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RESOLVENT AND SPECTRAL ASYMPTOTICS FOR THIN-LAYER
TRANSMISSION PROBLEMS IN THE LARGE COUPLING LIMIT

VICTOR PERON', GILLES CARBOU!

ABSTRACT. This work is concerned with a singular perturbation problem that involves a thin
layer in the large coupling limit. Such a problem appears in the study of electromagnetic wave
guides that contain supra-conductor bodies. We derive resolvent asymptotics for this problem by
using boundary layer tools with uniform a priori estimates. This result will be useful to derive
spectral asymptotics for this problem. This issue is a work in progress.

1. INTRODUCTION

This work is motivated by the study of the asymptotic behavior of eigenvalues related to a sin-
gular perturbation problem that involves a thin layer in the large coupling limit. Such a problem
appears in the study of electromagnetic wave guides with supra-conductors. We refer the reader
to several works that concern mathematical studies with electromagnetic wave guides, see for
instance [1, 7, 2, 3].

An asymptotic expansion of the eigenvalues as the conductivity tends to infinity has been
derived in [3]. However this result does not apply when the subdomain that represents a supra-
conductor is a vanishing sheet. In this work we tackle this problem by considering vanishing
supra-conductive layer of thickness £ where the conductivity is scaled like e ~2. This is why there
is a main difference between this work and the work in Ref. [3] all the more since we consider a
transmission problem across a thin layer.

Let us describe now the mathematical model. Throughout the paper we denote by 2 C R? a
simply connected domain. Let €2; be a simply connected subdomain of {2 and let w. be a thin
layer of constant thickness ¢ surrounding €2; such that ) contains 2; U @, see Figure 1. For the
sake of simplicity we further assume that the boundaries 02 and I' = 0f); are connected. Now
the exterior domain is defined as U = Q\ (€; U w;) and the boundary of the subdomain Q; U w.
is denoted by I'.. We denote by n the outward unit normal at I".

In all that follows, unless specified, all the considered domains are smooth domains in R3.

Notation 1.1. For any set O C R? we denote by 1L2(0O) and H*(O) the classical Sobolev spaces.

Let e > 0. We consider the self-adjoint operator H¢ on L?(£2) with domain H2(2) N H}(€2)
and defined by

1
HE = —A + ?1|w5 .
The limit operator is " = —A defined on H?(€;) N H{(Q;) x H2(Qe) N H(Qe) where Q.
denotes the limit domain ¢/, when ¢ — 0, i.e. 2, = 2 \ﬁz (see Figure 2).
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Ue

Figure 1 — A cross-section of the domain €2 and the subdomains €2;, w., U-

In this work we derive an asymptotic expansion of the resolvent of H* when ¢ tends to 0.
We denote by R (&) = (H® — £Z)7! the resolvent of H, defined on L2(Q2) with values in
H2(Q) N H(Q) for £ & spec HE.

Let f € L2(9). The spectral problem writes
1
(1.1 —Au—gu—i—e—zl‘wsu:f in Q.

This problem is well-posed and has a unique solution u. in H2(Q2) N H{(2) when £ is not an
eigenvalue of the operator H°.

Figure 2 — A cross-section of the domain €2 and the subdomains €2;, €2,

Notation 1.2. We denote by f; (resp. f.) the restriction of any function f to §; (resp. Q).
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2. ASYMPTOTIC EXPANSION FOR THE RESOLVENT
Let e > 0. We consider the self-adjoint operator H° on L?(2) with domain H2(Q) N H}(9)
and defined by
1
Ha == —A + 721|UJ5 .
€

For ¢ ¢ spec H¢, we denote by R°(€) = (HE —£Id) ™! the resolvent operator. For f € L2(Q),
we denote by u° the restriction of R¢(£)(f) to §2;, v° the restriction of R?(£)(f) to we, and w®
the restriction of R°(&)(f) to U., By the resolvent equation, we have:

2.1 — Au® —&uf = fio, in €
(2.2) — Av® — & 4 éva = flo. in we
2.3) — Aw® — §w® = fiy- in U,
2.4) u® = ° on T
(2.5) v = w on I
(2.6) Optt® = Oyv° on T
2.7 Opt® = 0w’ on I'.
2.8) w® =0 on 0.

