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Abstract

The Dirac-Fock (DF) model replaces the Hartree-Fock (HF) approximation
in quantum chemistry when relativistic effects cannot be neglected. Since
the Dirac operator is not bounded from below, the notion of ground state is
problematic in this model, and several definitions have been proposed in the
literature. We give a new definition for the ground state of the DF energy,
inspired of Lieb’s relaxed variational principle for HF. Our definition and
existence proof are simpler and more natural than in previous works on DF,
but remain more technical than in the nonrelativistic case. One first needs
to construct a set of physically admissible density matrices that satisfy a
certain nonlinear fixed-point equation: we do this by introducing an iterative
procedure, described in an abstract context. Then the ground state is found
as a minimizer of the DF energy on this set.

1 Introduction.

The Hartree-Fock (HF) model is a mean-field approximation widely used in nonrela-
tivistic quantum chemistry and well understood mathematically (see [33, 32, 35, 1, 3]
and the references in these papers). The Hartree-Fock energy of a system of q elec-
trons near a nucleus of atomic number Z can be defined on the set of projectors of
rank q acting in the Hilbert space of one-body electronic states. The HF ground
state is defined as a projector γ minimizing this energy. It satisfies the self-consistent
equation γ = 1(−∞,µγ,q](Hγ) where Hγ is the mean-field Hamiltonian in the pres-
ence of the nucleus and of the electrons in the state γ, µγ,i being the i-th smallest
eigenvalue of this Hamiltonian, counted with multiplicity (it was proved in [3] that
for the ground state, µγ,q < µγ,q+1). In [32], Lieb gave an alternative formulation.
He extended the Hartree-Fock functional to the closed convex hull of the set of
projectors and proved that for any operator in this hull, there exists a projector
having at most the same energy (see also [1] for a simpler proof of Lieb’s result).
Thanks to this principle, the existence of HF ground states is easily proved by weak
lower semicontinuity arguments when q ≤ Z. This relaxation of constraints also has
applications to numerical quantum chemistry. Let us mention, in particular, the
ODA algorithm of Cancès and Lebris [10] which has excellent stability properties.

The Dirac-Fock equations were first introduced by Swirles [42]. They are the
relativistic analogue of the Hartree-Fock equations with the positive nonrelativis-
tic Schrödinger Hamiltonian −∆/2 replaced by the free Dirac operator D, a first
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order operator which is unbounded from below. The corresponding Dirac-Fock en-
ergy is also unbounded from below, contrary to the HF energy. This causes serious
mathematical and numerical difficulties (see e.g. [16] and references therein). In
particular, the Dirac-Fock equations can only be interpreted as stationarity equa-
tions of the DF energy. Despite this issue, they have been widely used in compu-
tational atomic physics and quantum chemistry to study heavy elements and their
compounds. They allow predictions of atomic and molecular properties in good
agreement with experimental data when the correlation effects are not too strong
(see e.g. [40] and references therein).

The free Dirac operator is defined as follows:

(1.1) D = −i
3

∑

k=1

αk∂k + β := −iα · ∇+ β

where α = (α1, α2, α3) and

β =

(

I2 0
0 −I2

)

, αk =

(

0 σk
σk 0

)

,

with

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

Here we have taken units such that ~ = m = c = 1 where m is the rest mass of the
electron.

The operator D, defined on the domain H1(R3,C4), is self-adjoint in the Hilbert
space H := L2(R3,C4). Its form-domain is F := H1/2(R3,C4), and we can also
view D as a bounded linear operator from F to F ′ = H−1/2(R3,C4). The anticom-
mutation relations satisfied by the matrices αk and β ensure that

D2 = −∆+ 1.

The spectrum of the self-adjoint operator D is σ(D) = (−∞,−1]∪ [1,∞). In what
follows, the projector associated with the negative (resp. positive) part of this
spectrum will be denoted by Λ− (resp. Λ+):

Λ− := 1(−∞,0)(D), Λ+ := 1(0,+∞)(D).

We then have

DΛ− = Λ−D = −
√
1−∆ Λ− = −Λ−√1−∆ ,

DΛ+ = Λ+D =
√
1−∆ Λ+ = Λ+

√
1−∆ .

We endow the form-domain F with the Hilbert-space norm ‖ψ‖F := (ψ, |D|ψ)1/2 .
In the whole paper, B(E1, E2) is the space of bounded linear maps from the

Banach space E1 to the Banach space E2; the corresponding norm is ‖ · ‖B(E1,E2).
We note B(E) := B(E,E) . When E is a Hilbert space we also consider the space
σ1(E) of trace-class operators on E. The associated norm and trace are denoted by
‖ · ‖σ1(E) and trE .

Let

(1.2) X := {γ ∈ B(H) : γ = γ∗ , (1−∆)1/4γ(1−∆)1/4 ∈ σ1(H)} .

We endow X with the Banach-space norm
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(1.3) ‖γ‖X := ‖(1−∆)1/4γ(1−∆)1/4‖σ1(H) .

To each positive integer q we associate the set of projectors

Pq := {γ ∈ X : γ2 = γ , trH(γ) = q} .

The elements of Pq are of the form γ =
∑q

k=1 |ψk >< ψk| with ψk ∈ H1/2(R3,C4)
and 〈ψk, ψl〉L2 = δkl. They are the one-body density operators of the q-electron
Slater determinants Ψ = 1√

q!
ψ1 ∧ · · · ∧ ψq, and we refer to them as Dirac-Fock

projectors.

Inspired by Lieb’s variational principle [32], we also associate to any nonnegative
real number q, the sets

Γq := {γ ∈ X : 0 ≤ γ ≤ idH and trH(γ) = q} , Γ≤q :=
⋃

0≤q′≤q
Γq′ .

We shall refer to the elements of these sets as Dirac-Fock density operators. The
set Γ≤q is convex and closed in the weak-∗ topology of X . When q is a positive
integer, Γ≤q is the weak-∗ closed convex hull of Pq in X and the projectors of rank
q are its extremal points. Here, the weak-∗ topology of X is the smallest topology
such that for any compact operator Q : H → H, the linear form ℓQ : γ ∈ X 7→
trH(Q(1−∆)1/4γ(1−∆)1/4) is continuous.

The electrons are exposed to an external Coulomb field V = −α n∗ 1
|x| generated

by a nuclear charge distribution n. We assume that n is a positive and finite Radon
measure on R3. Its total mass Z :=

∫

R3 dn represents the number of protons in

the molecule. In our system of units, α = e2

4πε0~c
is a dimensionless constant. Its

physical value is approximately 1/137. The energy of a Dirac-Fock density operator
γ is

EDF (γ) := tr
(

(D + V )γ
)

+
α

2

∫

R3×R3

ργ(x)ργ(y)− trC4(γ(x, y)γ(y, x))

|x− y| dx dy .

The quadratic term in this energy comes from the repulsive electrostatic interac-
tion between electrons. It depends on the integral kernel γ(x, y) of the trace-class
operator γ and on its charge density ργ(x) := trC4γ(x, x). Due to the presence
of the Dirac operator D, EDF is not bounded from below on Γq, contrary to the
nonrelativistic HF energy. The functional EDF is well-defined and smooth on X .
Its differential at γ is the linear form h ∈ X 7→ tr(DV,γh), with

DV,γ := D + V + αWγ

and

Wγψ(x) :=
(

ργ ∗
1

|x|
)

ψ(x) −
∫

R3

γ(x, y)ψ(y)

|x− y| dy .

If ‖V D−1‖B(H) < 1, the operatorDV,γ is self-adjoint in H, with same domain, form-
domain and essential spectrum as D. Note that by Hardy’s inequality, a sufficient
condition for the inequality ‖V D−1‖B(H) < 1 is 2αZ < 1. For larger values of αZ
this inequality does not necessarily hold, but DV,γ is still self-adjoint with domain

H1(R3,C4) if αZ <
√
3
2 , while for

√
3
2 ≤ Z < 1, this operator has a distinguished

self-adjoint realization in H, whose domain is a subspace of H1/2(R3,C4) (see e.g.
[43, 17] and references therein).

3



Note that in general, for γ in X , (D + V )γ does not make sense as a trace-
class operator in H, so the expression tr

(

(D + V )γ
)

should be interpreted as

trH
(

|D|1/2γ|D|1/2sign(D)
)

+ α
∫

R3 V ργ . A similar interpretation should be made
for tr(DV,γh). Such an abuse of notation is common in the mathematical literature
on Hartree-Fock theory (see e.g. [41, Remark 2.2]) and we make it throughout the
paper.

