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ABSTRACT: 13 

Identifying engineered nanomaterials (ENMs) made from earth-abundant elements in soils 14 

is difficult because soil also contains natural nanomaterials (NNMs) containing similar elements. 15 

Here, machine learning models using elemental fingerprints and mass distributions of three TiO2 16 

ENMs and Ti-based NNMs recovered from three natural soils measured by single particle 17 

Inductively Coupled Plasma Time-Of-Flight Mass Spectrometry (spICP-TOFMS) was used to 18 

identify TiO2 ENMs in soil. Synthesized TiO2 ENMs were unassociated with other elements 19 

(>98%), while 40% of Ti-based ENM particles recovered from wastewater sludge had 20 

distinguishable elemental associations. All Ti-based NNMs extracted from soil had a similar 21 

chemical fingerprint despite the soils being from different regions, and > 60% of Ti-containing 22 

NNMs had no measurable associated elements. A machine learning model best distinguished 23 



NNMs and ENMs when differences in Ti-mass distribution existed between them. A trained LR 24 

model could classify 100nm TiO2 ENMs at concentrations of 150 mg kg-1 or greater.  The presence 25 

of TiO2 ENMs in soil could be confirmed using this approach for most ENM-soil combinations, 26 

but the absence of a unique chemical fingerprint in a large fraction of both TiO2 ENMs and Ti-27 

NNMs increases model uncertainty and hinders accurate quantification. 28 

Synopsis: 29 

We used elemental fingerprints and mass distribution of engineered TiO2 nanoparticles and 30 

naturally occurring natural Ti-containing nanoparticles and machine learning models to effectively 31 

track and quantify Ti-based engineered nanomaterials (ENMs) in three different representative 32 

soils.  33 
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INTRODUCTION: 37 

ENMs are widely used in commercial and military applications (e.g. obscurants, armoring, 38 

and self-healing materials) due to their unique properties.1 Once applied, ENMs are inevitably 39 

released into the environment which will continue to increase in the future.2 For example, TiO2 40 

ENMs are a widely used nanomaterial that typically accumulates in municipal waste and sewers.3,4 41 

The released ENMs can potentially negatively impact ecosystem services such as food production 42 

and nutrient cycling5 so accurate ENM risk assessments are needed. However, it is still a 43 

significant challenge to identify the source of ENMs or to quantify the amount of a selected ENM 44 

when present at environmentally relevant concentrations. This is especially true for ENMs made 45 



from earth abundant elements like aluminum, silicon, iron, and titanium that are present in 46 

environmental media at >1 wt% . 6,7  47 

Distinguishing between ENMs and NNMs in environmental matrices like soil is difficult 48 

using conventional analytical instrumentation, especially for ENMs made from earth abundant 49 

elements.  Electron Microscopy (TEM and SEM) can determine the morphology, crystallinity, 50 

elemental composition, and sizes of ENMs in soils. However, it takes considerable effort to detect 51 

ENMs via imaging without automation8, and can be impossible if ENMs are present in low 52 

numbers. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measures the total metal 53 

concentrations in environmental or biological media after sample digestion. Many studies have 54 

used ICP-MS to track the fate of ENMs in soils9–11 and plants12–14. However, this approach cannot 55 

distinguish between metals in ENMs and background concentrations of those metals (particulate 56 

or dissolved), especially at low ENM concentrations.15,16 Filtration and centrifugation can be used 57 

to separate particulate and dissolved fractions, but the size cutoff is operationally-defined, and it 58 

cannot fully distinguish dissolved and particulate measurements.17 Changes in the ratios of the 59 

element of interest versus common earth elements (e.g. Ti and Al) relative to background ratios 60 

have been used to indicate the presence of ENMs, but this cannot determine the specific source of 61 

ENMs.4,8,18 Size separation techniques, such as field-flow fractionation (FFF), asymmetric flow 62 

field-flow fractionation (A4F),19–21 size exclusion chromatography (SEC),22 and hydrodynamic 63 

chromatography (HDC)11 have been used to determine bulk metal concentration as a function of 64 

particle size, but this does not determine single particle compositions. Single-particle Inductively 65 

Coupled Mass Spectrometry (spICP-MS) can measure the mass of metal-based single 66 

nanoparticles one element at a time,23,24 but many ENMs are made from earth-abundant elements 67 

(e.g. Si, Al, Ce, Cu, Ti, and Fe)25 making it difficult to distinguish them from the natural 68 



nanomaterials (NNMs) in the sample that contain similar elements. Determining Ti-based ENM 69 

concentrations is especially challenging since natural Ti is abundant in soils ranging from 0.2 to 70 

2.4% worldwide.26 Measuring multiple elements in each particle simultaneously may identify 71 

differences in the chemical fingerprints between ENMs and NNMs.  72 

Single-particle ICP Time-of-Flight Mass Spectrometry (spICP-TOFMS) can measure most 73 

elements in the periodic table simultaneously on a single particle. This provides a rich data set 74 

consisting of multi-elemental composition of thousands to tens of thousands of individual 75 

nanoparticles in a sample in just a few minutes,27 and can provide a specific elemental fingerprint 76 

and mass distribution for each particle. For example, Ce ENMs can be distinguished from Ce-77 

containing NNMs using a natural tracer (La) that is present in a fraction of Ce-containing NNMs 78 

but not in Ce ENMs.28 However, there are detection limits for each element measured by spICP-79 

TOFMS. This currently limits the lower bound of particle detection to 20 to 30 nm depending on 80 

the element, and limits particle fingerprint information in both ENMs and NNMs. Many elements, 81 

including Ta, Nb, Zr, and rare earth elements are often associated with natural sources of Ti and 82 

may be a “fingerprint” for Ti-containing NNMs29,30 that is distinguishable from TiO2 ENMs which 83 

are relatively pure. Gondikas et al., specifically measured the fingerprint of Ti-containing NMs in 84 

surface water with spICP-TOFMS found that Al, Fe, Mn, and Pb are present in Ti-containing 85 

