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RESOLVENT AND SPECTRAL ASYMPTOTICS FOR THIN-LAYER
TRANSMISSION PROBLEMS IN THE LARGE COUPLING LIMIT

VICTOR PÉRON1, GILLES CARBOU1

ABSTRACT. This work is concerned with a singular perturbation problem that involves a thin
layer in the large coupling limit. Such a problem appears in the study of electromagnetic wave
guides that contain supra-conductor bodies. We derive resolvent asymptotics for this problem by
using boundary layer tools with uniform a priori estimates. This result will be useful to derive
spectral asymptotics for this problem. This issue is a work in progress.

1. INTRODUCTION

This work is motivated by the study of the asymptotic behavior of eigenvalues related to a sin-
gular perturbation problem that involves a thin layer in the large coupling limit. Such a problem
appears in the study of electromagnetic wave guides with supra-conductors. We refer the reader
to several works that concern mathematical studies with electromagnetic wave guides, see for
instance [1, 7, 2, 3].

An asymptotic expansion of the eigenvalues as the conductivity tends to infinity has been
derived in [3]. However this result does not apply when the subdomain that represents a supra-
conductor is a vanishing sheet. In this work we tackle this problem by considering vanishing
supra-conductive layer of thickness ε where the conductivity is scaled like ε−2. This is why there
is a main difference between this work and the work in Ref. [3] all the more since we consider a
transmission problem across a thin layer.

Let us describe now the mathematical model. Throughout the paper we denote by Ω ⊂ R3 a
simply connected domain. Let Ωi be a simply connected subdomain of Ω and let ωε be a thin
layer of constant thickness ε surrounding Ωi such that Ω contains Ωi ∪ ωε, see Figure 1. For the
sake of simplicity we further assume that the boundaries ∂Ω and Γ = ∂Ωi are connected. Now
the exterior domain is defined as Uε = Ω\ (Ωi ∪ ωε) and the boundary of the subdomain Ωi∪ωε
is denoted by Γε. We denote by n the outward unit normal at Γ.

In all that follows, unless specified, all the considered domains are smooth domains in R3.

Notation 1.1. For any setO ⊂ R3 we denote by L2(O) and Hs(O) the classical Sobolev spaces.

Let ε > 0. We consider the self-adjoint operator Hε on L2(Ω) with domain H2(Ω) ∩ H1
0(Ω)

and defined by

Hε = −∆ +
1

ε2
1|ωε .

The limit operator is H0 = −∆ defined on H2(Ωi) ∩ H1
0(Ωi) × H2(Ωe) ∩ H1

0(Ωe) where Ωe

denotes the limit domain Uε when ε→ 0, i.e. Ωe = Ω \ Ωi (see Figure 2).
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2 VICTOR PÉRON1, GILLES CARBOU1

Uε

Ωi

ωε

ε

Γε

n

Γ

Figure 1 – A cross-section of the domain Ω and the subdomains Ωi, ωε, Uε

In this work we derive an asymptotic expansion of the resolvent of Hε when ε tends to 0.
We denote by Rε(ξ) := (Hε − ξI)−1 the resolvent of Hε, defined on L2(Ω) with values in
H2(Ω) ∩H1

0(Ω) for ξ 6∈ spec Hε.

Let f ∈ L2(Ω). The spectral problem writes

(1.1) −∆u− ξu+
1

ε2
1|ωεu = f in Ω .

This problem is well-posed and has a unique solution uε in H2(Ω) ∩ H1
0(Ω) when ξ is not an

eigenvalue of the operatorHε.

Ωe

Ωi

Γ

n

Figure 2 – A cross-section of the domain Ω and the subdomains Ωi, Ωe

Notation 1.2. We denote by fi (resp. fe) the restriction of any function f to Ωi (resp. Ωe).
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2. ASYMPTOTIC EXPANSION FOR THE RESOLVENT

Let ε > 0. We consider the self-adjoint operator Hε on L2(Ω) with domain H2(Ω) ∩ H1
0(Ω)

and defined by

Hε = −∆ +
1

ε2
1|ωε .

For ξ /∈ spec Hε, we denote byRε(ξ) = (Hε−ξId)−1 the resolvent operator. For f ∈ L2(Ω),
we denote by uε the restriction of Rε(ξ)(f) to Ωi, vε the restriction of Rε(ξ)(f) to ωε, and wε

the restriction ofRε(ξ)(f) to Uε, By the resolvent equation, we have:

−∆uε − ξuε = f|Ωi in Ωi(2.1)

−∆vε − ξvε +
1

ε2
vε = f|ωε in ωε(2.2)

−∆wε − ξwε = f|Uε in Uε(2.3)

uε = vε on Γ(2.4)

vε = wε on Γε(2.5)

∂nu
ε = ∂nv

ε on Γ(2.6)

∂nv
ε = ∂nw

ε on Γε(2.7)

wε = 0 on ∂Ω.(2.8)

2.1. Ansatz. Outside the thin layer, we look for an expansion on the form:

uε(x) ≈
∑
j>0

εjU j(x) in Ωi ,(2.9)

wε(x) ≈
∑
j>0

εjW j(x) in Uε ,(2.10)

where the terms U j and W j are defined in ε-independent domains Ωi and Ωe := Ω \ Ωi. We
emphasize that the terms W j are defined in the thin layer ωε.