We now introduce the Dirac-Fock equation, as a stationarity condition on EDF
under unitary transformations of H. If A is a bounded self-adjoint operator on H,
we may define the unitary flow U(t) = exp(−itA). If, in addition, the operator
(1 −∆)−1/4A(1 −∆)1/4 is bounded on H then, for each γ ∈ Γq, U(t)γU(−t) is in
Γq and we may define the function fA(t) := EDF (U(t)γU(−t)). The derivative of
this function at t = 0 is f ′

A(0) = i tr(DV,γ [γ,A]) = i tr([DV,γ , γ]A). So, one has
f ′
A(0) = 0 for all A if and only if γ is a solution of the Dirac-Fock equation

[DV,γ , γ] = 0 .

From the physics viewpoint, the operator DV,γ represents the Hamiltonian of
a relativistic electron in the mean field generated by the nuclei and the one-body
operator γ. The spectrum of DV,γ contains the infinite interval of negative energies
(−∞,−1]. To deal with this difficulty, one may introduce the spectral projectors

P±
V,γ := 1R±(DV,γ) .

With this notation, P±
V,0 = 1R±(D + V ) and P±

0,0 = Λ± .

The negative spectral subspace P−
V,γH is the Dirac sea in the presence of the

nuclei and electrons. According to Dirac’s interpretation of negative energy states,
physical electrons should be orthogonal to their own Dirac sea. This leads us to
define, for q ∈ Z+, the set of admissible Dirac-Fock projectors

P+
q := {γ ∈ Pq : P+

V,γγ = γ} ,

and, for q ∈ R+, the sets of admissible Dirac-Fock density operators

Γ+
q := {γ ∈ Γq : P+

V,γγ = γ} , Γ+
≤q :=

⋃

0≤q′≤q
Γ+
q′ .

The elements of these sets can be interpreted as the one-body density operators
of particle conserving quasi-free states (see [4]), the underlying one-particle Hilbert
space being P+

V,γH.

To take into account the orthogonality to the Dirac sea, we must write the
Dirac-Fock equation in the more restrictive form

[DV,γ , γ] = 0 , γ ∈ Γ+
q .

In relativistic quantum chemistry, one is particularly interested in Dirac-Fock
ground states. By analogy with the nonrelativistic theory, it is tempting to define
such states (for q ∈ Z+) as the solutions of the self-consistent equation

γ = 1(0,µ](DV,γ) with µ such that trH(γ) = q .

Such a fixed-point equation naturally leads to an iterative algorithm, well-known
in computational quantum chemistry under the name of Roothaan self-consistent
field (SCF) method. However, even in the nonrelativistic case, the SCF scheme does
not always converge and when it does, there is no guarantee that one has found a
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“true” ground state, that is, a minimizer of the Hartree-Fock energy (see [9]). The
situation is worse with the DF functional, since EDF is not bounded from below on
Γq.

Note that in the physical and chemical literature, the DF functional is usually
defined on the set Pq of Dirac-Fock projectors (for q ∈ Z∗

+) and is written as a
function of an orthonormal sequence of monoelectronic states Ψ = (ψ1, · · · , ψq) that
generates the range of the Dirac-Fock projector γ. This point of view was adopted
in the mathematical works [18, 39] where solutions of the Dirac-Fock equations
were found as min-max critical points of the energy EDF (Ψ). The property γ ∈ P+

q

was not imposed as an a priori constraint, it was an a posteriori consequence of
the min-max method in which the constraints 〈ψk, ψl〉L2 = δkl were replaced by a
penalization. There was no direct way of defining a ground state in this framework,
since there was no minimization principle at hand, except in the weakly relativistic
regime [19, 20] that is, when α is very small. Note that in [19, 20], the conditions on
α were not made explicit. This would have been possible in principle, but the result
would certainly have been very far from the physical value 1/137. An alternative
approach was introduced by Huber and Siedentop in [29] and provided the existence
of a ground state in the regime of weak interaction between electrons thanks to a
fixed-point procedure, for an explicit range of (small) values of α. The physical
value 1/137 was not in this range, but not by far in the case of highly ionized
atoms. Another work where a simple definition of the ground state is given and its
existence proved, is the paper [14] by Coti Zelati and Nolasco where a one-electron
atom with self-generated electromagnetic field is considered. A concavity argument
allows these authors to define a reduced energy functional that is bounded from
below. However it does not seem easy to extend their elegant construction to multi-
electronic problems.

A physical derivation of the DF model as a mean-field approximation of QED
was proposed by Mittleman [37]. This derivation leads to a max-min definition of
the ground state. One first considers an infinite-rank projector, and one minimizes
the Dirac-Fock energy on a corresponding set of projected states. Then, in a second
step, one maximizes the resulting minimum by varying the projector. Unfortunately,
such a procedure does not always give solutions of the DF equations: a rigorous
justification of the first step (minimization among projected states) has been given
in [6], but negative results on the second step (maximization among projectors) for
q > 1 can be found in [5, 7]. Another approach was initiated by Chaix and Iracane
[12], who derived from QED the Bogoliubov-Dirac-Fock mean-field approximation
that takes into account the polarization of the Dirac sea, neglected by Mittleman.
Note, however, that in the BDF energy of [12] an important one-body term was
missing. This was corrected in [27] by Hainzl, Lewin and Solovej who gave a more
rigorous derivation thanks to a thermodynamic limit procedure. From the point
of view of mathematics, the main advantage of BDF over DF is that the energy is
bounded from below when defined in a suitable functional framework (see [13, 2, 24,
25, 27, 28]), so the definition of a ground state becomes straightforward and general
existence results can be obtained for positive ions and neutral molecules [26],[22]
thanks to Lieb’s variational principle. But the BDF ground state is not trace-class,
an ultraviolet regularization is necessary in order to define its energy and a charge
renormalization is needed to correctly interpret the Euler-Lagrange equation.

Our new definition of a DF ground state avoids the delicate min-max procedure
of [18, 39] as well as the complicated functional framework of BDF, and the associ-
ated existence result has a domain of validity much larger than in [19, 20, 29, 14],
that includes the physical value of α and certain multi-electronic atoms.
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Definition 1.1. To any positive real number q we associate the energy

Eq := inf
γ∈Γ+

≤q

(

EDF (γ)− trH(γ)
)

.

If an admissible Dirac-Fock density operator γ∗ ∈ Γ+
q is such that EDF (γ∗)−q = Eq,

we call it “Dirac-Fock ground state of particle number q in the external field V ”.

The main result of this paper is the existence of a Dirac-Fock ground state
of particle number q for positive ions and neutral molecules, under a smallness
assumption on V and αq :

Theorem 1.2 (Existence of a ground state). Let us introduce the constants

κ := ‖V D−1‖B(H) + 2αq and λ0 := 1− αmax(q, Z) .

Assume that Z, q and 1−κ− π
4α q are positive, and that the following condition

is satisfied:

(1.4) αZ <
2

π/2 + 2/π
and παq < 2(1− κ)

1
2λ

1
2
0

(

1− κ− π

4
α q

)
1
2

.

Then:

• Eq is negative and attained, that is, there exists an admissible Dirac-Fock
density operator γ∗ ∈ Γ+

≤q such that

EDF (γ∗)− trH(γ∗) = Eq < 0 .

• For any such minimizer, there is an energy level µ ∈ (0, 1] such that

(1.5) γ∗ = 1(0,µ)(DV,γ∗) + δ with 0 ≤ δ ≤ 1{µ}(DV,γ∗) .

• If q < Z then µ < 1 .

• If q ≤ Z then trH(γ∗) = q , so γ∗ is a Dirac-Fock ground state of particle
number q in the external field V , moreover the following strict binding inequalities
hold:

(1.6) ∀ q′ ∈ (0, q) , Eq < Eq′ .

Remark 1.3. Our definition of the ground state energy involves EDF − trH instead
of EDF . Physically, this corresponds to subtracting the rest mass of the electron
from the mean-field Hamiltonian DV,γ: the eigenvalues of the resulting operator are
negative, as in the nonrelativistic case. This subtraction plays a very important role
in the proof of Theorem 1.2. Without it, the infimum Eq would be attained at γ = 0.
One could of course think of subtracting λ trH for some λ < 1 instead of λ = 1, but
then one would not be able to guarantee that trH(γ∗) = q when q ≤ Z.

