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Abstract

This paper clarifies the relation between case-based prediction and analogical

transfer. Case-based prediction consists in predicting the outcome associated

with a new case directly from its comparison with a set of cases retrieved from

a case base, by relying solely on a structured memory and some similarity mea-

sures. Analogical transfer is a cognitive process that allows to derive some new

information about a target situation by applying a plausible inference principle,

according to which if two situations are similar with respect to some crite-

ria, then it is plausible that they are also similar with respect to other criteria.

Case-based prediction algorithms are known to apply analogical transfer to make

predictions, but the existing approaches are diverse, and developing a unified

theory of case-based prediction remains a challenge. In this paper, we show

that a common principle underlying case-based prediction methods is that they

interpret the plausible inference as a transfer of similarity knowledge from a sit-

uation space to an outcome space. Among all potential outcomes, the predicted

outcome is the one that optimizes this transfer, i.e., that makes the similarities

in the outcome space most compatible with the observed similarities in the sit-

uation space. Based on this observation, a systematic analysis of the different

theories of case-based prediction is presented, where the approaches are distin-

guished according to the type of knowledge used to measure the compatibility
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between the two sets of similarity relations.

Keywords: case-based prediction, analogical transfer, similarity

Introduction

Computational analogy is a subfield of computer science that aims at design-

ing computational models of psychological and cognitive processes of analogical

thinking [4, 45, 95]. Analogical reasoning is recognized to be at the core of

human thought [46, 56, 57]. For instance, in medicine, analogies are commonly5

used by medical experts for their role in “explaining, naming and mediating

knowledge” [92]. Among the different tasks that computational analogy sys-

tems implement, the transfer task implements a special type of plausible in-

ference principle, according to which if two situations are similar according to

some criteria, then it is plausible that they are similar according to some other10

criteria.

A review of the recent literature reveals a regain of interest in using analog-

ical transfer e.g., for decision-making [15], preference learning [39], explainable

AI [68], categorization [20], as well as to cope with insufficient training data [93],

to guide language generation [80], to foster creativity [51], or to accelerate inno-15

vation [59]. The strengths of computational analogy methods include an ability

to work with a small number of instances, to handle context, to produce explain-

able results, to leverage a structured memory, or to allow for creativity. Contrary

to most machine learning approaches, no pre-trained model of the task at hand

is required. Instead, the system solely relies on a structured memory and some20

similarity measures. Despite these obvious strengths, the theoretical study of

analogical transfer in computer science has been mostly overlooked in the past

years, and developing a unified theory remains a challenge. Setting a common

ground for analogical transfer theories would require a better understanding of

the common principles underlying the existing approaches.25

Designing computer systems that implement a form of analogical reasoning

has been studied since the 1980’s in the field of case-based reasoning (CBR) [96].
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As a research field, CBR is mostly concerned with the knowledge-engineering

aspects that need to be addressed when designing computational analogy sys-

tems. Case-based prediction (also called case-based inference [65]) algorithms30

are algorithms used in CBR to addresses supervised learning tasks such as clas-

sification or regression. The most popular case-based prediction algorithm is (by

far) the k-Nearest Neighbor algorithm, but as we will see, other algorithms have

been proposed, such as PossIBL [64], CCBI [66], WAPC [12] or, more recently,

CoAT [6]. Case-based prediction algorithms are known to apply the plausible35

inference principle of analogical transfer, according to which similar situations

have similar outcomes. However, there is no unified theory of case-based pre-

diction, and the relation between these types of algorithms and the principles

of computational analogy often remains unclear.

In this paper, we show that a common principle underlying case-based pre-40

diction methods is that they interpret the plausible inference principle of ana-

logical transfer as a transfer of similarity knowledge from a situation space to an

outcome space that the predicted outcome should optimize. Among all potential

outcomes, the predicted outcome is the one that makes the similarities in the

outcome space most compatible with the observed similarities in the situation45

space according to some compatibility measure. Based on this observation, a

systematic analysis of the different theories of case-based prediction is presented,

where the approaches are distinguished according to the type of knowledge used

to measure the compatibility between the two sets of similarity relations.

The paper is organized as follows. The next section presents the transfer50

task of computational analogy systems. Sec. 2 shows that case-based prediction

methods, which implement the transfer task for prediction purposes, interpret

the plausible inference principle of analogical transfer as a transfer of similarity

knowledge from a situation space to an outcome space. Sec. 3 presents a sys-

tematic analysis of existing case-based prediction theories, proposing a typology55

distinguishing between four main families of approaches.. Sec. 4 to 7 describe

in turn the most representative approaches for each the four families. Sec. 8

concludes the paper and gives directions for future work.

3
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1. The Transfer Task of Computational Analogy Systems

Computational analogy systems are often decomposed into different tasks60

in the literature [1, 46, 49, 75, 76]. Although decomposing the analogical in-

ference in a succession of tasks is highly questionable from a cognitive science

point of view, because analogical reasoning is rooted in perception, and involves

complex cognitive processes that are often interwined [19], making such a de-

composition greatly simplifies the conception of computer systems, and allows65

for comparison.

The transfer task is the component of computational analogy systems that

allows to make predictions. It implements analogical transfer, which is the part

of the analogical reasoning process that allows to leverage a mapping with an

analog retrieved from memory in order to derive some new information about the70

current situation [44, 47, 88]. It does so by applying a special type of plausible

inference principle according to which if two situations are similar according to

some criteria, then it is plausible that they are similar according to some other

criteria. Such an inference process may serve different purposes [77]:

• It may be used for prediction, in order to complete the description of the75

new case. Examples include estimating a quantity [91], a preference [39],

a ratio [60], a semantic relation [99], recommending a decision [33] or

predicting the effect of a decision or a plan (for example to find a response

plan for natural disasters [54] or to help an athlete choose a pace when

running a marathon [85]).80

• It may be used for interpretation, in order to borrow from an analog an

explanation, or a justification, of the new situation. Examples include

deriving explanations [68, 97], causal attributions [58], establishing a legal

assessment [30], putting forth persuasive arguments in the context of ad-

versarial reasoning [55, 74], or even tapping into the emotions that people85

gained from their own experience in order to sway a decision [48].

• It may also used for creativity, in order to propose a novel solution for

4
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the new situation, by adapting and combining past solutions. Examples

include adapting cooking recipes in order to match some constraints [22],

solving mathematical problems by adapting old solution procedures [89],90

proposing innovative ideas for designers [52], making content suggestions

for authors of product reviews [18] or inventing new concepts by conceptual

blending [38].