In the thin layer, we denote by d : ωε → R+ the euclidean distance to Γ, d(x) = dist(x,Γ)
and by P(x) the orthogonal projection of x on Γ. We describe the solution vε on the following
way:

(2.11) vε(x) ≈
∑
j>0

εj
(
W j(x) + V j

(
d(x)

ε
,P(x)

))
in ωε ,

where the profiles V j are defined on [0, 1]× Γ:

V j : [0, 1]× Γ → C
(z, σ) 7→ V j(z, σ).

In ωε, we will work with the variables (z, σ).
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2.2. Geometrical and analytical tools for the thin layer. We use the following notations (see
also [6]) : x = (x1, x2, x3) denotes the cartesian coordinates in R3, and we set

∂i =
∂

∂xi
, ∂z =

∂

∂z
, ∂zz =

∂2

∂z2

By simple calculations there holds (see also [5])

∆
(
x 7→ V (P(x), d(x)

ε )
)

= ε−2∂zzV (P(x), z) + ε−1Gεz(P(x))∂zV (P(x), z)

+∆ΓεzV (P(x), z) with z = d(x)
ε ,

where G is defined as

Gs(σ) =
1

γs(σ)

∂γs
∂s

(σ) .

Here γs(σ) = det (Id + sdn(σ)) and for σ ∈ Γ, the differential dn(σ) is a linear map from the
tangent plane TσΓ of Γ at the point σ into Tn(σ)S

2 where S2 is the unit sphere.

Proposition 2.1.
1

2
≤ γs(σ) ≤ 3

2

In addition, since for x ∈ ωε, we have: x = P(x) + εd(x)
ε ν(P(x)) = σ+ εzν(σ), we perform

the Taylor expansion of the functions ϕ : ωε −→ C writing:

ϕ(x) = ϕ(P(x)) + d(x)
∂ϕ

∂ν
(P(x)) + . . . ,= ϕ(σ) + εz

∂ϕ

∂ν
(σ) + . . .

Then we insert the Ansatz (2.9)-(2.10)-(2.11) in equations (2.1)-(2.8) and we perform the
identification of terms with the same power in ε.

2.3. Characterisation of the profiles at order ε0. Taking the order ε0 in (2.1), we obtain that:

(2.12) −∆U0 − ξU0 = f in Ωi .

Taking the order ε0 in (2.3), we have:

(2.13) −∆W 0 − ξW 0 = f in Ωe .

From (2.2) at order ε−2, we obtain that:

(2.14) − ∂zzV 0 + V 0 +W 0(σ) = 0 in [0, 1]× Γ .

By solving this ODE, we obtain that:

(2.15) V 0(z, σ) = −W 0(σ) + α0(σ) sinh z + β0(σ) cosh z.

From (2.6) at order ε−1, we have

0 = ∂zV
0(0, σ),

so we obtain that β0(σ) = 0 for all σ ∈ Γ.
From (2.7) at order ε−1, we obtain that

0 = ∂zV
0(1, σ),

so, with (2.15), we obtain that
β0(σ) = 0.
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Thus, we have:

(2.16) V 0(z, σ) = −W 0(σ).

Since W 0 satisfies (2.13), then W 0 and ∂W 0

∂ν have no jump at Γε. In particular, writing (2.5), we
obtain that

V 0(1, σ) = 0.

Coupling this relation with (2.16), we obtain that

(2.17) V 0(z, σ) = 0 for z ∈ [0, 1] and σ ∈ Γ.

Therefore, with (2.16),

(2.18) W 0(σ) = 0 for all σ ∈ Γ.

Writing (2.5) at order ε0, we have

U0(σ) = V 0(0, σ) for σ ∈ Γ.

So, with (2.17),

(2.19) U0(σ) = 0 for all σ ∈ Γ.

Equation (2.8) at order ε0 yields W 0 = 0 on ∂Ω.
Therefore, coupling (2.12) and (2.19), U0 is characterized by:

(2.20)

 −∆U0 − ξU0 = f in Ωi,

U0 = 0 in ∂Ωi.

In addition, coupling (2.13) and (2.18), W 0 is characterized by:

(2.21)

 −∆W 0 − ξW 0 = f in Ωe,

W 0 = 0 in ∂Ωe.

2.4. Characterisation of the profiles at order ε1. Taking the order ε1 in (2.1), we obtain that:

(2.22) −∆U1 − ξU1 = 0 in Ωi .

Taking the order ε1 in (2.3), we have:

(2.23) −∆W 1 − ξW 1 = 0 in Ωe .

From (2.2) at order ε−1, we obtain that:

(2.24) − ∂zzV 1 + V 1 +W 1(σ) + z
∂W 0

∂ν
(σ) = 0 in [0, 1]× Γ .

By solving this ODE, we obtain that:

(2.25) V 1(z, σ) = −W 1(σ)− z
∂W 0

∂ν
(σ) + α1(σ) sinh z + β1(σ) cosh z.

From (2.6) at order ε0, we have

∂U0

∂ν
(σ) = ∂zV

1(0, σ)(σ) +
∂W 0

∂ν
(σ),
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so we obtain that

(2.26) α1(σ) =
∂U0

∂ν
(σ) for all σ ∈ Γ.

From (2.7) at order ε0, we obtain that

0 = ∂zV
1(1, σ) = −∂W

0

∂ν
(σ) + α1(σ) cosh 1 + β1(σ) sinh 1,

so, with (2.25) and (2.26), we obtain that

β1(σ) =
1

sinh 1

(
∂W 0

∂ν
(σ)− (cosh 1)

∂U0

∂ν
(σ)

)
.

Thus, we have:

(2.27) V 1(z, σ) = −W 1(σ) +
∂W 0

∂ν
(σ)

(
−z +

cosh z

sinh 1

)
+
∂U0

∂ν
(σ) (sinh z− coth 1 cosh z) .

Using (2.5) at order ε1, we obtain that V 1(1, σ) = 0, so:

(2.28) W 1(σ) = (−1 + coth 1)
∂W 0

∂ν
(σ)− 1

sinh 1

∂U0

∂ν
(σ)

Therefore, we obtain that
(2.29)

V 1(z, σ) =
∂W 0

∂ν
(σ)

(
1− z +

cosh z− cosh 1

sinh 1

)
+
∂U0

∂ν
(σ)

(
sinh z− coth 1 cosh z +

1

sinh 1

)
.

Using (2.5) at order ε1, we obtain that for σ ∈ Γ:

(2.30) U1(σ) = V 1(0, σ) +W 1(σ) =
1

sinh 1

∂W 0

∂ν
(σ)− cosh 1

sinh 1

∂U0

∂ν
(σ).

Therefore, coupling (2.22) and (2.30), U1 is characterized by:

(2.31)


−∆U1 − ξU1 = 0 in Ωi,

U1(σ) =
1

sinh 1

∂W 0

∂ν
(σ)− coth 1

∂U0

∂ν
(σ) in ∂Ωi.

In addition, coupling (2.23), (2.28), and (2.8) at order ε1, W 1 is characterized by:

(2.32)



−∆W 1 − ξW 1 = f in Ωe,

W 1(σ) = (−1 + coth 1)
∂W 0

∂ν
(σ)− 1

sinh 1

∂U0

∂ν
(σ) in Γ,

W 1 = 0 on ∂Ω.

We denote by H the space of the functions f ∈ L2(Ω) such that the restrictions of f respec-
tively in Ωi and Ωe are respectively in H1(Ωi) and H1(Ωe), endowed with the Hilbert norm:

‖f‖H =
(
‖f|Ωi‖

2
H1(Ωi)

+ ‖f|Ωe‖
2
H1(Ωe)

) 1
2
.
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2.5. Equation for the remainder. We write:
uε(x) = U0(x) + εU1(x) + εaε(x) for x ∈ Ωi,

vε(x) = W 0(x) + εW 1(x) + εV 1(P(x), d(x)
ε ) + εbε(x) for x ∈ ωε,

wε(x) = W 0(x) + εW 1(x) + εcε(x) for x ∈ Uε.

The remainder term satisfies:

−∆aε − ξaε = 0 in Ωi(2.33)

−∆bε − ξbε +
1

ε2
bε = dε in ωε(2.34)

−∆cε − ξcε = 0 in Uε(2.35)

aε = bε on Γ(2.36)

bε = cε on Γε(2.37)

∂na
ε = ∂nb

ε + gε on Γ(2.38)

∂nb
ε = ∂nc

ε on Γε(2.39)

cε = 0 on ∂Ω,(2.40)

where dε is defined on ωε by dε = dε1 + dε2 + dε3 + dε4 with:

dε1(x) = − 1

ε3

(
W 0(x)− d(x)

∂W 0

∂ν
(P(x))

)
,

dε2(x) = − 1

ε2

(
W 1(x)−W 1(P(x))

)
,

dε3(x) =
1

ε
Gd(x)∂zV

1(
d(x)

ε
,P(x)) + ξV 1(

d(x)

ε
,P(x)),

dε4(x) = ∆Γd(x)
V 1(

d(x)

ε
,P(x)),

and where gε is defined on Γ by:

gε =
∂W 1

∂ν
− ∂U1

∂ν
.

2.6. Estimates of the right-hand-side terms. Since ξ is in the circle of center λ0 and of radius
η0, there exists a constant C such that for all f ∈ H,

(2.41) ‖U0‖H3(Ωi) + ‖W 0‖H3(Ωe) ≤ C‖f‖H,

and

(2.42) ‖U1‖H2(Ωi) + ‖W 1‖H2(Ωe) ≤ C‖f‖H.
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From (2.42), by trace theory, we obtain that:

‖gε‖L2(Γ) ≤ ‖∂W 1

∂ν ‖H 1
2 (Γ)

+ ‖∂U1

∂ν ‖H 1
2 (Γ)

,

≤ K
(
‖∇W 1‖H1(Ωe) + ‖∇U1‖H1(Ωi)

)
,

so,

(2.43) ‖gε‖L2(Γ) ≤ K‖f‖H.

In order to estimate dε1 and dε2, we prove the following proposition:

Proposition 2.2. We denote by N the dimension of the space. We define 2? by
1

2
=

1

N
+

1

2?
(for

N = 2, 2? = +∞). Then for all p ∈ [2, 2?[ ([2, 2?] for N 6= 2), there exists a constant Kp such
that for all ε > 0, we have:

∀v ∈ H2(Ωe),

∥∥∥∥ 1

ε2
(v(·)− v(P(·)))

∥∥∥∥
L2(ωε)

≤ Kp

ε
1
2

+ 1
p

‖v‖H2(Ωe)

and

∀v ∈ H3(Ωe),

∥∥∥∥ 1

ε3

(
v(·)− v(P(·))− ∂v

∂ν
(P(·))

)∥∥∥∥
L2(ωε)

≤ Kp

ε
1
2

+ 1
p

‖v‖H3(Ωe)

Proof. We assume that v is smooth. For x ∈ ωε, we have x = P(x) + d(x)ν(P(x)), so, using
the variables s = d(x) and σ = P(x) and Taylor’s formula:

‖v(·)− v(P(·))‖2L2(ωε)
=

∫ ε

s=0

∫
σ∈Γ

γs(σ)|v(σ + sν(σ))− v(σ)|2dσds,

=

∫ ε

s=0

∫
σ∈Γ

γs(σ)

∣∣∣∣∫ s

τ=0
∇v(σ + τν(σ)) · ν(σ)dτ

∣∣∣∣2 ds dσ,
≤

∫ ε

s=0

∫
σ∈Γ

γs(σ)

(∫ s

0
|∇v(σ + τν(σ))|2dτ

)
s ds dσ,

≤ ε23

∫
ωε

|∇v|2dx (using Proposition 2.1).

By Sobolev embedding, for all p ∈ [2, 2?[ ([2, 2?] for N 6= 2),

‖∇v‖Lp(U) ≤ Cp‖v‖H2(U).

So, by Hölder inequality,

‖∇v‖L2(ωε) ≤ ‖∇v‖Lp(ωε)(meas(ωε))
1
2
− 1
p ,

≤ (Kε)
1
2
− 1
pCp‖v‖H2(U).

Therefore, ∥∥∥∥ 1

ε2
(v(·)− v(P(·)))

∥∥∥∥
L2(ωε)

≤
√

3KCp

ε
1
2

+ 1
p

‖v‖H2(U).
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In addition, by Taylor expansion at order 2, for σ ∈ Γ and s ∈ [0, ε], we have:∣∣∣∣v(σ + sν(σ))− v(σ)− ∂v

∂ν
(σ)d(x)

∣∣∣∣ =

∣∣∣∣∫ s

0
(s− τ)D2v(σ + τs)(ν(σ), ν(σ))dτ

∣∣∣∣ ,
≤ s

∫ s

0

∣∣D2v(σ + τs)
∣∣ dτ.

Therefore,∥∥∥∥v(x)− v(P(x))− ∂v

∂ν
(P(x))d(x)

∥∥∥∥2

L2(ωε)

=

∫ ε

0

∫
Γ
γs(σ)

∣∣∣∣v(σ + sν(σ))− v(σ)− ∂v

∂ν
(σ)s

∣∣∣∣2 ds dσ,
≤

∫ ε

0

∫
Γ
γs(σ)

∣∣∣∣s ∫ s

0
|D2v(σ + τs)|dτ

∣∣∣∣2 dsdσ,
≤

∫ ε

0

∫
Γ
γs(σ)s3

∫ s

0
|D2v(σ + τs)|2dτdsdσ,

≤ 3ε4

∫
ωε

∣∣D2v(x)
∣∣2 dx.

By Sobolev embedding, for all p ∈ [2, 2?[ ([2, 2?] for N 6= 2),

‖D2v‖Lp(U) ≤ Cp‖v‖H3(U),

so

‖D2v‖L2(ωε) ≤ ‖D
2v‖Lp(U)(meas(ωε))

1
2
− 1
p ≤ Cp‖v‖H3(U)(Kε)

1
2
− 1
p ,

thus, ∥∥∥∥ 1

ε3

(
v(x)− v(P(x))− ∂v

∂ν
(P(x))d(x)

)∥∥∥∥
L2(ωε)

≤
√

3KCp

ε
1
2

+ 1
p

‖v‖H3(U).

We take Kp =
√

3KCp, and we conclude the proof of Proposition 2.2 by a density argument.
�

Corollary 2.3. For all p ∈ [2, 2?] ([2,+∞[ in the case N = 2), there exists Kp such that for all
ε > 0, for all f ∈ H,

‖dε1‖L2(ωε) ≤
Kp

ε
1
2

+ 1
p

‖f‖H,

and

‖dε2‖L2(ωε) ≤
Kp

ε
1
2

+ 1
p

‖f‖H.
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From (2.29), we have:

‖dε3‖2L2(ωε)
=

∫ ε

0

∫
Γ
γs(σ)

∣∣∣∣1εGs(σ)∂zV
1(
s

ε
, σ) + ξV 1(

s

ε
, σ)

∣∣∣∣2 ds dσ
≤ K

ε2

∫ ε

0

∫
Γ

(
|∂W

0

∂ν
(σ)|2 + |∂U

0

∂ν
(σ)|2

)
dσds,

≤ K

ε

(
‖W 0‖2H3(Ωe)

+ ‖U0‖2H3(Ωi)

)
.

Therefore

(2.44) ‖dε3‖L2(Ωε) ≤
C

ε
1
2

‖f‖H.

2.7. Variational estimates for the remainder term. Multiplying (2.33) by the conjugate of aε

and integrating on Ωi, multiplying (2.34) by the conjugate of bε and integrating on ωε, multi-
plying (2.35) by the conjugate of cε and integrating on Uε, after integrations by part and after
summation, we obtain:

‖∇aε‖2L2(Ωi)
+ ‖∇bε‖2L2(ωε)

+ ‖∇cε‖2L2(Uε) +
1

ε2
‖bε‖2L2(ωε)

=

∫
Γ
gεbε +

∫
ωε

dεbε − ξ
(
‖aε‖2L2(Ωi)

+ ‖bε‖2L2(ωε)
+ ‖cε‖2L2(Uε)

)
.

So,

(2.45)

‖∇aε‖2L2(Ωi)
+ ‖∇bε‖2L2(ωε)

+ ‖∇cε‖2L2(Uε) +
1

ε2
‖bε‖2L2(ωε)

≤

|ξ|
(
‖aε‖2L2(Ωi)

+ ‖bε‖2L2(ωε)
+ ‖cε‖2L2(Uε)

)
+‖bε‖L2(ωε)‖d

ε
1 + dε2 + dε3‖L2(ωε) + ‖gε‖L2(Γ)‖bε‖L2(Γ)

+

∣∣∣∣∫
ωε

dε4b
ε

∣∣∣∣ .
We claim the following lemma proved in Section 3.1.

Lemma 2.4. There exists a constant C > 0 independent of ε such that for any ξ ∈ C(λ0, η), for
any u ∈ H1(Ωi) such that −∆u− ξu ∈ L2(Ωe), we have :

(2.46) ‖u‖L2(Ωi) 6 C
(
‖u‖L2(Γ) + ‖(−∆u− ξu)‖L2(Ωi)

)
,

and for any v ∈ H1(Uε) such that v = 0 on ∂Ω and such that −∆v − ξv ∈ L2(Ue),, we have :

(2.47) ‖v‖L2(Uε) 6 C
(
‖v‖L2(Γε) + ‖(−∆v − ξv)‖L2(Uε)

)
.

We claim the following Lemma, proved in [4] (see Inequality (2.1) in Proposition 2.1., page
822).
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Lemma 2.5. There exists constants C, ε0 > 0 such that for all ε ∈ (0, ε0), for all q ∈ H1(ωε),

‖q‖2L2(∂ωε)
6 C

(
1

ε
‖q‖2L2(ωε)

+ ‖q‖L2(ωε)‖∇q‖L2(ωε)

)
Since aε (resp. cε) satisfies (2.33) in Ωi (resp. (2.35) in Uε), we obtain with Lemma 2.4 and

the transmission condition (2.36) (resp. (2.37)) that there exists C independent of ε > 0 and
ξ ∈ C(λ0, η) such that:

‖aε‖2L2(Ωi)
+ ‖cε‖2L2(Uε) ≤ C‖b

ε‖2L2(∂ωε)
.

Using now Lemma 2.5, we obtain that:

(2.48) ‖aε‖2L2(Ωi)
+ ‖cε‖2L2(Uε) ≤

C

ε
‖bε‖2L2(ωε)

+ C‖bε‖L2(ωε)‖∇b
ε‖L2(ωε).

Using Corollary 2.3, Estimate (2.44), we obtain that there exists a constant C such that for all
ε > 0, for all ξ ∈ C(λ0, η) and for all f ∈ H,

(2.49) ‖dε1 + dε2 + dε3‖L2(ωε) ≤
C

ε
1
2

+ 1
p

‖f‖H.

In addition, coupling Lemma 2.5 and Estimate (2.43), we obtain that:
(2.50)

‖gε‖L2(Γ)‖bε‖L2(Γ) ≤ C
√
ε‖f‖H

1

ε
‖bε‖L2(ωε) + Cε

1
2 ‖f‖H

(
1

ε
‖bε‖L2(ωε)

) 1
2

‖∇bε‖
1
2

L2(ωε)
.