Remark 1.4. Hardy’s inequality immediately implies that κ ≤ 2α(Z+q): see (2.8).
Using this estimate and taking α ≈ 1

137 we find that the smallness assumption (1.4)
is satisfied by neutral atoms up to Z = 22. For positive ions the situation is better:
when q = 2 in particular, our assumptions are satisfied for 2 ≤ Z ≤ 63. To deal
with heavier elements, one could for instance try to replace Hardy’s inequality with
refined estimates on the Dirac-Coulomb operator such as those obtained in the papers
[8],[38]. We leave this question for future research.
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Remark 1.5. In the case q > Z, it follows from our proof that if (1.4) and (1.6)
hold true, then trH(γ∗) = q (see Proposition 3.9). However, when q > Z we are
not able to check (1.6) even for q − Z very small.

Remark 1.6. The scalar µ− 1 is the Lagrange multiplier associated with the con-
straint trH(γ) ≤ q . Contrary to the HF situation [32, 3], for q ∈ Z+ we are not able
to prove that the highest occupied energy level µ of the mean-field operator DV,γ∗ is
full and that the one-body density matrix γ∗ is a Dirac-Fock projector. The main
difficulty is that the spectral projector P+

V,γ depends on γ in a complicated way and

the set Γ+
≤q on which we minimize does not seem to be convex.

In order to prove that the minimizer γ∗ exists and satisfies the Euler-Lagrange
equation (1.5), we are first going to construct a C1 retraction θ of a certain subset V
of Γ≤q onto V ∩Γ+

≤q. The word retraction means that θ(V) = V ∩Γ+
≤q and θ(γ) = γ

for all γ in V ∩ Γ+
≤q. The construction of θ involves an iterative procedure: for

γ ∈ V , taking γ0 = γ and γp+1 = P+
V,γp

γpP
+
V,γp

, θ(γ) is the limit of the sequence

(γp) for the topology of X . As we will see, the condition (1.4) guarantees that the
set V is large enough to contain the sublevel set {γ ∈ Γ+

≤q : EDF (γ)− trH(γ) ≤ 0}.
This is an important point in the proof, since we will also see that Eq is negative.

The paper is organized as follows. In Section 2, the existence and regularity
properties of θ are studied by first constructing this retraction in an abstract context
under general assumptions, then checking these assumptions in the case of the Dirac-
Fock problem. In Section 3, Theorem 1.2 and Proposition 3.5 are proved thanks to
the construction of the preceding section.

An unpublished version of the present paper is mentioned in the work [21],
where our new definition of the ground state is used to study the Scott correction
in atoms. In [11], the existence of solutions to the Dirac-Fock equations in crystals
is proved by combining the method of the present work with new compactness
arguments. In the recent work [36], the relationship between the Dirac-Fock model
and Mittelman’s approach is studied, thanks to refined estimates on our retraction
θ and the associated ground state energy in the regime α << 1.

2 The retraction θ.

We recall that a retraction of the metric space (F, d) onto one of its subsets A is a
continuous map θ : F → A such that θ(x) = x , ∀x ∈ A.

2.1 An abstract construction.

We start with an abstract construction valid in any complete metric space.

Proposition 2.1. Let (F, d) be a complete metric space and T : F → F a contin-
uous map. We assume that

∃k ∈ (0, 1) , ∀x ∈ F , d(T 2(x), T (x)) ≤ k d(T (x), x) .

Then for any x ∈ F , the sequence (T p(x))p≥0 has a limit θ(x) ∈ Fix(T ) with
the estimate

(2.1) d(θ(x), T p(x)) ≤ kp

1− k
d(T (x), x) .

The continuous map θ obtained in this way is a retraction of F onto Fix(T ) ,
i.e., for any x ∈ F : T ◦ θ(x) = θ(x) and for any y ∈ Fix(T ) : θ(y) = y.
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Proof. This proposition is a generalisation of Banach’s fixed point theorem. For
the convergence of T n(x) to a fixed point, the proof is very similar: by induction
one shows that d(T p+1(x), T p(x)) ≤ kp d(T (x), x) , so that (T p(x)) is a Cauchy
sequence, with the estimate

(2.2) d(T p+q(x), T p(x)) ≤ kp

1− k
d(T (x), x) .

By completeness of F we conclude that T n(x) has a limit that we denote θ(x). By
continuity of T , θ(x) ∈ Fix(T ). Passing to the limit q → ∞ in (2.2), we obtain
the desired estimate (2.1). Moreover, if x ∈ Fix(T ) then the sequence T n(x) is
constant, so θ(x) = x.

Now, for any a ∈ F , by continuity of T there is a radius r(a) > 0 such that

sup
x∈B(a,r(a))

d(T (x), x) <∞ .

Then (2.1) implies that the sequence of continuous functions (T n) converges uni-
formly to θ on B(a, r(a)), hence the continuity of θ on F = ∪a∈FB(a, r(a)).

Note that T is not necessarily a contraction, so in general Fix(T ) is not reduced
to a point and θ need not be constant, contrary to what happens with Banach’s
fixed point theorem. For instance, if F = X is a Hilbert space and T the projection
on a closed convex subset C of X then for any x , T 2(x) = T (x). The assumptions
of Proposition 2.1 are thus trivially satisfied and we just have θ = T , Fix(T ) = C.

We now want to study the differentiability of θ in a suitable framework. We
consider a Banach space X and we take an open subset U of X . We assume that
T is defined on the closure F of U . If Y is a Banach space (possibly equal to X),
we say that a differentiable function Φ : U → Y is in C1,unif(U , Y ) if its differential
dΦ is uniformly continuous from U to B(X,Y ). We also say that Φ ∈ C1,lip(U , Y )
if dΦ is Lipschitzian on U . We have the following regularity result:

Proposition 2.2. Let U be a nonempty open subset of a Banach space X and let F
be the closure of U in X. Let T ∈ C0(F , X)∩C1,lip(U , X) be such that T (U) ⊂ U ,
supx∈U ‖T (x)− x‖X <∞ , supx∈U ‖dT (x)‖B(X) <∞ and

∃k ∈ (0, 1) , ∀x ∈ U , ‖T 2(x)− T (x)‖X ≤ k‖T (x)− x‖X .

Then for each x ∈ U , the sequence (d(T p)(x))p≥0 has a limit ℓ(x) ∈ B(X) for the
norm ‖·‖B(X) , this convergence being uniform in x. As a consequence, the function

θ : F → Fix(T) ⊂ F constructed thanks to Proposition 2.1 is in C1,unif(U , X) and
we have dθ(x) = ℓ(x) for all x ∈ U .

The end of this section is devoted to the proof of Proposition 2.2. In the
sequel, we use the same notation M for several finite constants which
only depend on U and T .

We first study the behaviour of d(T p)(x) for x in Fix(T )∩U and p a nonnegative
integer. In this case, d(T p)(x) coincides with the p-th power of dT (x) .

Lemma 2.3. Under the assumptions of Proposition 2.2, we have an estimate of
the form

∀p, q ∈ Z+ , ∀x ∈ Fix(T ) ∩ U , ‖dT (x)p+q − dT (x)p‖B(X) ≤ M kp.

So, for any x ∈ Fix(T )∩U , the sequence (dT (x)p)p≥0 has a limit ℓ(x) in B(X) and
the convergence is uniform in x:

‖dT (x)p‖B(X) ≤ M and ‖ℓ(x)− dT (x)p‖B(X) ≤ M kp.
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Proof. Given x ∈ Fix(T ) ∩ U and h ∈ X , for t ∈ R nonzero and small enough,

∥

∥

∥

T 2(x+ th)− T (x+ th)

t

∥

∥

∥

X
≤ k

∥

∥

∥

T (x+ th)− x− th

t

∥

∥

∥

X
.

Since x = T (x) = T 2(x) we infer

∥

∥

∥

T 2(x+ th)− T 2(x)

t
− T (x+ th)− T (x)

t

∥

∥

∥

X
≤ k

∥

∥

∥

T (x+ th)− T (x)

t
− h

∥

∥

∥

X

and passing to the limit as t goes to zero:

‖dT (x)2h− dT (x)h‖X ≤ k ‖dT (x)h− h‖X .