Apart from the transfer task, many other tasks are cited in the literature:

given a new situation, the goal of the retrieval task is to draw from memory one95

(or many) situation(s) to compare it to. In the mapping task, the new situation

is compared to the retrieved situation(s). This interpretation process involves

a structural alignment between the new situation and the retrieved one(s) [43].

The representation task [75] produces an initial representation for the inputs.

The elaboration task [41] enriches such representation with domain knowledge.100

The re-representation task [84] restructures the input representation to facilitate

comparison. The abstraction task [50] produces a common abstraction of two

inputs. The validation task [40] evaluates the quality and consistency of the

results. The memorization task [57] updates the memory for later use.

In the next section, we focus on case-based prediction methods, which im-105

plement the transfer task for prediction purposes.

2. Case-Based Prediction

Developed in the domain of case-based reasoning, case-based prediction

methods aim at predicting the outcome of a new case directly from its com-

parison with a set of cases retrieved from a case base, by relying solely on a110

structured memory and some similarity measures. In this section, we show

that case-based prediction algorithms interpret analogical transfer as a transfer

of similarity knowledge from the space of situations to the space of outcomes.

They predict the outcome that makes the similarities on outcomes most com-

patible with the observed similarities on situations, and differ mainly by the115

5
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Figure 1: In the transfer task, a similarity relation σS is used to estimate another one, σR.

type of knowledge used to measure the compatibility between the two sets of

similarity relations.

2.1. Definitions and Notations

A typical setting for case-based prediction is as follows. Let S be an input

space and R an output space. An element of S is called a situation, and an120

element of R is called an outcome, or a result. A case base is a finite set

CB = {(s1, r1), . . . , (sn, rn)} of elements in S×R. For legibility, and abusing the

notation, cases and outcomes are sometimes denoted with their corresponding

situation as subscript: an element cs = (s, rs) ∈ CB is called a source case. In

addition, σS and σR respectively denote similarity measures on situations and125

on outcomes. For a new case ct = (t, rt) whose outcome rt is to be predicted,

the case-based inference can be decomposed into three main tasks [49]:

• Retrieval : retrieve from CB a set of source cases {cs = (s, rs)};

• Mapping : for each retrieved situation s, estimate the similarity σS(s, t)

between s and the target situation t;130

• Transfer : estimate the similarities σR(rs, rt) on outcomes from the simi-

larities σS(s, t) on situations.

In the transfer task, the similarities σR(rs, rt) on outcomes are estimated from

the similarities σS(s, t) on situations, and the outcome rt is (indirectly) deter-

mined from these estimations (Fig. 1).135

The goal of case-based prediction methods is to predict the outcome that

makes analogical transfer most likely to succeed when the new case is compared

to the retrieved cases. Intuitively, this means that the outcome rt should be

6
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chosen so that the outcome similarities reflect what the situation similarities are,

i.e., one can rely on a similarity estimation between two situations to estimate140

the similarity between their associated outcomes.

2.2. A Transfer of Similarity Knowledge

To find the most plausible outcome, case-based prediction methods search

for the outcome that makes the added similarities on outcomes most compatible

with the observed similarities on situations. More precisely, let ĉt = (t, r) denote145

a potential new case formed by choosing the outcome r ∈ R for the new case.

Adding the new case ĉt to the case base CB results in building two sets of

similarity relations:

• the situation similarities ΣS(t) = {σS(s, t) | cs = (s, rs) ∈ CB}

• the outcome similarities ΣR(r) = {σR(rs, r) | cs = (s, rs) ∈ CB}150

Among these two sets of similarity relations, only ΣR(r) depends on the choice

of r: changing the outcome r leads to new (possibly opposite) similarity rela-

tions. Case-based prediction methods search for the new case ct = (t, rt) for

which the similarity relations ΣR(rt) in the outcome space is the most compat-

ible with the similarity relations ΣS(t) in the situation space.155

As an example, consider the classification setting graphically represented on

Fig. 2. Situations are points of a 2D space, and the similarity σS(s, t) between

two situations s and t is estimated from the Euclidean distance, e.g., by setting

σS = e−∥·∥2 , where ∥·∥2 is the Euclidean distance. Outcomes are classes (blue

or red), and the similarity σR(rs, rt) between two outcomes rs and rt is given160

by the discrete metric, which returns 1 if the two classes are the same, and 0

otherwise. Suppose that the case base CB contains a set of situations s, whose

outcome rs is known, and we want to predict the outcome rt of a new situation t

(represented as ⋆ on Fig. 2). When a potential new case ĉt = (t, r) is added

to the case base, the situation similarities ΣS(t) between the new situation t165

and each past situation s can be computed using σS . However the outcome

similarities ΣR(r) depend on the outcome r chosen for t: if r = red, then

7
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Figure 2: A simple classification setting. The goal is to predict the class (blue circle or red
square) for a new situation represented by ⋆ on the figure, by finding the class for which the
added outcome similarities would be most compatible with the observed situation similarities.

the new case is similar to all cases whose outcome is also red, and dissimilar

to the other cases. If r = blue, ΣR(r) contains opposite similarity relations.

Case-based prediction consists in finding the outcome rt for which the added170

similarity relations ΣR(rt) on classes are the most compatible with the observed

similarity relations ΣS(t) between points, measured by the Euclidean distance.

The idea is that if the similarities on outcomes are compatible with similarities

on situations, then one can rely on similarities on situations (Euclidean distance)

to estimate similarities on outcomes (class membership), and analogical transfer175

succeeds.

This search for compatibility between the two sets of similarity relations can

be seen as a transfer of similarity knowledge from the situation space to the

outcome space. Indeed, each of the two similarity measures σS and σR can be

seen as a transformation of the underlying space that ”groups together” similar180

points in the transformed space. In this view, case-based prediction is a search

for an outcome rt for which the situations transformed by σS into similar points

are also transformed by σR into similar points. Recent work [9] further suggests

that the success of the inference only requires that the similarity knowledge

is transferred locally, i.e., that the inference succeeds once maximally similar185

situations in the situation space are associated with similar outcomes in the

outcome space.