NMs.8 Baalousha et al., determined the elemental fingerprint of Ti-containing NNMs in three soils 86 

using spICP-TOFMS.31 While these “fingerprints” could be used to differentiate between NNMs 87 

and ENMs, analytical strategies are needed to statistically assess elemental fingerprint information 88 

for thousands of nanoparticles in a sample and determine which, if any, can be used to classify 89 

them as ENMs or NNMs.  90 



Machine learning (ML) classification models learn from complex datasets to identify 91 

important features and formulate classification criterion without domain knowledge. The most 92 

critical aspect of ML models is the consideration of all information within the dataset with many 93 

dimensions of the features that can capture important trends that may not be determined by simpler 94 

regressions or associations. There are two major categories of ML algorithms: unsupervised and 95 

supervised learning.32 Unsupervised learning discovers hidden patterns in unlabeled datasets that 96 

forms correlations between features that considers all available information. Supervised learning 97 

trains on labeled datasets and predicts labels on unseen data, e.g., classification. The performance 98 

of a supervised learning model is measured by predicting on unseen labeled test datasets. ML is 99 

increasingly being applied in environmental science with a few studies focusing on ENMs. One 100 

study implemented a gradient decision tree with boosting classification (GBC) and recursive 101 

feature elimination (RFECV) to distinguish natural and engineered Ce-containing nanoparticles.28 102 

Another study used linear discriminant analysis (LDA) to classify isotopic fingerprinting of SiO2 103 

NPs.33 Both models handled only a limited number of features (i.e. elements or isotopes). For the 104 

GBC model, they limited the model to 25 features (and reduced this to 17 with RFECV) and the 105 

LDA model used two features at a time. While these models could classify ENMs and NNMs for 106 

these particles, the ability to classify TiO2 ENMs and other ENMs made from earth abundant 107 

elements in soil may require different approaches. For example, features other than chemical 108 

fingerprint such as mass distribution of particles may also be important for accurate classification.  109 

The objective of this study is to determine the properties of Ti-based NNMs and ENMs that 110 

can be used to identify a specific Ti-based ENM in soils with background Ti-based NNMs. We 111 

first investigate how the mass (size) and elemental fingerprints measured by spICP-TOFMS of Ti-112 

based NNMs vary depending on soil type and how these potentially affect classification. Machine-113 



learning models are developed to distinguish two synthesized Ti ENMs (30 nm and 100nm) and 114 

Ti-ENMs recovered from wastewater treatment plant sludge from background Ti-based NNMs 115 

present in three types of soil. The model consists of a dimension reduction method (non-negative 116 

matrix factorization, NMF) and a linear classification model (Logistic Regression, LR) with k-fold 117 

validation. To determine the particle concentration detection limit of Ti-ENMs in soil, the trained 118 

model is then applied to Ti-particles extracted from soils dosed with varying concentration of TiO2 119 

ENMs. The model uses both Ti mass distribution and elemental fingerprinting for classification 120 

because a large portion of Ti-based NNMs do not have elemental associations. The model 121 

performed the best with test cases that have significant Ti-mass difference between ENMs and 122 

NNMs. While machine learning models are specific to the data they are trained on, our approach 123 

can confirm the presence of a specific TiO2 ENM in a soil with a measured fingerprint of Ti-124 

NNMs, but accurate quantification is not yet possible for TiO2 ENMs with similar size 125 

distributions as the Ti-based NNMs.  126 

METHODS 127 

Experimental Design 128 

The elemental fingerprints and mass distributions of Ti-containing NNMs extracted from 129 

three different soils and three Ti-based NMs from different sources (two commercially available 130 

synthesized TiO2 NPs and Ti-based NMs extracted from sewage sludge) were used to develop 131 

machine learning models (3x3 matrix, Table S2) to classify between natural and engineered Ti-132 

based NMs in soil. While the two synthesized TiO2 NPs are pristine “as manufactured” ENMs, the 133 

Ti-based NMs extracted from wastewater sludge is more likely a unique mixture of ENMs and 134 

NNMs. Therefore, we label the sludge as its own category, “Ti-sludge”. We refer to Ti-sludge as 135 

an “ENM” to distinguish it from NNMs recovered from soils. The mass distributions and elemental 136 



fingerprints were measured by spICP-TOFMS for each NM. To do this, the extracts from soil were 137 

diluted with DI water, and ENMs were suspended and diluted in DI water. For the discussion of 138 

this study, first the NNMs extracted from one soil is paired with the three different ENMs to 139 

determine how ENM particle type affects the ability to classify them in a particular soil. Then, one 140 

ENM type is paired with three different NNMs to understand if different natural backgrounds can 141 

influence the classification of a particular ENM type. Therefore, five of the nine cases are 142 

explained in detail in the results and discussion section while the remaining cases are explained in 143 

SI (Figure S10). The limit of TiO2 ENM detection was also approximated. This was done by adding 144 

different known amounts of a TiO2 ENM to a soil, extracting all NMs (<500 nm size fraction) 145 

from soil using an established method, determining their mass distribution and elemental 146 

fingerprints by spICP-TOFMS, and using the trained ML model to quantify the number of TiO2 147 

ENMs extracted from the soil. 148 

Materials and Samples 149 

Polyvinylpyrrolidone (PVP) 70 kg mol-1, triethanolamine (TEA), diethylenetriamine 150 

pentaacetate (DTPA), sodium chloride, and Triton X-114 were purchased from Sigma Adlrich. 151 

Carboxymethyl cellulose 700 kg mol-1 was purchased from Acros Organics. All chemicals have a 152 

purity of ≥ 99%. 153 

Three types of Ti-based ENMs and three NNMs were used in this study. TiO2 anatase 154 

nanoparticles of a 30nm nominal size were purchased from US Research Nanomaterials (Ti30). 155 

TiO2 (rutile) nanoparticles with an average size of 100nm were provided by the US Army Research 156 

Office (Ti100). Both ENMs were received as dry powders. The mineral phases for Ti100 were 157 

confirmed by XRD (Figure S3). The mineral phase for Ti30 was determined from XRD and was 158 

provided by the manufacturer.  For the ENMs (Ti100 and Ti30), the particles were characterized 159 



by TEM, DLS, and spICP-TOFMS (Table S1) in DI water. The suspensions were bath sonicated 160 

for 30 minutes in an ice bath prior to characterization. The particle size and morphology were 161 

determined by TEM using a JEOL JEM-2000EX and ImageJ software. The hydrodynamic 162 

diameter of the ENMs was measured by a Malvern Zetasizer Nano ZS at 10 mg l-1 in 5 mM NaCl 163 

with a pH of 5.6. The sewage sludge containing TiO2 ENMs (Ti-sludge) was produced in a 164 

wastewater treatment plant at Eawag (Zurich, Switzerland). Further details of the sludge are 165 

provided in previous studies.34,35 ENMs could be introduced into terrestrial ecosystems through 166 

the application of treated wastewater sludge so they represent an environmentally relevant input 167 

of ENMs entering soils.36 It is important to note that the Ti-based NMs in the sludge can be from 168 

both natural and anthropogenic sources, but in TEM-EDX analysis, TiO2 ENMs were identified.35 169 