Let us estimate the last right-hand-side term in (2.45). We denote by Bε = bε ◦Ψ, where:

Ψ : [0, η0]× Γ → ωη0
(s, σ) 7→ σ + sν(σ).∫

ωε

dε4b
ε =

∫ ε

s=0

∫
σ∈Γ

γs(σ)(∆ΓsV
1(
s

ε
, σ))Bε(s, σ)ds dσ,

= −
∫ ε

s=0

∫
σ∈Γ

γs(σ)∇ΓsV
1(
s

ε
, σ)∇ΓsB

ε(s, σ)ds,

So, ∣∣∣∣∫
ωε

dε4b
ε

∣∣∣∣ ≤ ∫ ε

s=0

∫
σ∈Γ

γs(σ)
∣∣∣∇ΓsV

1(
s

ε
, σ)
∣∣∣ ∣∣∣∇ΓsB

ε(s, σ)
∣∣∣ ds dσ

≤ ‖∇bε‖L2(ωε)‖∇ΓsV
1( sε , σ)‖L2(ωε),

≤ ‖∇bε‖L2(ωε)

(
‖∂U

0

∂ν
‖H1(Γ) + ‖∂W

0

∂ν
‖H1(Γ)

)√
ε,

thus, using (2.41), we obtain:

(2.51)
∣∣∣∣∫
ωε

dε4b
ε

∣∣∣∣ ≤ C√ε‖∇bε‖L2(ωε)‖f‖H.
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Therefore, from (2.45), (2.48), (2.49), (2.50), and (2.51), we obtain that there exists a constant C
independent of ε > 0, ξ ∈ C(λ0, η) and f ∈ H such that

‖∇aε‖2L2(Ωi)
+ ‖∇bε‖2L2(ωε)

+ ‖∇cε‖2L2(Uε) +
1

ε2
‖bε‖2L2(ωε)

≤

C

ε
‖bε‖2L2(ωε)

+ C‖bε‖L2(ωε)‖∇b
ε‖L2(ωε) +

C

ε
1
2

+ 1
p

‖bε‖L2(ωε)‖f‖H

+C
√
ε‖f‖H 1

ε‖b
ε‖L2(ωε) + Cε

1
2 ‖f‖H

(
1
ε‖bε‖L2(ωε)

) 1
2 ‖∇bε‖

1
2

L2(ωε)
+ Cε

1
2 ‖∇bε‖L2(ωε)‖f‖H

≤ 1

2

1

ε2
‖bε‖2L2(ωε)

+
1

2
‖∇bε‖2L2(ωε)

+ Cε
1− 2

p ‖f‖2H (by Young inequality).

So, after absorption, we obtain that there exists C such that:

(2.52) ‖∇aε‖2L2(Ωi)
+ ‖∇bε‖2L2(ωε)

+ ‖∇cε‖2L2(Uε) +
1

ε2
‖bε‖2L2(ωε)

≤ Cε1− 2
p ‖f‖2H.

Reusing (2.48), we obtain also that:

(2.53) ‖aε‖2L2(Ωi)
+ ‖cε‖2L2(Uε) ≤ Cε

2− 2
p ‖f‖2H.

3. TECHNICAL LEMMA : UNIFORM A PRIORI ESTIMATES

3.1. Geometrical tools in the thin layer. In this part, we refer to [4]. For σ ∈ Γ, we denote by
ν(σ) the outward unitary normal. We remark that ν : Γ −→ SN−1 is smooth since Γ is regular.
We define Ψ by:

Ψ : ]0, η0[×Γ → ωη0
(s, σ) 7→ σ + sν(σ).

Since Γ is a smooth compact surface without boundary, we can fix η0 > 0 such that Ψ is a
C∞-diffeomorphism and so that for all ε ∈]0, η0[,

Ψ(]0, ε[×Γ) = ωε.

We define γ : [0, η0]× Γ→ R by:

γs(σ) = det(Id+ s dν(σ)),

and we have: ∫
ωη0

F (x) dx =

∫ η0

s=0

∫
σ∈Γ

F (Ψ(s, σ))γs(σ)dσ ds.

Since γ0(σ) = 1 for all σ ∈ Γ, even if it means reducing η0, we assume that

(3.1) ∀ s ∈ [0, η0[, ∀σ ∈ Γ,
1

2
≤ γs(σ) ≤ 3

2
.

We denote ∇Γ, divΓ and ∆Γ the gradient, divergence and Laplacian operators on the sub-
manifold Γ.

For v : Γ −→ C and s ∈ [0, η0[, we define ∇Γsv by:

∇Γsv(σ) = (Id+ s dν(σ))−1∇Γv(σ),
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so that: for v : ωη0 → C, denoting V = v ◦Ψ, we have:

∇v(x) =
∂V

∂s
(d(x),P(x))ν(P(x)) +

(
∇Γd(x)

V
)

(d(x),P(x)).

We define the operator divΓs as the adjoint of∇Γs for the L2(Γ)-inner product: for Y : Γ −→
TΓ a tangent vector field defined on Γ, we set:

(divΓsY ) (σ) =
1

γs(σ)
divΓ

(
γs(Id+ s dν)−1Y

)
(σ),

so that if z : ωη0 −→ RN is a vector field, denoting Z = z ◦Ψ, ZN (s, σ) = (Z(s, σ) · ν(σ)) and
ZT (s, σ) = Z(s, σ)− ZN (s, σ)ν(σ), we have:

divz(x) =
∂ZN
∂s

(d(x),P(x)) +Gd(x)(P(x))ZN (d(x),P(x)) +
(

divΓd(x)
ZT

)
(d(x),P(x)),

where

Gs(σ) =
1

γs(σ)

∂γs
∂s

(σ).

We define the operator ∆Γs by:

∆Γs = divΓs ◦ ∇Γs ,

so that for v : ωη0 → C, denoting V = v ◦Ψ, we have:

∆v(x) =
∂2V

∂s2
(d(x),P(x)) +Gd(x)(P(x))

∂V

∂s
(d(x),P(x)) + (∆Γd(x)

V )(d(x),P(x)).

3.2. Geometrical tools for Uε. Let χ : R→ R be a smooth non-decreasing function such that:

∀x ≤ 0, χ(x) = −1,

∀x ≥ η0, χ(x) = 0.

For ε > 0 such that ε ≤ η0
4 , we define φε by:{
φε : Uε → Ωe

x 7→ x+ εχ(d(x)− ε)ν(P(x))

We remark that if x ∈ Uε with d(x) ≥ ε + η0, then φε(x) = x. In addition, φε is a C∞-
diffeomorphism from Uε onto Ωe. We denote by φε,k the k-th coordinate of φε.

For w : Uε → C, we define w : Ωe → C by:

w = w ◦ φε.

We have, for all j ∈ {1, . . . N},

∂w

∂xj
=

N∑
k=1

∂w

∂xk
(φε(x))

∂φε,k
∂xj

(x)

so
∂2w

∂x2
j

=
N∑
k=1

N∑
l=1

∂2w

∂xk∂xl
(φε(x))

∂φε,k
∂xj

(x)
∂φε,l
∂xj

(x) +

N∑
k=1

∂w

∂xk
(φε(x))

∂2φε,k
∂x2

j

(x)
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Therefore,

∆w(x) =
∑
k,l

aεk,l(φε(x))
∂2w

∂xk∂xl
(φε(x)) +

N∑
k=1

bεk(φε(x))
∂w

∂xk
(φε(x)),

where aεk,l : Ωe −→ R and bεk : Ωe −→ R are defined by:

∀x ∈ Uε, aεkl(φε(x)) = ∇φε,k(x) · ∇φε,l(x) and bεk(φε(x)) = ∆φε,k(x).

For x ∈ Ωe such that d(x) ≥ ε+ η0, φε(x) = x so that aεkl(x) = δkl and bεk(x) = 0.
For x ∈ Ωe such that d(x) ≤ ε+ η0, we have: x = φ−1

ε (x) ∈ ωη0 and:

∂φε,k
∂xj

(x) = δjk + ε

(
χ′(d(x)− ε)νj(P(x))νk(P(x)) + χ(d(x)− ε)∇νk(P(x)) · ∂P(x)

∂xj

)
.

Thus, aεk,l(x) = δkj + ãk,l
ε(x), where ãk,l

ε(x) is of order ε and tends uniformly to zero when
ε tends to zero. In the same way, bεk(x) is of order ε and tends uniformly to zero when ε tends to
zero. We denote, for w ∈ H2(Ωe):

Kεw =
∑

(k,l), k 6=l

aεkl
∂2w

∂xk∂xl
+

N∑
k=1

bεk
∂w

∂xk
,

so that
∆w(x) = (∆w +Kεw) (φε(x)),

and there exists a constant C such that for all ε > 0, for all w ∈ H2(Ωe), we have:

(3.2) ‖Kεw‖L2(Ωe) ≤ Cε‖w‖H2(Ωe).

For ε ≥ 0, we denote by Lε the operator −∆ defined on H2(Uε) ∩ H1
0(Uε). This operator

is positive and self-adjoint for the L2(Uε)-scalar product. Its resolvent is compact, so that its
spectrum only contains a sequence of real eigenvalues tending to +∞.

Let us prove the following lemma:

Lemma 3.1. Let λ0 ∈ Spec(H0) and η > 0 such that Spec(H0)∩B(λ0, η) = {λ0}. Then there
exists ε0 > 0 such that for all ε ∈]0, ε0[,

Spec(Lε) ∩ C(λ0, η) = ∅.

Proof. If it is not the case, there exists a sequence of positive numbers (εn)n tending to zero when
n tends to +∞, there exists a sequence (ξn)n of points of C(λ0, η), and there exists a sequence
(un)n such that for all n, un ∈ H2(Uεn) ∩ H1

0(Uεn) is an eigenvector of Lε associated to the
eigenvalue ξn.

We denote un = un ◦ (φεn)−1, so that we have:

(3.3) un ∈ H2(Ωe) ∩H1
0(Ωe) and −∆un −Kεnun = ξnun.

Since un 6= 0, we can assume that ‖un‖H2(Ωe) = 1. Thus we can extract subsequences still
denoted (εn), (ξn) and (un) such that ξn tends to ξ∞ ∈ C(λ0, η) and un tends to u∞ weakly in
H2(Ωe) and strongly in H1(Ωe) by compactness of the embedding H2(Ωe) ⊂ H1(Ωe).

By taking the weak limit in (3.3) and using (3.2), we obtain that

(3.4) u∞ ∈ H2(Ωe) ∩H1
0(Ωe) and −∆u∞ = ξ∞u∞.
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In addition, writing that −∆un = ξnun + Kεnun, using again (3.2), we obtain that −∆un tends
strongly in L2(Ωe) to −∆u∞, so that un tends strongly to u∞ in H2(Ωe). So, ‖u∞‖H2(Ωe) = 1,
thus u∞ 6= 0 and by (3.4), we obtain that ξ∞ ∈ Spec(L0) ∩ C(λ0, η), which is false.

�

With the previous lemma, for ε > 0 small enough, for all ξ ∈ C(λ0, η), Lε − ξI is inversible.
We give a uniform estimate of the resolvent operator in the following lemma:

Lemma 3.2. There exists ε0 > 0 and C such that for all ξ ∈ C(λ0, η), for all ε ∈]0, ε0[, for
all f ∈ L2(Uε), there exists a unique u ∈ H2(Uε) ∩ H1

0(Uε) such that −∆u − ξu = f in Uε.
Moreover,

‖u‖H2(Uε) ≤ C‖f‖L2(Uε).

Proof. If it is not the case, there exists a sequence (εn) tending to 0, a sequence (ξn)n of points
of C(λ0, η), a sequence (fn) with fn ∈ L2(Uεn) and un ∈ H2(Uεn)∩H1

0(Uεn) such that−∆un−
ξnun = fn in Uεn and:

‖un‖H2(Uεn ) > n‖fn‖L2(Uεn ).

We denote un = un ◦ (φεn)−1 and fn = fn ◦ (φεn)−1. We have:

−∆un −Kεnun − ξnun = fn in Ωe,

and:
‖un‖H2(Ωe) > Cn‖fn‖L2(Ωe).

Since un 6= 0, we can divide by its H2(Ωe)-norm. We denote

ũn =
un

‖un‖H2(Ωe)
and f̃n =

fn
‖un‖H2(Ωe)

.

We have, for all n:
‖ũn‖H2(Ωe) = 1 > n‖f̃n‖L2(Ωe)

and

(3.5) −∆ũn −Kεn ũn − ξnũn = f̃n in Ωe.

By extracting a sub sequence, we can assume that ξn tends to ξ∞ ∈ C(λ0, η), and ũn tends to a
limit ũ∞ weakly in H2(Ωe) and strongly in H1(Ωe). In addition, we remark that f̃n tends to zero
strongly in L2(Ωe). Taking the weak limit in (3.5), we obtain that:

(3.6) ũ∞ ∈ H2(Ωe) ∩H1
0(Ωe) and −∆ũ∞ − ξ∞ũ∞ = 0 in Ωe.

In addition, using (3.2) and (3.5), we obtain that ∆ũn converges strongly in L2(Ωe). Since its
limit is the weak limit ∆ũ∞, then ũn converges strongly in H2(Ωe) to ũ∞. So ‖ũ∞‖H2(Ωe) = 1,
and ũ∞ 6= 0. Therefore, with (3.6), ξ∞ is in Spec(L0), which leads to a contradiction.

�

Proof of Lemma 2.4
Inequality (2.46) is proved by duality arguments in [3] (see Lemma 2.1, on page 95). We use

the same method and uniform estimates proved in Lemma 3.2 to establish (2.47). Let ε0 given
by Lemma 3.2. Let ε ∈ (0, ε0) and ξ ∈ C(λ0, η). We fix v ∈ H1(Uε) such that −∆v − ξv
belongs to L2(Uε). Let f ∈ L2(Uε). By Lemma 3.2, there exists w ∈ H2(Uε)∩H1

0(Uε) such that
−∆w − ξw = f in Uε. Moreover,

‖w‖H2(Uε) ≤ C‖f‖L2(Uε),
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where C does not depend on ε, f or ξ. We have:∫
Uε
vf =

∫
Uε
v(−∆w − ξw) =

∫
Uε

(−∆v − ξv)w +

∫
Γε

v
∂w

∂ν
.

Therefore: ∣∣∣∣∫
Uε
vf

∣∣∣∣ ≤ ‖ −∆v − ξv‖L2(Uε)‖w‖L2(Uε) + ‖v‖L2(Γε)‖
∂w

∂ν
‖L2(Γε)

≤ C
(
‖ −∆v − ξv‖L2(Uε) + ‖v‖L2(Γε)

)
‖f‖L2(Uε)

This is true for all f ∈ L2(Uε) so:

‖v‖L2(Uε) ≤ C
(
‖ −∆v − ξv‖L2(Uε) + ‖v‖L2(Γε)

)
.

�
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