2.1. Ansatz. Outside the thin layer, we look for an expansion on the form:

(2.9) uf(z) = Y U (x) in Q)
>0

(2.10) wi(z) &~ Y Wi(x) in U,
>0

where the terms U7 and W/ are defined in e-independent domains €); and €2, := \ ;. We
emphasize that the terms W/ are defined in the thin layer w..

In the thin layer, we denote by d : w. — R the euclidean distance to ', d(z) = dist(z, T")
and by P(z) the orthogonal projection of  on I'. We describe the solution v* on the following
way:

(2.11) V() ~ ) €l (Wj(x) + V7 <d(x),P(x)>> in we,
i>0 ©
where the profiles V7 are defined on [0, 1] x T':
Vi [o,1
(

In w,, we will work with the variables (z, o).

|xI' - C
z,0) = Vi(z,0).
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2.2. Geometrical and analytical tools for the thin layer. We use the following notations (see
also [6]) : * = (1, z2, x3) denotes the cartesian coordinates in R3, and we set

0 0 0?

zZ = A_ 72z —
ox;’ 0z’ 0z2

By simple calculations there holds (see also [5])

9; =

2 (x ~ V(P(x)’ @)) - 672822V<P(x)72) + 571G52(P(CE
AP, V(P(z),z) with z= 42

D
<
—~
9
&
N
~—

where G is defined as
1 0y,

o).
vs(o) Os (0)
Here (o) = det (Id 4 sdn(o)) and for o € T, the differential dn(o) is a linear map from the
tangent plane T',I" of I" at the point o into Tn(c,)S2 where S? is the unit sphere.

Gs(o) =

Proposition 2.1.

| W

< 7s(o) <

DN | =

In addition, since for © € w,, we have: z = P(x) + 8@

the Taylor expansion of the functions ¢ : w. — C writing:
dp dp
p(2) = p(P(2)) +d(z) 5~ (P(2)) +...,= plo) +ez5 (o) + ...
Then we insert the Ansatz (2.9)-(2.10)-(2.11) in equations (2.1)-(2.8) and we perform the
identification of terms with the same power in €.

v(P(z)) = o +ezv (o), we perform

2.3. Characterisation of the profiles at order <°. Taking the order €” in (2.1), we obtain that:

(2.12) —AUY—¢U’=f in Q.
Taking the order £%1n (2.3), we have:

(2.13) AW —eW'=f in Q..
From (2.2) at order £2, we obtain that:

(2.14) — 0V + Vo4 Wo%0)=0 in [0,1]xT.
By solving this ODE, we obtain that:

(2.15) VO(z,0) = =W (o) + ap(o) sinh z + By(o) cosh 2.

From (2.6) at order !, we have
0=0,V°0,0),

so we obtain that 5y(c) = 0 forall o € T
From (2.7) at order e !, we obtain that

0=208,V°(1,0),

so, with (2.15), we obtain that
Bo(o) = 0.



ASYMPTOTIC STUDY FOR THIN-LAYER PROBLEMS IN THE LARGE COUPLING LIMIT 5
Thus, we have:
(2.16) V9(z,0) = -W%o0).

Since W satisfies (2.13), then W9 and 6%0 have no jump at I'.. In particular, writing (2.5), we
obtain that

vo(1,0) = 0.
Coupling this relation with (2.16), we obtain that
(.17 VO(z,0)=0forz € [0,1]and o € T.
Therefore, with (2.16),
(2.18) W% o) =0forallo € T.

Writing (2.5) at order £, we have
U%c) =V°0,0) foro €T.
So, with (2.17),
(2.19) U%oc)=0forallo €.

Equation (2.8) at order £° yields W = 0 on 99).
Therefore, coupling (2.12) and (2.19), UV is characterized by:
—AU? - ¢U°% = fin Q;,
(2.20)
U° = 0in 99;.

In addition, coupling (2.13) and (2.18), WY is characterized by:
—AW? — W0 = fin Q,,
(2.21)
WY = 0in 09,.