NNMs were extracted from three types of soils: a loamy sandy soil (L22) (Lufa 2.2, Germany), 170 

a loamy soil (LUV) (Luvisol, WRB, 2006) collected from La Côte Saint-André (Isère, France), 171 

and a calcareous clayey loam soil (ARZ) collected from a plot at the Marcopa Agricultural Center 172 

(33°04′ 22″ N, 111° 58′ 26.5″ W) in Arizona, USA.37,38 These soils were selected to provide a 173 

range of geographical locations and soil properties (Table S2). LUV soil has the highest organic 174 

carbon content (2.23%) followed by L22 and ARZ soil (1.71% and 0.54% respectively). L22 is 175 

the most acidic soil (pH = 5.8) with LUV soil being circumneutral (pH = 6.4) and ARZ soil being 176 

alkaline (pH = 7.6). Lastly, ARZ soil has the highest clay content compared to L22 and LUV soil. 177 

We hypothesized that with different soil properties and source formations there would be distinct 178 

Ti chemical fingerprint in each NNMs.  179 

For spICP-TOFMS analysis, dissolved multi elemental standards (10 ppm) were purchased 180 

from Inorganic Ventures. Tuning solution from Thermofisher containing 1 ppb of dissolved Co, 181 

In, Ce, and U was used to calibrate the optics of the instrument and TOF detector. For the Au 182 



nanoparticle standard, citrate capped Au nanoparticles (particle size = 50nm) were purchased from 183 

Sigma Aldrich (particle size distribution by TEM = 49.1 ± 6.51 nm, number of particles = 193). 184 

ENM Dosing Procedure 185 

To approximate the detection limit of the method, Lufa 2.2 soil was dosed with Ti100 186 

ENMs at nominal concentrations of 70, 150, 300, 700, and 7,000 mg-TiO2 kg-1 using previously 187 

published methods to provide uniform mixing which is briefly described later.39 The detection 188 

limit in this instance is defined as the minimum ENM concentration in soil the model can 189 

confidently predict and be statistically different from undosed soil. These dosed concentrations are 190 

higher than what is predicted for soil with current material flow models, but the goal here is to 191 

estimate the minimum ENM concentration needed for detection using our sample preparation and 192 

ML model.40 While the Ti100 ENM suspension was bath sonicated, an aliquot was pipetted and 193 

evenly distributed in the soil to achieve field capacity moisture content (22%). The sample was 194 

thoroughly mixed by wooden sticks for at least 15 minutes and transferred to a PTFE centrifuge 195 

tube, loosely capped, and stored in dark for 24 hours to allow interaction with the matrix.  The 196 

samples were then subjected to the NM extraction procedure (details below). It is worth noting 197 

that the 24-hour incubation time is relatively short and may not include long-term aging processes 198 

that can affect extraction efficiency, e.g., heteroaggregation. However, the objective of this study 199 

is to determine how well the ML model predicts ENM concentrations in impacted soils, and aging 200 

effects were not considered in this study.   201 

Soil NM Extraction Procedure 202 

The <500 nm particles were extracted from soil and sludge using a previously described 203 

method.37 Briefly, the sediment was preconditioned with a NaCl solution at a 1:10 solid to liquid 204 



ratio. The extraction solution is then added to the mixture containing carboxymethyl cellulose to 205 

enhance the stabilization of nanoparticles against aggregation. This soil/solution mixture is 206 

centrifuged at a particle size cut-off of 500 nm for soil assuming a bulk soil density of 2.65 g cm-207 

3 (300 g for 5 mins using a JS 5.2 Swingbucket rotor). The supernatant containing the nanoparticles 208 

goes through a cloud point extraction (CPE) enrichment step. A surfactant, Triton X-114, and NaCl 209 

were added to the extract to achieve a final concentration of 0.2% and 10 mM, respectively. The 210 

mixture was then heated at 40°C for 1 hour to form micelles. This was centrifuged to create a 2-211 

phase system: a surfactant-enriched phase containing the nanoparticles and water phase containing 212 

the ions. The enriched surfactant phase containing nanoparticles was diluted and washed several 213 

times by DI water and centrifugation. These samples were then stored in the dark at 4°C until 214 

analysis.  215 

spICP-TOFMS 216 

The spICP-TOFMS 1R by TOFWERK (Zurich, Switzerland) is used for this study. For 217 

ICP-TOFMS analysis, <500 nm extracted suspensions were diluted with DI water to 105 to 106 218 

particles ml-1for analysis. The samples were then bath sonicated for 8 minutes prior to 219 

measurement. The instrument was calibrated from dissolved metal standards (Inorganic Ventures) 220 

with a range from 10 ppt to 5 ppb in 1% trace-metal grade HNO3. The spICP-TOFMS tracks 221 

multiple elements simultaneously during acquisition. Table S4 provides a list of optic and TOF 222 

detector parameters. The spICP-TOFMS detector system is a microchannel plate detector (MCP) 223 

converts the ion momentum into measurable signal. The TOF extraction frequency (extractions 224 

per s) for all isotopes is 33 kHz. Then these extractions were averaged over an integration time of 225 

2 ms to provide each data point. Shorter dwell times were tested but we did not observe any 226 

significant difference in the single particle dataset. We also did not observe split-peak particles 227 



after the correction (explained later). Particle coincidence could occur resulting in false positives 228 

of multi-elemental particles. We predicted that a small fraction (less than 10%) of the multielement 229 

particles could be false positive. Further discussion is provided in SI. The transport efficiency was 230 

calculated using the size based method with a 50 nm Au nanoparticle suspension (Sigma Aldrich) 231 

as previously described.41 Instead of the peak height, the peak area was used to measure Au-based 232 

signal of the individual particle events. 233 

Single particle processing was achieved using Python script provided by TOFWERK. This 234 

process allowed for the detection of single particles from baseline signal. For each sample 235 

acquisition, the mean and standard deviation signal of the sample was calculated for every isotope 236 

in 100 integration time point intervals. Since each sample acquisition is made up of 60,020 data 237 

points, the identification of single particle events is compartmentalized in discrete 100-time 238 

intervals where the particle events are compared to localized background signal in the same 239 

interval. The threshold for single particle detection follows the International Union of Pure and 240 