Taking h = DT (x)ph̃, this inequality becomes

‖(dT (x)p+2 − dT (x)p+1)h̃‖X ≤ k ‖(dT (x)p+1 − dT (x)p)h̃‖X ,

hence
‖dT (x)p+1 − dT (x)p‖B(X) ≤ kp ‖dT (x)− idX‖B(X) .

Using the triangle inequality, one infers that

‖dT (x)p+q − dT (x)p‖B(X) ≤ kp

1− k
‖dT (x)− idX‖B(X) ,

hence the lemma, since x 7→ ‖dT (x)‖B(X) is bounded on U .

We now consider an arbitrary point x in U .
Lemma 2.4. Under the assumptions of Proposition 2.2, we have an estimate of
the form

∀p ∈ Z+ , ∀x ∈ U , ‖d(T p)(x)‖B(X) ≤M .

Proof. We denote by L the Lipschitz constant of dT on U :

∀x, y ∈ U , ‖dT (x)− dT (y)‖B(X) ≤ L‖x− y‖X .

Take x ∈ U . With δi := dT (T i−1(x))− dT (θ(x)) , we get

(2.3) ‖δi‖B(X) ≤ L‖T i−1(x)− θ(x)‖X ≤M ki.

From Lemma 2.3 we also have an estimate of the form

(2.4) ‖dT (θ(x))q‖B(X) ≤ M .

Now,

d(T p)(x)
= (dT (θ(x)) + δp) ◦ · · · ◦ (dT (θ(x)) + δ1)

=
∑

j∈[[0,p]]
p≥i1>···>ij>ij+1=0

dT (θ(x))p−i1 ◦
j
∏

µ=1

(

δiµ ◦ dT (θ(x))iµ−iµ+1−1
)

hence, using the estimates (2.3) and (2.4) :

‖d(T p)(x)‖B(X) ≤
p

∑

j=0

M2j+1
∑

p≥i1>···>ij≥1

ki1+···+ij

≤ M

p
∑

j=0

M2j (
∑p

i=1 k
i)j

j!
≤ M exp

(M2k

1− k

)

and the lemma follows.
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To end the proof of Proposition 2.2, we show that (d(T p)(x))p≥0 is a Cauchy
sequence, uniformly in x ∈ U .

Lemma 2.5. Under the assumptions of Proposition 2.2, the following estimate
holds:

∀x ∈ U , ∀p, q ≥ 0 , ‖d(T p+q)(x) − d(T p)(x)‖B(X) ≤Mkp/2 .

So d(T p)(x) converges to some ℓ(x) ∈ B(X) and ‖ℓ(x)− d(T p)(x)‖B(X) ≤Mkp/2 .

Proof. Let m, n, q be nonnegative integers. As in the proof of Lemma 2.4, we
consider δi := dT (T i−1(x)) − dT (θ(x)) . For x ∈ U we may write

d(Tm+n+q)(x) − d(Tm+n)(x) = (Am,n+q(x) +Bn,q(x)− Am,n(x)) ◦ d(Tm)(x)

with

Am,r(x) := d(T r)(Tm(x)) − dT (θ(x))r

= (dT (θ(x)) + δm+r) ◦ · · · ◦ (dT (θ(x)) + δm+1)− dT (θ(x))r

=
∑

j∈[[1,r]]
r≥i1>···>ij>ij+1=0

dT (θ(x))r−i1 ◦
j
∏

µ=1

(

δm+iµ ◦ dT (θ(x))iµ−iµ+1−1
)

and Bn,q(x) := dT (θ(x))n+q − dT (θ(x))n .

Using the estimates (2.3) and (2.4) as in the proof of Lemma 2.4, we find

‖Am,r(x)‖B(X) ≤
r

∑

j=1

M2j+1
∑

r≥i1>···>ij≥1

kmj+i1+···+ij

≤ M

r
∑

j=1

(M2km)j
(
∑r

i=1 k
i)j

j!
≤ M

[

exp
(M2km+1

1− k

)

− 1
]

which gives an estimate of the form ‖Am,r(x)‖B(X) ≤ M km for another constant
M . On the other hand, from Lemma 2.3, ‖Bn,q(x)‖B(X) ≤ M kn . From Lemma
2.4, ‖d(Tm)(x)‖B(X) ≤ M . Combining these estimates, we find

‖d(Tm+n+q)(x) − d(Tm+n)(x)‖B(X) ≤ M (kn + km) .

Taking p = n+m with n = m or n = m+ 1 , we get the desired estimate

‖d(T p+q)(x) − d(T p)(x)‖B(X) ≤ M kp/2 .

This ends the proofs of Lemma 2.5 and Proposition 2.2.

2.2 Application to Dirac-Fock.

From now on, we work in the Banach space (X, ‖ · ‖X) given by formulas (1.2)
and (1.3) of the introduction. We recall our notations P±

V,γ = 1R±(DV,γ), κ =

‖V D−1‖B(H) + 2αq and λ0 = 1 − αmax(q, Z). Our map T will be given by the
formula

(2.5) T (γ) := P+
V,γγP

+
V,γ .
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We will see that if κ < 1 then the map T is well-defined from Γ≤q to itself. But to
discuss the differentiability of T , it is convenient to extend this function to an open
neighborhood of Γ≤q. So we take a small number r > 0 (to be chosen later) and we
define the open set

Γr≤q := {γ ∈ X : distσ1(H)(γ,Γ≤q) < r} .

The goal of this subsection is to build an open subset U of Γr≤q invariant under
T , satisfying the assumptions of Proposition 2.2 and containing all the admissible
Dirac-Fock density operators γ ∈ Γ+

≤q such that EDF (γ) ≤ trH(γ). This will be
done under some conditions on α, q, V and for r small enough.

We start with a lemma gathering estimates that will be used in the sequel:

Lemma 2.6. Let γ ∈ X .

• The following Hardy-type estimates hold:

max
(∥

∥

∥
ργ ∗

1

| · |
∥

∥

∥

∞

, ‖Wγ‖
B(H)

,
∥

∥

∥

γ(x, y)

|x− y|
∥

∥

∥

B(H)

)

≤ π

2

∥

∥ (−∆)
1
4 γ (−∆)

1
4

∥

∥

σ1(H)
,(2.6)

‖Wγ(−∆)−
1
2 ‖B(H) ≤ 2‖γ‖σ1(H) ,(2.7)

‖V (−∆)−
1
2 ‖B(H) ≤ 2αZ .(2.8)

• If κr := κ+ 2αr is smaller than 1 and ‖γ‖σ1(H) ≤ q + r then:

∥

∥ |DV,γ |s |D|−s
∥

∥

B(H)
≤ (1 + κr)

s , ∀ 0 < s ≤ 1 ,(2.9)
∥

∥ |D|s |DV,γ |−s
∥

∥

B(H)
≤ (1− κr)

−s , ∀ 0 < s ≤ 1 ,(2.10)

∥

∥ |D|− 1
2P+

V,γ |D| 12
∥

∥

B(H)
≤

(

1 + κr
1− κr

)
1
2

.(2.11)

• If αmax(q + r, Z + r) < 2
π/2+2/π and γ ∈ Γr≤q then, with the notation

λr := λ0 − αr,

inf|σ(DV,γ)| ≥ λr > 0 .(2.12)

Proof. If γ ∈ X then (−∆)
1
4 γ (−∆)

1
4 ∈ σ1(H) and ‖(−∆)

1
4 γ (−∆)

1
4 ‖σ1(H) ≤ ‖γ‖

X
,

since ‖(−∆)
1
4 (1 −∆)−1/4‖B(H) ≤ 1.

We may thus write (−∆)
1
4 γ(−∆)

1
4 =

∑∞
n=0 dn|ϕn >< ϕn| where (ϕn) is or-

thonormal in H, dn ∈ R and
∑∞

n=0 |dn| = ‖(−∆)
1
4 γ (−∆)

1
4 ‖σ1(H) .