2.4. Characterisation of the profiles at order '. Taking the order ¢! in (2.1), we obtain that:

(2.22) —AU'—¢U'=0 in Q.
Taking the order €' in (2.3), we have:

(2.23) AW =Wl =0 in Q..
From (2.2) at order ¢!, we obtain that:

(2.24) —8ZZV1+V1+W1(U)+Zag:O(U) =0 in [0,1]xT.
By solving this ODE, we obtain that:

(2.25) Viz,0) = Wl (o) — 28W0 (o) + a1(o)sinhz + 31 (o) cosh z.

v
From (2.6) at order €”, we have
ouU°
ov

0
() = %V (0,0)(0) + %5 ~(0),
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so we obtain that

ou’

(2.26) ai(o) = 8—(0) forallo € I.
v
From (2.7) at order €, we obtain that
ow?o
0=0,V(1,0) = — 5 (0) + ai(o)coshl+ Bi(o)sinh1,

so, with (2.25) and (2.26), we obtain that

0 0
Bi(o) = — (agz (a)—(cosm)aaUy(a)).

sinh 1

Thus, we have:

.27 Vi(z,0) = W' (o) +

0 0
oW (o) <—z COShZ) + aaU(a) (sinhz — coth1coshz).
v

ov sinh 1
Using (2.5) at order !, we obtain that V(1,0) = 0, so:
owe 1 ou°
2.2 Yo) = (-1 hi ——
(2.28) Wi(o) = (=1 + cothl) ov (o) sinh1 Ov (o)

Therefore, we obtain that
(2.29)

Viz,0) =

OWO() | +coshz—cosh1 +8U0
ov 7 z sinh 1 ov

1
(o) <sinh z — coth 1 coshz + b 1) .
Using (2.5) at order !, we obtain that for o € I':
1 owo cosh 1 9U°
sinh1l Ov (o) - sinh1l dv
Therefore, coupling (2.22) and (2.30), U is characterized by:

—AU' — €U = 01in €,

(2.30) Ul(o) = VH0,0) + Wi(o) =

(0)-

2.31
231) 1 owo ouo

:m o (U)—Cothlﬁ(a) m 89,

In addition, coupling (2.23), (2.28), and (2.8) at order el, W is characterized by:

—AW! — W' = finQ,,

U'(o)

oW 1 aUu°

(2.32) Wi(o) = (=1 +coth 1) —5—(0) = ==

(o)inT,

WL =0 ondN.

We denote by H the space of the functions f € L?(£2) such that the restrictions of f respec-
tively in €2; and €2, are respectively in H!(£);) and H!((2,), endowed with the Hilbert norm:

1
Il = (Wil ey + e e
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2.5. Equation for the remainder. We write:

uf (x) = U%(z) + eU(x) + ea®(z) for x € Q,

vi(z) = WO(z) + eWl(z) + eVL(P(z), 42) + eb¥(z) for z € w,

w(z) = WO () + eWl(z) + ec®(x) for z € U..

The remainder term satisfies:

(2.33) —Aa®*—&af =0 in €
1
(2.34) — AK€ + b =& in w
(2.35) — A —&=0 in U
(2.36) a® = b° on
(2.37) b* =c° on I,
(2.38) Ona® = Onb° + ¢g° on
(2.39) Onb® = 0, on I
(2.40) =0 on  9Q,
where d° is defined on w, by d° = dj + d5 + d5 + dj with:
1 oW
f(a) = 5 (W)~ a0 % Pl )
1
B(r) =~ (W'(@) - W (P()).
1 d(x d(x
5() = LGaindV (D P + v (M b))
d(z
(@) = ar, V(O i),
and where ¢° is defined on I by:
._owt Ut
97 Tou ov

2.6. Estimates of the right-hand-side terms. Since ¢ is in the circle of center A° and of radius
7o, there exists a constant C' such that for all f € H,

(2.41) 10 3 ) + W0l 200y < ClIf [l
and

(2.42) UM 200y + W 20 < Cllflla
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From (2.42), by trace theory, we obtain that:

lolleaey < 1% 18 oy + 155 8 oy
< K (IVW o) + VU lai(0,) »
S0,
(2.43) l9°[lL2ry < K|l flla-
In order to estimate df and d5, we prove the following proposition:
Proposition 2.2. We denote by N the dimension of the space. We define 2* by % = % + 2—1* (for