Applied Chemistry (IUPAC) guideline to describe low intensity noise (threshold = µ + 3.29σ + 241 

2.72, µ and σ is the average and standard deviation of signal intensity, respectively).42 Any 242 

integration time point above this threshold is considered a single particle event. The detection limit 243 

varies because the calculated threshold compared to background signal is different for each 100-244 

integration time point interval. Detection limits of single particles for every isotope can be 245 

estimated by calculating the average threshold from background signal in each sample. For 48Ti, 246 

the average detection limit size of a TiO2 particle (assuming a spherical shape and rutile density of 247 

4.23 g cm-3) for all samples measure is approximately 36 nm which is on par or better than previous 248 

spICP-MS studies.4,8,43,44 This is mainly due to the high dilution factor in DI water and low 249 

background signal (0.01 to 0.02 µg L-1). Once the single particles are identified, the baseline signal 250 



average and standard deviation are recalculated. If more single particles are detected, then this 251 

process is iterated up to 10 times before proceeding to the next window of 100 integration time 252 

points. This is an iterative approach to ensure no outliers are found in background signal. Split-253 

peak particle events occur when a single particle event corresponds to multiple integration time 254 

points. These signals are added together and are reported as a single particle event (maximum of 255 

3 consecutive particle signals). Signal loss does not occur during split-peak particle events. 256 

Machine Learning Model  257 

Binomial Logistic Regression (LR) was used to classify ENMs and NNMs. The pipeline 258 

of this model was written in Python Sci-Kit Learn Module. Other classification models were also 259 

evaluated and compared to the LR results. This pipeline consists of three components: pretreatment 260 

of the data set, training the classification model, and testing (Figure S1). The data set is comprised 261 

of masses and elemental fingerprints from ENM and NNM samples measured by spICP-TOFMS 262 

separately. Data from each of the six NMs analyzed are then parsed in Python to only include Ti-263 

particle events. For each ENM-NNM test case that is discussed in the “Experimental Design” 264 

section and in Table S2, the single particle data from an ENM is randomly mixed with equal 265 

portions of single particle data from an NNM (50% ENM and 50% NNM) to provide a balanced 266 

dataset. Twenty percent of the mixed data is withheld as a test data set and remaining 80% is used 267 

for training. Training datasets undergo a data transformation method called non-negative matrix 268 

factorization (NMF).  Similar to principal component analysis, the purpose of NMF is to reduce 269 

the dimensionality of the given features (i.e., analytes) to 10 components while preserving all 270 

elemental information. This dimensionality reduction technique is well-suited for single-particle 271 

mass data because it requires all values to be non-negative. We also have varied the number of 272 

components between 5, 10, 15, and 20 and found that 10 or higher provided the best performance 273 



(Details in SI). In addition to the NMF components, a 48Ti component was implemented, so the 274 

model can consider Ti mass separately from other elements during classification. This enables the 275 

model to use mass distribution and elemental fingerprint differences simultaneously. The LR 276 

model is then trained on the dataset using five-fold cross validation and the limited-memory 277 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm as the solver.45 To train, the LR model 278 

optimizes the weight to each of the eleven components for the best classification performance. The 279 

weights of the model components are then updated, and it reiterates this process until the algorithm 280 

converges with a 0.001 tolerance stopping criteria. The trained model is then evaluated with the 281 

test data set. Each test data point is given a probability of being ENM or NNM. This process is 282 

done for every scenario between the three NNMs (Lufa 2.2, Luvisol, and Arizona) and the three 283 

ENMs (Ti-sludge, Ti100, and Ti30), in total producing nine different trained models and predicted 284 

scores. The particles are then assigned to three categories: classified (≥85% predicted probability 285 

in the correct category), uncertain (between 15% and 85%), and incorrectly classified (< 15%). 286 

Table S2 displays which figure each test case results are in (Figure 3, 5, and S10). The 85% and 287 

15% confidence level are operationally defined to categorize the test dataset and to compare all 288 

cases. The importance of each element was calculated for each case and the top isotopes are listed 289 

in SI (Figure S14, S15, and S16). The trained L22 + Ti100 model was then used to predict the 290 

classification of extracted Ti-containing NMs from L22 soil dosed with 70, 150, 300, 700, and 291 

7,000 mg kg-1 of Ti100 ENMs. The model predicts the percentage of ENM particles in the dosed 292 

soil. Python script for the spICP-TOFMS ML model, fingerprinting analysis, detection limits, 293 

including figures are available in Github (github.com/gbland0725/sphandles/) and functionality 294 

can be imported as a package via TestPypi (test.pypi.org/project/sphandles/). 295 

Total Ti concentration 296 



We determined the Ti concentration (mg kg-1 soil) in L22 soil without ENM addition and 297 

after being dosed at 70, 700, and 7,000 mg kg-1 of Ti100 ENMs. We also measure the mass of 298 

extracted Ti to calculate the extraction efficiency. The soil or the extracted NMs were oven dried 299 

(60°C) for 48 hours and ground by mortar and pestle before analysis. Total Ti concentration was 300 

determined by digestion followed by ICP-OES measurement as previously described.46 Briefly, 301 

20 to 30 mg of ground material is transferred to a 20 mL Teflon tube for chemical digestion. The 302 

following mixture is added for digestion: 5 ml 70% HNO3, 0.2 ml HF (48%) and 0.5 mL H2O2 303 

(30%). The sample is then microwaved in an MLS ultraclave. A reference soil (Canadian 304 

Reference Soil SO-1) with a Ti content of 0.53% is also used to validate Ti concentrations which 305 

are in a similar range to the other soils (0.32%, 0.27%, and 0.17% for ARZ, LUV, and L22 soil, 306 

respectively). Ti recoveries of the reference soil was 89.9% ± 2.3% (n = 2).  307 

Results and Discussion 308 

Characterization: Elemental Fingerprints and mass distributions of the Ti-particles 309 

We determined the fraction of Ti particles in each sample with elemental associations and 310 

the most common elements associated with Ti-containing particles for each NNM and ENM 311 

(Figure 1). Elemental associations are defined as single element particle events identified within a 312 

single dwell time point after split peak correction. For the NNMs in soil (LUV, L22, and ARZ), 313 

between 20% to 35% of the Ti-particles were associated with other earth-abundant elements (e.g., 314 

