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RESOLVENT AND SPECTRAL ASYMPTOTICS FOR THIN-LAYER TRANSMISSION PROBLEMS IN THE LARGE COUPLING LIMIT

This work is concerned with a singular perturbation problem that involves a thin layer in the large coupling limit. Such a problem appears in the study of electromagnetic wave guides that contain supra-conductor bodies. We derive resolvent asymptotics for this problem by using boundary layer tools with uniform a priori estimates. This result will be useful to derive spectral asymptotics for this problem. This issue is a work in progress.

INTRODUCTION

This work is motivated by the study of the asymptotic behavior of eigenvalues related to a singular perturbation problem that involves a thin layer in the large coupling limit. Such a problem appears in the study of electromagnetic wave guides with supra-conductors. We refer the reader to several works that concern mathematical studies with electromagnetic wave guides, see for instance [START_REF] Bamberger | Mathematical analysis of the guided modes of an optical fiber[END_REF][START_REF] Joly | Mathematical analysis of electromagnetic open waveguides[END_REF][START_REF] Bonnet-Ben Dhia | Théorie spectrale des opérateurs autoadjoints et application à l'étude des ondes guidées[END_REF][START_REF] Bruneau | Spectral asymptotic in the large coupling limit[END_REF].

An asymptotic expansion of the eigenvalues as the conductivity tends to infinity has been derived in [START_REF] Bruneau | Spectral asymptotic in the large coupling limit[END_REF]. However this result does not apply when the subdomain that represents a supraconductor is a vanishing sheet. In this work we tackle this problem by considering vanishing supra-conductive layer of thickness ε where the conductivity is scaled like ε -2 . This is why there is a main difference between this work and the work in Ref. [START_REF] Bruneau | Spectral asymptotic in the large coupling limit[END_REF] all the more since we consider a transmission problem across a thin layer.

Let us describe now the mathematical model. Throughout the paper we denote by Ω ⊂ R 3 a simply connected domain. Let Ω i be a simply connected subdomain of Ω and let ω ε be a thin layer of constant thickness ε surrounding Ω i such that Ω contains Ω i ∪ ω ε , see Figure 1. For the sake of simplicity we further assume that the boundaries ∂Ω and Γ = ∂Ω i are connected. Now the exterior domain is defined as U ε = Ω \ (Ω i ∪ ω ε ) and the boundary of the subdomain Ω i ∪ ω ε is denoted by Γ ε . We denote by n the outward unit normal at Γ.

In all that follows, unless specified, all the considered domains are smooth domains in R 3 .

Notation 1.1. For any set O ⊂ R 3 we denote by L 2 (O) and H s (O) the classical Sobolev spaces.

Let ε > 0. We consider the self-adjoint operator H ε on L 2 (Ω) with domain H 2 (Ω) ∩ H 1 0 (Ω) and defined by

H ε = -∆ + 1 ε 2 1 |ωε . The limit operator is H 0 = -∆ defined on H 2 (Ω i ) ∩ H 1 0 (Ω i ) × H 2 (Ω e ) ∩ H 1 0 (Ω e )
where Ω e denotes the limit domain U ε when ε → 0, i.e. Ω e = Ω \ Ω i (see Figure 2). 

U ε Ω i ω ε ε Γ ε n Γ Figure 1 -A cross-section of the domain Ω and the subdomains Ω i , ω ε , U ε
In this work we derive an asymptotic expansion of the resolvent of H ε when ε tends to 0. We denote by R ε (ξ

) := (H ε -ξI) -1 the resolvent of H ε , defined on L 2 (Ω) with values in H 2 (Ω) ∩ H 1 0 (Ω) for ξ ∈ spec H ε . Let f ∈ L 2 (Ω). The spectral problem writes (1.1) -∆u -ξu + 1 ε 2 1 |ωε u = f in Ω .
This problem is well-posed and has a unique solution u ε in H 2 (Ω) ∩ H 1 0 (Ω) when ξ is not an eigenvalue of the operator H ε .

Ω e Ω i Γ n Figure 2 -A
cross-section of the domain Ω and the subdomains Ω i , Ω e Notation 1.2. We denote by f i (resp. f e ) the restriction of any function f to Ω i (resp. Ω e ).

