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Figure S1: Machine Learning Schematic for classifying ENMs and NNMs 

 

NP Characterization 

Table S1: Size distribution of Ti30 and Ti100 samples by DLS, TEM, and spICP-TOFMS. Units 

are nm.  

 

* spICP-TOFMS measures Ti mass. To calculate size, we assume a spherical shape, anatase 

density for Ti30 (3.78 g cm-3), and rutile density for Ti100 (4.23 g cm-3). 
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Figure S2: TEM images for Ti100 (A, B, and C) and Ti30 (D, E, and F). 

 

Figure S3: Ti100 XRD Spectrum. All major peaks identify as the rutile form of TiO2 (27, 36, 

and 55 degrees). 
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Figure S4: TEM size distribution of the 50 nm reference Au NP used for analysis. Average is 

49.1 nm, median is 48.6 nm, and the standard deviation is 6.5 nm. Number of particles equal 

193. 

Soil Characterization and Experimental Design table 

The table below show experimental design matrix to assess classification between ENMs and 

NNNMs. This table also describes organic carbon (OC) content, pH, and soil type for each soil. 

L22 soil and AZ soil pH was measured by 1:2 soil to 0.01 M CaCl2 solution ratio. LUV soil was 

measured by 1:5 ratio. Soil properties were described and measured elsewhere.1–3 
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Table S2: Experimental design matrix for this study. Further soil and sludge characterization is 

described elsewhere.2,3 

 

 

 

Other Machine Learning Models 

Table S3: The classification performance results of each ML model for the Ti100 + L22 Case. 

(>75% = correct, 25% to 75% = uncertain, <25% = incorrect). Number of simulations = 9. 

Average percentage values are reported with standard deviation in parentheses. 

Model Type Certain (> 75%) Uncertain (25% to 75%) Incorrect (< 25%) 

RFC 84.5 (2.0) 8.7 (1.2) 6.8 (1.3) 

GBC 85.7 (1.0) 8.9 (1.0) 5.3 (0.4) 

NN1 87.1 (0.4) 6.8 (0.5) 6.1 (0.6) 

NN2 78.0 (1.3) 17.2 (0.9) 4.7 (0.6) 

LR 80.3 (1.3) 15.2 (1.2) 4.5 (0.5) 
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Figure S5: ML results for GBC, RFC, NN1, and NN2 models for the L22 + Ti100 case. Left 

scatter plots are Ti-NNMs displayed as the probability of the ML predicting in the correct 

category as a function of Ti mass. Right scatter plots are the same but for Ti-ENMs. The pie 

charts display the percentage of total Ti-NMs categorized as correct (green), uncertain (orange), 

and incorrectly classified (red). 

Hyperparameter Tuning 

Hyperparameters in the ML model were tuned to provide maximum performance. The two major 

parameters were the inverse of the regularization strength (C) in the LR model and the number of 

components for NMF. The values of the inverse of regularization strength ranged from 0.001 to 

10,000. The performance was measured by testing accuracy for the L22 + Ti100 case. Figure 

below shows the results for C. The maximum accuracy plateaued at 1,000 so this is the chosen 

value for C. For the number of components, the values ranged from 5 to 20 components. We 

found that at 10 components and higher, the testing accuracy did not significantly change, so we 

chose 10 components for the ML model.  
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Figure S6: Testing Accuracy for the L22 + Ti100 case as a function of the inverse of the 

Regularization Strength (C) (number of simulations = 5). 

 

Figure S7: Testing Accuracy for the L22 + Ti100 case as a function of number components for 

NMF (number of simulations = 5). Symbols represent statistical similarities (One Way ANOVA 

with P-value > 10-2) 

Bootstrapping Method to Evaluate Sample Size 

To ensure that the training and testing size for each case was sufficient, the bootstrapping method 

was implemented. This method trains on parts of the training dataset (from 5 to 100%) and plots 

the accuracy of the model (test data points with > 85% confidence). The random sampling of 

different parts of the training data is performed five times for each fraction. The whole 

bootstrapping process is performed three times for each case. Because the particle count and 

fingerprint are similar between the three soils, we tested three cases: L22 + Ti100, L22 + Ti30, 

and L22 + Ti-Sludge (Figure S9). 
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All cases exhibited high variability in the accuracy for each case from 5 for 40%. Starting at 40% 

or higher, the performance of the model becomes constant. There is slight discrepancy in 

accuracy for the triplicate simulations of L22 + Sludge and L22 + Ti30 cases but only by 2 to 

3%. We conclude that the sample size is large enough to train and assess the performance of the 

model for each case.  

