0, return [r]
3 [=[(ENR)
4 ifcely], [7]=[F]U R\ dom f)U{c}
5 return [7] N [Z]

Example. Toral contractor for the square root. Consider the
constraint

y=vu

belong to R. The values
(x,y) are consistent with the
whereas (9,2),(—4,2),(9,¢), (¢,2) are

(53)

variables
L), (t,0) for
(53)

where all
(9, 3)7 (743
constraint

inconsistent.

For instance, assume that we have = € [2] = [-2,9],y €
[9] = [-1,2] U {¢}. We obtain
Cild) = VEZI=0300
AN = (AN LAV
= [0,2]U{.
EAa) = 2.4
It means that « € [—2,4] and y € [0,2] U {¢}.
Assume now that x € [&] = [4,9],y € [g] = [3,15] U {¢}.
We obtain
Cpld) = VEI=[23
Corle)nlyl = [2,3n([3,15]U{c}) ={3} (5
szLh) = {9

It means that z =9 and y = 3.

B. Total directed contractor for a ternary constraint

Consider the ternary constraint of z = x + y. The case
of constraints involving —,-,/ can be defined from + and
binary constraints already treated in the previous section. The
following reasoning can also be done for these operators.

We can extend the constraint z = x+y to R by the following
decomposition

2=+
z€eR - z=x+y, 2€RygeR, zeR
yeR or @T=tVyg=1)Nz=1
zeR
(56)
Note that in R, we do not have
z=x+yer=z2—19. (57)
Indeed, take £ = 1,5 = ¢,z2 = . We have 2 = = +

1y whereas © # Z — y. As a consequence, the values

(2,3,5),(2,¢,1), (¢,¢,0) for (z,y,z) are consistent with the

constraint whereas (2, 3,6), (2,¢,4), (2,3,¢) are inconsistent.
We define the forward directed contractor

Cy([#], [9)) =

and the backward directed contractor
C ([, 9. 12D) = [{(&.9) € [#] x

H
We get Algorithms 4 and 5 for C; and a

{2132 c[z],3g e g, 2=2+9}] (58

W32 €[], 2=2+4}]
(59)

%
Algorithm 4 Forward directed contractor C

Input: [z], [y]
1 [Z] = ([z] nR) + ([NR)
2 E=[u@n{d)u gl nd{})
3 return [Z]

Step 1 computes to the interval containing of all feasible
z €R.
Step 2 adds ¢ when ¢ € [Z] or when ¢ € [g].

Algorithm 5 Backward directed contractor &
Input: [7], [y], [Z]
1 if ¢ ¢ [Z] then
2 [z =[]0 (E] - [9])
30 =W -)
4 return [Z], [¢]

The implementation for a is simplified by the fact that it is
called after C..

Remark. The contractor & is often minimal, but not al-
ways. Indeed, there exist some rare counterexamples. Consider
for instance the case

x €[1,2]
y € [3,4 U{t} (60)
z € 16,9 U {:}
If we call C.J:, we get
z € [1,2]
ye[3,4 U} (61)
z €16,6]U{e}

The backward contractor & (see Algorithm 5) yields no
contraction for x and y whereas it should conclude the
following contraction for y :

€ 4,4 U{c}.

An optimal backward contractor could be obtained by the
following algorithm:

Input: [I [9], [Z]
A] =0
2 [l =@ NRifgl = [NRi [= [2] R
3 1f[}7é@,[]7é®,[z]7é®then
& Tl = (2] 0 (2] = [)l) = [0 (2] — [a])
5]=[y]ﬂ{b}[]=[]ﬁ{
6 if [a] £0.[y] #0.[z] # 0 then
7 [7y] = [7y] U{e
8 [yl = [l NR;] = [2] N {e};[2] = [2] N {e};
O if [a] 0, [y] £ 0,] # 0 then
10 [re] = [R] U{}
o] = [2] 0 {e}s [y] = [g] 0 {e}s [2] = [0 {e;
12 if (2] # 0, [y] # 0, [2] # 0 then
13 [Fe] = [Fa] U ks [7y] = [Py] U {e}
14 return [y], [7y]

Now, this algorithm improves the efficiency of a propagation
only for rare situations. This is why we will preferred the use
of the backward contractor of Algorithm 5, even if not fully
minimal.

C. Total forward-backward contractor

We show how the forward-backward contractor works on
two test-cases.
Test-case 1. Consider the set

={(z,y) |y + Ve +ye[l,2]}. (62)

We built the AST (Abstract Syntax Tree) associated with S
as shown in Figure 7(a). We also build the AST for S as in
Figure 7(b). Note that the two trees are identical except the
images that are complementary in R, i.e.,

[172] [ZOO)U{L}) =R

U ((—00, 1] U (63)

Fig. 7. AST for the constraint y + /x +y € [1,2] (left) and its
complementary (right)

A forward-backward contractor yields Algorithm 6. Note
that below the set Z is not the set of integers (as often used
in math books), but an interval of R.

Algorithm 6 Contractor for the constraint y +/x +y € Z

Input: [7].[7].Z
U5 = Cy(4], 1)

2 [a] =/ ()

3 2] =C(al, [§)

4 [Zl=[zInZ

5 Jal, lg) = & (18], al, [3)
6 o] = C ([al)

7 &, [9) = Gy (1], [4], [9)
8 return [z], [¢]

To have a contractor for S we call Algorithm 6 with
7 = [1,2]. To get a contractor for S, we call the algorithm
with Z = (—o00,1] U [2,00) U {¢}. Using a paver with these
two contractors, we are able to generate the approximation
illustrated by Figure 8. The frame box is [—10, 10] x [-10, 10].

An implementation is given in [7].

Test-case 2. Consider the discrete-time state space system,
inspired from Henon map, of the form x(k + 1) = f(x(k))
with

bx 1
Blx) = (1+ a2+ /a3 +c) ©4)
where ¢ = —1.4, b = 0.3 and ¢ = 0.075. The behavior of this
system may not lead to a well defined state x(k) if the initial
state vector x(0) is not chosen properly. We want to compute

Fig. 8. Paving obtained using the contractor for S and its complementary

the set S of all initial vectors x(0) which lead to a state vector

of R? when k = 5. We define

fOx) = b'e

fAHl(x) = frFof(x).

We have

S = {x € R?|f?(x) € R?}.

(65)

(66)

The forward backward contractor (see Algorithm 7) associ-
ated to the constraint f(x) € Y is based on the AST of Figure

9.
eyY
Y2
Y1
+
(%]
X +
(%)
X 1
U1
sqr a

sqr (.

Fig. 9. AST for the constraint f(x) € Y

Algorithm 7 Contractor for a constraint f(x) € Y for Test-
case 2

Input: [24], [Z2],Y
1 [a] =—1.4; [b] =0.3; [¢] = —0.075
2 [in] = Cugr ([84)
3 [ta] = Cx([d], [01])
4[] = L+ [io
5 [0u] = Capr ()
6 [5) = Cy ([0a), [0
7 fio] = C(ls))
8 [= G ([aa),)
9 [go] = Ci([03], [v6])
10 [91] x [g2] = [([91] x [2]) N Y]
1 [os), [06] = Co-([g2], [03], [06]) (see Step 9)
12 1), [B] = Cx ([n), [1], [B]) (see Step 8)
13 [i5] = C_([is), [66]) (sce Step 7)
14 [04], [¢] = C4([05], [0a], [¢]) (see Step 6)
15 [ds) = Cogr([Bu], [i2]) (see Step 5)
16 [02] = ([03] — 1) N [v2] (see Step 4)
17 [a], [i1] = Cx ([62), [, [in]) (sce Step 3)
18 [21] = Csqr([#1], [01]) (see Step 2)
19 return [24], [Z2]