For each n, we define ϕ̃n = (−∆)−
1
4ϕn. Then Wγ =

∑∞
n=0 γnW|ϕ̃n><ϕ̃n| . For

each n, the operator of multiplication by |ϕ̃n|2 ∗ 1
|·| , the exchange operator of kernel

ϕ̃n(x)⊗ϕ̃∗
n(y)

|x−y| and their differenceW|ϕ̃n><ϕ̃n| are symmetric and positive on H, so, by

the Cauchy-Schwarz inequality, in order to prove (2.6) we just need to show that for
any ψ ∈ H,

〈

ψ, (|ϕ̃n|2 ∗ 1
|·|)ψ

〉

H ≤ π
2 ‖ψ‖2H . This is done thanks to the Kato-Herbst

inequality
∫

R3

|f |2
|x| ≤ π

2

∫

R3

∣

∣ (−∆)
1
4 f

∣

∣

2
[30]:

〈

ψ,
(

|ϕ̃n|2∗
1

| · |
)

ψ
〉

H
=

∫ |ψ|2(x)|ϕ̃n|2(y)
|x− y| dxdy ≤ π

2

∫

|ψ|2(x)‖ϕn‖2Hdx =
π

2
‖ψ‖2H .
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Now, in order to prove (2.7) we write γ =
∑∞

n=0 γn|fn〉〈fn| where (fn) is or-

thonormal in H, γn ∈ R and
∑∞

n=0 |γn| = ‖γ‖σ1(H) . Taking ψ in Ḣ1(R3,C4) and χ
in H, we have

|〈χ,Wγψ〉H | ≤
∞
∑

n=0

|γn| |〈χ,W|fn〉〈fn| ψ〉H | .

Denoting by ψα (1 ≤ α ≤ 4) the components of a four-spinor ψ and by z the
conjugate of a complex number z, we have

|〈χ,W|fn〉〈fn| ψ〉H |

=
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∫∫

∑

α,β

det

(

f̄αn (x) χ̄α(x)
f̄βn (y) χ̄β(y)

)

det

(

fαn (x) ψα(x)
fβn (y) ψβ(y)

)

|x− y| dxdy

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1

2





∫∫

∑

α,β

∣

∣

∣

∣

det

(

fαn (x) χα(x)
fβn (y) χβ(y)

)∣

∣

∣

∣

2

dxdy





1
2











∫∫

∑

α,β

∣

∣

∣

∣

det

(

fαn (x) ψα(x)
fβn (y) ψβ(y)

)∣

∣

∣

∣

2

|x− y|2 dxdy











1
2

=

(∫∫

|fn(x)|2|χ(y)|2 − |〈fn(x), χ(y)〉|2
)

1
2
(∫∫ |fn(x)|2|ψ(y)|2 − |〈fn(x), ψ(y)〉|2

|x− y|2
)

1
2

≤ 2‖χ‖H

∥

∥ (−∆)1/2ψ
∥

∥

H

by Hardy’s inequality. Estimate (2.7) follows.

To prove estimate (2.8) one just needs to write

‖V ψ‖H = α

∥

∥

∥

∥

∫

R3

ψ

| · −y|dn(y)
∥

∥

∥

∥

H
≤ α

∫

R3

∥

∥

∥

∥

ψ

| · −y|

∥

∥

∥

∥

H
dn(y) ≤ 2αZ

∥

∥ (−∆)1/2ψ
∥

∥

H .

Now, by the triangle inequality and (2.7), we have

(2.13) ‖DV,γψ‖H ≤
(

1 + ‖V D−1‖B(H) + 2α ‖γ‖σ1(H)

)

‖Dψ‖H .

If ‖γ‖σ1(H) ≤ q + r , recalling that κr = ‖V D−1‖B(H) + 2α(q + r) , we may thus

write D2
V,γ ≤

(

1 + κr
)2
D2 , hence, by interpolation, |DV,γ |2s ≤

(

1 + κr
)2s|D|2s

for all 0 < s ≤ 1: this estimate is the same as (2.9). Assuming that κr < 1, one
proves (2.10) in a similar way. Since P+

V,γ commutes with |DV,γ |1/2, estimate (2.11)
directly follows from (2.9), (2.10) for s = 1/2.

To prove (2.12) we remark that for each γ in Γr≤q one has trH(γ+) < q + r,

trH(γ−) < r with γ± = ±γ1R±(γ). Then, using Tix’ inequality [44][45] as in
Lemma 3.1 of [18], we find that if max(q + r, Z + r) < 2

π/2+2/π , γ ∈ Γr≤q and

ψ ∈ Dom(DV,γ) \ {0} then

‖ψ‖H‖DV,γψ‖H ≥ 〈Λ+ψ − Λ−ψ, DV,γΛ
+ψ +DV,γΛ

−ψ〉H
= 〈Λ+ψ, DV,γΛ

+ψ〉H − 〈Λ−ψ, DV,γΛ
−ψ〉H

≥ 〈Λ+ψ, DV,−γ−Λ+ψ〉H − 〈Λ−ψ, DV,γ+Λ−ψ〉H
> (1− αmax(q + r, Z + r))‖ψ‖2H .

The lemma is thus proved.

We now study the dependence of P+
V,γ on γ.
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Lemma 2.7. With the notations κr, λr of Lemma 2.6, assume that κr < 1 and
α (Z + r) < 2

π/2+2/π , and let

ar :=
πα

4
(1− κr)

−1/2λ−1/2
r .

Then the map
Q : γ 7→ (P+

V,γ − P+
V,0)

is in C1,lip(Γr≤q, Y ) with Y := B(H,F) (recalling that F = H1/2(R3,C4) is the
form-domain of D) and we have the estimates

∀γ , γ′ ∈ Γr≤q : ‖Q(γ′)−Q(γ)‖Y ≤ ar‖γ′ − γ‖X(2.14)

∀γ , γ′ ∈ Γr≤q : ‖dQ(γ′)− dQ(γ)‖B(X,Y ) ≤ Kα2‖γ′ − γ‖X(2.15)

where K is a positive constant which remains bounded when κr stays away from 1.

Proof. The proof consists in calculations similar to those of [23, Lemma 1] or [29,
Lemma 1]. One writes, for γ, γ′ ∈ Γr≤q and χ, ψ ∈ H:

〈χ, |D|1/2(Q(γ′)−Q(γ))ψ〉H

=
α

2π

∫

R

〈χ, |D|1/2(DV,γ + iz)−1Wγ′−γ(DV,γ′ + iz)−1ψ〉Hdz

hence, with χ̌ := |DV,γ |−1/2|D|1/2χ ,

|〈χ, |D|1/2(Q(γ′)−Q(γ))ψ〉H|

≤ α‖Wγ′−γ‖B(H)

2π

(∫

R

〈χ̌, |DV,γ |(D2
V,γ + z2)−1χ̌〉Hdz

)
1
2
(∫

R

〈ψ, (D2
V,γ′ + z2)−1ψ〉Hdz

)
1
2

=
α‖Wγ′−γ‖B(H)

2
‖χ̌‖H ‖ |DV,γ′|−1/2ψ‖H .

From (2.10) we have
‖χ̌‖H ≤ (1− κr)

−1/2‖χ‖H
and from (2.12) we have

‖ |DV,γ′|−1/2ψ‖H ≤ λ−1/2
r ‖ψ‖H .

As a consequence

‖Q(γ′)−Q(γ)‖Y ≤ α

2
(1− κr)

−1/2λ−1/2
r ‖Wγ′−γ‖B(H) ,

and from (2.6) we have

‖Wγ′−γ‖B(H) ≤
π

2
‖γ′ − γ‖X ,

so the estimate (2.14) of Lemma 2.7 is proved. Moreover, taking γ′ = 0 in (2.14)
we find that Q(γ) ∈ Y , since Q(0) = 0 . Thus, up to now we have proved that Q is
a Lipschitz map from Γr≤q to Y with Lipschitz constant ar.

Noting γ̇ := γ′ − γ and pushing the expansion of Q(γ′)−Q(γ) one step further,
one gets

Q(γ′)−Q(γ) = Lγ(γ̇) +Rγ(γ̇)

where

Lγ(γ̇) :=
α

2π

∫

R

(DV,γ + iz)−1Wγ̇(DV,γ + iz)−1dz ,
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Rγ(γ̇) := −α
2

2π

∫

R

(DV,γ + iz)−1Wγ̇(DV,γ + iz)−1Wγ̇(DV,γ+γ̇ + iz)−1dz .

Then, using estimates similar to the ones above, one finds that Lγ is in B(X,Y )
with ‖Lγ‖B(X,Y ) ≤ ar and

‖Rγ(γ̇)‖Y ≤ α2

2
(1 − κr)

−1/2λ−1/2
r sup

z∈R

‖Wγ̇(DV,γ + iz)−1Wγ̇‖B(H)

≤ π2α2

8
(1− κr)

−1/2λ−3/2
r ‖γ̇‖2X .