ASYMPTOTIC EXPANSION FOR THE RESOLVENT

Let ε > 0. We consider the self-adjoint operator H ε on L 2 (Ω) with domain H 2 (Ω) ∩ H 1 0 (Ω) and defined by

H ε = -∆ + 1 ε 2 1 |ωε .
For ξ / ∈ spec H ε , we denote by R ε (ξ) = (H ε -ξId) -1 the resolvent operator. For f ∈ L 2 (Ω), we denote by u ε the restriction of R ε (ξ)(f ) to Ω i , v ε the restriction of R ε (ξ)(f ) to ω ε , and w ε the restriction of R ε (ξ)(f ) to U ε , By the resolvent equation, we have:

-∆u ε -ξu ε = f |Ω i in Ω i (2.1) -∆v ε -ξv ε + 1 ε 2 v ε = f |ωε in ω ε (2.2) -∆w ε -ξw ε = f |U ε in U ε (2.3) u ε = v ε on Γ (2.4) v ε = w ε on Γ ε (2.5) ∂ n u ε = ∂ n v ε on Γ (2.6) ∂ n v ε = ∂ n w ε on Γ ε (2.7) w ε = 0 on ∂Ω. (2.8)
2.1. Ansatz. Outside the thin layer, we look for an expansion on the form:

u ε (x) ≈ j 0 ε j U j (x) in Ω i , (2.9) w ε (x) ≈ j 0 ε j W j (x) in U ε , (2.10)
where the terms U j and W j are defined in ε-independent domains Ω i and Ω e := Ω \ Ω i . We emphasize that the terms W j are defined in the thin layer ω ε .

In the thin layer, we denote by d : ω ε → R + the euclidean distance to Γ, d(x) = dist(x, Γ) and by P(x) the orthogonal projection of x on Γ. We describe the solution v ε on the following way:

(2.11) v ε (x) ≈ j 0 ε j W j (x) + V j d(x) ε , P(x) in ω ε ,
where the profiles V j are defined on [0, 1] × Γ:

V j : [0, 1] × Γ → C (z, σ) → V j (z, σ).
In ω ε , we will work with the variables (z, σ).

2.2.

Geometrical and analytical tools for the thin layer. We use the following notations (see also [START_REF] Carbou | Boundary layer for a penalization method for viscous incompressible flow[END_REF]) : x = (x 1 , x 2 , x 3 ) denotes the cartesian coordinates in R 3 , and we set

∂ i = ∂ ∂x i , ∂ z = ∂ ∂z , ∂ zz = ∂ 2 ∂z 2
By simple calculations there holds (see also [START_REF] Carbou | Brinkmann model and double penalization method for the flow around a porous thin layer[END_REF])

∆ x → V (P(x), d(x) ε ) = ε -2 ∂ zz V (P(x), z) + ε -1 G εz (P(x))∂ z V (P(x), z) +∆ Γεz V (P(x), z) with z = d(x)
ε , where G is defined as

G s (σ) = 1 γ s (σ) ∂γ s ∂s (σ) .
Here γ s (σ) = det (Id + sdn(σ)) and for σ ∈ Γ, the differential dn(σ) is a linear map from the tangent plane T σ Γ of Γ at the point σ into T n(σ) S 2 where S 2 is the unit sphere.

Proposition 2.1.

1 2 ≤ γ s (σ) ≤ 3 2
In addition, since for x ∈ ω ε , we have:

x = P(x) + ε d(x) ε ν(P(x)) = σ + εzν(σ)
, we perform the Taylor expansion of the functions ϕ : ω ε -→ C writing:

ϕ(x) = ϕ(P(x)) + d(x) ∂ϕ ∂ν (P(x)) + . . . , = ϕ(σ) + εz ∂ϕ ∂ν (σ) + . . .
Then we insert the Ansatz (2.9)-(2.10)-(2.11) in equations (2.1)-(2.8) and we perform the identification of terms with the same power in ε.

2.3.

Characterisation of the profiles at order ε 0 . Taking the order ε 0 in (2.1), we obtain that:

(2.12)

-∆U 0 -ξU 0 = f in Ω i .
Taking the order ε 0 in (2.3), we have:

(2.13) -∆W 0 -ξW 0 = f in Ω e .
From (2.2) at order ε -2 , we obtain that:

(2.14) -∂ zz V 0 + V 0 + W 0 (σ) = 0 in [0, 1] × Γ .
By solving this ODE, we obtain that:

(2.15) V 0 (z, σ) = -W 0 (σ) + α 0 (σ) sinh z + β 0 (σ) cosh z.
From (2.6) at order ε -1 , we have

0 = ∂ z V 0 (0, σ),
so we obtain that β 0 (σ) = 0 for all σ ∈ Γ. From (2.7) at order ε -1 , we obtain that

0 = ∂ z V 0 (1, σ),
so, with (2.15), we obtain that β 0 (σ) = 0.

Thus, we have:

(2.16) V 0 (z, σ) = -W 0 (σ).
Since W 0 satisfies (2.13), then W 0 and ∂W 0 ∂ν have no jump at Γ ε . In particular, writing (2.5), we obtain that

V 0 (1, σ) = 0.
Coupling this relation with (2.16), we obtain that (2.17)

V 0 (z, σ) = 0 for z ∈ [0, 1] and σ ∈ Γ.
Therefore, with (2.16),

(2.18) W 0 (σ) = 0 for all σ ∈ Γ.