  

Figure S8: Performance of the model (test data points > 85% confidence) as a function of the 

percent of the training data for A) L22 + Sludge, B) L22 + Ti30, and C) L22 + Ti100 case.  

Isotopes that were tracked with spICP-TOFMS 

A B 

C 
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The following isotopes were tracked for data processing: 24Mg, 25Mg, 29Si, 45Sc, 46Ti, 48Ti, 51V, 

52Cr, 53Cr, 54Fe, 55Mn, 57Fe, 58Ni, 59Co, 60Ni, 63Cu, 64Zn, 65Cu, 66Zn, 68Zn, 69Ga, 71Ga, 72Ge, 75As, 

85Rb, 88Sr, 89Y, 90Zr, 93Nb, 94Zr, 96Mo, 98Mo, 102Ru, 103Rh, 107Ag, 108Pd, 109Ag, 112Cd, 114Cd, 118Sn, 

120Sn, 121Sb, 123Sb, 128Te, 130Te, 133Cs, 137Ba, 138Ba, 139La, 140Ce, 141Pr, 142Ce, 144Nd, 151Eu, 152Sm, 

153Eu, 154Sm, 156Gd, 158Gd, 159Tb, 162Dy, 164Dy, 165Ho, 166Er, 168Er, 169Tm, 174Yb, 165Lu, 180Hf, 

181Ta, 185Re, 190Os, 192Os, 193Ir, 194Pt, 195Pt, 197Au, 200Hg, 202Hg, 206Pb, 208Pb. 

SpICP-TOFMS Parameters 

Table S4: spICP-TOFMS Parameters 

Plasma Power (W) 1500 

Nebulizer Liquid Flow rate (ml/min) 0.35 

Nebulizer Gas Flow rate (l/min) 1.02 

Attenuated masses (Th) 32, 35, 37, 40 

Single Particle Dwell time (ms) 2 

Collision gas flow rate (ml/min) * 3 or 0 

Transport efficiency 1 – 5% 

TOF extraction frequency (extractions per s) 33,000 

Nebulizer Concentric borosilicate glass with 400 

µL/min flow rate 

Spray Chamber Baffled cyclonic, high purity quartz 

Mass Res Power 238U  > 3000 

Auxiliary gas flow rate (L/min) 0.8 

Cooling gas flow rate (L/min) 14 

TOF Detector type Microchannel Plate (MCP) Detector 
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* - Collision gas was used only to test the effect of H2/He gas mode on Ti and other element 

detection limits.  

More information about the specifics of the spICP-TOFMS 1R system is provided on 

TOFWerk’s website (https://www.tofwerk.com/products/icptof/).   
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Multi-elemental particle coincidence and polyatomic interference  

False positives of multi-elemental particle events can occur by coincidence if two or more 

separate particles are in the same dwell time interval. To predict this, we used a previously 

published algorithm to estimate how many coincidental particle events may be present for the 

three soils and sludge.4 We then calculated the fraction of particle events that could be 

coincidental (Table S4). 

Common earth-abundant elements like Fe, Mg, Ba, Pb and Mn were predicted to have at least 

one potential coincidental particle event with Ti, but this is less than 5% of the measured 

particles containing those elements. Rare earth elements, mostly Ce and La, also had some 

coincidence (8 to 20% of 10’s of particle events). For the Arizona soil, Sc and one isotope of Cr 

was over 100%, but there were only 1 and 2 particle events respectively. Overall, there is a small 

fraction of the multielement Ti particle events that could be false positives.  