N =2, 2% = +00). Then for all p € [2,2*[([2,2*] for N # 2), there exists a constant K, such
that for all € > 0, we have:

Vo HQ). |3 00 —oPE)| < Pl
L2(we) g2
and
voe 0, |5 (o0 - uP) - 2P0 o S el
2(/.] 52

Proof. We assume that v is smooth. For x € w,, we have x = P(x) + d(z)v(P(x)), so, using
the variables s = d(x) and o = P(z) and Taylor’s formula:

||v(.)—v(P(-))||i2(w€)= / O/EF% o)|v(o + sv(a)) — v(o)|*dods,

= /:0 /UEF%(U)
/s o/aer% (/ Voo +1v(o ))QdT) sds do,

|Vo|?dz  (using Proposition 2.1).

2

(0))-v(o)dr| dsdo,

IN

IN

We

By Sobolev embedding, for all p € [2,2*[ ([2,2*] for N # 2),
IVolle @y < Cpllvll g2y
So, by Holder inequality,

1
IV0l|Lp (o) (meas(we ) 27,

D=

IN

[Vollr2(w.)

11
< (Ke)? »Cpllvll g2y

Therefore,

f ch

+

= (W) =v(P()))

[l 2 @)

L2(w€) €2
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In addition, by Taylor expansion at order 2, for o € I" and s € [0, €], we have:

v(o + sv(o)) —v(o) — g:j(a)d(x)

Y

/0 (5 — ) D2(0 + 78) (o), (o)) dr

< s/ |D*v(0 + 75)| dr.
0
Therefore,
v(z) —v(P(x)) — @(P@))d / / v(o + sv(o)) —v(o) — @(O')S 2dsd0
v L2(we) /78 ov ’
€ s 2
< //’Ys(ff) s | |D*(o +7s)|dr| dsdo,
0 JI 0
3 s
< / /%(‘7)53/ |D?v(o + 75)|*drdsdo,
0 JI 0
<

54/ |D2v(x)‘2 dzx.

By Sobolev embedding, for all p € [2,2*[ (2, 2*] for N # 2),

ID*0llto@y < Colloll s

SO
1_1 1_1
D%y < 1Dy (meas(ee)) ¥ 5 < el (K2)3 7,
thus,
1 ov \/§KC
5 (v ) - G E@N@)| < el

We take K, = v/3KC), and we conclude the proof of Proposition 2.2 by a density argument.
O

Corollary 2.3. Forall p € [2,2*] (2, 400] in the case N = 2), there exists K, such that for all
e >0, forall f €H,

2. < 2+1 1/ [l
3

and

K,
ld3 112 o) < o Ml
gz'r
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From (2.29), we have:

Wl = [ fte

~Gy(0)0, V’(f a)4f§vﬂ(f o) dsda

8W0 2 oUv 9
< -
< / / < |+ | By (0)] >dad5,
K 02 02
< 2 (W) + 107 rgey)
Therefore
(2.44) Id5llLz0) < — IIfIIH-
£2

2.7. Variational estimates for the remainder term. Multiplying (2.33) by the conjugate of a°
and integrating on {2;, multiplying (2.34) by the conjugate of b and integrating on w,., multi-
plying (2.35) by the conjugate of c* and integrating on ., after integrations by part and after
summation, we obtain:

I £ £ 1 £
Va2, + IV 120y + IV (1200 + gHb P2 =

[T+ [ e (1o agoy + 18 1oy + 10 -
So,
1
IV Iy + V5 B2y + 196 ey + 5162y <
s €1 (10122 ) + 11220y + N2 )

F0* 2o 7 + d2 + d3l[12w.) + 19" 2@y 0%z
+ / dsbe| .

Lemma 2.4. There exists a constant C' > 0 independent of € such that for any ¢ € C(\°, ), for
any u € HY(;) such that —Au — &u € L2(€2,), we have :

We claim the following lemma proved in Section 3.1.