As a consequence, Q is differentiable at γ and dQ(γ) = Lγ .

Finally, for h ∈ X one writes

(Lγ′ − Lγ)h = Aγ(γ̇, h) +Bγ(γ̇, h)

with

Aγ(γ̇, h) := −α
2

2π

∫

R

(DV,γ+γ̇ + iz)−1Wh(DV,γ+γ̇ + iz)−1Wγ̇(DV,γ + iz)−1dz

and

Bγ(γ̇, h) := −α
2

2π

∫

R

(DV,γ+γ̇ + iz)−1Wγ̇(DV,γ + iz)−1Wh(DV,γ + iz)−1dz .

Proceeding as before with each of these expressions, one gets

‖(Lγ′ − Lγ)h‖Y ≤ π2α2

4
(1− κr)

−1/2λ−3/2
r ‖γ̇‖X‖h‖X .

The estimate (2.15) follows, with K := π2

4 (1−κr)−1/2λ
−3/2
r . So Q ∈ C1,lip(Γr≤q, Y )

and the lemma is proved.

We are now able to study the map T . Our first result is:

Proposition 2.8. Assume that κr < 1 , α (Z + r) < 2
π/2+2/π and let ar be as in

Lemma 2.7.

Then the map T : γ → P+
V,γγP

+
V,γ is well-defined from Γ≤q to itself and from

Γr≤q to itself, and for any γ ∈ Γr≤q :

(2.16)

‖T 2(γ)− T (γ)‖X

≤ 2ar

(

‖T (γ) |D|1/2‖σ1(H) +
ar(q + r)

2
‖T (γ)− γ‖X

)

‖T (γ)− γ‖X .

Moreover T is differentiable on Γr≤q ⊂ X and there are two positive constants
Cκ,r , Lκ,r such that, for all γ, γ′ ∈ Γr≤q :

‖dT (γ)‖B(X) ≤ Cκ,r

(

1 + α
∥

∥γ |D|1/2
∥

∥

σ1(H)

)

,(2.17)

‖dT (γ′)− dT (γ)‖B(X) ≤ αLκ,r

(

1 + α‖γ |D|1/2‖σ1(H)

)

‖γ′ − γ‖X .(2.18)
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Proof. If γ ∈ Γr≤q and γ
′ ∈ Γ≤q then the operator γ′′ := P+

V,γγ
′P+
V,γ is in X . Indeed,

from (2.11) one has

‖|D| 12 γ′′|D| 12 ‖σ1(H) ≤
∥

∥ |D|− 1
2P+

V,γ |D| 12
∥

∥

2

B(H)
‖|D| 12 γ′|D| 12 ‖σ1(H) <∞ .

In addition, trH γ′′ ≤ trH γ′ ≤ q and 0 ≤ γ′′ ≤ P+
V,γ ≤ idH, so γ′′ is in Γ≤q.

In the special case γ = γ′ ∈ Γ≤q, this tells us that T (γ) is in Γ≤q.

In the general case, we may write

T (γ)− γ′′ = P+
V,γ(γ − γ′)P+

V,γ ,

hence
‖T (γ)− γ′′‖σ1(H) ≤ ‖γ − γ′‖σ1(H) ,

so distσ1(H)(T (γ),Γ≤q) ≤ distσ1(H)(γ,Γ≤q) < r. This proves that T (γ) ∈ Γr≤q.

Now, we may write

T 2(γ)− T (γ) = P+
V,T (γ)T (γ)P

+
V,T (γ) − P+

V,γT (γ)P
+
V,γ

= (Q(T (γ))−Q(γ))T (γ) + T (γ) (Q(T (γ))−Q(γ))

+ (Q(T (γ))−Q(γ))T (γ) (Q(T (γ))−Q(γ))

hence

‖T 2(γ)− T (γ)‖X ≤ 2
∥

∥

∥|D|1/2 (Q(T (γ))−Q(γ))T (γ)|D|1/2
∥

∥

∥

σ1(H)

+
∥

∥

∥
|D|1/2 (Q(T (γ))−Q(γ))T (γ) (Q(T (γ))−Q(γ)) |D|1/2

∥

∥

∥

σ1(H)

≤ 2‖Q(T (γ))−Q(γ)‖Y ‖T (γ) |D|1/2‖σ1(H)

+ ‖Q(T (γ))−Q(γ)‖2Y ‖T (γ)‖σ1(H) .

But we have seen that ‖Q(T (γ)) − Q(γ)‖Y ≤ ar‖T (γ) − γ‖X and ‖T (γ)‖σ1(H) ≤
q + r , so estimate (2.16) holds.

Now, from Lemma 2.7, T is in C1(Γr≤q, X) with the following formula:

dT (γ)h = (dQ(γ)h)γP+
V,γ + (adjoint) + P+

V,γhP
+
V,γ .

Using the inequality (2.11) of Lemma 2.6, we may write

‖(dQ(γ)h)γP+
V,γ‖X ≤ ‖dQ(γ)h‖Y ‖γ|D|1/2‖σ1(H)

∥

∥

∥|D|−1/2P+
V,γ |D|1/2

∥

∥

∥

B(H)

≤ ar‖h‖X
∥

∥γ|D|1/2
∥

∥

σ1(H)

(

1 + κr
1− κr

)1/2

,

‖P+
V,γhP

+
V,γ‖X ≤

∥

∥

∥|D|−1/2P+
V,γ |D|1/2

∥

∥

∥

2

B(H)
‖h‖X

≤
(

1 + κr
1− κr

)

‖h‖X .

Estimate (2.17) follows from these bounds. The proof of estimate (2.18) is more
tedious but goes along the same lines, so we omit the details: one just needs to
estimate each term of the sum

(

dT (γ′)− dT (γ)
)

h =
{(

(dQ(γ′)− dQ(γ))h
)

γ′P+
V,γ′ + (dQ(γ)h)(γ′ − γ)P+

V,γ

+ (dQ(γ)h)γP+
V,γ

(

Q(γ′)−Q(γ)
)}

+ {adjoint}
+
(

Q(γ′)−Q(γ)
)

hP+
V,γ′ + P+

V,γh
(

Q(γ′)−Q(γ)
)

.
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We now define an open subset U of Γr≤q allowing us to apply Proposition 2.2.

Proposition 2.9. Assume that κr < 1 , α (Z + r) < 2
π/2+2/π and take ar as in

Lemma 2.7. Given 0 < R < 1
2ar

, let A := max
(

2+ar(q+r)
2 , 1

1−2arR

)

and

U := {γ ∈ Γr≤q : ‖ γ |D|1/2‖σ1(H) +A‖T (γ)− γ‖X < R } .

Then U satisfies the assumptions of Proposition 2.2 with k := 2arR .

Proof. First of all, if γ ∈ U , then

‖T (γ) |D|1/2‖σ1(H) ≤ ‖γ |D|1/2‖σ1(H) + ‖(T (γ)− γ) |D|1/2‖σ1(H)

≤ ‖γ |D|1/2‖σ1(H) + ‖T (γ)− γ‖X ,

hence, using the inequality A ≥ 2+ar(q+r)
2 ,

‖T (γ) |D|1/2‖σ1(H)+
ar(q + r)

2
‖T (γ)− γ‖X

≤ ‖γ |D|1/2‖σ1(H) +
2+ ar(q + r)

2
‖T (γ)− γ‖X < R .

In addition, T (γ) ∈ Γr≤q and (2.16) implies that

‖T 2(γ)− T (γ)‖X ≤ k‖T (γ)− γ‖X

with k := 2arR < 1. Thus, using the inequality A ≥ 1
1−2arR

we get

‖T (γ) |D|1/2‖σ1(H)+A‖T 2(γ)− T (γ)‖X
≤ ‖γ |D|1/2‖σ1(H) + (1 +Ak)‖T (γ)− γ‖X < R ,

so T (γ) ∈ U .
Finally, from the definition of U we immediately see that supγ∈U ‖T (γ) − γ‖X

is finite. Moreover, (2.17) implies that supγ∈U ‖dT (γ)‖X < ∞ and (2.18) implies
that dT is Lipschitzian on U . This ends the proof of Proposition 2.9.