For 48Ti, Ca is the main interference, but we also analyze another more abundant isotope, 44Ca, 

and did not find any Ca particle events in our samples. We tracked multiple isotopes for most 

elements to confirm their presence. An example is Sn and Ag particle events in sludge. These 

particle events were confirmed with two of the main isotopes instead of one (107Ag, 109Ag, 118Sn, 

120Sn). 
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Table S5: The fraction of Ti + another element containing particles that could be coincidental  

Isotopes Lufa 2.2 Arizona Luvisol Sludge Isotopes Lufa 2.2 Arizona Luvisol Sludge 

24Mg 0.01 0.07 0.01 0.07 107Ag    0.02 

25Mg 0.03 0.05 0.03  109Ag  0.05  0.06 

45Sc  1.76   
118Sn  0.04   

46Ti 0.01 0.02 0.01  123Sb 0.04    
48Ti 0.01 0.02 0.01  128Te  0.12   
51V 0.02 0.03 0.01  133Cs 0.02 0.07 0.01  
52Cr 0.90 1.01 0.21  137Ba 0.03 0.08 0.02  
53Cr   0.04  138Ba 0.04 0.10 0.03  
54Fe 0.00 0.01 0.00  139La 0.17 0.20 0.10  

55Mn 0.06 0.05 0.05  140Ce 0.10 0.09 0.08  
57Fe 0.02 0.03 0.01  141Pr 0.10 0.18 0.04  
58Ni 0.76 0.26 0.05  142Ce 0.08 0.18 0.09  
59Co 0.06 0.12 0.03  142Nd 0.08 0.18 0.09  
60Ni  0.14  0.01 144Nd 0.10 0.11 0.13  
63Cu 0.03 0.04 0.04 0.02 152Sm  0.05   
64Zn 0.14 0.06 0.03 0.02 153Eu 0.02    
65Cu 0.06 0.08 0.02 0.01 154Sm  0.14   
66Zn 0.16 0.21   

156Gd  0.27   
68Zn 0.21 0.76 0.18  158Gd  0.16   
69Ga 0.11 0.20 0.03  164Dy 0.02 0.09   
75As 0.02    

165Ho 0.02 0.14   
85Rb 0.03 0.04 0.02  166Er  0.11   
87Rb 0.04 0.06 0.01  168Er  0.11   
88Sr 0.09 0.27 0.04 0.01 181Ta 0.01 0.08   
89Y 0.08 0.13 0.05  200Hg     
90Zr 0.05 0.07 0.04 0.01 202Hg     
93Nb 0.01 0.02 0.01  206Pb 0.02 0.04 0.01  
94Zr 0.09 0.10 0.11 0.01 208Pb 0.02 0.04 0.01  

96Mo 0.05 0.12   
238U  0.08 0.01  

98Mo   0.01       
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Mass Distribution of Ti-NMs

 

Figure S9: Ti particle mass distribution (as measured by 48Ti) for each sample (A: Sludge, B: 

ARZ, C: L22, D: LUV, E: Ti100, F: Ti30). Faded color histogram represent total Ti particle and 

the filled color histogram is pure Ti particles (i.e., Ti-particles not associated with other elements). 

Black dashed line indicates the average IUPAC threshold extracted from background signal files 

for each sample. 

A) B) 

C) D) 

E) F) 
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Remaining Test Cases of the ML Simulations 

The remaining cases for classification by the ML model are shown in the figure below. The Ti30 

+ ARZ and Ti30 + LUV have a similar performance compared to the Ti30 + L22 case with a 

portion of NNM being correctly classified regardless of Ti-mass (NNMs with elemental 

associations). The NNMs without elemental associations were categorized as uncertain because of 

the similar mass distribution with Ti30 ENMs. Similar to Ti30 + L22 case, most ENMs were 

categorized as uncertain. For the recovered Ti-NMs from sludge, the model also had a similar 

performance compared to the Ti-NMs from sludge + L22 case. Elemental association in the 

recovered Ti-NMs were primarily used while most of the NNMs were categorized as uncertain. 