As we will see, the case-based prediction methods differ by the type of knowl-

8
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edge used to express the compatibility requirement between the two similarity

measures. The next section proposes a typology of case-based prediction meth-190

ods, where the methods are distinguished depending on the type of compatibility

knowledge used to express this compatibility requirement.

3. Proposed Typology of Case-Based Prediction Methods

This section presents a systematic analysis of existing case-based prediction

theories along the lines developed in Sec. 2.195

3.1. Methodology

As the goal of the survey is to outline the commonalities and differences be-

tween the computational theories of case-based prediction, all works describing

representation and knowledge engineering issues (such as, e.g., learning adap-

tation rules) are excluded from the survey. We also exclude the works that200

study how to apply a theory of transfer to handle a particular type of input

(e.g., decision problems [33]), to derive a particular type of information (e.g., a

preference ordering [39, 69]), or to take into account domain knowledge [82].

However, we include a few case-based adaptation methods (see Sec. 6.2).

Adaptation is the cognitive ability to envision a target solution that is dif-205

ferent from any previously encountered solution. Although adaptations may

involve structural changes that go way beyond predicting a class or a value,

the case-based adaptation approaches reported here appear relevant for this

study because they are developed to predict a single value by applying a set of

adaptation rules. Reporting such methods is also a way to show the intimate210

links between case-based adaptation and case-based prediction, and the fuzzy

continuum that exists between these two domains of research.

3.2. Discrimination Criteria

Many criteria can be used to categorize the different approaches. A few of

them are reported here and applied in Sec. 3.3, leading to the four categories215

9
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discussed in turn in Sec. 4 to 7. Note that these distinctions are best viewed as

fuzzy continua, rather than well-defined subtypes.

Type of Compatibility Knowledge. A decisive criterion is the type of knowledge

that is used to measure the compatibility between σS and σR. Such compat-

ibility knowledge may take the form of a set of adaptation rules, a continuity220

constraint, a compatibility indicator between cases or a global compatibility

function, as discussed in the next sections.

Prediction Strategy. Depending on the type of compatibility knowledge that is

used, different strategies are applied to evaluate which potential outcome is the

most plausible. For example, adaptation rules are applied on the new case in a225

form of similarity-based reasoning, in order to derive an outcome that satisfies

the consequent of the rule when the antecedent is verified (or approximately

verified). Continuity constraints are used to exclude the outcomes that are not

similar enough to the outcomes of the retrieved cases. Compatibility indicators

are maximized in order to determine which potential new case is most compat-230

ible with the retrieved cases. A global compatibility function is maximized in

order to determine which completed case base makes σR most compatible with

σS on the case base as a whole.

Knowledge-driven vs Data-driven Strategy. The different approaches can be in-

terpreted in a bipolar framework [94]. Knowledge-driven strategies consider the235

compatibility knowledge as negative information, by taking it as a constraint

that the two sets of similarity relations should satisfy. Such constraint can be

expressed e.g., as a fuzzy implication rule (as in some transfer by constraint

approaches) or as a set of adaptation rules (as in some transfer by approximate

reasoning approaches). The predicted outcome is the one for which the added240

similarity relations is the most consistent with the constraint(s). Data-driven

strategies, on the contrary, consider an observed compatibility between σS(s, t)

and σR(rs, r) as positive information in favor of a potential outcome r ∈ R. An

indicator, such as a joint similarity measure (as in transfer by evidence support

10
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approaches), or a global compatibility function (as in transfer by global optimiza-245

tion approaches), is used to aggregate the observed evidence in favor of each

potential outcome, and the most plausible outcome is determined by a majority

vote. This distinction between knowledge-driven and data-driven strategies is

not always obvious, and some methods may be considered as belonging to both

categories. For example, the global optimization method proposed in [6] defines250

an indicator that counts the number of times a set of continuity constraints are

verified on a potential case base, and uses this indicator as positive information

in favor of a potential outcome.

Local vs Global Compatibility Estimation. Assuming that σS and σR are defined

on different sets of attributes, the compatibility between two similarity measures255

can not be evaluated per se, but only relatively to a given set of pairs of cases. In

this respect, most approaches start with a set of local compatibility estimations,

and then aggregate the results. Each potential new case ĉt is compared to

the retrieved cases (which amounts to comparing the added similarity relations

ΣS(ĉt) and ΣR(ĉt) pairwise), and the results of this estimation is aggregated in260

order to determine the most plausible potential outcome. On the contrary, the

transfer by global optimization approach performs a single global compatibility

estimation. It considers the effect of a choice for r on the compatibility of σR

with σS estimated on the case base as a whole, and takes into account in the

compatibility estimation some pairs of cases in which ct does not appear.265

Ordinal vs Numeric Strategies. The approaches also differ by the way similarity

relations are compared in order to produce a compatibility estimation. Some

approaches such as transfer by approximate reasoning approaches compare the

values of the two similarity measures pairwise. By contrast, some approaches

only consider the similarity orderings to make predictions. Examples include270

some transfer by constraint approaches such as the credible case-based infer-

ence [66] or the transfer by global optimization method proposed in [6].

11
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Approach Compatibility knowledge Prediction strategy

Evidence
support

A joint similarity measure,
that measures how com-
patible σR is with σS for
a given pair of cases.

Find the case that is most
compatible with the re-
trieved cases.

Continuity
constraints

A set of continuity con-
straints, i.e., rules that
state that σR should be
compatible with σS on
each pair of cases.

Exclude the outcomes
that are not similar
enough to the outcomes
of the retrieved cases.

Approximate
reasoning

A set of rules of the form
(σS = α) → (σR = β).

Make a majority vote on
the outcomes derived from
the rules.

Global
optimization

A global function, that
measures how compatible
σR is with σS on the whole
case base.

Optimize the global com-
patibility measure on the
augmented case base.

Table 1: Proposed typology of case-based prediction theories.

3.3. Proposed Typology of Case-Based Prediction Theories

Four categories of methods are identified and summarized, respectively named

transfer by evidence support, transfer by constraint, transfer by approximate275

reasoning, and transfer by global optimization. They differ by the type of com-

patibility knowledge that is used. The typology is shown in Tab. 1 and discussed

in turn in Sec. 4 to 7.

Transfer by Evidence Support. This type of data-driven approach consists in us-

ing a joint similarity measure to estimate for each pair of cases (cs, ĉt) how com-280

patible the similarity relation σR(rs, r) is with the similarity relation σS(s, t).