(2.46) lullizn < C (JJullizmy + [[(—Au — &u)|12q,))
and for any v € H' (U) such that v = 0 on OS2 and such that —Av — &v € L2(U,),, we have :
(2.47) [ollL2ee) < C (lollize,y + I(=Av = £0)[l2@r)) -

We claim the following Lemma, proved in [4] (see Inequality (2.1) in Proposition 2.1., page
822).
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Lemma 2.5. There exists constants C, g > 0 such that for all € € (0, g), for all q € H (w;),

1
0120y < € (2l + Tl Va2

Since a® (resp. ¢®) satisfies (2.33) in €2; (resp. (2.35) in U.), we obtain with Lemma 2.4 and
the transmission condition (2.36) (resp. (2.37)) that there exists C independent of ¢ > 0 and
¢ € C(A\Y,n) such that:

HaEHiz(gi) + ”CgHiz(us) < CHbE|’%2(aws)-

Using now Lemma 2.5, we obtain that:

(2.48) laIF2 () + 1€ 12 ey IIballe(wg) + Cl L2 @) IVl )

Using Corollary 2.3, Estimate (2.44), we obtain that there exists a constant C' such that for all
e >0, forall ¢ € C(\° n) and forall f € H,

(2.49) ldi + d + d3 |2 |l fll=

UJE—

€2+

In addition, coupling Lemma 2.5 and Estimate (2.43), we obtain that:
(2.50)

1
1 1 1
19 Iz 16 |2y < C\@||f||Hg||b€HL2(wE) +Cez|| fllm <6|b€||L2(w5)> ||VbE||Lz (w0)"

Let us estimate the last right-hand-side term in (2.45). We denote by B® = b° o U, where:

U [0,m0] xI' = wy,
(s,0) +— o+ sv(o).

£ _
[aF= [ [ w@@anviCoFadsd,
We s=0 Joel £

—/ / vs() Ve V(2 0) V. B (s, 0)ds,
s=0 Joel’ €
So,

/ dsbe

/ / vs(o ‘VFS ,0’)‘ ‘VFSBE(S, o) ‘ ds do
s=0Joel’

Vb 2@ Ve VH(E o)l )

IA

U owo
HVbEan(wE)(n ey + 12 ||H1p>)f

thus, using (2.41), we obtain:
/ T
We

IN

(2.51) < CVe|VE |2l fllm-
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Therefore, from (2.45), (2.48), (2.49), (2.50), and (2.51), we obtain that there exists a constant C
independent of € > 0, £ € C(\°, 1) and f € H such that

1
||VQE||iQ(Qi) + ”Vb5||i2(w5) + HVCSH?P(L{E) + 672||b€||i2(w5) <

C
T 71tz | flla

*IIbEHLz ) + Ol L2 @ VO ez ) o
2

1 1 1 1
+CVElflr b llea (. + Ce2llfllm (21bellraqe.)) V0122, ) + Ce2 IV Izl f Il
1 1
572
So, after absorption, we obtain that there exists C' such that:

1617 2. + f||beHL2 |+ C7 |3 (by Young inequality).

1 -
(2.52) IVa®[IE2 () + IV IE2y + IV F2) + ;2”[?6’\52(% < Vi3
Reusing (2.48), we obtain also that:

_2
(2.53) o120 + 12 ey < C°77 1 Il

3. TECHNICAL LEMMA : UNIFORM A PRIORI ESTIMATES

1. Geometrical tools in the thin layer. In this part, we refer to [4]. For o € T, we denote by
v(o) the outward unitary normal. We remark that v : I' — SV~ is smooth since I" is regular.
We define W by:

U J0,mo[xI — wy,
(s,0) — o+ sv(o).
Since I'" is a smooth compact surface without boundary, we can fix g > 0 such that ¥ is a
C°°-diffeomorphism and so that for all € €]0, ng|,

U(]0,e[xT") = we.
We define 7 : [0, 9] x I' — R by:
vs(0) = det(Id + s dv(o)),

/ 7) dz = / | x . (o) dor ds.