There are a few ARZ and LUV NNMs that were correctly classified which most likely had unique 

tracers. For both cases, the recovered Ti-NMs without elemental associations followed a sigmoidal 

curve with increasing confidence of being in the correct category as Ti-mass increases. 
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Figure S10: ML results of the testing data for each test case (LUV + Ti30, ARZ + Ti30, LUV + 

Sludge, ARZ + Sludge). Left scatter plots are Ti-NNMs displayed as the probability of the ML 
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predicting in the correct category as a function of Ti mass. Right scatter plots are the same but 

for Ti-ENMs. The pie charts display the percentage of total Ti-NMs categorized as correct 

(green), uncertain (orange), and incorrectly classified (red). 
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Elemental Fingerprint for each Test Case 

  

Figure S11: Elemental associations with Ti-particles increases the probability of predicting it in 

the correct category. The elemental fingerprint was measured for A) L22 Ti-NNMs from L22 + 

Ti100 case, B) L22 Ti-NNMs from L22 + Ti30 case, C) L22 Ti-NNMs from L22 + Ti-sludge case, 

and D) Ti-ENMs from L22 + Ti-sludge case. Green represent Ti-NMs correctly classified (> 85%) 

and orange is uncertain or misclassified (<85%). 46Ti is represented in here as a minor element 
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associated with 48Ti particle events. In Figure 2, the open circles represent 48Ti and 48Ti + 46Ti 

particle events.  

  

Figure S12: The elemental fingerprint for A) LUV Ti-NNMs from LUV + Ti100 and B) ARZ Ti-

NNMs from ARZ + Ti100.  Green represent Ti-NMs correctly classified (> 85%) and orange is 

uncertain or misclassified (<85%). Bar plots indicate the most common isotope associations with 

Ti NMs showing the drastic differences in abundance of elemental fingerprints between correctly 

classified and uncertain. 
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Figure S13: The fraction of Sludge-Ti NMs in the ‘uncertain’ category associated with other 

elements for the L22 + Sludge case. All elements are common with L22 soil particle except for 

Ag. Even though Ag is the most attached element in the uncertain category, most of the Ti + Ag 

contained particles (80%) were confidently classified. If hard classification was applied (e.g., 

confidence greater than 50%), then all Ag + Ti would predict correctly. 

Element Importance for each Test Case 

For each test case, the elemental importance was calculated according to the equation below.  

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝑃𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒  | ∑ 𝐶𝑖𝐶𝑒𝑙𝑒𝑚𝑒𝑛𝑡,𝑖

10

𝑖=1

| 

Where 𝑃𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 is the probability of the occurrence of a particle event for a given element in a 

sample, 𝐶𝑖 is the NMF component coefficient, and 𝐶𝑒𝑙𝑒𝑚𝑒𝑛𝑡,𝑖 is the coefficient for a given 

element within a component. For binomial logistic regression, component coefficients are 

negative for “Engineered” label and positive for “Natural” label. For clarification in the figures, 
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the absolute value of the sum component is used and labeled “Engineered” with blue and 

“Natural” with red. 

 

Figure S14: Magnitude of the top 10 elements for L22, LUV, ARZ and Ti100 cases. Blue bars 

represent the “Engineered” label and red represent “Natural”.  
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Figure S15: Magnitude of the top 10 elements for L22, LUV, ARZ and Ti30 cases. Blue bars 

represent the “Engineered” label and red represent “Natural”. 

 



S24 
 

 

Figure S16: Magnitude of the top 10 elements for L22, LUV, ARZ and Recovered Ti-NMs in 

sludge cases. Blue bars represent the “Engineered” label and red represents “Natural”. 

 

 

The effect of H2/He mode measurement by spICP-TOFMS 
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Adding a collision cell gas reduces isobaric interferences for specific analytes which can 

influence analyte sensitivity. To determine if this improved the classification of ENMs and 

NNMs, L22 and Ti100 samples were measured by spICP-TOFMS with a H2/He collision cell 

gas (2% H2 /98% He). The ML model was then trained and tested with these samples to 

determine classification results and elemental importance (Figure S11 and S12). Classification 

did not improve when including a H2/He collision cell gas. The LR model correctly classified 

27% of the Ti-particles and the remaining were uncertain or misclassified. This increased 

misclassification is due to a few reasons. First, the size distribution difference between L22 and 

Ti100 is significantly smaller than in normal mode (L22 is 113 ± 51 nm and Ti100 is 189 ± 65 

nm). This change is due to decreased sensitivity of Ti48, therefore an increase in detection limit. 

Second is the overall decrease sensitivity of other important analytes (Nb, Mn, Ba, Mg, Rare 

Earth Elements). However, Si28 and Fe56 sensitivity greatly increases because of eliminating Ar 

gas interferences and has a much higher importance within the model (Figure S5). For Ti 

classification, we do not recommend measuring particles with a H2/He collision gas.
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Figure S17: LR model prediction of Ti-particles as a function of ENM (right) and NNM (left) 

and Ti-mass for Ti100 and L22 case measured by spICP-TOFMS with H2/He collision cell gas.  

 

Figure S18: Magnitude of the top 10 elements for L22 and Ti100 case measure by spICP-

TOFMS with H2/He collision cell gas.  

Investigating the effect of Al in Ti classification  

Ti can associate with Al either by Ti substitution in clay particles or a Ti-particle associating with 

clay particles. Because of these associations, impure Ti particles in the natural category may 

associate elements that are inherently not present as unique tracers for Ti minerals. We investigate 

the effect of Al associating with Ti for the L22 soil and how that impacts classification for the 

Ti100 ENMs. For the L22 soil, 33% of Ti particles is associated with Al. First, we determined if 

natural Ti-particles in L22 are substituted clay particles. In kaolin and bentonite, the substituted Ti 

can range from 0.01 to 2.12% by mass which means the Ti to Al ratio in these minerals can be up 

to 10.4% .5,6 For the Ti + Al particle in L22, the median is 7.94% and most of these particles are 

within the typical range for Ti-substituted particles. This shows that a significant amount of natural 

Ti + Al particles could be Ti substituted particles.  



S27 
 

For this study, we will assume all Ti + Al particles are Ti substituted clay particles. We excluded 

all Ti + Al (+ any other element) particles from the natural category and tested this for classification 

with the Ti100 particles (Figure S13). The classification performance slightly decreased (35% 

correctly classified), but overall preserved the same trends. Rather than using common earth-

abundant elements (Ce, Mg, Ba, etc.) from the first scenario, Nb, V, and Mn are the top weighted 

elements which are likely impurities in Ti minerals. This concludes that the model’s performance 

is not affected by Ti’s association with Al (and other elements) that may be a Ti substituted clay 

particle or a pure Ti particle attached to a clay mineral.  

 

 

Figure S19: ML model prediction of Ti-particles as a function of ENM (right) and NNM (left) 

and Ti-mass for Ti100 and L22 case excluding Ti particles associated with Al. Pie chart to the 

right shows the model performance predicting correctly (blue, ≥85%), uncertain (orange, 15% ≤ 

particles < 85%), or misclassified (green, < 15%).   
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Figure S20: Magnitude of the top 10 elements for L22 and Ti100 case measured by spICP-

TOFMS excluding Ti particles associated with Al.  

The effect of pretreating Ti30 sample on classification 

The high level of uncertainty for the Ti30 + NNM scenarios could be caused by outliers in the 

Ti30 particles. One way to mitigate this issue is to eliminate all elemental information in the 

Ti30 sample. We investigated the effect of pretreating the Ti30 sample by removing all other 

elemental associations on classification, specifically for the L22 + Ti30 test case. There is a 

slight improvement compared to not pretreating Ti30 with more particles predicted as the correct 

category. There is also a greater distinction between pure and impure Ti-particles. However, the 

improvement is negligible with <10% particles being correctly classified. Therefore, this strategy 

was not implemented for the remaining test cases.
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Figure S21: LR model prediction of Ti-particles as a function of ENM (right) and NNM (left) 

and Ti-mass for Ti30 and L22 case including a pretreatment of Ti30 sample. Pie chart to the right 

shows the model performance in either predicting correct (blue, ≥85%), uncertain (orange, 15% 

≤ particles < 85%), or misclassified (green, < 15%).   

Ti Concentrations measured by ICP-OES 
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Figure S22: Ti concentration of L22 soils dosed at 0, 70, 700, and 7,000 mg kg-1 of TiO2 measured by 

ICP-OES. Blue bar is the total Ti concentration in the soil (n =2). Gray bar is the extractable <500nm Ti 

concentration (n = 3). Letters and symbols represent statistical similarities for one-way ANOVA (P value 

< 0.02) comparing each trial’s total soil Ti concentration and extractable Ti concentration (mg-Ti kg-1-

soil).  
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