We are now ready to state the main result of this subsection:

Theorem 2.10. Assume that κr < 1 and α (Z + r) < 2
π/2+2/π . Let ar be as in

Lemma 2.7 and R < 1
2ar

. Let U and k be as in Proposition 2.9 and let U be the
closure of U in X. Then the sequence of iterated maps (T p)p≥0 converges uniformly
on U to a limit θ with θ(U) ⊂ Fix(T ) ∩ U and Fix(θ) = Fix(T ) ∩ U . We have the
estimate

∀γ ∈ U , ‖θ(γ)− T p(γ)‖X ≤ kp

1− k
‖T (γ)− γ‖X .

Moreover θ ∈ C1,unif(U , X) and d(T p) converges uniformly to dθ on U .
In this way we obtain a retraction θ of U onto Fix(T ) ∩ U whose restriction to

U is of class C1,unif . More precisely, idU − θ and its differential are bounded and
uniformly continuous on U .

For any γ ∈ Fix(T ) ∩ U and any h ∈ X , the operator S = dθ(γ)h satisfies

P+
V,γSP

+
V,γ = P+

V,γhP
+
V,γ and P−

γ SP
−
γ = 0 .
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In other words, the splitting H = P+
V,γH ⊕ P−

V,γH gives a block decomposition of
dθ(γ)h of the form

(2.19) dθ(γ)h =

(

P+
V,γhP

+
V,γ bγ(h)

∗

bγ(h) 0

)

Proof. The existence and regularity properties of the retraction θ follow from Propo-
sition 2.2 and Proposition 2.9. To end the proof of Theorem 2.10, it suffices to show
(2.19).

We recall that for any γ ∈ Γr≤q and h ∈ X ,

dT (γ)h = (dQ(γ)h)γP+
V,γ + (adjoint) + P+

V,γhP
+
V,γ .

Multiplying this formula from both sides by P−
V,γ , we get

P−
V,γ(dT (γ)h)P

−
V,γ = 0 .

On the other hand, we have P+
V,γP

−
V,γ = 0. Differentiating this identity, we find

(dQ(γ)h)P−
V,γ − P+

V,γ(dQ(γ)h) = 0 .

Multiplying this formula from the right by P+
V,γ we get

P+
V,γ(dQ(γ)h)P+

V,γ = 0 .

But for γ ∈ Fix(T ) ∩ U the formula for dT (γ) can be rewritten in the form

dT (γ)h = (dQ(γ)h)P+
V,γγP

+
V,γ + (adjoint) + P+

V,γhP
+
V,γ .

Multiplying this formula from both sides by P+
V,γ , we get

P+
V,γ(dT (γ)h)P

+
V,γ = P+

V,γhP
+
V,γ .

Moreover, since T (γ) = γ, for any integer p ≥ 1 we have

d(T p)(γ)h = dT (γ)
(

d(T p−1)(γ)h
)

.

So we immediately get
P−
V,γ(d(T

p)(γ)h)P−
V,γ = 0

and we easily prove that

P+
V,γ(d(T

p)(γ)h)P+
V,γ = P+

V,γhP
+
V,γ

by induction on p.

Passing to the limit p→ +∞ we conclude that

P−
V,γ(dθ(γ)h)P

−
V,γ = 0 and P+

V,γ(dθ(γ)h)P
+
V,γ = P+

V,γhP
+
V,γ .

This proves (2.19).

Since U and Γ≤q are both invariant under T , it is natural to consider their
intersection V . The set V := U ∩ Γ≤q is relatively open in Γ≤q and invariant under
T . Its closure V is invariant under θ, and the restriction of θ to V is the retraction
of V onto Γ+

≤q ∩ V announced in the introduction. In the sequel we shall only need
to work with this restriction. The last question we address in this section is whether
the sublevel set {γ ∈ Γ+

≤q : EDF (γ) − trH(γ) ≤ 0} is included in V . To answer it
positively, we need the following result:
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Proposition 2.11. Assume that κ < 1− π
4α q . Let γ ∈ Γ+

≤q be such that

EDF (γ)− trH(γ) ≤ 0 .

Then

‖γ‖X ≤
(

1− κ− π

4
α q

)−1

q .

Proof. Let γ ∈ Γ+
≤q such that EDF (γ) − trH(γ) ≤ 0. As Dγγ = |Dγ |γ and from

Lemma 2.6, we have

EDF (γ)− trH(γ) = tr[(Dγ − 1− α

2
Wγ)γ]

= tr[(|Dγ | − 1− α

2
Wγ)γ]

≥ (1− κ− π

4
αq)‖γ‖X − ‖γ‖σ1(H),

hence,

‖γ‖X ≤ (1 − κ− π

4
αq)−1[EDF (γ)− trH(γ) + q] ≤ (1− κ− π

4
αq)−1q.

We recall that the construction of U given in Proposition 2.9 involves a parameter
R ∈ (0, 1

2ar
) and that V = U ∩Γ≤q. Proposition 2.11 has the following consequence:

Corollary 2.12. Assume that κ < 1− π
4α q , α (Z + r) < 2

π/2+2/π and that

(2.20) παq < 2(1− κr)
1
2 λ

1
2
r

(

1− κ− π

4
α q

)
1
2

.

Then one can choose 0 < R < 1
2ar

and ρ > 0 such that, for all γ ∈ Γ+
≤q satisfying

EDF (γ)− trH(γ) ≤ 0 , there holds BX(γ, ρ) ∩ Γ≤q ⊂ V.

Proof. Proposition 2.11 implies that ‖γ‖X ≤ (1 − κ − π
4αq)

−1q . So, by Cauchy-
Schwarz,

‖ γ |D|1/2‖σ1(H) ≤ ‖ γ ‖1/2
X

‖ γ ‖1/2σ1(H) ≤ (1− κ− π

4
αq)−1/2q .

Now, condition (2.20) tells us that (1 − κ − π
4αq)

−1/2q < 1
2ar

. Moreover, since

γ ∈ Γ+
≤q one has ‖T (γ) − γ‖X = 0 . So, taking ρ and 1

2ar
− R positive and small

enough, using (2.17) one finds that for any γ′ ∈ BX(γ, ρ) ∩ Γ≤q,

‖ γ′ |D|1/2‖σ1(H) +A‖T (γ′)− γ′‖X < R ,

where A is the same as in Proposition 2.9. This inequality means that γ′ ∈ V .

3 Existence of a ground state.

The first result of this section is

Proposition 3.1. If Z, q, 1− κ are positive and αZ < 2
π/2+2/π , then Eq < 0 .

Proof. The self-adjoint operatorD+V has infinitely many eigenvalues in the interval
(0, 1) (see e.g. [17]). As a consequence, we can find a projector Π of rank 1 such
that Π ≤ 1{µ}(D + V ) for some 0 < µ < 1 . Taking ε > 0 small enough, we get

εΠ ∈ V , θ(εΠ) ∈ Γ+
≤q and EDF (θ(εΠ)) − trH(θ(εΠ)) = (µ − 1)ε + o(ε) < 0, so the

infimum of EDF − trH on Γ+
≤q is negative.
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In order to prove Theorem 1.2 we have to study the convergence of minimizing
sequences for EDF − trH. We need the following estimate related to the mean-field
operator:

Lemma 3.2. Assume that κ < 1 . Let γ̃ ∈ Γ≤q and let γ ∈ σ1(H) be such that
0 ≤ γ ≤ 1[0,ν](DV,γ̃) for some ν > 0. Then DγD ∈ σ1(H) and the following
estimate holds:

‖DγD ‖σ1(H) ≤ (1− κ)−2ν2 trH(γ) .

Proof. By assumption γ = 1[0,ν](DV,γ̃) γ 1[0,ν](DV,γ̃) and trH(γ) = ‖γ‖σ1(H), so

‖DV,γ̃ γ DV,γ̃ ‖σ1(H) ≤ ‖DV,γ̃1[0,ν](DV,γ̃)‖2B(H)‖γ‖σ1(H) ≤ ν2 trH(γ) .

Then, using (2.10) for s = 1, one gets

‖DγD ‖σ1(H) ≤ ‖DD−1
V,γ̃ ‖2B(H)‖DV,γ̃ γ DV,γ̃ ‖σ1(H) ≤ (1− κ)−2ν2 trH(γ) .

The next lemma of this section gives a crucial property of minimizing sequences:
their terms are approximate ground states of their mean-field Hamiltonian.