Ce, Ba, Rb, Fe, Mg, Mn, Nb, and Pb). Often the Ti particles were associated with several different 315 

elements. Interestingly, there were only minor differences between particles recovered from each 316 

soil, despite that the soils were sourced from different regions and have different properties (Table 317 

S2). We hypothesized that NNM in the L22 soil would have more differences because the acidic 318 

pH and higher organic matter content could mobilize Ti into other soil particles. However, the 319 



three soils used here do not likely represent all soil types. Importantly, there was a significant 320 

fraction of Ti particles that were not associated with any other elements (80, 81, and 65% for ARZ, 321 

L22, and LUV respectively). This is likely because the most common forms of titanium minerals 322 

(TiO2, rutile and anatase) are resistant to weathering and have low solubilities.47–49  Isomorphic 323 

substitution and incorporation of other elements into Ti-NMs are minimal and the morphology is 324 

well preserved. Adsorption of another element (e.g., Fe) on the surface of the Ti-NMs is possible. 325 

However, even if all the adsorption sites were saturated (one atom thick layer around a 100nm 326 

TiO2 sphere), the mass of the adsorbed element is not sufficient to be measured as a particle event 327 

by the spICP-TOFMS because it would be below the detection limits (10-16 to 10-17 grams for most 328 

elements). Previous studies have also reported the presence of <100 nm TiO2 NNMs in soils and 329 

sludge.35,50 Ti particles may have trace elements associated but given the detection limits of the 330 

spICP-TOFMS, there may not be enough mass of the trace element to be recognized as a single 331 

particle event.  332 

  For both pure synthesized ENMs (Ti100 and Ti30), there are negligible amounts of other 333 

elements in the particles, as expected for an engineered material (> 98% of the particles were only 334 

Ti). For the Ti-sludge (presumed to be primarily ENMs entering the treatment plant)35, a large 335 

fraction (65%) of Ti-particles are associated with other elements like Ag, Fe, and Pb. This is likely 336 

because the Ti-containing particles are heteroaggregated with organic particles containing other 337 

metals. The organic carbon content of the colloids from the sludge is 36.9 ± 0.6%, and SEM images 338 

from a previous study showed the TiO2 particles embedded into organo-mineral 339 

heteroaggregates.35 A few elements were found in both NNMs and Ti-sludge particles, including 340 

Fe, Mg, and Ba. However, there were also unique elements associated only with Ti-sludge 341 

particles, including Cu, Ag, and Pb. The Ag attachment is high because this sludge was also 342 



deliberately dosed with AgNPs.34 Similar to the soils, there are also a substantial fraction of Ti 343 

particles (43% of the particles) that are not associated with other elements. Therefore, formulating 344 

a classification criterion based strictly on elemental fingerprint of Ti-containing particles will not 345 

be robust because of the significant number of Ti-particles without associated metals, and in the 346 

case of the Ti-sludge, because they have similar elemental associations as the soils.  347 

 348 

Figure 1: The fingerprints of multi-element Ti NNMs in L22, ARZ, LUV, and recovered Ti-NMs 349 

from Sludge. The major isotope except for Fe (54Fe) is used to represent each element. Note that 350 

Ti30 and Ti100 are not shown because they had no element associations (pure Ti). Total values 351 

were calculated by the percentage of total Ti particles associated with each element. The values 352 

were then normalized to one to compare between samples. (
% 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑇𝑖−𝑁𝑀𝑠 

∑ % 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑇𝑖−𝑁𝑀𝑠10
𝑘=1

) 353 

The Ti particle mass distribution differences was also used for classification. The mass 354 

distribution of Ti-particle events was determined by spICP-TOFMS for each of the samples 355 



(Figure S9). All Ti-based NNMs have a similar mass distribution, with medians of 1.78, 1.37, and 356 

1.40 x 10-16 grams for ARZ, L22, and LUV, respectively. This correlated to sizes with mean and 357 

standard deviation of 49.9 ± 22.5 nm, 49.3 ± 30.6 nm, and 48.8 ± 26.2 nm, respectively, assuming 358 

spherical rutile particles. The similar median particle masses are possibly because most of the 359 

identified Ti-particles are near the average IUPAC threshold, so smaller particles in the distribution 360 

are not detected. The range of masses for the sludge Ti-particles is larger, from 10-16 to 10-13 grams. 361 

For all samples, the range of mass distribution for Ti-particles without other associated metals is 362 

similar to the overall Ti-mass distribution, indicating that the types of impurities associated with 363 

the Ti particles is not dependent on Ti mass. The ENMs, Ti100 and Ti30, had narrow mass 364 

distributions, and were slightly higher than the size range determined by TEM (Table S1).  365 

ML Model Selection and Comparison 366 

Different types of machine learning models were investigated to determine the most 367 

appropriate for classification, including Gradient Boosting Classification (GBC), Random Forest 368 

Classifier (RFC), and Neural Networks with either a ‘relu’ or ‘logistic’ activation layer (NN1 and 369 

NN2, respectively). Performance is based upon training data from Ti100 and L22 case. The 370 

average five-fold cross validation accuracy was used to compare each model and classification 371 

was operationally assigned as >85%= correct, 15% to 85% = uncertain, and <15% = incorrect. 372 

One major criterion for model selection is high precision of the ENM category: i.e., maximizing 373 

the amount of ENMs predicted correctly while minimizing the amount of NNMs predicted 374 

incorrectly as ENMs (false positive). All models exhibited similar trends as the LR model. The 375 

major difference is the sensitivity of the mass discrimination difference between ENMs and 376 

NNMs. GBC and RFC models had similar performance putting 80.6% of particles in the correct 377 

category (i.e., above 85% confidence), about 2 times greater than the LR model (40%). However, 378 



the percentage of incorrectly classified particles (4.6%) is also about 5 times higher than for the 379 

LR model that has only 0.9% incorrect.  NN1 also had a similar performance with 79.6% correct 380 

and 4.2% incorrect. NN2 was similar to the LR performance at 39.1% correct and 0.9% incorrect 381 

which is not surprising given the activation layer is the same mechanism (logistic function). The 382 

greater number of false positives (i.e., NNM predicted as ENM) for the GBC and RFC models was 383 

because they classified pure Ti particle events stochastically. This is evident from larger Ti100 384 