Examples include the k-Nearest Neighbor algorithm or the Possibilistic Instance-

Based Learning approach [13, 32, 64]. In these approaches, a new case is con-

sidered possible if the existence of a similar case is confirmed by observation.

The value of the joint similarity measure is interpreted as a degree of confirma-285
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tion, or evidence support that the new case is supported by the retrieved source

cases. The predicted outcome rt is the one for which the maximal compatibility

is observed with a source case.

Transfer by Continuity Constraints. This strategy, which is more on the side of

knowledge-driven approaches, consists in expressing the compatibility require-290

ment between the two similarity measures σS and σR as a set of continuity

constraints à la Lipschitz [13], for instance of the form σR(rs, rt) ≥ h(σS(s, t)),

where h is a transformation function that contains the provided information

about the relation between σS and σR. Examples include similarity profiles [66]

or fuzzy implication rules [67, 70, 72]. Such constraints are used to reduce the295

set of potential outcomes, excluding the ones that violate them. The predicted

outcome is chosen among the potential outcomes that are consistent with all

constraints.

Transfer by Approximate Reasoning. This type of approach consists in searching

where the two similarity measures σS and σR align locally, and reason by similar-300

ity on the found alignments. Potential outcomes for the new case are derived in a

rule-based approach by applying a set of rules of the form (σS = α) → (σR = β),

such as adaptation rules [7, 27, 73, 90], co-variations [5], or dependencies be-

tween analogical proportions [9, 17]. Some case-based adaptation approaches

implement this strategy, as well as analogical proportion-based classifiers.305

Transfer by Global Optimization. In most case-based prediction approaches,

the compatibility of σR with σS is evaluated on the pair of cases (cs, ĉt) for

each retrieved case cs, and the results are combined in order to find the most

plausible outcome r for the new case. A recent work [6] proposes to define a

global indicator that measures the compatibility of σR with σS on the whole case310

base. The prediction strategy consists in minimizing the value of this indicator

on the augmented case base.
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4. Transfer by Evidence Support

In this type of approach, the compatibility of σR with σS is considered as

a positive constraint, according to which the more similar two situations are,315

the more plausible it is that their outcomes are similar. The compatibility

knowledge used in the inference takes the form of a compatibility indicator σ

between cases, defined as a joint similarity measure [2, 13, 32, 64]. The pre-

diction strategy consists in choosing the new case ct = (t, rt) that is the

most compatible with the retrieved source cases according to the compatibility320

indicator.

4.1. General Principles

The compatibility indicator σ measures the compatibility of σR with σS on

a pair of cases (cs, ĉt), and is used as an indicator of the plausibility of a new

case ĉt when compared to a retrieved case cs. These plausibility estimations are325

then aggregated on a selected set of source cases. The general idea is therefore

to successively:

1. compare the potential new case ĉt to a set of source cases cs;

2. aggregate the values of the compatibility indicator σ for the pairs of cases

(cs, ĉt);330

3. predict the outcome rt that makes the new case ĉt = (t, r) most compatible

with the retrieved source cases.

In the rest of the section, two approaches of this category are described in

more details: the k-Nearest Neighbors approach and the Possibilist Instance-

Based Learning method.335

4.2. k-Nearest Neighbors

In a classification setting, the k-Nearest Neighbor approach [2] makes a ma-

jority vote among the classes of the k nearest neighbors of the target situation t

in order to predict its class rt.

14
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A source case cs = (s, rs) is considered compatible with a new case ct = (t, r)

if it is among the k nearest neighbors of ct for σS (i.e., σS(s, t) = 1 if s is in

a neighborhood Nk(t) of t, and 0 otherwise), and belongs to the same class

(i.e., σR(rs, r) = 1 if the two classes are the same, and 0 otherwise). The

compatibility indicator σ is the joint similarity measure:

σ(cs, ct) = σS(s, t) · σR(rs, r)

The values of the compatibility indicator σ are aggregated by summing over

all retrieved source cases cs, and the predicted outcome rt is the one that makes

the new case ct most compatible with all source cases, so that

rt = argmax
r∈R

(∑
cs∈CB

σS(s, t) · σR(rs, r)

)

4.3. Possibilist Instance-Based Learning340

A possibilist counterpart of the previous approach consists in considering

a relaxed expression of the relation rule, of the form ”the more similar two

situations are, the more possible it is that their outcomes are similar” [13, 32,

36, 64, 70, 71]. Such a rule is formalized in the formal framework of possibility

theory (see e.g. [37]), which constitutes an uncertainty modeling paradigm that

generalizes the probability theory. More precisely, such a rule constrains the

possibility distribution on potential new cases ct = (t, rt), i.e. the possibility

degrees δ(ct): each source case cs = (s, rs) is then associated with the following

constraint on the possibility distribution:

δ(ct) ≥ min{σS(s, t), σR(rs, r)}

The constraint expresses that a lower bound of the degree of possibility δ(ct) of

a new case ct is given by the value of the joint similarity measure

σ(cs, ct) = min{σS(s, t), σR(rs, r)}

15
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The possibility degree δ(ct) is interpreted as a degree of confirmation, or

evidence support that the new case ct is supported by the retrieved source cases.

A new case is considered possible if the existence of a similar case is confirmed by

observation, and data accumulation can only result in increasing the support for

the new case. Therefore, the possibility degrees are aggregated using a principle

of maximal informativeness:

δ(ct) ≥ max
cs∈CB

σ(cs, ct)

The predicted outcome rt is the one that is most supported by the retrieved

source cases, i.e.,

rt = argmax
r∈R

( max
cs∈CB

min
r

{σS(s, t), σR(rs, r)})

5. Transfer by Constraint

A complementary, more knowledge-driven approach, consists in taking the

compatibility of σR with σS as a negative constraint, that is used to exclude

the outcomes that are not similar enough to the outcomes of a retrieved case.