Since vp(0) = 1 for all 0 € I, even if it means reducmg Mo, we assume that

and we have:

3.1) Vsel0,mn],Voerl, 3 <fys( ) < ;

We denote Vr, divr and Ar the gradient, divergence and Laplacian operators on the sub-
manifold T
Forv:T' — Cand s € [0, 79[, we define V_v by:

Vr.v(o) = (ld + sdv(o)) " 'Vrv(o),
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so that: for v : wy, — C, denoting V' = v o ¥, we have:

Vo(e) = 2 (d(@), P)v(P(@) + (Vr,, V) (d(), Pa)).

We define the operator divr, as the adjoint of Vr, for the LQ(I‘)-inner product: forY : I' —
Tt atangent vector field defined on I', we set:

(divp,Y) (o) = divr (75(Id + s dv)~'Y) (o),

1
Vs(o)
so that if z : wy,, — R is a vector field, denoting Z = z0 ¥, Zn(s,0) = (Z(s,0) - v(o)) and
Zr(s,0) = Z(s,0) — Zn(s,0)v(o), we have:

diva(e) = 22 (A(2), P(2)) + Gage) (P(2) Zn(d(a), P(2) + (dive, , Zr) (d(a), P(a),

where

We define the operator Ar, by:
Aps = din5 o VFS;
so that for v : wy,, — C, denoting V' = v o ¥, we have:

2
Ao(e) = L (A(w), P) + Cagry (Pa) 9 (@), P(2) + (Ar,, V)(A(), Pla))

3.2. Geometrical tools for /.. Let x : R — R be a smooth non-decreasing function such that:

Vo < 07 X(Z‘) = _17

Va>mno, x(x) =0.

For ¢ > 0 such that ¢ < 2, we define ¢, by:

{gbs: U — Q.
x — x+ex(d(z)—e)v(P(x))

We remark that if € U, with d(z) > € + 1o, then ¢.(x) = x. In addition, ¢, is a C>°-
diffeomorphism from I, onto €).. We denote by ¢, ;. the k-th coordinate of ¢-.
For w : U. — C, we define w : 2, — C by:

W = WO ¢g.

We have, forall j € {1,... N},

81:] 8xk 8:5]

SO
82w B N 82 a¢s : 8(255’[ N Ow 82¢E i

83@
k=1 I=1
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Therefore,

9w N ow
Auw(x) = 3 af (02 (@) o (9e(@) + D B0 (a)) 5 (0x()
k,l k=1

where aj, ; : Q. — Rand b}, : . — R are defined by:

Vo €U,  ap(de(7)) = V() - Vo () and b (¢e(x)) = Age k().
For x € Q such that d(x) > € + 79, ¢<(x) = x so that af;(x) = dj,; and b} (x) = 0.
For x € Q. such that d(x) < & + 1o, we have: z = ¢_(x) € wy, and:

Bk @) = d+ (X (A0~ PR + (o) ~ Vi (P) - T ).

Thus, af ;(x) = dx; + ax,;" (x), where ay;° (x) is of order ¢ and tends uniformly to zero when
e tends to zero. In the same way, b (x) is of order € and tends uniformly to zero when ¢ tends to
zero. We denote, for w € H?(€2,):

Kow = Z il@xkﬁx Z k

(k1), k#l
so that
Aw(zr) = (Aw + K*w) (¢:(x)),
and there exists a constant C' such that for all & > 0, for all w € H2(Q.), we have:
(3:2) 1K w2 () < Cellwllne @

For ¢ > 0, we denote by £¢ the operator —A defined on H?(14.) N H}(U:). This operator
is positive and self-adjoint for the L?(U4.)-scalar product. Its resolvent is compact, so that its
spectrum only contains a sequence of real eigenvalues tending to +oo.

Let us prove the following lemma:

Lemma 3.1. Let \g € Spec(H°) and n > 0 such that Spec(H°) N B(\o,n) = {\o}. Then there
exists €9 > 0 such that for all € €]0, o],

Spec(L) NC(Ao,n) = 0.

Proof. If itis not the case, there exists a sequence of positive numbers (&, ), tending to zero when
n tends to +o0o, there exists a sequence (&), of points of C(\g, ), and there exists a sequence
(tn)n such that for all n, u, € H2(U.,) N H(U.,) is an eigenvector of L£° associated to the
eigenvalue &,,.