Writing (2.5) at order ε 0 , we have

U 0 (σ) = V 0 (0, σ) for σ ∈ Γ.
So, with (2.17),

(2.19) U 0 (σ) = 0 for all σ ∈ Γ.
Equation (2.8) at order ε 0 yields W 0 = 0 on ∂Ω. Therefore, coupling (2.12) and (2.19), U 0 is characterized by:

(2.20)

   -∆U 0 -ξU 0 = f in Ω i , U 0 = 0 in ∂Ω i .
In addition, coupling (2.13) and (2.18), W 0 is characterized by:

(2.21)

   -∆W 0 -ξW 0 = f in Ω e , W 0 = 0 in ∂Ω e .
2.4. Characterisation of the profiles at order ε 1 . Taking the order ε 1 in (2.1), we obtain that:

(2.22) -∆U 1 -ξU 1 = 0 in Ω i .
Taking the order ε 1 in (2.3), we have:

(2.23) -∆W 1 -ξW 1 = 0 in Ω e .
From (2.2) at order ε -1 , we obtain that:

(2.24)

-∂ zz V 1 + V 1 + W 1 (σ) + z ∂W 0 ∂ν (σ) = 0 in [0, 1] × Γ .
By solving this ODE, we obtain that:

(2.25) V 1 (z, σ) = -W 1 (σ) -z ∂W 0 ∂ν (σ) + α 1 (σ) sinh z + β 1 (σ) cosh z.
From (2.6) at order ε 0 , we have

∂U 0 ∂ν (σ) = ∂ z V 1 (0, σ)(σ) + ∂W 0 ∂ν (σ), so we obtain that (2.26) α 1 (σ) = ∂U 0 ∂ν (σ) for all σ ∈ Γ.
From (2.7) at order ε 0 , we obtain that

0 = ∂ z V 1 (1, σ) = - ∂W 0 ∂ν (σ) + α 1 (σ) cosh 1 + β 1 (σ) sinh 1,
so, with (2.25) and (2.26), we obtain that

β 1 (σ) = 1 sinh 1 ∂W 0 ∂ν (σ) -(cosh 1) ∂U 0 ∂ν (σ) .
Thus, we have:

(2.27) V 1 (z, σ) = -W 1 (σ) + ∂W 0 ∂ν (σ) -z + cosh z sinh 1 + ∂U 0 ∂ν (σ) (sinh z -coth 1 cosh z) .
Using (2.5) at order ε 1 , we obtain that V 1 (1, σ) = 0, so:

(2.28)

W 1 (σ) = (-1 + coth 1) ∂W 0 ∂ν (σ) - 1 sinh 1 ∂U 0 ∂ν (σ)
Therefore, we obtain that (2.29)

V 1 (z, σ) = ∂W 0 ∂ν (σ) 1 -z + cosh z -cosh 1 sinh 1 + ∂U 0 ∂ν (σ) sinh z -coth 1 cosh z + 1 sinh 1 .
Using (2.5) at order ε 1 , we obtain that for σ ∈ Γ:

(2.30)

U 1 (σ) = V 1 (0, σ) + W 1 (σ) = 1 sinh 1 ∂W 0 ∂ν (σ) - cosh 1 sinh 1 ∂U 0 ∂ν (σ).
Therefore, coupling (2.22) and (2.30), U 1 is characterized by:

(2.31)

     -∆U 1 -ξU 1 = 0 in Ω i , U 1 (σ) = 1 sinh 1 ∂W 0 ∂ν (σ) -coth 1 ∂U 0 ∂ν (σ) in ∂Ω i .
In addition, coupling (2.23), (2.28), and (2.8) at order ε 1 , W 1 is characterized by:

(2.32)

             -∆W 1 -ξW 1 = f in Ω e , W 1 (σ) = (-1 + coth 1) ∂W 0 ∂ν (σ) - 1 sinh 1 ∂U 0 ∂ν (σ) in Γ, W 1 = 0 on ∂Ω.
We denote by H the space of the functions f ∈ L 2 (Ω) such that the restrictions of f respectively in Ω i and Ω e are respectively in H 1 (Ω i ) and H 1 (Ω e ), endowed with the Hilbert norm:

f H = f |Ω i 2 H 1 (Ω i ) + f |Ωe 2 H 1 (Ωe) 1 2 .
2.5. Equation for the remainder. We write:

           u ε (x) = U 0 (x) + εU 1 (x) + εa ε (x) for x ∈ Ω i , v ε (x) = W 0 (x) + εW 1 (x) + εV 1 (P(x), d(x) ε ) + εb ε (x) for x ∈ ω ε , w ε (x) = W 0 (x) + εW 1 (x) + εc ε (x) for x ∈ U ε .
The remainder term satisfies:

-∆a ε -ξa ε = 0 in Ω i (2.33) -∆b ε -ξb ε + 1 ε 2 b ε = d ε in ω ε (2.34) -∆c ε -ξc ε = 0 in U ε (2.35) a ε = b ε on Γ (2.36) b ε = c ε on Γ ε (2.37) ∂ n a ε = ∂ n b ε + g ε on Γ (2.38) ∂ n b ε = ∂ n c ε on Γ ε (2.39) c ε = 0 on ∂Ω, (2.40) where d ε is defined on ω ε by d ε = d ε 1 + d ε 2 + d ε 3 + d ε 4 with: d ε 1 (x) = - 1 ε 3 W 0 (x) -d(x) ∂W 0 ∂ν (P(x)) , d ε 2 (x) = - 1 ε 2 W 1 (x) -W 1 (P(x)) , d ε 3 (x) = 1 ε G d(x) ∂ z V 1 ( d(x) ε , P(x)) + ξV 1 ( d(x) ε , P(x)), d ε 4 (x) = ∆ Γ d(x) V 1 ( d(x) ε , P(x)),
and where g ε is defined on Γ by:

g ε = ∂W 1 ∂ν - ∂U 1 ∂ν .
2.6. Estimates of the right-hand-side terms. Since ξ is in the circle of center λ 0 and of radius η 0 , there exists a constant C such that for all f ∈ H,

(2.41) U 0 H 3 (Ω i ) + W 0 H 3 (Ωe) ≤ C f H , and 
(2.42) U 1 H 2 (Ω i ) + W 1 H 2 (Ωe) ≤ C f H .
From (2.42), by trace theory, we obtain that:

g ε L 2 (Γ) ≤ ∂W 1 ∂ν H 1 2 (Γ) + ∂U 1 ∂ν H 1 2 (Γ) , ≤ K ∇W 1 H 1 (Ωe) + ∇U 1 H 1 (Ω i ) , so, (2.43) g ε L 2 (Γ) ≤ K f H .
In order to estimate d ε 1 and d ε 2 , we prove the following proposition:

Proposition 2.2. We denote by N the dimension of the space. We define 2 by

1 2 = 1 N + 1 2 (for N = 2, 2 = +∞). Then for all p ∈ [2, 2 [ ([2, 2 ] for N = 2)
, there exists a constant K p such that for all ε > 0, we have:

∀v ∈ H 2 (Ω e ), 1 ε 2 (v(•) -v(P(•))) L 2 (ωε) ≤ K p ε 1 2 + 1 p v H 2 (Ωe)
and

∀v ∈ H 3 (Ω e ), 1 ε 3 v(•) -v(P(•)) - ∂v ∂ν (P(•)) L 2 (ωε) ≤ K p ε 1 2 + 1 p v H 3 (Ωe)
Proof. We assume that v is smooth. For x ∈ ω ε , we have x = P(x) + d(x)ν(P(x)), so, using the variables s = d(x) and σ = P(x) and Taylor's formula: 

v(•) -v(P(•)) 2 L 2 (ωε) = ε s=0 σ∈Γ γ s (σ)|v(σ + sν(σ)) -v(σ)| 2 dσds, = ε s=0 σ∈Γ γ s (σ)

By Sobolev embedding, for all

p ∈ [2, 2 [ ([2, 2 ] for N = 2), ∇v L p (U ) ≤ C p v H 2 (U ) .
So, by Hölder inequality,

∇v L 2 (ωε) ≤ ∇v L p (ωε) (meas(ω ε )) 1 2 -1 p , ≤ (Kε) 1 2 -1 p C p v H 2 (U ) .
Therefore,

1 ε 2 (v(•) -v(P(•))) L 2 (ωε) ≤ √ 3KC p ε 1 2 + 1 p v H 2 (U ) .
In addition, by Taylor expansion at order 2, for σ ∈ Γ and s ∈ [0, ε], we have:

v(σ + sν(σ)) -v(σ) - ∂v ∂ν (σ)d(x) = s 0 (s -τ )D 2 v(σ + τ s)(ν(σ), ν(σ))dτ , ≤ s s 0 D 2 v(σ + τ s) dτ. Therefore, v(x) -v(P(x)) - ∂v ∂ν (P(x))d(x) 2 L 2 (ωε) = ε 0 Γ γ s (σ) v(σ + sν(σ)) -v(σ) - ∂v ∂ν (σ)s 2 ds dσ, ≤ ε 0 Γ γ s (σ) s s 0 |D 2 v(σ + τ s)|dτ 2 dsdσ, ≤ ε 0 Γ γ s (σ)s 3 s 0 |D 2 v(σ + τ s)| 2 dτ dsdσ, ≤ 3ε 4 ωε D 2 v(x) 2 dx. By Sobolev embedding, for all p ∈ [2, 2 [ ([2, 2 ] for N = 2), D 2 v L p (U ) ≤ C p v H 3 (U ) , so D 2 v L 2 (ωε) ≤ D 2 v L p (U ) (meas(ω ε )) 1 2 -1 p ≤ C p v H 3 (U ) (Kε) 1 2 -1 p , thus, 1 ε 3 v(x) -v(P(x)) - ∂v ∂ν (P(x))d(x) L 2 (ωε) ≤ √ 3KC p ε 1 2 + 1 p v H 3 (U ) .
We take K p = √ 3KC p , and we conclude the proof of Proposition 2.2 by a density argument.

Corollary 2.3. For all p ∈ [2, 2 ] ([2, +∞[ in the case N = 2), there exists K p such that for all ε > 0, for all f ∈ H,

d ε 1 L 2 (ωε) ≤ K p ε 1 2 + 1 p f H , and 
d ε 2 L 2 (ωε) ≤ K p ε 1 2 + 1 p f H .
From (2.29), we have:

d ε 3 2 L 2 (ωε) = ε 0 Γ γ s (σ) 1 ε G s (σ)∂ z V 1 ( s ε , σ) + ξV 1 ( s ε , σ) 2 ds dσ ≤ K ε 2 ε 0 Γ | ∂W 0 ∂ν (σ)| 2 + | ∂U 0 ∂ν (σ)| 2 dσds, ≤ K ε W 0 2 H 3 (Ωe) + U 0 2 H 3 (Ω i ) .
Therefore (2.44) 

d ε 3 L 2 (Ωε) ≤ C ε 1 2 f H . 2 
∇a ε 2 L 2 (Ω i ) + ∇b ε 2 L 2 (ωε) + ∇c ε 2 L 2 (Uε) + 1 ε 2 b ε 2 L 2 (ωε) = Γ g ε b ε + ωε d ε b ε -ξ a ε 2 L 2 (Ω i ) + b ε 2 L 2 (ωε) + c ε 2 L 2 (Uε) .
So,

(2.45)

∇a ε 2 L 2 (Ω i ) + ∇b ε 2 L 2 (ωε) + ∇c ε 2 L 2 (Uε) + 1 ε 2 b ε 2 L 2 (ωε) ≤ |ξ| a ε 2 L 2 (Ω i ) + b ε 2 L 2 (ωε) + c ε 2 L 2 (Uε) + b ε L 2 (ωε) d ε 1 + d ε 2 + d ε 3 L 2 (ωε) + g ε L 2 (Γ) b ε L 2 (Γ) + ωε d ε 4 b ε .
We claim the following lemma proved in Section 3.1.

Lemma 2.4.

There exists a constant C > 0 independent of ε such that for any ξ ∈ C(λ 0 , η), for any u ∈ H 1 (Ω i ) such that -∆u -ξu ∈ L 2 (Ω e ), we have :

(2.46) u L 2 (Ω i ) C u L 2 (Γ) + (-∆u -ξu) L 2 (Ω i ) ,
and for any v ∈ H 1 (U ε ) such that v = 0 on ∂Ω and such that -∆v -ξv ∈ L 2 (U e ),, we have :

(2.47) v L 2 (Uε) C v L 2 (Γε) + (-∆v -ξv) L 2 (Uε) .
We claim the following Lemma, proved in [START_REF] Carbou | Penalization method for viscous incompressible flow around a porous thin layer[END_REF] (see Inequality (2.1) in Proposition 2.1., page 822). Lemma 2.5. There exists constants C, ε 0 > 0 such that for all ε ∈ (0, ε 0 ), for all q ∈ H 1 (ω ε ),

q 2 L 2 (∂ωε) C 1 ε q 2 L 2 (ωε) + q L 2 (ωε) ∇q L 2 (ωε)
Since a ε (resp. c ε ) satisfies (2.33) in Ω i (resp. (2.35) in U ε ), we obtain with Lemma 2.4 and the transmission condition (2.36) (resp. (2.37)) that there exists C independent of ε > 0 and ξ ∈ C(λ 0 , η) such that:

a ε 2 L 2 (Ω i ) + c ε 2 L 2 (Uε) ≤ C b ε 2 L 2 (∂ωε)
. Using now Lemma 2.5, we obtain that:

(2.48) a ε 2 L 2 (Ω i ) + c ε 2 L 2 (Uε) ≤ C ε b ε 2 L 2 (ωε) + C b ε L 2 (ωε) ∇b ε L 2 (ωε) .
Using Corollary 2.3, Estimate (2.44), we obtain that there exists a constant C such that for all ε > 0, for all ξ ∈ C(λ 0 , η) and for all f ∈ H, (2.49)

d ε 1 + d ε 2 + d ε 3 L 2 (ωε) ≤ C ε 1 2 + 1 p f H .
In addition, coupling Lemma 2.5 and Estimate (2.43), we obtain that: (2.50)

g ε L 2 (Γ) b ε L 2 (Γ) ≤ C √ ε f H 1 ε b ε L 2 (ωε) + Cε 1 2 f H 1 ε b ε L 2 (ωε) 1 2 ∇b ε 1 2 L 2 (ωε) .
Let us estimate the last right-hand-side term in (2.45). We denote by B ε = b ε • Ψ, where:

Ψ : [0, η 0 ] × Γ → ω η 0 (s, σ) → σ + sν(σ). ωε d ε 4 b ε = ε s=0 σ∈Γ γ s (σ)(∆ Γs V 1 ( s ε , σ))B ε (s, σ)ds dσ, = - ε s=0 σ∈Γ γ s (σ)∇ Γs V 1 ( s ε , σ)∇ Γs B ε (s, σ)ds, So, ωε d ε 4 b ε ≤ ε s=0 σ∈Γ γ s (σ) ∇ Γs V 1 ( s ε , σ) ∇ Γs B ε (s, σ) ds dσ ≤ ∇b ε L 2 (ωε) ∇ Γs V 1 ( s ε , σ) L 2 (ωε) , ≤ ∇b ε L 2 (ωε) ∂U 0 ∂ν H 1 (Γ) + ∂W 0 ∂ν H 1 (Γ) √ ε,
thus, using (2.41), we obtain:

(2.51)

ωε d ε 4 b ε ≤ C √ ε ∇b ε L 2 (ωε) f H .
Therefore, from (2.45), (2.48), (2.49), (2.50), and (2.51), we obtain that there exists a constant C independent of ε > 0, ξ ∈ C(λ 0 , η) and f ∈ H such that

∇a ε 2 L 2 (Ω i ) + ∇b ε 2 L 2 (ωε) + ∇c ε 2 L 2 (Uε) + 1 ε 2 b ε 2 L 2 (ωε) ≤ C ε b ε 2 L 2 (ωε) + C b ε L 2 (ωε) ∇b ε L 2 (ωε) + C ε 1 2 + 1 p b ε L 2 (ωε) f H +C √ ε f H 1 ε b ε L 2 (ωε) + Cε 1 2 f H 1 ε b ε L 2 (ωε) 1 2 ∇b ε 1 2 L 2 (ωε) + Cε 1 2 ∇b ε L 2 (ωε) f H ≤ 1 2 1 ε 2 b ε 2 L 2 (ωε) + 1 2 ∇b ε 2 L 2 (ωε) + Cε 1-2 p f 2 H (by Young inequality).
So, after absorption, we obtain that there exists C such that:

(2.52)

∇a ε 2 L 2 (Ω i ) + ∇b ε 2 L 2 (ωε) + ∇c ε 2 L 2 (Uε) + 1 ε 2 b ε 2 L 2 (ωε) ≤ Cε 1-2 p f 2 H .
Reusing (2.48), we obtain also that:

(2.53)

a ε 2 L 2 (Ω i ) + c ε 2 L 2 (Uε) ≤ Cε 2-2 p f 2 H .

TECHNICAL LEMMA : UNIFORM A PRIORI ESTIMATES

3.1. Geometrical tools in the thin layer. In this part, we refer to [START_REF] Carbou | Penalization method for viscous incompressible flow around a porous thin layer[END_REF]. For σ ∈ Γ, we denote by ν(σ) the outward unitary normal. We remark that ν : Γ -→ S N -1 is smooth since Γ is regular. We define Ψ by:

Ψ : ]0, η 0 [×Γ → ω η 0 (s, σ) → σ + sν(σ).
Since Γ is a smooth compact surface without boundary, we can fix η 0 > 0 such that Ψ is a C ∞ -diffeomorphism and so that for all ε ∈]0, η 0 [,

Ψ(]0, ε[×Γ) = ω ε .
We define γ : [0, η 0 ] × Γ → R by: γ s (σ) = det(Id + s dν(σ)), and we have:

ωη 0 F (x) dx = η 0 s=0 σ∈Γ F (Ψ(s, σ))γ s (σ)dσ ds.
Since γ 0 (σ) = 1 for all σ ∈ Γ, even if it means reducing η 0 , we assume that

(3.1) ∀ s ∈ [0, η 0 [, ∀ σ ∈ Γ, 1 2 ≤ γ s (σ) ≤ 3 2 .
We denote ∇ Γ , div Γ and ∆ Γ the gradient, divergence and Laplacian operators on the submanifold Γ.