The compatibility knowledge used in the inference is a set of continuity con-345

straints such as similarity profiles [62, 65, 66], or fuzzy implication rules [31, 67,

71, 72]. Such a continuity constraint is interpreted as a negative information

according to which it is not plausible to observe situations very dissimilar for

σR when they are similar for σS [13]. The prediction strategy consists in us-

ing these constraints to exclude the potential outcomes that violate them. For350

each retrieved case cs = (s, rs) and a potential new case ĉt = (t, r), the com-

patibility of the outcome r with a continuity constraint is estimated by testing

whether the pair (cs, ĉt) satisfies the constraint or not. The resulting compati-

bility estimations are then aggregated on all retrieved cases cs. The predicted

outcome rt is then chosen among the outcomes r that are most compatible with355

the constraints.
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5.1. Credible Case-Based Inference

Continuity constraints can be expressed by stating that if two situations are

above a similarity level α for σS , it is likely that their similarity for σR is greater

or equal than a value β. The function h : [0, 1] −→ [0, 1] which associates to

each similarity level α for σS a similarity level β for σR is called a similarity

profile [62, 65, 66]. It is defined as h(α) = inf{σR(rs, rs′) | σS(s, s
′) = α}.

Assuming that h is known, one can compute for a new situation t the set

C(t) =
⋂

cs∈CB

{r : σR(rs, r) ≥ h(σS(s, t))}

of credible solutions by taking, for each retrieved source case cs, the set of

outcomes r that would satisfy the constraint. The problem is then to learn the

similarity profile h. In [67], this function is approximated by a step function,360

which is learned from the data. In [3], each hypothesis for h is a multi-category

classifier. Determining the levels β of a similarity profile from the data is a

task that is very sensitive to outliers. Two solutions are investigated in [65]

to alleviate this issue: learning local similarity profiles for different regions of

space, or weaken the concept of similarity profile by looking for levels that are365

“almost valid”, e.g., by defining a probabilistic similarity profile [62]. Besides,

enough data is needed to learn the profiles. The credible case-based inference

has been proven to be a special case of integrity constraint belief merging [21].

5.2. Gradual Rules

Gradual rules [34] are linguistically expressed as ”the more X is A, the more370

Y is B” and modelled in the formal framework of fuzzy set theory (see e.g. [35]):

A and B are imprecisely defined concepts, modeled as fuzzy sets on the universes

of X and Y respectively. The general semantics of such rules [34] is expressed in

terms of membership degrees by B(Y ) ≥ A(X), which is equivalent to a set of

constraints of the form (X ∈ Aα) −→ (Y ∈ Bα) stating that if the membership375

degree of X in A is at least α, then it is guaranteed that the membership degree

of Y in B is also at least α. A specific case of such gradual rules is linguistically
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expressed as ”the higher X, the higher Y ”, whose semantics directly applies to

the numerical values taken by X and Y , instead of their membership degrees to

the concepts A and B.380

Such gradual rules can be used to express some continuity constraints that

should be satisfied by a pair of cases (cs, ct): the constraint ”the more similar two

situations are, the more similar are their associated outcomes” can be formally

defined as

σR(rs, r) ≥ σS(s, t)

The transfer inference consists, as in the credible case-based inference, in

choosing a potential outcome rt among the ones that satisfy the constraint for

all source cases, that is,

rt ∈
⋂

cs∈CB

{r : σR(rs, r) ≥ σS(s, t)}

Although the approach can be refined by applying a non-decreasing function

h : [0, 1] −→ [0, 1] to define rules of the form σR(rs, r) ≥ h(σS(s, t)), the gradual

rule approach is not very flexible because it is very sensitive to outliers. Indeed,

an outcome r is ruled out of the set of potential results whenever the constraint

σR(rs, r) ≥ σS(s, t) is not satisfied for at least one source case. This remark385

advocates for the use of a different type of fuzzy rule, such as a certainty rule,

which allow for exceptional situations.

5.3. Certainty Rules

Certainty rules are linguistically expressed as ”the more X is A, the more

certain Y lies in B”. Their semantics is modeled in the possibility theory frame-

work, formalized by the following constraint on the conditional possibility dis-

tribution πY |X :

∀(u, v), πY |X(v | u) ≤ max(1−A(u), B(v))
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Such a constraint implies that 1−A(u) is an upper bound of the possibility that

Y = v when v is not in the support of B (i.e., when B(v) = 0).390

Thus the rule ”the larger the similarity of two situations is, the more certain

it is that the similarity of corresponding outcomes is large” can be formalized

as

π(r | t) = πσR|σS
(σR(rs, r) | σS(s, t)) ≤ max(1− σS(s, t), σR(rs, r))

This formalization takes the situation dissimilarity 1 − σS(s, t) as an upper

bound for the possibility of an outcome r when σR(rs, r) = 0. If σS(s, t) is very

small, the possibility bound can be large for very dissimilar outcomes. If, on

the contrary, σS(s, t) is close to 1, the possibility bound can only be large for

very similar outcomes.395

The possibility degree π(r | t) is interpreted as the degree to which the

comparison of ct with the retrieved source cases does not exclude the outcome r

as a candidate. A new case ct is considered possible if the application of a

continuity constraint does not rule it out as having an outcome too dissimilar

with the outcome of a retrieved source case, and data accumulation can only

result in decreasing the possibility of certain outcomes. Therefore, the possibility

degrees are aggregated using a principle of minimal specificity:

π(r | t) = min
cs∈CB

(max(1− σS(s, t), σR(rs, r)))

The predicted outcome rt is the one that is the most possible given the

retrieved source cases:

rt = argmax
r∈R

( min
cs∈CB

(max(1− σS(s, t), σR(rs, r))))

6. Transfer by Approximate Reasoning

The third type of approach consists in searching where the two similar-

ity measures σS and σR align locally, and reason by similarity on the found
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alignments. The compatibility knowledge takes the form of a set of rules

providing information on relations between the similarity measures σS and σR,400

expressing that when σS takes value α, the resulting similarity level for σR is β:

these rules can be written (σS = α) → (σR = β) and can be expressed in various

forms, such as adaptation rules [7, 27, 73, 90], dependencies between problem

and solution features [42], co-variations [5] or fuzzy rules [16] to name a few. The

prediction strategy consists in triggering the rules on pairs of cases involving405

the new case using a kind of similarity-based inference, as detailed below, in

order to derive potential outcomes for the new case.

6.1. General Principles

A rule (σS = α) → (σR = β) is a piece of knowledge that states that

σR is compatible with σS when σS takes the value α, and that the resulting

similarity level for σR is β. Potential outcomes r for the new case are derived

by triggering such rules on pairs of cases involving the new case in a form

of similarity-based inference (SBI), by applying variants of the modus ponens

schema [11, 16, 26, 98]: for a retrieved case cs = (s, rs) and a potential new case

ĉt = (t, r), triggering the rule (σS = α) → (σR = β) on the pair of cases (cs, ĉt)

is of the form

(σS = α) → (σR = β) σS(s, t) ≈ α

σR(rs, r) ≈ β

(SBI)

This schema expresses that if the rule associates a level β for the similarity σR

whenever the similarity level for σS is α, and if the observed situation similarity410

between the new case and a retrieved case is approximately α (i.e., σS(s, t) ≈ α),

then the corresponding similarity on outcomes σR(rs, r) is approximately β. The

concepts ”approximately x” where x is a numerical value, are imprecisely defined

concepts that can be modeled in the formal framework of fuzzy set theory [79].

It is often the case that the similarity measures σS and σR are unknown, or415

difficult to assess globally on the training data. One strategy then consists in

working with some local approximations σ̃S of σS and σ̃R of σR that are known
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to be compatible for some pairs of cases of the case base. The resulting rules

(σ̃S = α) → (σ̃R = β) are adaptation rules (see Sec. 6.2).

Some case-based prediction approaches such as [73] include a rule selection420

step prior to the inference, while others such as proportion-based analogical

classifiers (see Sec. 6.4) trigger only one rule.

Each selected rule is triggered on a set of pairs of cases (cs, ĉt), and the

proposed outcome rt for the new case ct is obtained by a majority vote among

the potential outcomes r derived from the rules:

rt = argmax
r∈R

∑
(σS=α)→(σR=β)

|cs ∈ CB | σS(s, t) ≈ α and σR(rs, r) ≈ β|

In the rest of the section, three kind of approaches of this category are

described in more details: rule-based adaptation, the analogical jump, and ana-

logical proportion-based classification.425

6.2. Rule-Based Adaptation

Adaptation rules are rules of the form (σ̃S = α) → (σ̃R = β), where σ̃S

and σ̃R are local approximations of σS and σR. The main difficulty when work-

ing with adaptation rules is that one needs to be able to learn the rules. They

may be acquired from different sources such as a domain expert [81, 91], the430

user [8], or learned from data [7, 25, 27, 53, 73, 86]. In [91] for example, some

adaptation rules are learned from the expert in the form of qualitative propor-

tionalities y = qprop+(x). A qualitative proportionality is a qualitative con-

straint that indicates a co-monotony between two variables, such as ”a larger

apartment has a higher rent”. The relationship between the two variables (for435

example here, nb rooms and price) is assumed to be linear, and the ratio co-

efficient is learned by linear regression. If Q denotes the ratio coefficient, this

amounts to defining a similarity σS on the values of the attribute nb rooms,

a similarity σR on the values of the attribute price, and applying the (SBI)

inference schema with the hypothesis that σR increases linearly with σS , i.e.,440

with the hypothesis that β = Qα. Another example is the work of [86], which
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learns adaptation rules from data at runtime by considering only the pairs of

situations (s, t) in which s differs from t only in the value of a single attribute

(say, nb rooms in the previous example), and retrieves from the case base an-

other pair of situations (si, sj) where the same difference is observed on this445

attribute. This approach amounts to learning a rule (σ̃S = α) → (σ̃R = β) by

single instance induction, once the rule is verified on only one pair of cases.

A key question is to decide which rule can be considered as a valid piece

of knowledge to be used in the similarity-based inference. Taking into ac-

count the support of the rule is important. Even a very specific rule, when

learned with a support of 1 as in the previous paragraph, may be dubious, be-

cause it amounts to single instance induction. Several works [11, 17, 28, 91]

have emphasized the idea that the rules (σ̃S = α) → (σ̃R = β) that are rea-

soned upon should be functional dependencies, i.e., have a confidence value

of 1 on any two pairs of cases of the case base. From this observation, [5]

defined a variation as any function that associates a value to a pair of situa-

tions, and a co-variation as a functional dependency between variations. For

example, the variation nb rooms≤ : S × S 7→ {0, 1} maps a pair of apartments

to 1 if the number of rooms increases, and to 0 otherwise, and the co-variation

(nb rooms≤ = 1) → (price≤ = 1) expresses that if the number of rooms

of an apartment increases, then the price also increases. This rule can be

used to draw the following similarity-based inference: if a pair of cases verifies

nb rooms(s) ≤ nb rooms(t), then the antecedent of the rule is satisfied, so one

can make the hypothesis that the rule applies, and that price(rs) ≤ price(r).

In this example, the inference schema SBI writes:

(nb rooms≤ = 1) → (price≤ = 1) nb rooms≤(s, t) = 1

price≤(rs, r) = 1

Learning such co-variations from data corresponds to the task called grad-

ual pattern mining, for which various meanings and approaches have been pro-

posed [5, 14, 29, 63, 78].450
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6.3. The “Analogical Jump”

A crude version of the transfer by approximate reasoning approach was stud-

ied from a logical point of view in the 1980s. In their seminal work on the

formalization of analogical transfer, the authors of [28] introduce an inference

schema, called the “analogical jump” (AJ):

P (cs) P (ct) Q(cs)

Q(ct)

(AJ)

According to this schema, analogical transfer consists in making the hypothesis

that if cs and ct share some property P , and a property Q is true in cs, then

it is plausible that the property Q is also true in ct. The problem identified by

the authors is then to determine sufficient conditions for the inference (AJ) to455

be drawn. The authors remark that the rule should:

(i) be weaker than a generalization rule ∀x P (x) ⇒ Q(x) (otherwise, the

inference is simply deductive),

(ii) on the contrary, be stronger than single instance induction, which would

consist in applying the rule ∀x∀y [(P (x) ∧ P (y) ∧Q(x)) ⇒ Q(y)], and460

(iii) take into account the level of similarity between cs and ct.

The analogical jump can be formalized as rule-based adaptation, considering

the adaptation rule (σ̃S = 1) → (σ̃R = 1), with

σ̃S(s, t) = 1P (s, t) =

1 if both P (s) and P (t) hold

0 otherwise

σ̃R(rs, r) = 1Q(rs, r) =

1 if both Q(rs) and Q(r) hold

0 otherwise

For a retrieved case cs = (s, rs) and a potential new case ĉt = (t, r), drawing the

inference schema (AJ) amounts to applying the following version of the (SBI)
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inference schema:

(σ̃S = 1) → (σ̃R = 1) σ̃S(s, t) = 1

σ̃R(rs, r) = 1

This inference schema states that if we know that the property Q is shared

between two cases whenever the property P is shared ((σ̃S = 1) → (σR = 1))

and if it was observed that the two cases share the property P (σ̃S(s, t) = 1) then

one can make the hypothesis that they also share the property Q (σR(rs, r) = 1).465

The key question is to decide if it is legitimate to consider the rule

(σ̃S = 1) → (σ̃R = 1) as a valid piece of knowledge from which to derive that

Q(ct) holds. If one requires that the rule is verified on only one pair of cases,

then it amounts to single instance induction. If one requires that the rule has a

confidence value of 1, then the rule ∀xP (x) ⇒ Q(x) is in particular valid on all470

source cases, and the SBI inference amounts to simple deduction.

6.4. Analogical Proportion-Based Classification (APC)

This section reports the work presented in [9], that proposes to establish a

correspondence between analogical proportion-based classification (denoted by

APC, in what follows) and case-based prediction, showing the former can be475

viewed as a special kind of the latter.

APC algorithms have shown competitive results in classification and recom-

mendation tasks, see e.g. [12, 17, 23, 24, 61, 87]. They apply the principle

of analogical reasoning [56], based on statements of the form ”a is to b as c

is to d”, called analogical proportion, and written a : b :: c : d. More pre-480

cisely, the analogical inference is applied in a classification setting to state that

if an analogical proportion holds on the instance descriptions, then an ana-

logical proportion can be inferred on their associated class labels: formally,

denoting f the underlying, unknown, labelling function, one can derive from

a : b :: c : d that f(a) : f(b) :: f(c) : f(d). Let D be a data set containing485

a set of instances a,b,c, . . . with their associated labels f(a), f(b), f(c), . . . To
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predict the value f(x) for a new instance x, an analogical proportion-based

classifier considers all triples (a,b,c)∈ D3 for which a :b :: c : x holds, and the

equation f(a) : f(b) :: f(c) : y has a solution. This set of triples is called the

analogical root of x [60]. The predicted label for the new instance x is then490

the result of a majority vote among the potential solutions y. Yet it can be

the case that the analogical root is empty: the previous classifier can then be

extended to consider approximate analogy, relying on the notion of analogical

dissimilarity [60]. The latter is defined as a function AD(a,b, c,d) that quan-

tifies the extent to which the quadruplet is far from satisfying an analogical495

proportion: AD is such that AD(a,b, c,d) = 0 iff a :b ::c : d and satisfies con-

straints on argument permutation and a triangular inequality [12]. For real or

Boolean values, it can for instance be defined as the sum of the componentwise

AD(a, b, c, d) = ∥(a − b) − (c − d)∥1. If the analogical root of x is empty, the

search for potential solutions is extended to triples (a,b, c) with the k least500

values of AD(a,b, c, x) and for which the equation f(a) : f(b) :: f(c) : y has a

solution. The predicted label is the result of a majority vote among the potential

solutions y.

This correspondence between APC and case-based prediction is illustrated

by the diagram given in Fig. 3 that represents the APC in a similar view as case-505

based prediction, whose diagram is given in Fig. 1. More precisely, APC can

be considered as applying a specific transfer by approximate reasoning method,

where cases are differences, or ratios between two instances, and a single rule

is triggered, that states that maximally similar situations should be associated

with maximally similar outcomes.510

When seen as a case-based prediction method, APC works by comparing

some ratios a : b and f(a) : f(b) between the instances and their respective

labels. Assuming that both instances and labels are vectors, considering one-hot

encoding for the classes, these ratios are represented by the differences s = a−b

and rs = f(a) − f(b). Let us denote by x ∈ D a new instance for which the

class f(x) is to be predicted. Let C be the set of potential classes for f(x), and
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t
c : x

s
a : b

rs
f(a) : f(b)

AD

AD

used to estimate

rt
f(c) : f(x)

Figure 3: In APC methods, both situations and outcomes represent ratios.

y ∈ C. The source case cs and potential new case ĉt are of the following form:

cs = (a− b, f(a)− f(b))

ĉt = (c− x, f(c)− y)
(1)

where a, b, c are instances of D, and f(a), f(b), f(c) their associated classes.

The two similarity measures σS and σR are constructed from the analogical

dissimilarity AD, by noticing that AD measures a distance AD(a,b, c,d) =

δ(a−b, c−d) between two differences a−b and c−d. The similarity measures

σS and σR are obtained by applying a strictly decreasing function to the distance515

δ, e.g., by choosing σS = σR = e−δ. The similarity measure σS is such that the

four instances a,b, c,d form an analogical proportion iff σS(a − b, c − d) = 1.

The similarity measure σR is such that the four instances f(a), f(b), f(c), f(d)

form an analogical proportion iff σR(f(a)− f(b), f(c)− f(d)) = 1.

The transfer strategy can be interpreted as a transfer by approximate reason-520

ing strategy when the prediction procedure is decomposed, as described in [83],

an aggregation of the potential solutions y found for each instance c ∈ D fol-

lowed by a majority vote. In this view, the search for potential solutions y

consists in successively:

• building the case base {cs = (s, rs) = (a− b, f(a)− f(b))}525

• enumerating all instances c, and for each of them,

– Retrieval : retrieve all source cases cs = (s, rs);

– Mapping : compute the similarity σS(s, t) between s = a − b and
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t = c− x;

– Transfer : if σS(s, t) = 1 holds (i.e., a,b, c, x are s.t. a : b :: c : x),530

find the solutions y such that σR(rs, r) = 1, with rs = f(a) − f(b)

and r = f(c)− y.

This decision procedure thus considers all pairs (cs, ĉt) that can be obtained

from a triple (a,b, c), and searches for potential solutions y that can be inferred

by applying the following similarity-based inference on a pair (cs, ĉt):

(σS = 1) → (σR = 1) σS(s, t) = 1

σR(rs, r) = 1

The analogical root of x corresponds to the set of triples (a,b,c) for which the

similarity-based inference allows to infer a solution y. The predicted solution

f(x) is the solution y that is inferred on the maximal number of pairs (cs, ĉt)535

by triggering the rule.