ENMs classified below the 85% confidence level. Note, if the operationally defined classification 385 

boundary was shifted to a 75% confidence level, the difference in performance between the models 386 

was considerably smaller (Table S3). The NN models are similar to LR but can describe 387 

nonlinearities within components which may produce overfitting and lose generalization of the 388 

data. The highest precision of the ENM category was NN2 and LR. We conclude that the 389 

performance of the models is primarily based on how the model weighted the Ti mass-390 

discrimination for the pure Ti-NNMs and decided to choose LR to minimize the number of 391 

incorrect particle events and to determine the important features for each ENM + NNM case. All 392 

models performed worse without including the mass distribution.  393 

Table 1: The classification performance results of each ML model for the Ti100 + L22 Case. 394 

(>85% = correct, 15% to 85% = uncertain, <15% = incorrect). Number of simulations = 9. Average 395 

percentage values are reported with standard deviation in parentheses.   396 

Model Type Certain (> 85%) Uncertain (15% to 85%) Incorrect (< 15%) 

RFC 80.7 (1.3) 14.9 (1.6) 4.5 (0.5) 

GBC 81.5 (1.2) 14.5 (1.5) 4.1 (0.5) 

NN1 82.3 (0.6) 13.3 (0.7) 4.4 (0.3) 

NN2 38.3 (1.6) 60.7 (1.6) 0.9 (0.1) 

LR 41.3 (1.8) 57.7 (1.9) 1.0 (0.2) 

 397 



 398 

Figure 2: The precision of the ENM category for each ML model (number of simulations = 10) 399 

with a confidence interval of 95%. Symbols represent statistical similarity (One-way ANOVA, 400 

similarities contain a p-value >10-2).  401 

ML Models for distinguishing between Ti-based NNMs and ENMs 402 

Influence of ENM type on model performance 403 

The ML model was trained to distinguish between ENMs and NNMs. For this discussion, 404 

we first focus on the ability to distinguish each ENM (Ti30, Ti100, and Ti-sludge) from the Ti-405 

based particles recovered from the L22 soil. Figure 3 displays the probability of correctly 406 

predicting the category of each Ti particle. Figure 3A displays specifically for the Ti100 + L22 407 

case, 3B shows the Ti30 + L22 case, and 3C shows the Ti-sludge + L22. For each test case, the 408 

left scatter plot depicts only the Ti-NNMs and their probability of being predicted as ‘Natural’ by 409 

the model as a function of Ti-mass. The right scatter plot displays only Ti-ENMs and their 410 

probability of being predicted as ‘Engineered’. The filled circle markers are Ti-NMs that are 411 

associated with at least one other element, while the open circle markers are Ti-NMs that are 412 
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unassociated with other elements (only 48Ti or 48Ti and 46Ti). The pie chart on the right shows the 413 

percentage of the total particles having a probability > 85% in the correct category as green, 414 

uncertain (< 85% and >15 %) as orange, or incorrectly classified (<15%) as red. The elemental 415 

fingerprint for each test case was evaluated for comparison between correctly classified (> 85%) 416 

and the uncertain/incorrectly classified particles (Figure S11). We use both 46Ti and 48Ti for this 417 

analysis. Because 48Ti is the main isotope, we refer this as the total Ti and report 46Ti separately.   418 

The model performed best for the Ti100 + L22 (40.3% correctly classified). To better 419 

understand the reasons for the correctly classified particle population, we separated the L22 NNMs 420 

and Ti100 ENMs and plotted each as a function of Ti-mass (Figure 3a). For the L22 Ti-NNMs 421 

(left scatter plot), two trends are prominent (a and b). One is a population of particles that creates 422 

a sigmoidal curve below the 85% confidence level. The sigmoidal curve of Ti-NNMs below the 423 

85% confidence level (orange markers) does not contain any elemental fingerprint information and 424 

the model exclusively compares the Ti-mass to distinguish the NNMs from ENMs. Therefore, the 425 

certainty of assignment as a Ti-NNM decreases as the Ti-mass increases (b). The second is the 426 

population of particles that lie above the 85% confidence level, many at the 100% level, that are 427 

independent of particle mass (a). These particles all have elemental fingerprints (e.g., Ba, Mg, V, 428 

Nb) that are not found in the ENMs, and therefore are correctly assigned as an NNM. The 429 

elemental fingerprint of the L22 Ti-NNMs are plotted in Figure S11A. 430 

The right scatterplot contains only the Ti100 ENMs. The ENMs have no chemical 431 

fingerprint so they lie on the sigmoidal curve. As the mass increased, so does the confidence that 432 

they are correctly assigned as an ENM(c). Because of the mass difference between L22 and Ti100 433 

(Figure 4), the model can correctly predict 68% of the Ti100 ENMs >85 % confidence, making 434 

Ti100 detectable in soil. 435 



For the Ti30 + L22, the model does a poor job in its assignments (6.2% correctly classified 436 

with a probability >85%). This is because the Ti-mass distribution for the ENMs and the NNMs 437 

are overlapping (Figure 4). Therefore, the model uses only the L22 NNMs particles’ elemental 438 

fingerprint for classification. Figure 3b indicates that only Ti-containing NNMs that associate with 439 

other elements are being correctly classified as such with confidence >85%, while the Ti30 ENMs 440 

are indistinguishable. With the majority (80%) of L22 Ti-NNMs not having element associations, 441 

and having a similar size to Ti30 ENMs, predicting any Ti30 ENM contribution in this soil is not 442 

feasible.  443 

For the Ti-sludge + L22 case (Figure 3c), the model performed adequately with 35% of the 444 

Ti-sludge NMs being correctly classified with >85% confidence. Unlike the cases with “as 445 

manufactured” ENMs, the NNMs in L22 soil were mostly classified as uncertain or incorrect with 446 

a few outliers in the correct category when trying to distinguish them from the Ti-sludge NMs. 447 

This is because the L22 Ti-NMs that have elemental associations are also found in Ti-sludge 448 

containing Mg, Mn, Pb, and Ba, so the model was not able to confidently distinguish them either 449 

as ENMs or NNMs. The unique elemental associations in the Ti-sludge such as Sn, Ag, and Cu 450 

(Figure S11D) led to a fraction of recovered Ti-NMs having a high confidence regardless of Ti-451 

mass, but the model did allocate a small fraction of multi-element recovered Ti-NMs that have Ag 452 

between 50 and 85% confidence (Figure S13). Ti-sludge particles without elemental associations 453 

follow a sigmoidal curve similar to the L22 + Ti100 case as a function of Ti-mass.  454 

Nearly half of the Ti-sludge NMs had an elemental fingerprint. So, even though they have 455 

an overlapping mass distribution with the Ti-based NNMs in L22, 35% of them were 456 

distinguishable from the NNMs recovered from L22 soil.  The lower amount of distinguishable 457 

ENM particles (35%) than the amount with an elemental fingerprint (54%) indicates that the 458 



fingerprint was not unique enough to distinguish them from NNMs of soil. This may be because 459 

the Ti-sludge particles are associating with organic sludge particles, giving them a similar 460 

fingerprint.  Previous studies have hypothesized that TiO2 ENMs could attach to aluminosilicates 461 

via heteroaggregation and would lead to detection of multiple elements in a single particle by 462 

spICP-TOFMS but this warrants further investigation.51,52 In the testing set, there is also a 463 

significant portion of Ti NMs in the sludge (46%) and in L22 (81%) soil that do not have elemental 464 

associations, but do have the same size distribution. This prevents higher model performance. Even 465 

though the Ti-sludge particles cannot be fully classified in L22 soil, the model recognizes a specific 466 

fingerprint and can distinguish a portion of Ti-sludge ENMs with high confidence.  467 



 468 

 469 

Figure 3: Effect of engineered particle type on the ability to classify ENMs and NNMs. ML results 470 

are trained on training datasets and predicts on a held-out test dataset for the following test cases 471 

(A) Ti100 + L22, B) Ti30 + L22, and C) Ti-sludge + L22. For each test case, the left scatter plot 472 

shows only Ti-NNMs (L22) displayed as the probability of the ML model predicting the correct 473 

category (NNM) as a function of Ti mass. The right scatter plot displays only the Ti-ENMs as the 474 

probability of the ML model predicting the correct category (ENM) as a function of Ti mass. Green 475 
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represent Ti-NMs correctly classified (> 85%) and orange is uncertain or misclassified (<85%). 476 

Filled circle markers are Ti-NMs with elemental associations and open circle markers are without 477 

elemental association. These colors correspond to the elemental fingerprint information in SI 478 

(Figure S11). The pie charts display the percentage of total Ti-NMs categorized as correct (green; 479 

>85%), uncertain (orange; <85% and >15%), and incorrectly classified (red; <15%).  480 

 481 

Figure 4: Comparing Ti-mass distribution between L22, Ti30, and Ti100. L22 and Ti30 482 

significantly overlap while a clear separation exists between L22 and Ti100. 483 

Influence of Ti-NNM properties on ability to classify Ti-based ENMs 484 

The ability to classify Ti100 ENMs in each soil type was assessed to determine if 485 

differences in elemental fingerprint and size distribution of the NNMs affected the ability to detect 486 

the Ti100 ENMs. The model was able to classify the Ti100 ENMs in all three soils. The model 487 

performed best for the Ti100 + ARZ (64.5%), followed by Ti100 + LUV (50.3%) and Ti100 + 488 

L22 (40.3%) (Figure 4). Note that the Ti100 + L22 case is shown in Figure 3. For the ARZ case, 489 

a portion of Ti-NNMs without elemental associations were classified correctly (> 85%) because 490 



of their narrow mass distribution compared to LUV and L22. For the LUV case, there are more 491 

Ti-NNMs that associate with other elements compared to L22, and therefore more particles were 492 

correctly classified in the LUV soil compared to the L22 soil. 493 

For all cases, the classification of the ENMs followed a sigmoidal curve which is expected 494 

since Ti100 did not have any elemental associations and the model used Ti-mass only for 495 

classification. The similar model results from the three cases reflects the similar elemental 496 

fingerprint amount and mass distribution between the three NNMs, even though the soils are from 497 

different locations and have different soil properties (Table S2). This is also reflected in the results 498 

of the remaining four cases in SI (Figure S10) 499 

The model also determines what elements are important and used to measure how size and 500 

elemental fingerprint are weighted for each test case. The element importance is determined by a 501 

LR model (Figure S14, calculations described in SI). For this calculation, the frequency of the 502 

element within the sample is considered. For the L22 and ARZ soil cases, 46Ti and 48Ti are the 503 

most important analytes for the prediction of a Ti-particle. This is expected because the model 504 

identifies the significant Ti-mass differences to classify the two categories. The remaining analytes 505 

are only identified in NNMs, such as 93Nb, 25Mg, 208Pb, 57Fe, 55Mn, 90Zr and 138Ba. For the LUV 506 

case, 55Mn ranked higher than 46Ti as the second most important element. The model also identified 507 

elements that are exclusively important to each soil: 51V in L22, 85Rb in LUV and 89Y in the ARZ 508 

soil. Even though these are minor components in the fingerprint, the model does identify important 509 

elements specific to each NNM.  510 



  511 

Figure 5: Effect of soil type on the ability to classify ENMs and NNMs. ML results of the training 512 

data for each test case (LUV + Ti100, ARZ + Ti100). Left scatter plots are only Ti-NNMs (L22) 513 

displayed as the probability of the ML model predicting the correct category as a function of Ti 514 

mass. Right scatter plots are the same but for only Ti-ENMs. Green represent Ti-NMs correctly 515 

classified (> 85%) and orange is uncertain or misclassified (< 85%). The pie charts display the 516 

percentage of total Ti-NMs categorized as correct (green), uncertain (orange), and incorrectly 517 

classified (red). 518 

Classifying Ti100 ENMs in dosed L22 soil 519 

We tested the ability of the trained ML model (Ti100 + L22) to classify the <500 nm sized 520 

particles extracted from L22 soil dosed with Ti100 particles as either ENMs or NNMs. Five 521 
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different Ti100 ENM concentrations were used (70, 150, 300, 700, and 7,000 mg kg-1) along with 522 

an undosed (blank) soil to determine if the classification accuracy depended on particle 523 

concentration. Recovered Ti-containing particle concentrations ranged from 9.7 x 1010 to 6.1 x 524 

1011 particles per g of soil (150 mg kg-1 and 7,000 mg kg-1 TiO2, respectively). The number of 525 

particles predicted as ENMs (> 85% probability) increased with increasing Ti100 concentration 526 

(Figure 6). The amount of Ti100 added to the soil correlated to the total amount of Ti that was 527 

extracted (Figure S22), suggesting that the extraction procedure was recovering the added Ti100 528 

particles. From the blank, the total background Ti is approximately 1,600 mg kg-1. Therefore, total 529 

Ti recovery for dosed TiO2 ENMs was not achieved for dosed concentrations lower than 7,000 mg 530 

kg-1. However, more Ti-containing particles were being recovered in dosed soils. At the highest 531 

nominal concentration (7,000 mg kg-1), the percent recovery of Ti was 36 ± 15 % by mass. This 532 

highlights the value of spICP-TOFMS for identifying recovered individual Ti-containing particles 533 

rather than total Ti in a sample. For the blank L22 soil, the model predicted low amounts of 534 

particles labeled as ENMs (0.4%). These particles predicted as ENMs were unassociated with any 535 

elements and had a mass distribution that is similar to the Ti100. There is not a statistically 536 

significant increase in the predicted ENMs between the blank L22 and the soil with 70 mg kg-1 537 

TiO2, but there is a difference between 70 mg kg-1 and 150 mg kg-1   amended soils, and between 538 

150 mg kg-1 and 300 mg kg-1 (P value < 10-2). So, the detection limit for the Ti-100 ENMs in L22 539 

is about 150 mg kg-1.  Current ENM emission models estimate 0.1 to 10 mg kg-1 of nano TiO2. 540 

However, sludge and sludge-treated soil may exhibit higher concentrations that could be similar 541 

to or exceeding the detection limit.40,53 A factor to consider in this estimate of the detection limit 542 

is aging time. Using an aging time greater than 24 hours could lower the extraction efficiency of 543 

the NMs from soil, thus increasing the ENM particle detection limit. A previous study performed 544 



a similar experiment with CeO2 ENMs dosed in soils and a trained ML model that included 17 545 

other elements. Their ML model detected more ENMs in dosed soil with concentrations of 40 mg 546 

kg-1  and above.28 This is not surprising given the distinction of Ce-based ENMs in soils is easier 547 

because of the unique elemental fingerprint in Ce-NNMs (e.g., Ce + La) and the lower abundance 548 

of Ce-NNMs in soil.  549 

 550 

Figure 6: The ability to detect Ti100 ENMs dosed into L22 soil as a function of ENM 551 

concentration. Ti particle concentration for each dosed Lufa soil: Blank (0 mg kg-1), 70 mg kg-1, 552 

150 mg kg-1, 300 mg kg-1, 700 mg kg-1, 7,000 mg kg-1. Total Ti particle concentration is the red 553 

bar. Orange bar represents the percentage of Ti-particles categorized as ENMs by the ML model 554 

with a ≥ 85% probability. Letters represent statistical similarity for one-way ANOVA (P value < 555 

10-2). Sample size n = 3. 556 
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Environmental Implications 557 

Currently, mass flow analysis models and fate and transport ENM models are used to 558 

estimate ENM concentrations in the environment.15,25,53–55 While these models can be robust, they 559 

cannot be easily validated because current analytical strategies cannot measure ENM 560 

concentrations in relevant environment sinks (soil and sediments) at low concentration, especially 561 

for ENMs made from earth-abundant elements that are some of the most common used ENMs.56 562 

The analytical strategy presented in this study is one of the first to detect and estimate 563 

concentrations of a common ENM type (TiO2) in soils and determine what NM properties makes 564 

the ENMs distinguishable. This is a significant advancement towards validating existing fate and 565 

transport ENM models. This analytical strategy can also potentially use elemental and mass 566 

fingerprints to distinguish between specific ENM sources in the environment and determine ENM 567 

source apportionment at impacted sites. 568 

We assessed the efficacy of distinguishing Ti-based ENMs originating from three different 569 

sources from NNMs in three different soil types using spICP-TOFMS and machine learning. The 570 

majority of Ti-NNMs in soil are without elemental associations and distinguishing them from 571 

ENMs is not possible using elemental fingerprints alone. However, machine learning models that 572 

use both elemental information and mass distribution could positively identify ENMs in soils 573 

except for Ti30 because of the limited elemental associations and the overlap in size with Ti-574 

containing NNMs. While not investigated here, the abundance of other relatively pure ENMs made 575 

from earth abundant elements, e.g., iron oxides, may be similarly difficult to identify with 576 

confidence depending on the mass distribution and elemental fingerprint of naturally occurring 577 

iron oxides.  For the Ti-sludge case, the model was able to distinguish a significant portion of the 578 

Ti-sludge derived ENMs added to soil. It suggests that this approach could be applied to determine 579 



the presence of Ti-sludge ENMs applied to agricultural soils. Detecting sludge NMs in agricultural 580 

soil would imply their persistence in the environment and could lead to potential leachability in 581 

surrounding water systems.57   582 

The ML models developed for this study identify specific elements and mass differences to 583 

classify ENMs and NNMs. The models can learn ratios of similar associated elements to 584 

differentiate ENMs and NNMs at a much deeper level than through observation alone. The ML 585 

model simultaneously uses both elemental and size information, providing better classification 586 

performance than using only elemental fingerprinting. 587 

An important limitation of the supervised ML model is that it cannot yet be generalized to 588 

identify a selected TiO2 ENM in any soil. This is because it requires prior information on the 589 

elemental and mass fingerprint on the ENMs of interest, and on the Ti-containing NNMs in the 590 

soil prior to the introduction of ENMs. However, as with many ML approaches, creating a large, 591 

shared dataset of fingerprints and mass distributions of Ti-containing NNMs from many different 592 

soil types would create opportunities for classification and identification of ENMs in unknown 593 

soils. Others have already implemented unsupervised learning methods to identify the elemental 594 

fingerprints of NNMs in soil.31 With enough data on the range and types of background particle 595 

types in many different soils, and the signature of the specific ENM of interest, a model may be 596 

developed for broader applicability to a range of soils using these approaches.  While the ML 597 

models can classify some ENMs in soil, the lack of an elemental fingerprint in many of the NNMs, 598 

and overlapping size distributions, makes it challenging to improve model accuracy for ENMs 599 

made from earth abundant elements like Ti. A more distinct fingerprint of ENMs is needed. This 600 

can be achieved by improving the detection limits of the spICP-TOFMS to increase the number of 601 

associated elements that can be detected, or by enriching the ENM with a stable isotope to help 602 



distinguish the ENM from background.58–60 These approaches could improve the ability to track 603 

ENMs made from earth abundant elements in environmental systems by spICP-TOFMS of 604 

extracted particles.  605 
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