For v : Γ -→ C and s ∈ [0, η 0 [, we define ∇ Γs v by:

∇ Γs v(σ) = (Id + s dν(σ)) -1 ∇ Γ v(σ),
so that: for v : ω η 0 → C, denoting V = v • Ψ, we have:

∇v(x) = ∂V ∂s (d(x), P(x))ν(P(x)) + ∇ Γ d(x) V (d(x), P(x)).
We define the operator div Γs as the adjoint of ∇ Γs for the L 2 (Γ)-inner product: for Y : Γ -→ T Γ a tangent vector field defined on Γ, we set:

(div Γs Y ) (σ) = 1 γ s (σ) div Γ γ s (Id + s dν) -1 Y (σ), so that if z : ω η 0 -→ R N is a vector field, denoting Z = z • Ψ, Z N (s, σ) = (Z(s, σ) • ν(σ)) and Z T (s, σ) = Z(s, σ) -Z N (s, σ)ν(σ), we have: divz(x) = ∂Z N ∂s (d(x), P(x)) + G d(x) (P(x))Z N (d(x), P(x)) + div Γ d(x) Z T (d(x), P(x)),
where

G s (σ) = 1 γ s (σ) ∂γ s ∂s (σ).
We define the operator ∆ Γs by:

∆ Γs = div Γs • ∇ Γs , so that for v : ω η 0 → C, denoting V = v • Ψ, we have: ∆v(x) = ∂ 2 V ∂s 2 (d(x), P(x)) + G d(x) (P(x)) ∂V ∂s (d(x), P(x)) + (∆ Γ d(x) V )(d(x), P(x)).
3.2. Geometrical tools for U ε . Let χ : R → R be a smooth non-decreasing function such that:

∀ x ≤ 0, χ(x) = -1, ∀ x ≥ η 0 , χ(x) = 0.
For ε > 0 such that ε ≤ η 0 4 , we define φ ε by: φ

ε : U ε → Ω e x → x + εχ(d(x) -ε)ν(P(x)) We remark that if x ∈ U ε with d(x) ≥ ε + η 0 , then φ ε (x) = x. In addition, φ ε is a C ∞ - diffeomorphism from U ε onto Ω e . We denote by φ ε,k the k-th coordinate of φ ε .
For w : U ε → C, we define w : Ω e → C by:

w = w • φ ε .
We have, for all j ∈ {1, . . . N },

∂w ∂x j = N k=1 ∂w ∂x k (φ ε (x)) ∂φ ε,k ∂x j (x) so ∂ 2 w ∂x 2 j = N k=1 N l=1 ∂ 2 w ∂x k ∂x l (φ ε (x)) ∂φ ε,k ∂x j (x) ∂φ ε,l ∂x j (x) + N k=1 ∂w ∂x k (φ ε (x)) ∂ 2 φ ε,k ∂x 2 j (x) Therefore, ∆w(x) = k,l a ε k,l (φ ε (x)) ∂ 2 w ∂x k ∂x l (φ ε (x)) + N k=1 b ε k (φ ε (x)) ∂w ∂x k (φ ε (x)),
where a ε k,l : Ω e -→ R and b ε k : Ω e -→ R are defined by: ∀x

∈ U ε , a ε kl (φ ε (x)) = ∇φ ε,k (x) • ∇φ ε,l (x) and b ε k (φ ε (x)) = ∆φ ε,k (x). For x ∈ Ω e such that d(x) ≥ ε + η 0 , φ ε (x) = x so that a ε kl (x) = δ kl and b ε k (x) = 0. For x ∈ Ω e such that d(x) ≤ ε + η 0 , we have: x = φ -1 ε (x) ∈ ω η 0 and: ∂φ ε,k ∂x j (x) = δ jk + ε χ (d(x) -ε)ν j (P(x))ν k (P(x)) + χ(d(x) -ε)∇ν k (P(x)) • ∂P(x) ∂x j .
Thus, a ε k,l (x) = δ kj + a k,l ε (x), where a k,l ε (x) is of order ε and tends uniformly to zero when ε tends to zero. In the same way, b ε k (x) is of order ε and tends uniformly to zero when ε tends to zero. We denote, for w ∈ H 2 (Ω e ):

K ε w = (k,l), k =l a ε kl ∂ 2 w ∂x k ∂x l + N k=1 b ε k ∂w ∂x k , so that ∆w(x) = (∆w + K ε w) (φ ε (x)),
and there exists a constant C such that for all ε > 0, for all w ∈ H 2 (Ω e ), we have:

(3.2) K ε w L 2 (Ωe) ≤ Cε w H 2 (Ωe) .