To have a contractor for S we call Algorithm 7 with
Y = R2 To get a contractor for S, we call the algorithm
with Y = (R x {t}) U ({¢} x R) U ({¢} x {¢}) which is
the complementary of R? in (R U {¢})? Using a paver with
these two complementary contractors, we are able to generate
the approximation illustrated by Figure 10. The frame box is
[—5,5] x [-5,5].

q
T I|
|]]

]

05 |0

Fig. 10. Paving representing the solution set for Test-case 2

VI. CONCLUSION

In this paper, we have proposed to extend the interval
arithmetic developed by Moore [12] in order to facilitate the

implementation of complementary of contractors. For this pur-
pose, we proposed to add a flag ¢ to each interval to form rotal
intervals. The associated arithmetic has been derived. In our
our new interval arithmetic, we have \/[—1,1] = [0,1] U {¢}
instead of /[—1,1] = [0, 1]. This is due to the fact that /-,
which is a partial function, has been made total. The ¢« number
is not seen anymore as an exception, but as a possible value.

The flag ¢ has similarities with some decorations already
used in the context of interval computation [14], [5]. The main
advantage of our extension is to allow the interval propagation
when some partial functions are involved in the definition
of the constraints. We have presented a generalization of the
forward-backward propagation to total intervals. The efficiency
has been illustrated on two test-cases.

REFERENCES

[1] E. Benhamou, F. Goualard, L. Granvilliers, and J. F.
Puget. Revising hull and box consistency. In Proceedings
of the International Conference on Logic Programming,
pages 230-244, Las Cruces, NM, 1999.

[2] T.S. Blyth. Lattices and Ordered Algebraic Structures.
Springer, ISBN 1-85233-905-5, 2005.

[3] G. Chabert. IBEX 2.0, available at ,
http://www.emn.fr/z-info/ibex/. Ecole
des mines de Nantes, 2013.

[4] G. Chabert and L. Jaulin. Contractor Programming.
Artificial Intelligence, 173:1079-1100, 2009.

[5] IEEE Microprocessor Standards Commitee. IEEE 1788-
2015 Standard for Interval Arithmetic. https://standards.
ieee.org/ieee/1788/4431/, 2015.

[6] B. A. Davey and H. A. Priestley. [Introduction to
Lattices and Order. Cambridge University Press, (ISBN
0521784514), 2002.

[7] P. Filiol, T. Bollengier, L. Jaulin, and J.C. Le Lann.
Codes associated with the paper entitled: A new interval
arithmetic to generate the complementary of contractors.
www.ensta-bretagne.fr/jaulin/iota.html,
2022.

[8] E. R. Hansen. Global Optimization using Interval Anal-
ysis. Marcel Dekker, New York, NY, 1992.

[9] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied
Interval Analysis, with Examples in Parameter and State
Estimation, Robust Control and Robotics. Springer-
Verlag, London, 2001.

[10] E.H. Moore. Introduction to a form of general analysis,
volume 2. Yale University Press, 1910.

[11] R. Moore. Methods and Applications of Interval Analy-
sis. Society for Industrial and Applied Mathematics, jan
1979.

[12] R.E. Moore, R.B. Kearfott, and M.J. Cloud. Introduction
to Interval Analysis. SIAM, Philadelphia, PA, 2009.

[13] A. Neumaier. Interval Methods for Systems of Equations.
Cambridge University Press, Cambridge, UK, 1990.

[14] N. Revol. Introduction to the IEEE 1788-2015 Standard
for Interval Arithmetic. 10th International Workshop on
Numerical Software Verification - NSV 2017.

[15] S. Rohou. Codac (Catalog Of Domains And Contrac-

tors), available at http://codac.io/. Robex, Lab-
STICC, ENSTA-Bretagne, 2021.

[16] S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, and
S. Veres. Reliable Robot Localization. Wiley, dec 2019.