We denote u,, = uy, o (¢, )", so that we have:

(3.3) u, € H2(Q.) NHY () and — Au,, — K0y, = Enun,.

Since u,, # 0, we can assume that [|uy,||g2(,) = 1. Thus we can extract subsequences still
denoted (g5,), (&) and (u,) such that &, tends to £, € C(Ao, ) and u,, tends to uy, weakly in
H2 () and strongly in H!(£2,) by compactness of the embedding H?(£2,) C H! ().

By taking the weak limit in (3.3) and using (3.2), we obtain that

(3.4) Uso € H?(Q2) NH((2e) and — Auge = Eoolico-
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In addition, writing that —Au,, = £,u,, + K"u,, using again (3.2), we obtain that —Au,, tends
strongly in L2(Q¢) to —Aue, so that u,, tends strongly to us, in H2(€.). So, Jusollm2(0.) = 1,
thus us # 0 and by (3.4), we obtain that £, € Spec(L?) N C(\g, n), which is false.

U

With the previous lemma, for € > 0 small enough, for all £ € C(\g,n), L5 — &L is inversible.
We give a uniform estimate of the resolvent operator in the following lemma:

Lemma 3.2. There exists €9 > 0 and C such that for all £ € C(\o,n), for all £ €]0, ¢, for
all f € L2(U.), there exists a unique u € H?(U.) N H(U:) such that —Au — Eu = f in U..
Moreover,

lulliz ey < Cllifllez -
Proof. If it is not the case, there exists a sequence (&,,) tending to 0, a sequence (&), of points
of C(Mo,n), a sequence (f,) with f,, € L2(Us, ) and u,, € H(U., ) NHY (U, ) such that —Aw,, —
&y, = fr inU,,, and:

n n

lunllmz@e, )y > 7l fallizr,)-
We denote u,, = uy, o (¢, ) "' and f, = f, o (¢,) . We have:
—Auy, — Kup — Epuy = £, in Qg
and:
Junllaz@.) > CnlifallLz.)-
Since u,, # 0, we can divide by its H?((2.)-norm. We denote

ﬁn:uin and ?n:fin
Jun g2 (0.) [unllz (0.
We have, for all n: 3
[tnl[m2(0,) =1 > nllfallL2.)
and
(3.5) — Alip, — K0y, — &0, = f, in Q.

By extracting a sub sequence, we can assume that &, tends to o € C(Ao, 1), and uy, tends to a
limit G, weakly in H?(€2.) and strongly in H'(Q.). In addition, we remark that f,, tends to zero
strongly in L2(€2, ). Taking the weak limit in (3.5), we obtain that:

(3.6) oo € H2(Q) NHY(Q) and  — Aligo — oolice = 0in Q.
In addition, using (3.2) and (3.5), we obtain that Ad,, converges strongly in LQ(QG). Since its
limit is the weak limit Ali, then i, converges strongly in H?(€2,) t0 lise. S0 [[lisc||pr2(0,) = 1.

and U # 0. Therefore, with (3.6), £ is in Spec(ﬁo), which leads to a contradiction.
O

Proof of Lemma 2.4

Inequality (2.46) is proved by duality arguments in [3] (see Lemma 2.1, on page 95). We use
the same method and uniform estimates proved in Lemma 3.2 to establish (2.47). Let ¢ given
by Lemma 3.2. Lete € (0,g0) and £ € C()\g,n). We fix v € HY(U) such that —Av — &w
belongs to L2(U). Let f € L?(U:). By Lemma 3.2, there exists w € H?(U:) N H (Uz) such that
—Aw — &w = f in U.. Moreover,

lwllrzee) < Cllflleee),
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where C does not depend on €, f or £&. We have:

/Evf:/gv(—Aw—gw):/L{E(—Av—fv)w—l—/svgl;}.

Therefore:
ow
vf| < || —Av - ‘SUHLQ(UE)”WHLQ(UE) + ||UHL2(FE)”$HL2(F€)
< O (Il = Av = &vllizqr) + Ivlleze.)) 1z

This is true for all f € L2(U.) so:
vlli2eey < C (I = Av = &vll2qyy + lollizr,)) -
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