If the analogical root of x is empty, analogical classifiers extend the search to

triples with lowest analogical dissimilarity, i.e., with highest value for the simi-

larity σS . This amounts to relaxing the condition σS(s, t) = 1 to the condition

σS(s, t) ≈ 1. The similarity-based inference becomes:

(σS = 1) → (σR = 1) σS(cs, ĉt) ≈ 1

σR(cs, ĉt) = 1

Only the k solutions y that are derived from the rule (σS = 1) → (σR = 1) with

the highest values of σS(cs, ĉt) are added to the solution set.

7. Transfer by Global Optimization

A recent work [6, 9, 10] proposes to define a global indicator that measures540

the compatibility of σR with σS on the whole case base. The compatibility

knowledge takes the form of a global function Γ(σS , σR, CB), that measures
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the compatibility of σR with σS on any potential case base CB. The predic-

tion strategy consists in completing the description of a case base in order to

minimize the value of the global indicator.545

This principle is implemented in the CoAT, for Complexity-based Analogical

Transfer, algorithm [6, 10]. In the CoAT method, the compatibility of σR with

σS is measured from an ordinal point of view on the whole case base CB, by

checking if σR orders the cases in the same manner as σS . The following con-

tinuity constraint is tested on each triple of cases (c0, ci, cj), with c0 = (s0, r0),

ci = (si, ri), and cj = (sj , rj):

if σS(s0, si) ≥ σS(s0, sj), then σR(r0, ri) ≥ σR(r0, rj) (C)

The constraint (C) expresses that anytime a situation si is more similar to a

situation s0 than situation sj , this order should be preserved on outcomes. A

triple (c0, ci, cj) does not satisfy the constraint if situation si is more similar

to s0 than situation sj for situations, but less similar for outcomes, i.e., when

σS(s0, si) ≥ σS(s0, sj) and σR(r0, ri) < σR(r0, rj). Such a violation of the con-

straint is called an inversion of similarity. A global indicator Γ(σS , σR, CB) is

introduced, that counts the total number of inversions of similarity observed on

a case base CB:

Γ(σS , σR, CB) = |{((s0, r0), (si, ri), (sj , rj)) ∈ CB × CB × CB such that

σS(s0, si) ≥ σS(s0, sj) and σR(r0, ri) < σR(r0, rj)}|

When the case base is fully known, except for the outcome rt of one case

ct = (t, rt), the transfer inference consists in finding the outcome rt that mini-

mizes the value of the Γ indicator:

rt = argmin
r∈R

Γ(σS , σR, CB ∪ {(t, r)})

A main difference with other theories of case-based prediction lies in the
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set of pairs considered to estimate the compatibility between the two similar-

ity measures σS and σR. The compatibility estimator Γ considers all triples

(c0, ci, cj), and checks for each triple if σR orders the two pairs of cases (c0, ci)

and (c0, cj) in the same way that σS does. Therefore, some pairs of cases in550

which ct does not appear are taken into account in the compatibility estimation.

This is different from other theories of case-based prediction, in which the com-

patibility of σR with σS is estimated solely on the pair of cases (cs, ct) for each

retrieved case cs (i.e., the two sets of similarity relations ΣS(t) and ΣR(r) are

compared two by two), and the results are combined in order to find the most555

plausible outcome r for the new case.

This approach also shares some commonalities with other approaches. The

constraint C can be seen as a qualitative version of the continuity constraint

σR(rs, rt) ≥ h(σS(s, t)) used in transfer by constraint methods (see Sec. 5). The

global indicator Γ measures the extent to which this continuity constraint is560

verified on the whole case base. The inference also consists, as in transfer by

evidence support approaches, in optimizing a global indicator. But the indicator

is defined on all triples of cases, and not only on the pairs of cases involving ct.

8. Conclusion and Further Work

This study constitutes the first survey of the wide and rich domain of case-565

based prediction. At the crossroad between the domains of case-based reasoning

and computational analogy, this systematic analysis of the literature both con-

tributes to developing a unifying theory of case-based prediction, and to setting

a formal ground to a general theory of analogical transfer in computer science.

Case-based prediction methods are diverse, and therefore developing a uni-570

fied theory is challenging. The present work makes an important contribution

in that direction, by showing that all case-based prediction methods share a

common principle, which is to interpret the plausible inference of analogical

transfer as a transfer of similarity knowledge that the predicted outcome should

optimize. In this respect, all approaches follow the same objective, which is to575
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find the outcome that makes the similarities in the outcome space most com-

patible with the observed similarities in the situation space. However, they

differ in the way compatibility is measured: depending on the type of approach,

the compatibility measure either takes the form of a joint similarity measure, a

set of rules, some continuity constraints, or a global indicator. The prediction580

strategy varies accordingly: it consists either in maximizing an indicator, mak-

ing a majority vote on the outcomes derived from a set of rules, or finding the

outcome that is the most consistent with a set of continuity constraints.

By eliciting some shared principles among case-based prediction methods,

this work also contributes to setting a formal ground to the theory of analogi-585

cal transfer in computer science. Although case-based prediction methods only

constitute a subset of analogical transfer methods, which are designed to apply

analogical transfer to prediction tasks such as classification or regression tasks,

these new insights suggest that it makes sense to model analogical transfer as a

transfer of similarity knowledge between two description spaces. These theoret-590

ical advances help better understand the role of the similarity knowledge in the

inference, and will allow for new developments in the study of analogical trans-

fer. Such advances are needed because analogical transfer methods are gaining

attention in many domains, and in particular in machine learning. Its inference

principle, which consists in deriving new information from a set of comparisons595

with previous experiences, is attractive because it allows to produce inferences

that are interpretable, take into account a memory of past experiences, allow

for creativity, and take into account domain knowledge, context, and similarity.

Further work includes making an extensive survey of analogical transfer

methods, that would encompass not only prediction tasks but also interpre-600

tation and creativity tasks. It would be interesting to study if the inference

principles identified in this paper for case-based prediction methods also apply

when analogical transfer is used e.g., for adaptation, or case-based explanation.

Another research direction would consist in providing a shared implementation

of the main case-based prediction algorithms. It would allow the different algo-605

rithms to be tested on real-world scenarii, and compared. Finally, the modeling
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of analogical transfer as a transfer of similarity knowledge between two descrip-

tion spaces allows to address one major challenge, which is to learn a similarity

measure that is adequate for a given transfer task.
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Meunier, J. Gutiérrez-Ŕıos, L. Magdalena, & R. R. Yager (Eds.), Technolo-815

gies for Constructing Intelligent Systems 1 (pp. 377–390). Physica-Verlag

HD volume 89.
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