For ε ≥ 0, we denote by L ε the operator -∆ defined on H 2 (U ε ) ∩ H 1 0 (U ε ). This operator is positive and self-adjoint for the L 2 (U ε )-scalar product. Its resolvent is compact, so that its spectrum only contains a sequence of real eigenvalues tending to +∞.

Let us prove the following lemma: Lemma 3.1. Let λ 0 ∈ Spec(H 0 ) and η > 0 such that Spec(H 0 ) ∩ B(λ 0 , η) = {λ 0 }. Then there exists ε 0 > 0 such that for all ε ∈]0, ε 0 [, Spec(L ε ) ∩ C(λ 0 , η) = ∅.

Proof. If it is not the case, there exists a sequence of positive numbers (ε n ) n tending to zero when n tends to +∞, there exists a sequence (ξ n ) n of points of C(λ 0 , η), and there exists a sequence (u n ) n such that for all n, u n ∈ H 2 (U εn ) ∩ H 1 0 (U εn ) is an eigenvector of L ε associated to the eigenvalue ξ n .

We denote u n = u n • (φ εn ) -1 , so that we have:

(3.3) u n ∈ H 2 (Ω e ) ∩ H 1 0 (Ω e ) and -∆u n -K εn u n = ξ n u n . Since u n = 0, we can assume that u n H 2 (Ωe) = 1. Thus we can extract subsequences still denoted (ε n ), (ξ n ) and (u n ) such that ξ n tends to ξ ∞ ∈ C(λ 0 , η) and u n tends to u ∞ weakly in H 2 (Ω e ) and strongly in H 1 (Ω e ) by compactness of the embedding H 2 (Ω e ) ⊂ H 1 (Ω e ).

By taking the weak limit in (3.3) and using (3.2), we obtain that (3.4) u ∞ ∈ H 2 (Ω e ) ∩ H 1 0 (Ω e ) and -∆u ∞ = ξ ∞ u ∞ .
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 32 + τ ν(σ))| 2 dτ s ds dσ, dx (using Proposition 2.1).

  .7. Variational estimates for the remainder term. Multiplying (2.33) by the conjugate of a ε and integrating on Ω i , multiplying (2.34) by the conjugate of b ε and integrating on ω ε multiplying (2.35) by the conjugate of c ε and integrating on U ε , after integrations by part and after summation, we obtain:

In addition, writing that -∆u n = ξ n u n + K εn u n , using again (3.2), we obtain that -∆u n tends strongly in L 2 (Ω e ) to -∆u ∞ , so that u n tends strongly to u ∞ in H 2 (Ω e ). So, u ∞ H 2 (Ωe) = 1, thus u ∞ = 0 and by (3.4), we obtain that ξ ∞ ∈ Spec(L 0 ) ∩ C(λ 0 , η), which is false.

With the previous lemma, for ε > 0 small enough, for all ξ ∈ C(λ 0 , η), L ε -ξI is inversible. We give a uniform estimate of the resolvent operator in the following lemma: Lemma 3.2. There exists ε 0 > 0 and C such that for all ξ ∈ C(λ 0 , η), for all ε ∈]0,

Proof. If it is not the case, there exists a sequence

We denote

We have:

and:

Since u n = 0, we can divide by its H 2 (Ω e )-norm. We denote

and fn = f n u n H 2 (Ωe) .

We have, for all n: ũn H 2 (Ωe) = 1 > n fn L 2 (Ωe) and (3.5)

-∆ũ n -K εn ũn -ξ n ũn = fn in Ω e .

By extracting a sub sequence, we can assume that ξ n tends to ξ ∞ ∈ C(λ 0 , η), and ũn tends to a limit ũ∞ weakly in H 2 (Ω e ) and strongly in H 1 (Ω e ). In addition, we remark that fn tends to zero strongly in L 2 (Ω e ). Taking the weak limit in (3.5), we obtain that:

In addition, using (3.2) and (3.5), we obtain that ∆ũ n converges strongly in L 2 (Ω e ). Since its limit is the weak limit ∆ũ ∞ , then ũn converges strongly in H 2 (Ω e ) to ũ∞ . So ũ∞ H 2 (Ωe) = 1, and ũ∞ = 0. Therefore, with (3.6), ξ ∞ is in Spec(L 0 ), which leads to a contradiction. Proof of Lemma 2.4 Inequality (2.46) is proved by duality arguments in [START_REF] Bruneau | Spectral asymptotic in the large coupling limit[END_REF] (see Lemma 2.1, on page 95). We use the same method and uniform estimates proved in Lemma 3.2 to establish (2.47). Let ε 0 given by Lemma 3.2. Let ε ∈ (0, ε 0 ) and ξ ∈ C(λ 0 , η). We

where C does not depend on ε, f or ξ. We have:

Therefore:

This is true for all f ∈ L 2 (U ε ) so: