
HAL Id: hal-03859346
https://hal.science/hal-03859346v1

Submitted on 18 Nov 2022 (v1), last revised 12 Jul 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new interval arithmetic to generate the
complementary of contractors

Pierre Filiol, Théotime Bollengier, Luc Jaulin, Jean-Christophe Le Lann

To cite this version:
Pierre Filiol, Théotime Bollengier, Luc Jaulin, Jean-Christophe Le Lann. A new interval arithmetic
to generate the complementary of contractors. Summer Workshop on Interval Methods, Jul 2022,
Hannover, Germany. �hal-03859346v1�

https://hal.science/hal-03859346v1
https://hal.archives-ouvertes.fr

1

A new interval arithmetic to generate the
complementary of contractors

Pierre Filiol, Théotime Bollengier, Luc Jaulin,
Jean-Christophe Le Lann

Keywords: Intervals, Contractors, complement, Not a Num-
ber

Abstract: Contractor algebra is used to characterize a set
defined as a composition of sets defined by inequalities.
It mainly uses interval methods combined with constraint
propagation. This algebra includes the classical operations
we have for sets such as the intersection, the union and the
inversion. Now, it does not include to complement operator.
The reason for this is probably related to the interval arithmetic
itself. In this paper, we show that it we change the arithmetic
used for intervals adding a single flag, similar to not a number,
we are able to include easily the complement in the algebra
of contractors.

I. INTRODUCTION

Contractor algebra as defined in [3] does not allow any non-
monotonic operation. It means that if a contractor C is defined
by an expression E of other contractors Ci then we always
have

∀i, Ci ⊂ C
′

i ⇒ E (C1, C2, . . .) ⊂ E
(
C
′

1, C
′

2, . . .
)
. (1)

As a consequence the complementary C of a contractor C or
the restriction C1 \ C2 of two contractors C1, C2 (which both
correspond to non-monotonic operations) is not defined.

To me more precise, contractor algebra allows to construct a
contractor for expressions of sets defined by union, intersection
and inversion of other sets. Take for instance the set

X = X1 ∪ f−1(X2 ∩ X3). (2)

We can represent its expression by the tree of Figure 1(a) or
equivalently by the following expressions

X = X1 ∪ B
B = f−1(A)
A = X2 ∩ X3

(3)

The intermediate sets A and B correspond to nodes of the
tree. In practice, the leaves Xi of the tree are set inverse (or
equivalently inequality constraints) of the form

Xi = ϕ−1
i ([yi]) = {xi |ϕi(xi) ∈ [yi]} (4)

where ϕi is a function defined by an algorithm and [yi] is a
box of Rn. A contractor for Xi is usually built by a forward-
backward procedure as for instance HC4-revised [1]. The
contractor associated with the constraint ϕ(x) ∈ [y] is denoted
by Clϕ−1([y]).

Fig. 1. (a) Contractor tree for X1 ∪ f−1(X2 ∩ X3); (b) its complementary

Once the contractor for X is built from the tree, a paver
[5] is called to provide an outer approximation for X. More
precisely, the paver generates boxes [x] of Rn that have
to be contracted by the available contractors. The resulting
procedure for contracting the set X defined by 2 is given by
the following algorithm.

Algorithm 1 Contractor for X = X1 ∪ f−1(X2 ∩ X3)

Input: [x]
1 [x1] = CX1

([x])
2 [b] = [x]
3 [a] = f([b])
4 [x2] = CX2

([a])
5 [x3] = CX3

([a])
6 [a] = [x2] ∩ [x3]

7 [b] = Clf−1([a])([b])

8 [x] = [x1] t [b]
9 return [x]

This procedure is approximately what is performed by IBEX
[2] even if IBEX does not admit a set expression as an input.

To express the complement X we need to use the De
Morgan’s laws which states that:
• the complement of the union of two sets is the same as

the intersection of their complements

2

• the complement of the intersection of two sets is the same
as the union of their complements

We get

X = X1 ∩
(
f−1(X2 ∪ X3) ∪ dom(f)

)
. (5)

Note that we had to introduce the domain of f , denoted by
dom(f), to take into account the fact that f may be a partial
(i.e., not defined everywhere).

If we define the set-valued function f̊−1 : P(Rm) 7→ P(Rn)
as

f̊−1(Y) = f−1(Y) ∪ dom(f), (6)

then we have

X = X1 ∩
(̊
f−1(X2 ∪ X3)

)
. (7)

The decomposition for X is defined by

X = X1 ∩ B
B = f̊−1(A)
A = X2 ∪ X3

(8)

which corresponds to the tree of Figure 1(b). Since the sets
Xi where defined by ϕi(xi) ∈ [yi], the complement is defined
by

Xi = ϕ̊−1
i ([yi]). (9)

To implement, the complementary of a contractor using
the De Morgan low, the only brick we need is the forward-
backward contractor for the set

f̊−1([y]) = f−1([y]) ∪ dom(f) (10)

Now, the set f̊−1([y]) is not a set inverse as defined by (4) and
thus we cannot apply a forward-backward contractor without
an extension which will be proposed in this paper.

L’algorithme avec l’arbre n’a jamais été implementé. Ca
pourrait être une contribution intéressante.

The paper is organized as follows. Section II presents an
extension of the arithmetic on real numbers, named total real
arithmetic, and shows the role of a flag named ι in the case
where partial functions are involved. Section III introduces of
the total interval arithmetic. Section III provides the notion of
total contractors and extends the classical forward-backward
contractor to total intervals. Section V concludes the paper.

II. TOTAL EXTENSION

A. Definitions
In mathematics, a function f : X 7→ Y which is defined

for all x ∈ X is said to be total. Equivalently, a function
f : X 7→ Y is total if

∀x ∈ X,∃y ∈ Y such that f(x) = y. (11)

A partial function f is not defined for all x. Given a partial
function f , the total extension is obtained by adding an
element to Y , say ι which collects all x /∈ dom(f). To be
more precise, we give the following definition.

Definition 1. The total extension of the partial function f :
X 7→ Y is f̊ = X ∪ {ι} 7→ Y ∪ {ι} with

f̊ =

{
f(x) if x ∈ dom(f)
ι otherwize (12)

B. Illustration

Consider the partial function f as given in Figure 2. We
have

f−1(Y) = {β, γ, ε}
f−1(Y) = {α}
domf = {α, β, γ, ε}

(13)

Now, since f({γ, δ}) ⊂ Y, some would classify δ inside
f−1(Y) which is wrong. This is be true if f is total.

Fig. 2. A partial function f

Introducing the indeterminate NaN (Not a number), denoted
by ι, in the sets allows us to get rid of the problem involved
by the partiality of f .

We define the extended total function of the partial function
f as

f̊(x) =

{
f(x) if x ∈ domf
ι otherwise (14)

Given a set A, we define the extended total set as Å =
A ∪ {ι}. Thus, f̊ : Å 7→ B̊ is the extended total function of
f : A 7→ B as illustrated by Figure 3. Extended functions can
be extended to set as follows:

f̊(X) =

{
f(X) if X ⊂ dom(f)

f(X) ∪ {ι} otherwise (15)

where X ⊂ Å. Note that, in the figure, whereas f({γ, δ}) =
{3} ⊂ Y, we have f̊({γ, δ}) = {3, ι} 6⊂ Y.

Fig. 3. Introduction of Not a Number ι

3

C. Properties

For total functions, we have some properties that will be
useful in our algorithms

Proposition 2. If f̊ is total we have

f̊−1(Y) = f̊−1(Y) (i)

f̊(X) ⊂ Y⇒ X ⊂ f̊−1(Y) (ii)

f̊ ◦ f̊−1(Y) = Y (iii)

(16)

Proof: Let us prove (ii) only. We have:

f̊(X) ⊂ Y ⇔ f̊(X) ∩ Y = ∅
⇔ f̊−1 ◦ f̊(X)︸ ︷︷ ︸

⊃X

∩ f̊−1(Y)︸ ︷︷ ︸
=f̊−1(Y)

= ∅

⇒ X ∩ f̊−1(Y) = ∅
⇔ X ⊂ f̊−1(Y)

(17)

Proposition 3. If f̊ and g̊ are total extension of f and g then
the total extension of f ◦ g is f̊ ◦ g̊.

Proof: If h = f ◦ g, we have

f̊ ◦ g̊ =

 f ◦ g(x) if x ∈ dom(g) and g(x) ∈ dom(f)
f(ι) if x /∈ dom(g)
ι if g(x) /∈ dom(h)

(18)
i.e.

f̊ ◦ g̊ =

{
h(x) if x ∈ dom(h)
ι if x /∈ dom(h)

(19)

which corresponds to h̊.

D. Total real arithmetic

We define the total extension of the classical arithmetic on
real numbers. Consider the extended total set of reals:

R̊ = R ∪ ι. (20)

Adding such a decoration for real numbers is now classical
since it has been introduced by the IEEE 754 floating-point
standard in 1985. Operations on real number can be extended
to R̊ as follows:

f(x) = ι if x /∈ dom(f)
f(ι) = ι
ι � x = ι

(21)

where f is any partial function and x ∈ R and any binary
operator �.

Proposition 4. If f : Rn 7→ Rm is a partial function given
by an expression f(x1, . . . , xn) including elementary functions
(sin, √, log,. . .) and elementary operators (+,−, /, . . .) then
an expression for f̊ can be obtained by the total real arith-
metic.

Proof: The proof is a direct consequence of the fact that
the total extension is preserved by composition.

An element of the Cartesian product R̊n = R̊× · · · × R̊ is
called a total vector.

III. TOTAL INTERVALS

In this section, we introduce the notion of intervals for R̊,
called total intervals.

A. Intervals in unions of lattices

On a lattice (A,≤A) ,we can define the notion of intervals,
interval hull, contractors. This has been used for several type
of lattices such as real numbers, integers, trajectories, graphs,
etc. To be able to use interval methods, the lattice structure
is required. We show here that it is not strictly necessary by
considering union of lattices.

Definition 5. Consider two lattices (A,≤A) and (B,≤B) that
are disjoint. We can define intervals of C = A ∪ B as subsets
C which have the form

[c] = [a] ∪ [b], (22)

where [a] ∈ IA and [b] ∈ IB.
Indeed, the set (C,≤C) can be equipped with an order

relation:

x ≤C y ⇔
{

x ∈ A, y ∈ A, x ≤A y
or x ∈ B, y ∈ B, x ≤B y

(23)

Now, C is not a lattice: if x ∈ A, y ∈ B we cannot define
x∧y and x∨y. This is due to the fact that we cannot provide
a common lower or upper bounds for x, y.

Example 6. Consider the case where A = R the set of real
numbers and B = {a, b, c, . . . , z} the set of letters. Both can
be equipped with an order relation and are lattices. Examples
of intervals for the set C = A ∪ B are

[c1] = [2, 5]
[c2] = {e, f, g, h}
[c3] = [2, 5] ∪ {e, f, g, h}
[c4] = [4, 9] ∪ {g, h, i}
[c5] = ∅
[c6] = A ∪ B

(24)

It is easy to check that the intervals of C is closed under
intersection. It is thus a Moore family. As a consequence,
contractor methods can be used.

B. Total intervals

Consider the singleton {ι} which is equipped with the trivial
order relation : ι ≤ ι . The set of all intervals of {ι} is {∅, {ι}}.

The set R̊ can be equipped with a partial order relation ≤R̊
derived from R:

ι ≤R̊ ι
a ∈ R, b ∈ R then a ≤R̊ b iff a ≤R b

(25)

Total intervals are denoted by [̊x].
Examples of intervals of R̊ are:

[̊a] = [1,∞]

[̊b] = [−1, 0] ∪ {ι}
[̊c] = {ι}
[d̊] = ∅

(26)

4

.

Fig. 4. Total intervals are intervals of R̊ = R ∪ {ι}

as illustrated by Figure 4.
The set of total intervals is denoted by IR̊. We define the

hull of a subset of X̊ of R̊ as the smallest total interval [̊x]
which encloses X̊. We will write [̊x] = JX̊K. For instance

J{1, 2, 3}K = [1, 3]
J{1, 2, 3, ι}K = [1, 3] ∪ {ι}

J{ι}K = {ι}
(27)

C. Total interval arithmetic

Consider a partial function f : R 7→ R. We define its total
interval extension as follows

[f̊] = J{f̊ (̊x), x̊ ∈ [̊x]}K. (28)

For instance
√

[−1, 4] = [0, 2] ∪ {ι}.
In the same manner, if � ∈ {+,-,·,/},we define

[̊a] � [̊b] = J{̊a � b̊, å ∈ [̊a], b̊ ∈ [̊b]}K (29)

D. Total interval vector

The set of interval vectors R̊n is a lattice . We can thus
define intervals of R̊n. The set of interval vectors has the form
IR̊n = IR̊ × · · · × IR̊. We define the hull of a subset of X̊
of R̊n as the smallest [̊x] which encloses X̊. We will write
[̊x] = JX̊K. For instance,

J([1, 2]× {ι}) ∪ ([3, 4]× [5, 6])K = [1, 4]× ([5, 6] ∪ ι). (30)

IV. TOTAL CONTRACTORS

This section extends the notion of contractor to total in-
tervals. We first consider the case of elementary contractors
built from elementary functions. Then, we consider the case
of contractors defined from elementary operators.

A. Total directed contractor for a binary constraint

Consider a constraint of the form y = f(x), where f : R 7→
R: is a partial function with domain domf . We can extend
the constraint to R̊ by the following decomposition

ẙ = f (̊x)

x̊ ∈ R̊
ẙ ∈ R̊

⇔

 ẙ = f (̊x), x̊ ∈ dom(f), ẙ ∈ R
or x̊ ∈ R \ dom(f) , ẙ = ι
or x̊ = ι, ẙ = ι

(31)
This means that ι = f(x) is considered as true only if

and only if x = ι or is x /∈ dom(f). We define the forward
directional contractor

−→
Cf ([̊x]) = J{ẙ | ∃x̊ ∈ [̊x], ẙ = f (̊x)}K (32)

and the backward directional contractor
←−
Cf ([̊x], [̊y]) = J{x̊ ∈ [̊x] | ∃ẙ ∈ [̊y], ẙ = f (̊x)}K (33)

Proposition 7. The forward directional contractor associated
with f is
−→
Cf ([̊x]) = Jf([̊x]∩R)K ∪ ([̊x]∩{ι}) ∪ ι([̊x]∩ (R \dom(f))),

(34)
where ι is the the constant function ι, i.e,

ι(A) =

{
ι if A 6= ∅
∅ if A = ∅ (35)

Proof: Since

x̊ ∈ domf ⇒ ẙ = f (̊x)
x̊ = ι ⇒ ẙ = ι

x̊ ∈ R \ domf ⇒ ẙ = ι
(36)

we have

f([̊x]) = f([̊x] ∩ domf)︸ ︷︷ ︸
f([̊x]∩R)

∪ ι([̊x] ∩ {ι})︸ ︷︷ ︸
=[̊x]∩{ι}

∪ ι([̊x]∩(R\domf)).

(37)
Thus
−→
Cf ([̊x]) = J{ẙ | ∃x̊ ∈ [̊x], ẙ = f (̊x)}K

= Jf([̊x] ∩ R)K ∪ ([̊x] ∩ {ι}) ∪ ι([̊x] ∩ (R \ domf))
(38)

As a consequence, the following algorithm implements−→
Cf ([̊x]):

Algorithm 2 Forward directional contractor
−→
Cf

Input: f, [̊x]
1 [̊y] = Jf([̊x] ∩ R)K
2 [̊y] = [̊y] ∪ ([̊x] ∩ {ι})
3 if [̊x] 6⊂ domf , [̊y] = [̊y] ∪ {ι}
5 return [̊y]

Proposition 8. The backward directional contractor associ-
ated with f is

←−
Cf ([̊x], [̊y]) = [̊x] ∩

(
Jf−1([̊y] ∩ R)K ∪ I([̊y])

)
(39)

where

I([̊y]) =

{
{ι} ∪ (R \ domf) if ι ∈ [̊y]

∅ otherwize (40)

Proof: We have

ẙ ∈ R ⇔ x̊ ∈ f−1({ẙ})
ẙ = ι ⇔ (̊x = ι) ∨ (̊x ∈ R \ domf)

⇔ x̊ ∈ {ι} ∪ (R \ domf)
(41)

As a consequence, the following algorithm implements←−
Cf ([̊x], [̊y]):

Algorithm 3 Backward directional contractor
←−
Cf

Input: f−1, [̊x], [̊y]
1 [̊r] = ∅
2 if [̊y] = ∅, return [̊r]
3 [̊r] = Jf−1([̊y] ∩ R)K
3 if ι ∈ [̊y], [̊r] = [̊r] ∪ (R \ domf) ∪ {ι}
5 return [̊r] ∩ [̊x]

5

Example 9. Total contractor for the square root. Consider the
constraint

y =
√
x (42)

where all variables belong to R̊. The values
(9, 3), (−4, ι), (ι, ι) for (x, y) are consistent with the
constraint (42) whereas (9, 2), (−4, 2), (9, ι), (ι, 2) are
inconsistent.

For instance, assume that we have x ∈ [̊x] = [−2, 9], y ∈
[̊y] = [−1, 2] ∪ {i}. We obtain

−→
C√·([̊x]) =

√
[−2, 9] = [0, 3] ∪ {i}

−→
C√·([̊x]) ∩ [̊y] = ([0, 3] ∪ {i}) ∩ ([−1, 2] ∪ {i}) = [0, 2] ∪ {i}
←−
C√·([̊x], [̊y]) = [−2, 4]

(43)
It means that x ∈ [−2, 4] and y ∈ [0, 2] ∪ {i}.

Assume now that x ∈ [̊x] = [4, 9], y ∈ [̊y] = [3, 15] ∪ {i}.
We obtain
−→
C√·([̊x]) =

√
[4, 9] = [2, 3]

−→
C√·([̊x]) ∩ [̊y] = [2, 3] ∩ ([3, 15] ∪ {i}) = {3}
←−
C√·([̊x], [̊y]) = {9}

(44)

It means that x = 9 and y = 3.

B. Total directed contractor for a ternary constraint

Consider the ternary constraint of z = x + y. The case
of constraints involving −, ·, / can be defined from + and
binary constraints already treated in the previous section. The
following reasoning can also be done for these operators.

We can extend the constraint z = x+y to R̊ by the following
decomposition

z̊ = x̊+ ẙ

x̊ ∈ R̊
ẙ ∈ R̊
z̊ ∈ R̊

⇔
{

z̊ = x̊+ ẙ, x̊ ∈ R, ẙ ∈ R, z̊ ∈ R
or (̊x = ι ∨ ẙ = ι) ∧ z̊ = ι

(45)
Note that in R̊, we do not have

z̊ = x̊+ ẙ ⇔ x̊ = z̊ − ẙ. (46)

Indeed, take x̊ = 1, ẙ = ι, z̊ = ι. We have z̊ = x̊ +
ẙ whereas x̊ 6= z̊ − ẙ. As a consequence, the values
(2, 3, 5), (2, ι, ι), (ι, ι, ι) for (x, y, z) are consistent with the
constraint whereas (2, 3, 6), ((2, ι, 4), (2, 3, ι) are inconsistent.

We define the forward directed contractor

−→
C+([̊x], [̊y]) = J{z̊ | ∃x̊ ∈ [̊x],∃ẙ ∈ [̊y], z̊ = x̊+ ẙ}K (47)

and the backward directed contractor

←−
C+([̊x], [̊y], [̊z]) = J{(̊x, ẙ) ∈ [̊x]× [̊y] | ∃z̊ ∈ [̊z], z̊ = x̊+ ẙ}K

(48)
If we apply the same reasoning as for the binary constraint

and we get the following algorithms for
−→
C⊕ and

←−
C⊕

Algorithm 4 Forward directed contractor
−→
C+

Input: [̊x], [̊y]

1
−→
Cf ([̊x]) = ([̊x] ∩ R) + ([̊y] ∩ R)

2 [̊z] = [̊z] ∪ ([̊x] ∩ {ι}) ∪ ([̊y] ∩ {ι})
3 return [̊z]

Step 1 computes to the interval containing of all feasible
z ∈ R.

Step 2 adds ι when ι ∈ [̊x] of when ι ∈ [̊y].

Algorithm 5 the Backward directed contractor
←−
C+

Input: [̊x], [̊y], [̊z]
1 if [̊z] ∩ {ι} = ∅ then
2 [̊x] = [̊x] ∩ ([̊z]− [̊y])
3 [̊y] = [̊y] ∩ ([̊z]− [̊x])
4 return [̊x], [̊y]

C. Total forward-backward contractor

We show how the forward-backward contractor works on
two small examples. Il faut donc en rajouter un.

Example 1. Consider the set

S = {(x, y) | y +
√
x+ y ∈ [1, 2]}. (49)

We built the AST (Abstract Syntax Tree) associated with S
as shown in Figure 5(a). We also build the AST for S as in
Figure 5(b). Note that the two trees are identical except the
images that are complementary in R̊, i.e.,

[1, 2] ∪ ([−∞, 1] ∪ [2,∞] ∪ {ι}) = R̊. (50)

.

Fig. 5. AST for the constraint y +
√
x+ y ∈ [1, 2] (left) and its

complementary (right)

A forward-backward contractor yields the following algo-
rithms

6

Algorithm 6 Contractor for the constraint y +
√
x+ y ∈ Z

Input: [̊x], [̊y],Z
1 [̊b] =

−→
C+([̊x], [̊y])

2 [̊a] =
−→
C√ ([̊b])

3 [̊z] =
−→
C+([̊a], [̊y])

4 [̊z] = [̊z] ∩ Z
5 [̊a], [̊y] =

←−
C+([̊z], [̊a], [̊y])

6 [̊b] =
−→
C√ ([̊b], [̊a])

7 [̊x], [̊y] =
←−
C+([̊b], [̊x], [̊y])

8 return [̊x], [̊y]

To have a contractor for S we call Algorithm IV-C with
Z = [1, 2]. To get a contractor for S, we call the algorithm
with Z = [−∞, 1] ∪ [2, ,∞] ∪ {ι}. Using a paver with these
two contractors, we are able to generate the approximation
illustrated by Figure 6. The frame box is [−10, 10]×[−10, 10].

.

Fig. 6. Paving obtained using the contractor for S and its complementary

An implementation is given at:
https://replit.com/@aulin/iota

Example 2. Consider the discrete-time state space system
of the form x(k + 1) = f(x(k)) where

f(x) =

(√
x2 + log x+ 1

log(x−
√
x+ 2)

)
. (51)

We want to compute the set of all initial vector such that
x(0) leads to an undefined state when k = 5. We define

f0(x) = x
fk+1(x) = fk ◦ f(x)

(52)

And we compute

X0 = (f5)−1({ι}). (53)

.

V. CONCLUSION

In this paper, we have proposed to extend the interval
arithmetic developed by Moore [6] in order to facilitate the
implementation of complementary of contractors. For this
purpose, we proposed to add a flag ι to each interval to form
total intervals. The associated arithmetic has been derived.
The flag ι has similarities with some decorations already
used in the context of interval computation [4]. The main
advantage of our extension is to allow the interval propagation
when some partial functions are involved in the definition of
constraints. We have presented a generalization of the forward-
backward propagation to total intervals. The efficiency has
been illustrated on two examples.

REFERENCES

[1] F. Benhamou, F. Goualard, L. Granvilliers, and J. F. Puget.
Revising hull and box consistency. In Proceedings of the
International Conference on Logic Programming, pages
230–244, Las Cruces, NM, 1999.

[2] G. Chabert. IBEX 2.0, available at ,
http://www.emn.fr/z-info/ibex/. Ecole
des mines de Nantes, 2013.

[3] G. Chabert and L. Jaulin. Contractor Programming.
Artificial Intelligence, 173:1079–1100, 2009.

[4] D. Defour, G. Hanrot, V. Lefevre, J.M. Muller, N. Revol,
and P. Zimmermann. Proposal for a standardization of
mathematical function implementation in floating-point
arithmetic. Numerical algorithms, 37(4):367–375, 2004.

[5] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied
Interval Analysis, with Examples in Parameter and State
Estimation, Robust Control and Robotics. Springer-Verlag,
London, 2001.

[6] R.E. Moore, R.B. Kearfott, and M.J. Cloud. Introduction
to Interval Analysis. SIAM, Philadelphia, PA, 2009.

https://replit.com/@aulin/iota

	Introduction
	Total extension
	Definitions
	Illustration
	Properties
	Total real arithmetic

	Total intervals
	Intervals in unions of lattices
	Total intervals
	Total interval arithmetic
	Total interval vector

	Total contractors
	Total directed contractor for a binary constraint
	Total directed contractor for a ternary constraint
	Total forward-backward contractor

	Conclusion

