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A nonlinear POD-Galerkin reduced-order model for compressible
flows taking into account rigid body motions
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aONERA, The French Aerospace Lab, F-92322 Châtillon, France
bConservatoire National des Arts et Métiers, Structural Mechanics and Coupled Systems Laboratory,

2 rue Conté, 75003 Paris, France

Abstract

The construction of a nonlinear reduced-order model for fluid-structure interaction problems is
investigated in this paper for unsteady compressible flows excited by the rigid body motion of
a structure. The reduction is achieved by means of a Galerkin projection of the Navier-Stokes
equations on the first POD modes resulting from the Proper Orthogonal Decomposition. In the first
part of the paper, the projection technique is carried out on a purely aerodynamic case in order (i)
to validate an efficient iterative technique based on an updated QR decomposition to compute the
POD modes, and (ii) to discuss the merits of different correction methods introduced to improve
the long-term stability of the reduced-order model. The second and most original part of the
paper deals with the construction of the reduced set of equations which arise from the projection
of the compressible Navier-Stokes equations formulated in a suitable moving frame representing
the rigid body motion. The expressions of the resulting non-autonomous terms appearing in the
reduced-order model have also been optimized to reduce the computational costs.

Keywords: reduced-order model, proper orthogonal decomposition, Navier-Stokes, nonlinear,
compressible flow, rigid body motion

1. Introduction

The modelization of unsteady aeroelastic phenomena like those involved in aircraft wings or
turbomachinery is very time-consuming. Such simulations cannot be performed routinely for
parametric studies which are needed to evaluate the performances and to control or optimize the
system. Reduced-order models with a very small number of degrees of freedom are therefore de-
veloped since several decades in the hope of being able to reproduce almost the same dynamics
as the full-order system. Specific reviews in the context of compressible aerodynamics have al-
ready been proposed [22, 45] but little work has been done in the case of fluid-structure interaction
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[4, 43, 63]. Another solution would be to consider the structural motion as a parameterized shape
modification and to use sensitivity analysis to introduce the effects of the motion [1, 33, 34].

We focus here on the Proper Orthogonal Decomposition (POD) whose principle is to determine
the optimal basis to represent the system response described by a set of snapshots [37]. On the
assumption that the system variables can be decomposed on the POD basis at each time instant,
the projection of the equations governing the mechanical system on each POD mode produces a
small set of ordinary differential equations governing the coordinates of the variables in the basis.

Since the pioneer work of Lumley [47], the proper orthogonal decomposition has been exten-
sively used as an efficient reduction method for a wide variety of fluid dynamics systems. Three
main techniques have been developed according to the equations considered to model the flow.
When the flow is linear or can be linearized, the discrete projection is the most straightforward
technique since the projection is merely performed by means of a pre-multiplication by the trans-
pose of the POD basis matrix. This type of reduced-order model has been widely used for linear
stability analysis in the context of aircraft [44, 49] or turbomachinery applications [22, 23, 31, 67].
The nonlinearities can be preserved in the reduced-order model with what Lucia et al. [45] called
the projection on the residual. At each time step, the nonlinear residual is computed in the physical
space with the full-order model and is then projected on the POD basis to advance in time. This
technique has been used successfully to reproduce large displacements effects [4], limit-cycles
oscillations [8], or shock oscillations [46, 52]. The reduction is however not optimal since the
aerodynamic field involving many degrees of freedom has to be reconstructed at each time instant
to evaluate the residual. Recently Carlberg et al. [14] proposed an alternative formulation with
three degrees of approximation to avoid the evaluation of the whole aerodynamic field. If the
nonlinearity can be viewed as the action of multilinear operators like polynomials, the Galerkin
projection technique yields an explicit nonlinear reduced-order model without requiring the com-
putation of the residuals. Otherwise, the nonlinear terms are implicit and the technique has to cope
with the same drawbacks as with the projection on the residual technique. The Galerkin projec-
tion approach already investigated by the author in [54] is therefore considered here. The main
difficulty which is addressed in this paper lies in the formulation of the equations for compressible
flows in the presence of a moving structure.

Indeed, the majority of the developments has focused on incompressible flows for which the
Navier-Stokes equations are a set of quadratic partial differential equations. The Galerkin pro-
jection therefore leads to explicit nonlinear reduced-order models which have been used to re-
produce turbulent structures [5, 11, 47], the vortex shedding process in the wake of obstacles
[17, 40, 60] or behind a backward-facing step [18, 19] and the driven cavity flow problem [15, 40]
for example. Recently, such reduced-order models have been applied to the control of flows
[3, 10, 58, 59, 62, 66] or to fluid-structure interaction problems [43].

Three difficulties arise when dealing with POD-Galerkin reduced-order models for nonlinear
compressible flows around a moving structure: the first one (i) is the choice of the variables to
obtain polynomial equations, the second (ii) concerns the computation of the POD modes for
large snapshots databases and the last one (iii) is related to the lack of stability.

The Navier-Stokes equations usually formulated with the conservative variables for compress-
ible flows are not quadratic and the Galerkin projection yields an inadequate implicit formula-
tion. For isentropic flows, Rowley et al. [57] managed to derive a quadratic reduced-order model
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also employed in [29] to reproduce self-sustained oscillations of acoustic waves. In the general
case, quadratic equations can yet be written with the judicious use of the modified primitive vari-
ables. This formulation has been introduced for nonlinear compressible flows around a fixed airfoil
[12, 39, 64]. The main contribution of this paper is the extension of this formulation to solve point
(i) in such a way that a rigidly moving structure can be taken into account in the Navier-Stokes
equations while maintaining the quadratic form which is suitable for the projection.

Even with the snapshots method of Sirovich [61], the computation of the POD modes is time
consuming as the snapshots become large. Solutions based on the Lanczos algorithm [24] or a
parallel domain decomposition procedure [7] have been proposed, but the solution to point (ii)
adopted here is based on a QR decomposition which is iteratively enriched [16, 48].

The lack of stability mentioned as point (iii) is due to the discretization scheme used to ap-
proximate the fluxes, to the truncation of the POD basis, to the non-respect of certain boundary
conditions or to some simplifying assumptions [19, 38, 50, 56]. Numerous stabilization procedures
have therefore been developed (see [29] for a comparison in the case of compressible flows). For
autonomous systems, the proper evaluation of the initial conditions can be sufficient to reproduce
accurately the limit-cycles [2]. The stability can also be enforced by modifying the dissipation
operator [5, 15, 60, 64] or by replacing the usual L2 inner product by another one which takes
into account the spatial or temporal derivatives of the snapshots [35, 39, 41]. More sophisticated
correction techniques based on the evaluation of the reduced-order model error have recently been
developed [9, 40]. General calibration techniques have finally been introduced in [18, 27] to de-
termine the optimal constant, linear and/or quadratic coefficients of the reduced-order model by
minimizing an error functional. This technique has been formulated in [51, 66] as a linear least-
squares problem.

In this paper, we consider as a preliminary work an oscillating airfoil in a nonlinear, com-
pressible and possibly viscous flow. Such a level of modelization is indeed required to reproduce
some complex aeroelastic phenomena [21] which motivate this study. Section 2 is devoted to the
formulation of the POD-Galerkin reduced-order model for compressible flows governed by the
Navier-Stokes equations described in a moving frame of reference with the set of modified primi-
tive variables. The algorithm to compute the POD modes is also briefly described. In section 3, the
correction techniques used to improve the accuracy of the reduced system response are presented.
A first reduced-order model of the Navier-Stokes equations is constructed in section 4 for a fixed
airfoil to validate the iterative QR decomposition algorithm adopted to compute the POD modes.
Different calibration methods are also evaluated for short- and long-term time integration. Finally,
a reduced-order model of the Euler equations is built in section 5 to reproduce the motion of a
shock generated by the oscillation of a moving airfoil.

2. Construction of the POD-Galerkin reduced-order model for compressible flows

2.1. Computation of the POD modes

Let Q = {q(m) ∈ H;m = 1, ..,M} be a finite set of snapshots. Each snapshot is the solution
of the full-order mechanical system at the time instant tm ∈ Is = [t0; t0 +Ts] and is defined on the
spatial domain Ω ⊂ R

d with d = 1,2 or 3 such that q(m) = [q1(tm), . . . ,qnv(tm)]T is a vector of
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nv squared integrable functions of space describing the aerodynamic field. The associated Hilbert
space H = (L2(Ω))nv is endowed for all q and r in H with the inner product

〈q,r〉=
∫

Ω

nv

∑
k=1

qk rk dΩ , (1)

and the induced norm is ‖q‖2 = 〈q,q〉. The previous inner product is well-defined as long as the
snapshots are dimensionless since they contain different physical quantities.

The aim of the proper orthogonal decomposition is to find a subspace S⊂H of low dimension
q which provides the best approximation of any member of Q. Usually the snapshots are centered
and the problem is to find the best basis to approximate the fluctuations of the snapshots q̃(m) =
q(m)− q around a mean state defined by the discrete weighted temporal average q = E[q(m)] =
∑M

m=1 αmq(m) with αm > 0 and ∑M
m=1 αm = 1. The subspace is defined by the basis Φ = {ϕ( j) ∈

H; j = 1, ..,q} so that S = span{ϕ(1), ...,ϕ(q)}. Each snapshot q(m) can therefore be approximated
on the subspace S by the following affine decomposition on the POD modes ϕ( j):

q(m) ≈ q
(m)
POD = q +

q

∑
j=1

a(m)
j ϕ ( j) ∀m ∈ �1;M�. (2)

The optimality statement of the POD modes ϕ( j) and the additional constraints of orthonor-
mality lead to the definition [42]⎧⎪⎪⎪⎨

⎪⎪⎪⎩
min

ϕ( j)∈H
E

⎡
⎣∥∥∥∥∥q̃(m)−

q

∑
j=1

〈
q̃(m),ϕ( j)

〉
ϕ( j)

∥∥∥∥∥
2
⎤
⎦

subject to
〈

ϕ (i),ϕ( j)
〉

= δi j

(3)

which is equivalent to the maximization of ∑q
j=1〈E[〈q̃(m),ϕ( j)〉q̃(m)],ϕ( j)〉 [54]. Introducing the

linear operator R such that for all y ∈ H, Ry = E[〈q̃(m),y〉 q̃(m)], the optimization problem (3)
finally amounts to the resolution of the eigenvalue problem Rϕ( j) = λ j ϕ( j) for each POD mode
ϕ( j) [37, 54]. This approach is called the direct method since the POD modes are directly com-
puted as the solutions of the eigenproblem. The Hilbert-Schmidt operator R has r ≤M non-null
eigenvalues and eigenvectors. The eigenvalues λ j represent the “energy” captured by each POD
mode and provide an estimation of the truncation error εq = ∑r

j=q+1 λ j [42].

After discretization, the set of snapshots is approximated by the real matrix Q̃ ∈M (Nv,M)
whose general term is q(m)

i − qi and the linear operator R can be represented by the matrix
R ∈M (Nv,Nv). For that purpose, the spatial domain is split in N discretization elements Ωe

such that Ω =
⋃N

e=1 Ωe and the integral in Eq. (1) is approximated by the trapezoidal rule
such that 〈q,r〉 ≈ ∑N

e=1 ∑nv
k=1 qk,e rk,e δΩe, where δΩe is the Lebesgue measure of the discretiza-

tion element Ωe and qk,e (resp. rk,e) is the spatial average value of qk (resp. rk) evaluated at
the center of the element. Denoting Nv = nv N, the i-th component of the vector Rϕ ( j) writes

(Rϕ( j))i ≈ ∑Nv
n=1(∑

M
m=1 αmq̃(m)

n q̃(m)
i ∆n)ϕ( j)

n and the general term of the matrix R is therefore the
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spatial weighted covariance ∑M
m=1 αmq̃(m)

n q̃(m)
i ∆n. We introduce finally the diagonal matrix α̃ con-

taining the square roots of the weights αm, the block diagonal matrix ∆̃ containing the square roots
of the Lebesgue measures δΩn and the weighted snapshot matrix Q̂ = ∆̃Q̃α̃ such that the linear
operator of the direct method is defined by the matrix product R = Q̂Q̂T ∈M (Nv,Nv).

The computation of the eigenvectors of R becomes very costly when the number Nv of de-
grees of freedom is large. The snapshots method [61] thus reduces considerably the size of the
eigenproblem. It is based on the linear decomposition of the POD modes on the snapshots:

ϕ ( j) =
M

∑
m=1

c( j)
m q̃(m). (4)

The eigenvalue problem Rϕ ( j) = λ j ϕ ( j) of the direct method is replaced by the following M×M
problem involving the temporal covariance matrix R� [54, 61]:

R�d( j) = λ jd( j), (5)

with R�
i j =√αiα j〈q̃(i), q̃( j)〉. The POD modes are now defined by Eq. (4) and the relation c( j) =

α̃d( j). The temporal covariance matrix is in practice computed as the matrix product R� = Q̂T Q̂∈
M (M,M). If M� Nv the evaluation of the POD modes is much less costly.

However the snapshots method has still two main drawbacks. First, the evaluation of the
covariance matrix R� can lead to severe round-off errors [30]. Second, the full snapshots matrix
may exceed the memory size available and the construction of the covariance matrix requires
M× (M + 1)/2 files reading if the snapshots are stored in separate files. The POD modes are
finally obtained after M additional readings of the snapshots since they are defined by Eq. (5).

An alternative solution is to compute the singular value decomposition (SVD) of the weighted
snapshots matrix Q̂ = Q1,rΣrQT

2,r, where Q1,r ∈M (Nv,r) contains the left singular vectors, Q2,r ∈
M (M,r) contains the right singular vectors and Σr ∈M (r,r) is the diagonal matrix containing
the r non-null singular values σ j [30]. The left singular vectors are the POD modes [65] since
R = Q1,rΣ2

r QT
1,r and the POD eigenvalues are λ j = σ2

j . Similarly, the right singular vectors are

the eigenvectors of the operator R� since R� = Q2,rΣ2
r QT

2,r. The definition of the POD modes
as the left eigenvectors of Q̂ does not introduce any round-off errors since the evaluation of the
covariance matrix is not needed. This solution is however only possible if the full snapshots matrix
can be stored in memory so that the SVD is performed for all snapshots at once.

The solution adopted here is to consider the first q snapshots as an initial approximation of the
left singular subspace and to improve it iteratively [16]. In this way, only the first q POD modes are
computed whereas the whole basis is computed with the snapshots method and is then truncated.

The initial sub-matrix Q̂q ∈M (Nv,q) containing the first q ≤ M snapshots is factored by a
QR decomposition such that Q̂q = QqRq. Then for i = q + 1 to M the i-th column q̂(i) of the
snapshots matrix Q̂ is appended to Q̂i−1. At each iteration of the algorithm, the extended matrix
Q̂up = [Q̂i−1, q̂(i)] is therefore updated with the relation

Q̂up =
[
Qi−1Ri−1 q̂(i)

]
=
[
Qi−1 θi

][Ri−1 ri

0 ρi

]
= Q̃i R̃i (6)
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by means of a Gram-Schmidt orthogonalization. The last singular vector uq+1 of R̃i is computed
as well as the last singular value σq+1 and an orthogonal transformation Gu is computed such that
GT

u uq+1 = eq+1. Finally the orthogonal transformation Gv is determined to put back GT
u R̃i in the

upper triangular form Rup = GT
u R̃iGv and the matrix Q̃i is updated in Qup = Q̃iGu. The extended

matrix is thus updated in Q̂up = QupRupGT
v and Q̂i is defined as the first q columns of Q̂up. The

corresponding QR approximation of Q̂i is thus given by Qi and Ri where the last column (and row
for Ri) has been eliminated. At the end of the iterations, the matrix Q̂M contains the information
of all snapshots and can be used to evaluate the POD modes. The algorithm used in this paper is
detailed in Appendix A. Improvements of the previous algorithm have been proposed to decrease
further the computational costs [48].

The cost of this solution to compute the POD modes is low since the update of the subspace
involves only small matrices which can be stored in memory and the algorithm requires only one
reading of each snapshot. The computation does not involve the covariance matrix and round-off
errors are thus reduced. This approach is also particularly interesting if the snapshots database is
completed later: additional snapshots can be taken into account without building again a covari-
ance matrix like in the snapshots method. This could be useful if the POD modes are constructed
from different simulations or if the simulation is pursued further in time.

2.2. Construction of the POD-Galerkin reduced-order model
The Navier-Stokes equations for compressible flows are usually written with the conservative

variables. They are however not appropriate to build a reduced-order model in the framework of
a Galerkin projection because of the apparition of rational fractions which produce an implicit
formulation of the reduced-order model. In the case of a fixed structure (and thus an invariant
domain), polynomial quadratic equations are yet obtained if the fluid equations are formulated
with the modified primitive variables q = [ϑ ,u, p]T, where ϑ = 1/ρ is the covolume, u is the
vector of the velocity components and p is the pressure [39, 64].

The main purpose of this paper is to extend this formulation in such a way that the motion of
a structure can be taken into account while maintaining a polynomial form of the equations which
is adequate for the Galerkin projection. We therefore consider the Arbitrary Lagrangian-Eulerian
(ALE) formulation [20] of the Navier-Stokes equations which modifies the convective terms by
the introduction of the mesh velocity s split into the velocity smfr of the moving frame of reference
and the deformation velocity sd .

These velocities stem from the definition of the absolute position x of a point M ∈ Ω which
writes x = x0 + x̃ with x0 the position of the origin M0 of the moving frame and x̃ the relative
position of the point M in the moving frame. The relative position is also defined by x̃ = Px̃mfr

where P is the change of basis matrix between the absolute and moving frames and x̃mfr is the rela-
tive position whose components are expressed in the moving frame. Using the previous relations,
the velocity smfr of the moving frame and the deformation velocity sd are defined by

smfr = s0 +ω ∧ x̃mfr and sd =
dx̃mfr

dt
, (7)

where s0 = PT (dx0/dt) is the velocity of the origin of the moving frame and ω is a rotation vector
associated to the skew-symmetric matrix PT (dP/dt).
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The dimensionless Navier-Stokes equations derived from the classical conservation equations
for the mass, the momentum and the energy [6] are finally written with the modified primitive
variables in the moving frame associated to the rigid body motion of the structure. The components
of the velocity vector u, as well as the spatial differentiation operators, are expressed in the moving
frame and the conservation equations become [53]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ϑ
∂ t

+(u−s) ·∇ϑ =ϑ divu

∂u

∂ t
+(u−s) ·∇u =−ϑ ∇p+

ϑ
Re

div τµr(u)−ω ∧u

∂ p
∂ t

+(u−s) ·∇p =−γ pdivu+
γ−1
Re

∇u : τµr(u)

+
γ

RePr
∆(ϑ p),

(8)

where γ = cp/cv is the heat capacity ratio, cp and cv are the specific heat capacities and Re and Pr
are respectively the dimensionless Reynolds and Prandtl numbers defined for a reference viscosity
µr and the thermal conductivity kθ . For a Newtonian fluid, the viscous stress tensor is defined by
τ(u) = 2µD−2/3 µ(divu)Id where D = 1/2(∇u+∇Tu) is the rate of deformation tensor. The
dimensionless viscous stress tensor τµr(u) = (∇u+∇Tu)−2/3(divu)Id stem from the division
of the viscous stress tensor τ by µr which is here assumed to be constant and equal to the fluid
viscosity µ (although it depends on the temperature via the Sutherland law and can be modified by
the turbulence). Finally, the thermal conductivity kθ and the specific heat capacity cv are assumed
to be constant since we consider a perfect gas.

A second formulation similar to Eqs. (8) for the Navier-Stokes equations formulated in the
reference frame can be obtained by substituting the absolute velocity u with the relative velocity
v = u−smfr and leads to the apparition of the usual Coriolis and centrifugal forces [53].

When the structure is moving or deforming, the spatial domain is no longer invariant and
the inner product Eq. (1) is ill-defined since two snapshots taken at different time instants are
not defined on the same spatial domain [43]. However if the structure is restricted to rigid body
motions, the fluid equations (8) formulated in the moving frame associated to the motion amounts
to consider an invariant spatial domain and the inner product is well-defined. If the structure is
deforming, the formulation has to be adapted by an approach similar to [43] which should be
extended for compressible flows. In this paper we only consider rigid body motions such that the
mesh velocity s = smfr +sd is just defined by the velocity of the moving frame smfr = s0 +ω ∧ x̃mfr

since sd = 0. The Navier-Stokes equations (8) therefore write under the generic quadratic form

q̇ = QC(q,q)+
1

Re
QD(q,q)+T(q,s0,ω), (9)

where the convective, diffusive and source terms are defined as multilinear operators by :

QC(q,q) =

⎡
⎣−u ·∇ϑ +ϑ divu
−u ·∇u−ϑ ∇p
−u ·∇p− γ pdivu

⎤
⎦ , (10a)
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QD(q,q) =

⎡
⎢⎣

0
ϑ divτµr(u)

(γ−1)∇u : τµr(u)+
γ
Pr

∆(ϑ p)

⎤
⎥⎦ , (10b)

T(q,s0,ω) =

⎡
⎣ smfr ·∇ϑ
smfr ·∇u−ω ∧u

smfr ·∇p

⎤
⎦ . (10c)

The flow variables are approximated at each time instant t by an affine decomposition similar
to (2). The modal amplitudes a(m)

j which were known at the time instants tm associated to the
snapshots are now the unknown coefficients a j(t) for which the reduced-order model is built. The
decomposition q(t) = q+∑q

j=1 a j(t)ϕ( j) is introduced into the system of equations (9). Using the

multilinearity of the spatial operators QC, QD and T, the Galerkin projection on each POD mode
ϕ(i) produces the set of q nonlinear, non-autonomous, quadratic ordinary differential equations :

ȧi(t)=Ki +
q

∑
j=1

Li j a j(t)+
q

∑
j,k=1

Q jik a j(t)ak(t)

+K mfr
i (t)+

q

∑
j=1

L mfr
i j (t)a j(t).

(11)

The constant, linear and quadratic coefficients defining the autonomous part of the polynomial
equations (11) can be decomposed in C = CC + 1/ReC D where C denotes either Ki, Li j or
Qi jk. The expressions of the coefficients are detailed below:⎧⎨

⎩
K C

i =
〈

QC(q,q),ϕ(i)
〉

K D
i =

〈
QD(q,q),ϕ(i)

〉 (12a)

⎧⎨
⎩

L C
i j =

〈
QC

(
q,ϕ( j)

)
+QC

(
ϕ( j),q

)
,ϕ(i)

〉
L D

i j =
〈

QD
(

q,ϕ( j)
)

+QD
(

ϕ( j),q
)
,ϕ(i)

〉 (12b)

⎧⎨
⎩

QC
i jk =

〈
QC

(
ϕ( j),ϕ(k)

)
,ϕ(i)

〉
QD

i jk =
〈

QD
(

ϕ( j),ϕ(k)
)
,ϕ(i)

〉 (12c)

⎧⎨
⎩

K mfr
i (t) =

〈
T(q,s0,ω),ϕ(i)

〉
L mfr

i j (t) =
〈

T
(

ϕ( j),s0,ω
)
,ϕ(i)

〉
.

(12d)

If the projection basis contains q POD modes, the total number of autonomous coefficients to
compute is Na

c = q(q+1)(q+2)/2. Because of the motion of the domain, there are Nna
c = q+q2

additional non-autonomous constant and linear coefficients K mfr
i (t) and L mfr

i j (t) to compute.

8



  

The expressions of the quadratic coefficients are detailed in the following when the quadratic
operators QC and QD are applied to (ϕ( j),ϕ(k)). The expressions of the linear and constant coef-
ficients can be deduced by substituting the couple (ϕ( j),ϕ(k)) by (ϕ( j),q) and (q,q) respectively.

The POD modes are split into ϕ( j) = [ϕ( j)
ϑ ,ϕ(i)

u ,ϕ( j)
p ]T and the development of Eqs. (12c) leads to

QC
i jk =−

∫
Ω

(
ϕ ( j)

u ·∇ϕ(k)
ϑ −ϕ(k)

ϑ div ϕ( j)
u

)
ϕ(i)

ϑ dΩ

−
∫

Ω

(
ϕ ( j)

u ·∇ϕ(k)
u +ϕ( j)

ϑ ∇ϕ(k)
p

)
·ϕ(i)

u dΩ

−
∫

Ω

(
ϕ ( j)

u ·∇ϕ(k)
p + γ ϕ( j)

p divϕ (k)
u

)
ϕ(i)

p dΩ

(13)

and
QD

i jk =
∫

Ω
ϕ( j)

ϑ divτµr

(
ϕ(k)

u

)
·ϕ(i)

u dΩ

+
∫

Ω

[
(γ−1)∇ϕ( j)

u : τµr

(
ϕ (k)

u

)]
ϕ(i)

p dΩ

+
∫

Ω

[ γ
Pr

∆
(

ϕ( j)
ϑ ϕ(k)

p

)]
ϕ(i)

p dΩ.

(14)

The Green-Ostrogradski theorem is then employed as a generalized integration by parts tool in
order to avoid the computation of the second order spatial derivatives involved in the diffusive
coefficients defined according to Eq. (14) by QD

i jk = Q̃D
u +(γ−1)Q̃D

p,1 +γ/PrQ̃D
p,2. This theorem

states for any vector v defined in Ω bounded by ∂Ω with the normal n that
∫

Ω divvdΩ =
∮

∂Ω v ·
nd∂Ω. Consequently, for a scalar s = ϕ( j)

ϑ , a vector v = ϕ(i)
u and a matrix M = τµr(ϕ

(k)
u ), the

integrand of the term Q̃D
u becomes sdivM ·v = div(svTM)−s∇v : M−(v⊗∇s) : M and the

application of the Green-Ostrogradski theorem to the vector svTM leads to

Q̃D
u =

∮
∂Ω

[
ϕ( j)

ϑ

(
ϕ (i)

u

)T
τµr

(
ϕ(k)

u

)]
nd∂Ω

−
∫

Ω
ϕ( j)

ϑ ∇ϕ(i)
u : τµr

(
ϕ(k)

u

)
dΩ

−
∫

Ω

(
ϕ (i)

u ⊗∇ϕ( j)
ϑ

)
: τµr

(
ϕ(k)

u

)
dΩ.

(15)

The second term Q̃D
p,1 in (14) is not modified since it involves only first order derivatives. The third

term Q̃D
p,2 also writes q∆(rs) = qdiv (∇(rs)) = div [q∇(rs)]− r ∇s ·∇q− s∇r ·∇q with q = ϕ(i)

p ,

r = ϕ( j)
ϑ and s = ϕ(k)

p . Using the Green-Ostrogradski theorem for the vector q∇(rs), the term Q̃D
p,2

is then transformed into

Q̃D
p,2 =

∮
∂Ω

ϕ(i)
p ∇

(
ϕ( j)

ϑ ϕ(k)
p

)
·nd∂Ω

−
∫

Ω
ϕ( j)

ϑ ∇ϕ(k)
p ·∇ϕ(i)

p dΩ

−
∫

Ω
ϕ(k)

p ∇ϕ( j)
ϑ ·∇ϕ(i)

p dΩ .

(16)
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The different contributions produced by the integration by parts are finally combined so that
the diffusive term QD

i jk = QD
Vol +QD

Surf is decomposed into volume and surface contributions which
involve only first order spatial derivatives. The expressions are given by:

QD
Vol = −

∫
Ω

ϕ( j)
ϑ ∇ϕ(i)

u : τµr

(
ϕ(k)

u

)
dΩ

−
∫

Ω

(
ϕ(i)

u ⊗∇ϕ( j)
ϑ

)
: τµr

(
ϕ (k)

u

)
dΩ

+ (γ−1)
∫

Ω
∇ϕ( j)

u : τµr

(
ϕ (k)

u

)
ϕ(i)

p dΩ

− γ
Pr

∫
Ω

ϕ( j)
ϑ ∇ϕ(k)

p ·∇ϕ(i)
p dΩ

− γ
Pr

∫
Ω

ϕ(k)
p ∇ϕ( j)

ϑ ·∇ϕ(i)
p dΩ ,

(17a)

QD
Surf =

∮
∂Ω

[
ϕ( j)

ϑ

(
ϕ(i)

u

)T
τµr

(
ϕ(k)

u

)]
nd∂Ω

+
γ
Pr

∮
∂Ω

ϕ(i)
p ∇

(
ϕ( j)

ϑ ϕ(k)
p

)
·nd∂Ω .

(17b)

The autonomous coefficients of the reduced-order model are thus completely defined by the
expressions (12), (13) and (17). The expressions of the non-autonomous coefficients given by
Eqs. (12d) are time-dependent and their evaluation becomes costly when the full aerodynamic
field contains a large number Nv of degrees of freedom. The unsteadiness of the coefficients is
due to the velocity of the moving frame smfr(M, t) = s0(M0, t)+ ω(t)∧ x̃mfr(M) which produces
the following expression of the linear non-autonomous coefficients

L mfr
i j (t) =

∫
Ω

(
smfr(t) ·∇ϕ( j)

ϑ

)
ϕ(i)

ϑ dΩ

+
∫

Ω

(
smfr(t) ·∇ϕ( j)

u −ω ∧ϕ ( j)
u

)
·ϕ(i)

u dΩ

+
∫

Ω

(
smfr(t) ·∇ϕ( j)

p

)
ϕ(i)

p dΩ.

(18)

The unsteady terms s0(M0, t) and ω(t) can be extracted from the integrals in the previous
expression since they do not depend on the position of the mesh points M. Using the properties of
the triple product, the expression (18) is transformed into

L mfr
i j (t) = s0(t) ·L T

i j +ω(t) ·L R
i j, (19)

where the new autonomous coefficients vectors L T
i j and L R

i j are respectively given by

L T
i j =

∫
Ω

ϕ(i)
ϑ ∇ϕ( j)

ϑ dΩ+
∫

Ω
ϕ(i)

p ∇ϕ( j)
p dΩ

+
∫

Ω

[(
ϕ(i)

u

)T
∇ϕ ( j)

u

]T

dΩ
(20)
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and
L R

i j =
∫

Ω

[
x̃mfr∧∇ϕ( j)

ϑ

]
ϕ(i)

ϑ dΩ

+
∫

Ω

[
x̃mfr∧∇ϕ( j)

p

]
ϕ(i)

p dΩ

+
∫

Ω
x̃mfr∧

[(
ϕ(i)

u

)T
∇ϕ ( j)

u

]T

dΩ

−
∫

Ω
ϕ( j)

u ∧ϕ (i)
u dΩ .

(21)

The constant non-autonomous terms K mfr
i (t) are transformed in the same way. Each non-

autonomous coefficient K mfr
i (t) and L mfr

i j (t) is now described by a set of two vectors which are
multiplied by the translational and angular velocities of the domain. Consequently the number
of non-autonomous coefficients is six times greater than before (Nna

c = 6q + 6q2) but the coeffi-
cients can be computed once for all before the time integration of the reduced-order model. The
reduced-order model is therefore described by Nc = Na

c +Nna
c constant coefficients. Details about

the computation of the coefficients can be found in [53].
The computation of the surface contribution QD

Surf is based on the values of the POD modes, of
the mean part and of the gradients on the domain boundaries. The values of the snapshots on the
boundaries ∂Ω are also extracted here in such a way that the mean part and the POD modes on the
boundaries can be computed with q|∂Ω = ∑M

m=1 αm q(m)|∂Ω and ϕ( j)|∂Ω = ∑M
m=1 c( j)

m (q(m)|∂Ω−
q|∂Ω). The gradient of the POD modes ∇ϕ ( j) is computed in internal cells from the values of ϕ( j)

with a Finite Volume approximation in order to be consistent with the formalism used to obtain
the snapshots. The evaluation of the gradients in the cells near the boundaries makes use of the
values of the POD modes ϕ( j)|∂Ω computed on the boundaries and the values of ∇ϕ( j)|∂Ω are
extrapolated. It is thus recommended to store the values of the snapshots on the boundaries to
improve the evaluation of the surface terms. Otherwise extrapolations are also needed to estimate
q|∂Ω and ϕ ( j)|∂Ω.

To conclude this section on the construction of the POD-Galerkin reduced-order model, it
should be mentioned that the model has been developed without the introduction of any artificial
dissipation, whereas the classical Finite Elements or Finite Volume discretization methods gener-
ally make use of such procedures in order to stabilize the response for compressible flows. This is
a potential source of instability which legitimates the need for a correction to improve the stability
and the accuracy of the reduced-order model response.

3. Correction methods for POD-Galerkin reduced-order models of compressible flows

The reduced-order model is written in the compact form ȧ = fG(a, t) where a = [a1, . . . ,aq]T

is the vector of the modal amplitudes and fG(a, t) is a vector containing the polynomials f G
i (a, t)

of the right hand size of equation (11), whose coefficients have been computed from the analytical
expressions established in section 2. The objective of the correction methods is to determine
the vector fc(a, t) of the corrected polynomials such that the reduced-order model response is
as close as possible to the one of the full-order model. Considering the sampling time interval
Is = [t0; t0 +Ts], this means that the modal amplitudes a j(tm) evaluated at the time instant tm have
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to coincide with the reference modal amplitudes a(m)
j = 〈q̃(m),ϕ( j)〉 computed as the projection of

the snapshots on the POD modes.

3.1. Calibration of the reduced-order model coefficients

This method used for example in [13, 18, 26, 27] relies on an optimization problem formulated
for some coefficients of the polynomial vector fG, which are collected in the vector X ∈R

pc where
pc ≤ Nc. The corrected polynomial vector is therefore the solution of the optimization problem

fc = fG(a,Xopt) with X opt = arg min
X ∈Rpc

J (ε(X , t)) (22)

where the functional J to minimize is formulated for an error ε(X , t) which is defined as the
difference between the modal amplitudes εi(X , tm) = a(m)

i −ai(X , tm) or between the derivatives
of the modal amplitudes εi(X , tm) = ȧ(m)

i − ȧi(X , tm). These two options are respectively the
state calibration method and the flow calibration method according to [18]. The error can also
be formulated for any physical quantity χ like the lift coefficient for example. In this case the
correction is goal-oriented and the error is noted εi(X , tm) = χ(m)

i −χi(X , tm).
However the computation of the quantity χ induces high numerical costs when it involves the

whole aerodynamic field. We therefore propose here a calibration based on the energetic content of
each POD such that the error is defined by εi(X , t) = λi−E[ai(X , t)ai(X , t)] and the functional
to minimize is J (ε(X , t)) = ∑q

i=1 |εi(X , t)|2. This formulation can be viewed as the calibration
of an ‘energy’ E ∗T similar to the total energy ET of the dynamical system. Indeed, the average of
the quantity E ∗T = 〈q,q〉 = ∫

Ω(ϑ2 +uTu + p2)dΩ is E[E ∗T ] ≈ ∑q
i=1 λi. For compressible flows,

the energy E ∗T is not exactly the total energy but numerical results reveal that the calibration of
E ∗T provides the same correction as if the coefficients were calibrated with the real physical total
energy ET [53]. For incompressible fluids, the energy E ∗T = 〈q,q〉 represents twice the kinetic
energy per unit mass of the system and such a calibration has therefore a physical meaning.

Finally the functional to minimize is formulated for the average norm of the error

J (ε(X , t)) = E
[
‖ε(X , t)‖22

]
=

M

∑
m=1

αm

Ndofs

∑
i=1
|εi(X , tm)|2 (23)

where the number Ndofs is equal to q if the error is based on the (derivatives of the) modal amplitudes
and to 1 if a scalar quantity like the energy is considered. Since the functional J (ε(X , t)) is
highly nonlinear, the optimal solution is computed with the Levenberg-Marquardt algorithm [25].

3.2. Identification of the reduced-order model coefficients

The nonlinear dependency of the functional can be simplified by the linearization of the prob-
lem where the modal amplitudes are approximated by a(X , tm)≈ a(0) +

∫ t0+tm
t0

fG(a(m)(τ),X )dτ
for the state calibration and by ȧ(X , tm) ≈ fG(a(m),X ) for the flow calibration. The optimiza-
tion problem becomes a linear least-squares problem which is generally ill-posed. Couplet et al.
[18] therefore introduced a regularization term to solve the problem but the determination of the
regularization parameter is not obvious. Recently, a Tikhonov regularization of the problem has
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been introduced [17, 51, 66] to determine properly this parameter by means of the L-curve method
introduced in [32].

Since the reference modal amplitudes a(m) should be governed by the set of ordinary differen-
tial equations of the reduced-order model, the equalities (11) should be satisfied for each amplitude
and at each time instant tm. These equations correspond to ȧ(X , tm)≈ fG(a(m),X ) and write for
each amplitude ȧ(m)

i under the matrix form

A X i = Bi, (24)

where Bi = [ȧ(1)
i · · · ȧ(M)

i ], X i = [X a
i X na

i ]T is the vector containing the unknown coefficients for
the autonomous and non-autonomous parts such that

X a
i =

[
Ki · · · Li j · · · Qi jk,k≥ j · · ·

]T
X na

i =
[(

K T
i

)T (
K R

i

)T · · ·(L T
i j

)T · · ·(L R
i j

)T · · ·]T
,

(25)

and A = [A a A na ] is a matrix containing the correlations of the amplitudes associated to the co-
efficients of X i. The system (24) is generally ill-posed and the matrix A is often ill-conditioned.
An approximate solution X̃ i can however be looked for. Two regularization techniques are used
in this paper. The first one is based on the Tikhonov regularization and the approximated solution
of the problem is

X̃ i = arg min
X ∈RNc

‖A X −Bi‖22 +λTikh ‖X −X 0‖22 , (26)

where λTikh is the regularization parameter computed by the L-curve method [32] and X 0 is an
initial guess of the coefficients which are here computed by the analytical expressions given in
section 2.2.

An alternative solution is to compute the pseudo-inverse of the matrix A by means of a sin-
gular value decomposition and to truncate the decomposition to eliminate the smallest singular
values. The pseudo-inverse A +

p evaluated with the first p singular values is then used to obtain
the approximated solution

X̃ i = A +
p Bi. (27)

The order of truncation can also be determined with the L-curve method. Unlike the Tikhonov
regularization method, there is no use of the initial guess X 0 and the solution is possibly very far
from the values given by the analytical expressions derived with the Galerkin projection.

4. Reduced-order model of the flow field around a fixed NACA0012 airfoil

4.1. Generation of the snapshots database

A reduced-order model is first constructed to reproduce the vortex shedding process emerging
in the wake of a NACA0012 airfoil. The Navier-Stokes equations including the viscous terms
have thus to be considered since the vortex shedding is mainly due to viscous processes. The
flow parameters are Re = 2000 and Ma = 0.2 and the angle of attack of the profile is α = 20 ˚ .
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The vortex shedding process has been extensively studied by Pulliam [55] on the interval Re ∈
[800;3000] and POD-Galerkin reduced-order models have already been constructed for the same
configuration [12, 39, 64]. For this configuration the flow is two-dimensional and a 2D C-shape
spatial domain is therefore used. The mesh generated with a transfinite interpolation method is
composed of N = 19100 discretization control cells and the number of degrees of freedom of the
full-order model reaches Nv = 76400.

Since the computation of the POD modes requires the generation of a snapshots database, a
simulation is first performed with the full-order model. The result of a steady computation with
the Finite Volume solver elsA [28] is shown on figure 1(a). The existence of a recirculation zone
is a clue of the emergence of the vortex street. The vortex shedding process is captured with an
unsteady computation performed with a two-level multigrid method and a backward Euler scheme
for the time integration. The periodic vortex shedding creates an oscillation of the lift coefficient
which is represented on figure 1(b). The Fourier transform of the lift coefficient produces a peak
corresponding to the dimensionless Strouhal period T ∗St = 9.6.
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(a) Steady dimensionless pressure field
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(b) Oscillations of the lift coefficient

Figure 1: Representation of the steady pressure field and of streamlines around the NACA0012 airfoil (a) and plot of
the oscillations of the lift coefficient produced by the periodic vortex shedding process (b).

4.2. Computation of the POD modes

A set of M dimensionless snapshots is extracted on the sampling time interval Is. The extraction
is performed regularly with the time step δ tc over about one and a half Strouhal period. The POD
modes and eigenvalues are first computed with the snapshots method [61] which is here considered
to be the reference solution. Figure 2 represents the percentage of energy η̃i = λi/∑r

j=1 λ j captured
by each POD mode. This quantity is compared when the eigenvalues are computed with the
method of Chahlaoui et al. [16] which provides a recursive approximation of the dominant singular
subspace. The circles are the reference eigenvalues λi computed with the snapshots method. The
red squares are the converged singular values σ2

i for i = 1, . . . ,q and the empty squares detail
the convergence of each singular value. The asterisks represent the dismissed singular values σ2

i
for i = q +1, . . . ,M. The graph has been plotted for M = 50 snapshots and the dimension of the
approximated subspace is q = 20. Since the whole snapshots matrix cannot be stored in memory,

14



  

the algorithm begins with the QR decomposition of the truncated snapshots matrix containing only
the first q snapshots. This first approximation is then enriched by the M−q missing snapshots to
get finally an accurate estimation of the left singular subspace and of the singular values.
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Reference eigenvalues
Iterative eigenvalues
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Figure 2: Spectrum of the eigenvalues associated to the POD modes. The reference curve (◦) is the spectrum computed
with the snapshots method, whereas the spectrum computed with the iterative QR decomposition [16] is represented
by the red squares (�) for the converged values. The dismissed eigenvalues are given by the asterisks (∗).

The eigenvalues are grouped by pairs as usually for flows exhibiting a vortex shedding process
[17, 39, 40, 60]. The first POD modes capture almost all of the energy of the system: with M = 50
snapshots used to compute the POD modes, the truncation error εq = ∑r

j=q+1 λ j/∑r
j=1 λ j is about

1.2e-4 % when the projection basis contains only q = 10 POD modes.
The eigenvalues computed by both methods compare well. The error |λi−σ2

i |/|λi| is given in
Table 1 for the first ten eigenvalues. The error is larger for the last eigenvalues and the precision
increases for these eigenvalues as the dimension of the subspace q increases. The computation
costs of the iterative QR decomposition are much smaller. The graph on figure 3 compares the
CPU times necessary to compute the POD modes for different sizes of the snapshots database.
The CPU time increases with the square of M for the snapshots method whereas it grows linearly
for the QR decomposition. Indeed, in the first case the snapshots have to be read M(M + 1)/2
times to compute each term of the symmetric covariance matrix R� while only M readings of the
snapshots are needed to approximate the subspace in the second case.

The pattern of the POD modes is represented on the figure 4. On each line, the pressure part of
the POD mode ϕ(i)

p for i = 1, . . . ,4 is shown. In the first three columns, the POD modes have been
computed with the iterative QR decomposition when the size of the POD basis is q = 5, 10 or 30.
In the last column, the POD modes come from the resolution of the eigenvalue problem (5) with
the snapshots method. The structure of the POD modes is practically the same with the iterative
QR decomposition method, whatever the dimension q of the approximated subspace.
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q = 5 q = 10 q = 20 q = 30

0.06 0.06 0.06 0.06
3.71 3.71 3.71 3.71
0.86 0.82 0.82 0.82
3.20 3.18 3.18 3.18
11.9 2.18 2.18 2.18

– 1.51 1.50 1.50
– 3.38 2.03 2.03
– 1.32 0.62 0.62
– 56.3 2.71 2.71
– 94.7 0.30 0.30

Table 1: Relative error (in percentage) for the first ten POD eigenvalues computed for different dimensions q of the
POD subspace.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

M

C
P

U
 ti

m
e 

(s
)

Figure 3: Comparison of the CPU times for the computation of the POD modes with the snapshots method (◦) and the
iterative QR decomposition (�). The continuous (—) and dashed (– –) curves are first and second order polynomial
approximations.
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(a) q = 5 (b) q = 10 (c) q = 30 (d) Reference

Figure 4: Comparison of the pressure part ϕ(i)
p of the POD modes computed by different ways. Each row represents

respectively the first, second, third and fourth POD modes computed with the iterative QR decomposition method
[16] with (a) q = 5, (b) q = 10 or (c) q = 30 and (d) with the snapshots method [61] used here as a reference. The
continuous (resp. dashed) lines represent positive (resp. negative) isovalues.
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Finally the convergence of the proper orthogonal decomposition approximation is checked on
the figure 5(a) when the number of snapshots M or the number of POD modes q is increased. For
that purpose, the reference snapshots q(m) are reconstructed by the decomposition (2) using the
POD modes computed from the snapshots database containing M snapshots and a projection basis
with q POD modes. The aerodynamic field reconstructed in this way is q

(m)
POD = q +∑q

j=1 a(m)
j ϕ( j)

where the coefficients a(m)
j = 〈q(m),ϕ( j)〉 are the reference modal amplitudes. The reconstruction

error is defined for the snapshots by εL2,q = ||q(m)−q
(m)
POD ||L2/||q(m)||L2 at each time instant tm with

the definition (1) for the L2 norm. Then the time average error E[εL2,q] is plotted on figure 5(a) with
a logarithmic scale. There is clearly a convergence when the number of POD modes is increased
but the influence of the number of snapshots is not significant. The reconstruction error is very
small and converges but in this case the modal amplitudes have been obtained by the projection of
the snapshots on the POD basis. In the next section, the same error is evaluated when the modal
amplitudes are computed from the resolution of the reduced-order model.
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(a) Convergence of the reconstruction error
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Figure 5: Convergence of the reconstruction error E
[
εL2,q

]
when the number M of snapshots and the number q of

POD modes used in the proper orthogonal decomposition is increased (a). When the number of snapshots used to
compute the POD modes is increased, the entropy H of the system converges (b).

The influence of the number of snapshots is highlighted on figure 5(b) by the graph of the
system entropy defined by

H =− lim
M→∞

1
logM

M

∑
m=1

η̃m log η̃m with η̃m =
λm

∑r
j=1 λ j

. (28)

Although the influence of the number of snapshots is not significant for the reconstruction er-
ror, it has a great influence on the value of the system entropy. Increasing the number of snapshots
seems to provide a better description of the system whose entropy converges. Since the entropy is
a measure of the system disorder, the low limit value H < 0.16 indicates that the system energy
is concentrated on the first eigenvalues. This justifies the construction of a reduced-order model
with only the first POD modes.
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4.3. Evaluation of the reduced-order model response

The previous results have demonstrated the ability of the POD modes to represent the snap-
shots database. Now the reduced-order model is constructed and the modal amplitudes are com-
puted as the solution of the system of ordinary differential equations (11) to reproduce the aero-
dynamic field. Since the structure is fixed, the system is just described by the autonomous oper-
ators K , L and Q. The coefficients of the reduced-order model are computed for q = 10 POD
modes and M = 50 snapshots. The reduced-order model is initialized with the modal amplitudes
ai(t0) = 〈q(1),ϕ(i)〉 corresponding to the first snapshot. Since the system is autonomous, other ini-
tial conditions could be determined with the shooting method of Akhtar et al. [2] and may improve
the accuracy of the limit-cycle on which the system converges. The time integration is performed
on the sampling time interval Is so that the solution can be compared to the reference solution
given by the snapshots. Since the reduced-order model (11) is defined by a set of explicit ordinary
differential equations, its integration in time is performed with classical procedures. The lsoda

solver of the package ODEPACK [36] adopted here automatically chooses according to the stiff-
ness of the problem between a predictor-corrector Adams scheme or the Backward Differentiation
Formula.

The result is plotted on figure 6 where the trajectories of the modal amplitudes computed by the
reduced-order model are compared to those of reference. The limit cycles are not well reproduced
and clearly reveal a lack of dissipation in the response which tends to diverge as the time integration
is pursued. The relative error εa j plotted for each modal amplitude on the last graph of figure 6

is defined by εa j = 100 ||a(m)
j −a j(tm)||L2(Is)/||a

(m)
j ||L2(Is) where ||x(t)||L2(Is) = (

∫ t0+Ts
t0

x2(t)dt)1/2.
This error is relatively small for the first amplitudes (about 25%) but increases significantly for the
last ones whose values are about 500%. However, the global response of the dynamical system is
mainly characterized by the first modal amplitudes and consequently the macroscopic quantities
are qualitatively well reproduced. The lift coefficient is plotted on figure 7(a) over a longer time
interval. Over the sampling time interval Is delimited by the black rectangle, the lift coefficient is
rather well reproduced (εCL = 3.8%) even if the errors εa j on the modal amplitudes are significant.
The relative error on the frequency is only 1.5% and the physics of the vortex shedding is well
reproduced. Although the results of figure 6 showed a potential divergence, a saturation of the
oscillations is observed and the response is stable for long time integration. However the lack of
dissipation induces an over-estimation of the amplitude of oscillation for the lift coefficient and a
correction of the reduced-order model is necessary.

The error is not reduced by the introduction of more POD modes or snapshots in the database
as shown on figure 7(b). Unlike the plot of figure 5(a), the error reaches an asymptotic value as
soon as q = 10 POD modes are kept in the projection basis. Although the introduction of new POD
modes reduces continuously the approximation error of the snapshots with the proper orthogonal
decomposition using the reference modal amplitudes a(m)

j , this is no longer the case when the
modal amplitudes are computed by the reduced-order model when q > 10.

4.4. Improvement of the reduced-order model response

As stated in the introduction, many corrections methods could be considered to improve the
stability. The modification of the initial conditions by the shooting method suggested in [2] could

19



  

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

a
1

a 2

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

a
3

a 4

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

a
5

a 6

−0.01 −0.005 0 0.005 0.01 0.015
−0.01

−0.005

0

0.005

0.01

0.015

a
7

a 8

−8 −6 −4 −2 0 2 4 6 8

x 10
−3

−8

−6

−4

−2

0

2

4

6

8
x 10

−3

a
9

a 10

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

i

ε a i

Figure 6: Comparison of the trajectories of the modal amplitudes
{

a j(t)
}10

j=1 computed with the reduced-order model
on short- (•) or long-term (—) and of the modal amplitudes of reference a(m)

j obtained by the projection of the
snapshots (◦). The last graph represents the relative time averaged error εa j .
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Figure 7: Comparison of the lift coefficient of reference computed with the full-order model to the one reproduced
by the reduced-order model over several Strouhal periods (a). The convergence of the infinite error for the modal
amplitudes is represented on the graph (b) when the number of snapshots and POD modes is increased.

be useful in this case since the reduced-order model is autonomous. However, since we are later
interested in non-autonomous systems, we rather consider the correction methods described in
section 3.2. The nonlinear optimization problem (22) is solved for different types of errors ε(X , t)
based on the modal amplitudes (state calibration) or on the energy E ∗T captured by each POD mode.
Different sets of coefficients to optimize have also been investigated. The combinations of errors
and parameters are given in Table 2 according to the number pc of coefficients to calibrate.

The calibration called qRe consists in finding the best corrected Reynolds numbers Rei associ-
ated to each equation of the reduced-order model and thus operates on the linear diagonal terms.
A better correction is obtained when the constant and linear diagonal terms are optimized. This
calibration called KdL does not only modify the diffusive contribution of the linear term but oper-
ates on the global linear diagonal term. Likewise, the calibration KL provides optimal values for
the constant and linear operators. See [29, 53] for a thorough comparison between the different
correction methods and a discussion on the initialization of the optimization algorithm.

Table 2: Parameters of the optimization problem for the calibration of the reduced-order model.
Identifier εi(X , tm) Coeff. pc

qRe - State a(m)
i −ai(X , tm) Rei q

qRe - Energ. λi−E[ai(X , tm)ai(X , tm)] Rei q

KdL a(m)
i −ai(X , tm) Ki,Lii 2q

KL a(m)
i −ai(X , tm) Ki,Li j q+q2

The lift coefficient computed with the reduced-order model is compared on figure 8 to the
reference response of the full-order model. On the first period, the different calibrations perform
well and the response is very accurate. However, discrepancies appear on the long-term. The am-
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plitude of oscillation is well captured but a phase-lag is clearly visible on the twenty-fifth period.
The calibration of the Reynolds numbers with the state or energetic approaches produces nearly
the same results although two different quantities have been minimized. The relative error on the
frequency is 1.4% with the calibrations qRe, 1.0% with the calibration KdL and drops to 0.1% with
the calibration KL. The solution is improved when the number of calibrated coefficients increases.
Indeed, the calibration of the constant and linear diagonal terms (KdL) or the calibration of the
constant and all the linear terms (KL) improves further the estimation of the frequency.
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Figure 8: Comparison of the lift coefficient computed with the reduced-order model calibrated with the different
combinations given in table 2: (+) qRe - state calibration, (�) qRe - energetic calibration, (◦) KdL, (�) KL. The lift is
compared on the 1st and 25th period of oscillation to the reference response (—) computed with the full-order model.

The accuracy of each calibration is evaluated on the short-term response where the snapshots
are known. The relative error on the lift coefficient computed with the state or energetic calibration
qRe of the Reynolds numbers is respectively εCL = 2.14% and εCL = 2.12%. Then the error drops at
εCL = 1.67% for KdL and εCL = 1.52% for KL. The errors on each modal amplitude are represented
on figure 9. The accuracy is much better when all the linear coefficients are calibrated. The
accuracy is the most important for the first amplitudes which mainly govern the response, but
since the system is nonlinear an error on the last amplitudes is able to destabilize the response and
the error should also be reduced for these amplitudes.

In this section a reduced-order model for the Navier-Stokes equations of the flow around a
fixed structure has been constructed using an original algorithm to compute the POD modes and
adequate calibrations methods have been investigated to reproduce correctly the limit-cycle oscil-
lations of the lift coefficient. Numerical results show that the calibration of constant and linear
diagonal coefficients provides an enough accurate solution in terms of stability and amplitude and
frequency of oscillation. An even better solution can be reached with the calibration of all the
linear coefficients after the resolution of a more demanding optimization problem. The objective
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Figure 9: Comparison of the error εa j for the modal amplitudes computed as the solution of the reduced-order model
corrected for the set of coefficients qRe, KdL and KL. The error relative to the calibration of the energetic content E ∗T
is also given for the set of coefficients qRe.

of the next section is to evaluate the formulation of the reduced-order model developed in this pa-
per to take into account the motion of a structure and to investigate the potential of the correction
methods used previously in the case of a fixed structure.

5. Reduced-order model of the flow field around an oscillating NACA0064 airfoil

5.1. Generation of the snapshots database

The second reduced-order model is developed to reproduce the shock oscillation induced by
the motion of a NACA0064 airfoil in a transonic flow at Ma∞ = 0.796. In this case the Euler
equations are considered since the viscous processes are not of prime importance. A 2D C-shape
spatial domain containing N = 8192 discretization control cells is used and the number of degrees
of freedom of the full-order model is Nv = 32768.

The airfoil is subjected to a translational motion at a constant horizontal velocity V∞ and a
rotation is prescribed via the pitch angle α which oscillates at the frequency ωα . The rotational
motion is therefore described by α(t) = αm sin(ωα t), where αm = 1.0. The translational velocity
smfr and the angular velocity ω of the moving frame thus write

smfr = V∞

⎡
⎣cosα(t)

0
sinα(t)

⎤
⎦ and ω =

⎡
⎣ 0

α̇(t)
0

⎤
⎦ . (29)

The result of a steady computation conducted in the relative frame of reference with α = 0 is
shown on figure 10. Two shock waves are revealed on each side of the airfoil at the same position
on the chord since the angle of attack is null. When the pitch angle oscillates with a prescribed
motion, the position of the shock waves oscillates in opposite direction on each side of the profile.
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Figure 10: Isovalues of the steady Mach number around the NACA0064 airfoil. The angle of attack is set to α = 0.

Unsteady computations are then performed with a prescribed motion on several periods to
reach the convergence. The simulation is initialized with the aerodynamic field presented on figure
10 since at t = 0 the angle of attack is null.

5.2. Computation of the POD modes

A set of M = 120 dimensionless snapshots is extracted regularly on the sampling time interval
Is covering about two and a half period selected after the transient has vanished. A longer time
interval was selected here since the stability of the reduced-order model proved to be better in
this case. Figure 11 represents the percentage of energy η̃i = λi/∑r

j=1 λ j captured by each POD
mode for a basis containing q = 30 modes. The converged values computed with the method of
Chahlaoui et al. [16] compare well to those computed with the classical snapshots method like in
the case of the fixed NACA0012 airfoil.

The eigenvalues are no longer grouped by pairs and the slope is less pronounced than in the
previous example. However the first POD modes contain most of the system energy since the
truncation error εq is about 4.2e-3 % when the projection basis contains only q = 10 POD modes.

The structure of the first six POD modes is represented on figure 12. The POD modes have
been computed from a subspace approximation with q = 30 snapshots and then completed with
the M− q = 90 remaining snapshots. There is no visible difference with POD modes computed
with the classical snapshots method (not shown on Fig. 12). The POD modes exhibit the oscil-
lating pattern of the shock which is decomposed in several discontinuous areas along the airfoil
chord. The POD modes are no longer grouped by pairs but several structures are common to two
consecutive modes : modes 1 and 2 are characterized by only one large shock structure on each
side of the airfoil, whereas the next modes are composed of two or three similar structures of lower
spatial extent. The entropy is H = 0.15 for M = 120 and decreases very slightly when the number
of snapshots is increased further. Consequently, a reduced-order model based on the first most
energetic POD modes should here again be able to represent the physics of the shock oscillation.
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Figure 11: Spectrum of the POD eigenvalues computed with the iterative QR decomposition [16] involving initially
q = 30 snapshots. The reference curve in black (—) is the spectrum computed with the snapshots method.
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Figure 12: Pressure part ϕ(i)
p of the first six POD modes computed for the oscillating NACA0064 airfoil with the

iterative QR decomposition method [16] with M = 120 snapshots. The continuous (resp. dashed) lines represent
positive (resp. negative) isovalues.
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5.3. Evaluation of the reduced-order model response

The reduced-order model described by Eq. (11) involves now autonomous and non-
autonomous terms. The coefficients associated to these terms are now computed from the set
of snapshots q = [ϑ ,u, p]T, where the velocity vector is defined in the relative frame of reference
attached to the rigid body motion of the structure. The non-autonomous terms K mfr

i (t) and L mfr
i j (t)

which describe the motion of the spatial domains are defined by Eqs. (19), (20) and (21) in the
general case but since the rigid body motion is only made up of a translation and a rotation, the
non-autonomous reduced-order model coefficients write

L T
i j =

⎡
⎣L T

i j,x
0

L T
i j,z

⎤
⎦ and L R

i j =

⎡
⎣ 0
L R

i j,y
0

⎤
⎦ (30)

according to the definition Eq. (29) of the translational and angular velocities. Due to the previous
simplification, the number of non-autonomous coefficients is now Nna

c = 3q+3q2.
The reduced-order model constructed for this new system is very unstable, even if the number

of POD modes used in the projection basis and the number of snapshots included in the database
is increased. This may be attributed to the absence of any dissipation in the reduced-order model,
which is crucial for transonic flows. Indeed, the Euler equations have been here projected without
introducing some numerical dissipation to stabilize the response, although such a procedure is
used in the full-order model. The calibration techniques presented in section 3.1 could therefore
be used to account for this numerical dissipation.

The calibration called qRe in table 2, which modifies the Reynolds number for each equation of
the reduced-order model, cannot be used in this case because of the absence of any diffusive term.
The sets of calibrated coefficients KdL and KL which yielded previously satisfactory results do no
longer provide an adequate correction since the reduced-order model response diverges rapidly
from the lift limit-cycle obtained with the full-order model. The sole calibration of autonomous
constant and linear coefficients is not sufficient in the present case. Consequently, a new set of
coefficients called KdL mfr has been employed to improve also the coefficients associated to the
non-autonomous terms.

Instead of optimizing all the non-autonomous constant and linear coefficients K T
i , K R

i , L T
i j

and L R
i j, the calibration termed KdL mfr is acting on the translational and angular velocities smfr

and ω from which the non-autonomous coefficients are defined by Eq. (19). In this way, only
6 additional coefficients (instead of Nna

c = 3q + 3q2) have to be determined and the calibration
KdL mfr optimizes finally 2q+6 coefficients.

The results of the time integration of the reduced-order model built with q = 10 POD modes
extracted from M = 120 snapshots is plotted on figure 13 when the set of coefficients KdL mfr

has been calibrated. The first pair of modal amplitudes ai(t) for i = 1,2 is well predicted on the
sampling time interval (t ∈ Is) where the trajectory is represented by the black filled circles. How-
ever, the calibration fails to predict correctly the system response on long-term time integration.
After about eight periods, the response diverges. This is the result of the accumulation of errors
due to the wrong approximation of the other modal amplitudes ai(t) for i ≥ 3 which are not well
reproduced, even on short-term.
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Figure 13: Comparison between the trajectories of the modal amplitudes
{

a j(t)
}10

j=1 computed with the calibrated
reduced-order model (—) and those of the modal amplitudes of reference a(m)

j obtained by the projection of the
snapshots (◦).
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More coefficients could be considered for the calibration, but increasing the number of cal-
ibrated coefficients does not necessarily improve the accuracy on long-term. Indeed, the opti-
mization process minimizes the error which is more important for the first leading amplitudes, but
small errors on the last amplitudes are able to destabilize the response. Besides, the calibrated
coefficients are sometimes far from the analytical values computed from the Galerkin projection
since no regularization term has been introduced in the optimization problem (22).
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Figure 14: Comparison between the trajectories of the modal amplitudes
{

a j(t)
}10

j=1 computed with the reduced-order
model identified with the Tikhonov regularization (—) or with the truncated SVD method (—) and the trajectories of
the modal amplitudes of reference a(m)

j obtained by the projection of the snapshots (◦).

Identification techniques presented in section 3.2 are therefore more adapted to correct the
reduced-order model since (i) the computation of optimal values is less costly and (ii) a regular-
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ization term has been introduced in the least-squares problem.
A first set of coefficients for the reduced-order model is identified from the resolution of the

least-squares problem (26) using the Tikhonov regularization. The regularization parameter is
computed with the L-curve method and the initial guess X 0 for the values of the coefficients
is obtained by the analytical values derived in section 2.2. A second set of coefficients for the
reduced-order model is computed with Eq. (27) using the truncated singular value decomposition
method to approximate the pseudo-inverse. The time integration of the two reduced-order models
defined by these two sets of coefficients produces now a stable response, even on long-term. The
time series of the modal amplitudes are represented on figure 14. The agreement on the sampling
time interval Is is excellent and the short-term response is very accurate. The long-term behavior
is also well reproduced but some discrepancies appear especially for the last modal amplitudes.

The coefficients identified as the solution of the least-squares problem regularized with the
Tikhonov term produce a more reliable response for the last amplitudes. On the contrary, the
coefficients identified with the truncated SVD method lead to wrong trajectories for the modal
amplitudes ai(t) for i ≥ 7. The coefficients identified for these modal amplitudes do not at all
correspond to the Galerkin projection which has a physical meaning, but have rather been math-
ematically evaluated to match the reference response. This can be due to the truncation of the
SVD which uses less than p = 7 singular values for some values of i. Since no initial guess for
the coefficients and no regularization term are introduced in the least-squares problem (27), the
coefficients can be freely identified and do not necessarily represent the physical behavior.

Macroscopic quantities like the lift coefficient which is represented on figure 15 are yet very
well reproduced with both identified reduced-order models. The lift coefficient computed with the
reduced-order model calibrated with KdL mfr is also plotted on the first period. The agreement
is rather good initially but the response diverges after about eight periods when the calibration
KdL mfr is used.

Finally, the errors represented on figure 16 for the modal amplitudes have been computed on
the sampling time interval for the reduced-order models calibrated with KdL mfr, or identified
with the Tikhonov regularization or with the truncated SVD methods. The errors are significantly
reduced when the coefficients are identified. It is recommended to use the identification with the
Tikhonov regularization since the modal amplitudes follow the right trajectories even on long-
term, and the coefficients identified are close to those computed with the analytical expressions.

6. Conclusions

In this paper, the construction of a nonlinear reduced-order model based on the proper orthog-
onal decomposition has been investigated for compressible flows in which a structure can move.
The reduced-order model relies on the determination of an appropriate POD basis which has been
computed here with an iterative method based on the QR decomposition of the truncated snapshots
matrix. Comparisons with the usual snapshots method show that this method provides accurate
POD modes and eigenvalues for a significantly reduced computational cost. The formulation of the
Navier-Stokes equations using the modified primitive variables has been extended here to take into
account the rigid body motion of a structure contained in the fluid domain. It is shown that the re-
sulting equations are defined by an explicit set of quadratic partial differential equations which are
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Figure 15: Comparison of the lift coefficient computed with the corrected reduced-order model: (+) least-squares
identification with the Tikhonov regularization, (�) identification with the truncated SVD, (◦) calibration with
KdL mfr. The lift is compared on the 1st and 14th period of oscillation to the reference response (—) computed
with the full-order model.
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Figure 16: Comparison of the error εa j for the modal amplitudes computed as the solution of the reduced-order model
on the sampling time interval. Three different correction methods have been used here to improve the reduced-order
model.
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appropriate for the Galerkin projection. The reduced-order model defined by the coefficients com-
puted from the Galerkin projection lacks however some dissipation and a correction is necessary
to reproduce correctly the long-term behavior of the original full-order model. Several correction
methods have been investigated in this paper. In the case of the autonomous reduced-order model,
the calibration of constant and linear coefficients produces a reasonably good response compared
to the reference one. However, when a non-autonomous system derived from the Euler equations
is considered, the calibration is no longer sufficient. It is then recommended to turn to a more
robust identification procedure using Tikhonov regularization. With such a method, the accuracy
and stability of the response have indeed been significantly improved on the short- but also long-
term. Future work will concern the extension to moving and deformable structures which induce
not only a motion of the spatial domain but also a deformation.

Appendix A. Algorithm of the iterative subspace approximation

Algorithm Appendix A.1 presents the different steps to compute the approximation of the
POD subspace by an iterative update of the QR decomposition. The update of the QR decompo-
sition for the extended matrix Q̂up can be performed with a classical or modified Gram-Schmidt
orthogonalization process [30]. The singular vector uq+1 and the associated singular value σ̂q+1

can be obtained by few steps of inverse iteration or by a singular value decomposition since the
dimension of the matrix is small. The orthogonal matrix Gu is computed here by means of a
combination of Givens rotations but a Householder transformation is advocated by [16]. The or-
thogonal matrix Gv is the result of a RQ decomposition of the product GT

u R̃i which also produces
the upper triangular matrix Rup. Mastronardi et al. [48] suggest replacing the matrix Ri−1 by an
upper bidiagonal matrix to decrease further the computational costs of the algorithm.

At the last iteration, the matrix Q̂M contains the main features of the whole snapshots database.
The left and right singular subspaces – as well as the singular values – can therefore be determined
by singular value decomposition of Q̂M. Because of the particular weighting of the snapshots,
the POD subspace is obtained after several matrix operations. Indeed, Q̂M = ∆̃Q̃Mα̃ where Q̃M is
the updated matrix representing the whole weighted centered snapshots database. Consequently
∆̃Q̃Mα̃ = UΣVT and Q̃M = (∆̃−1U)(ΣVTα̃−1) = ΦA. The POD eigenvalues λi are finally deduced
from the singular values σi since they are computed from a singular value decomposition [65].
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Algorithm Appendix A.1 – Computation of the POD subspace by the iterative QR approxima-
tion.
Require: The files containing the snapshots q(m) for m = 1 to M, the mean part q, temporal and

volume weights α̃ and ∆̃.
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Research highlights

> A POD-Galerkin reduced-order model is developed for viscous compressible flows. > Rigid body
motions are taken into account with an adequate ALE formulation. > Modified primitive variables
are used to keep a quadratic form of the equations. > Stabilization of the reduced-order model is
necessary for an accurate solution. > Identification with Tikhonov regularization is an efficient way
of stabilization.