Lemma 3.3. Assume that Z, q, 1− κ− π
4 q are positive and that (1.4) is satisfied.

Let (γn) be a minimizing sequence for EDF − trH in Γ+
≤q . Then

lim
n→∞

{

tr
(

(DV,γn − 1)γn
)

− inf
γ∈Γ≤q , γ=P

+
γnγ

tr
(

(DV,γn − 1)γ
)

}

= 0 .

Proof. The proof of this lemma is based on the construction of Section 2. We take
r > 0 such that the assumptions of Corollary 2.12 are satisfied and we choose R, ρ
as in this corollary. As a consequence of Proposition 3.1, for n large enough we
have EDF (γn) − trH(γn) < 0 , so Proposition 2.11 gives us a bound on ‖γn‖X and
Corollary 2.12 implies that Γ≤q ∩BX(γn, ρ) ⊂ V .

Assume by contradiction that the minimizing sequence (γn) does not satisfy the
conclusion of the lemma. Then there is ε0 > 0 such that, after extraction,

tr
(

(DV,γn − 1)γn
)

≥ inf
γ∈Γ≤q , γ=P

+
γnγ

tr
(

(DV,γn − 1)γ
)

+ ε0 .

On the other hand, for each ν > 1 there exists a sequence (gn) of bounded
self-adjoint operators of rank q such that 0 ≤ gn ≤ 1[0,ν](DV,γn) and

tr
(

(DV,γn − 1)gn
)

≤ inf
γ∈Γ≤q , γ=P

+
γnγ

tr
(

(DV,γn − 1)γ
)

+
ε0
2
.

Taking for instance ν = 2, from Lemma 3.2 we get a bound on ‖gn‖X . As a
consequence, there is σ > 0 such that for any s ∈ [0, σ] , the convex combination
(1 − s) γn + s gn is in Γ≤q ∩ BX(γn, ρ) , so, from Corollary 2.12, it lies in V when
n is large enough. Thus, from Theorem 2.10, the function

fn : s ∈ [0, σ] 7→
(

EDF − trH
)(

θ[(1 − s) γn + s gn]
)

is well-defined and of class C1. Moreover, the sequence of derivatives (f ′
n) is equicon-

tinuous on [0, σ]. From Formula (2.19),

f ′
n(0) = tr

(

(DV,γn − 1)(gn − γn)
)

≤ −ε0
2
,
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so there is 0 < s0 < σ independent of n , such that ∀s ∈ [0, s0] , f
′
n(s) ≤ − ε0

4 .
Hence

(

EDF−trH
)(

θ[(1−s0)γn+s0gn]
)

= fn(s0) ≤ fn(0)−
ε0s0
4

=
(

EDF−trH
)

(γn)−
ε0s0
4

.

But θ[(1−s0)γn+s0gn] ∈ Γ+
≤q and

(

EDF − trH
)

(γn) → Eq . This is a contradiction.
So Lemma 3.3 is proved.

It turns out that the compactness of minimizing sequences is easier to study for
positive ions. So in order to prove Theorem 1.2 we are going to start with the case
q < Z, which is contained in the following proposition:

Proposition 3.4. Consider the Dirac-Fock problem with 0 < q < Z . Assume that
κ < 1 − π

4α q and that condition (1.4) is satisfied. Then there exists γ∗ ∈ Γ+
q such

that

EDF (γ∗)− trH(γ∗) = Eq .

Any such ground state may be written γ∗ = 1(0,µ)(DV,γ∗) + δ with 0 ≤ δ ≤
1{µ}(DV,γ∗) for some µ ∈ (0, 1).

Moreover, for h > 0 and small, one has Eq+h < Eq.

It follows directly from the definition of Eq that the function q 7→ Eq is nonin-
creasing, so the last statement of Proposition 3.4 directly implies the strict binding
inequalities for positive ions and neutral atoms:

Corollary 3.5. Consider the Dirac-Fock problem with 0 < q ≤ Z . Assume that
κ < 1− π

4α q and that condition (1.4) is satisfied. Then the map r 7→ Er is strictly
decreasing on [0, q], so the strict binding inequalities (1.6) hold.

In our proof of Proposition 3.4, a crucial tool will be a uniform estimate on the
spectrum of the operators DV,γ . If ⌈q⌉ denotes the smallest integer larger or equal
to q, this estimate is given in the following lemma:

Lemma 3.6. Assume that αZ < 2
π/2+2/π and that 0 < q < Z. Then:

• There is a constant e ∈ (0, 1) such that for any γ ∈ Γ≤q , the mean-field
operator DV,γ has at least ⌈q⌉ eigenvalues (counted with multiplicity) in the interval
[0, 1− e].

• There is a nonnegative integer N such that for any γ ∈ Γ≤q , the mean-
field operator DV,γ has at most ⌈q⌉ + N eigenvalues (counted with multiplicity) in
[0, 1− e

2 ].

Proof. For the first statement of the lemma, the arguments are similar to the proof
of Lemma 4.6 in [18], with some necessary adaptations. One takes a subspace S
of C∞

c ( (0,∞);R) of dimension ⌈q⌉. Given t > 1 we call Gt the ⌈q⌉-dimensional
subspace of C∞

c (R3;C4) consisting of all functions ψ of the form

(3.1) ψ(x) =









f(|x|/t)
0
0
0









, f ∈ S .
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One easily finds two constants 0 < c∗ < c∗ < ∞ such that, for any t > 1 and
ψ ∈ Gt ,

〈

Λ+ψ,
√
1−∆Λ+ψ

〉

L2 ≤
(

1 +
c∗

t2
) ∥

∥ψ
∥

∥

2

L2 ,(3.2)

∥

∥∇ψ
∥

∥

2

L2 ≤ c∗

t2

∥

∥ψ
∥

∥

2

L2 ,(3.3)
〈

ψ,
1

| · |ψ
〉

L2

≥ c∗
t

∥

∥ψ
∥

∥

2

L2 ,(3.4)

∥

∥Λ−ψ
∥

∥

L2 ≤ c∗

t

∥

∥ψ
∥

∥

L2 ,(3.5)

∥

∥∇(Λ−ψ)
∥

∥

L2 ≤ c∗

t2
∥

∥ψ
∥

∥

L2 ,(3.6)

〈

ψ, V ψ
〉

L2 ≤ −αZ
〈

ψ,
1

| · |ψ
〉

L2

+ o

(

1

t

)

t→∞
||ψ||2

L2
.(3.7)

Now, we recall that for γ ∈ Γ≤q one has Wγ ≤ ργ ∗ 1
|·| . Moreover, since ψ in Gt

is radial, one has
〈

ψ, ργ ∗ 1
|·|ψ

〉

L2
≤

〈

ψ, q|·|ψ
〉

L2
, so that, for t large enough:

(3.8)
〈

ψ, (V + αWγ)ψ
〉

L2
≤ −α(Z − q)

c∗
2t

∥

∥ψ
∥

∥

2

L2 .

On the other hand, ‖(V + αWγ)Λ
−ψ‖L2 ≤ 2α(Z + q)

∥

∥∇(Λ−ψ)
∥

∥

L2 , so, for t large:

(3.9)
〈

Λ+ψ, (V + αWγ)Λ
+ψ

〉

L2
≤ −α(Z − q)

c∗
4t

∥

∥Λ+ψ
∥

∥

2

L2 .

For ψ+ ∈ Λ+C∞
c (R3,C4) and 0 < e < 1, we define

Q1−e(ψ
+) :=

〈

ψ+, |D|ψ+
〉

L2

+
〈

ψ+, (V + αWγ − 1 + e)ψ+
〉

L2

+
〈

(V + αWγ)ψ
+, Λ−(|D| − V − αWγ + 1− e)−1Λ−(V + αWγ)ψ

+
〉

L2
.

Combining the estimates (3.2), (3.3), (3.5) and (3.9) one finds t > 1 and c > 0
such that for all e ∈ (0, 1), t ≥ t, γ ∈ Γ≤q and for every ψ+ in the ⌈q⌉-dimensional
complex vector space G+

t := Λ+Gt :

Q1−e(ψ
+) <

(

e− c

t

)

∥

∥ψ+
∥

∥

2

L2 .

From now on, we fix t = t and e = c
2t . Then the above inequality tells us that the

quadratic form Q1−e is negative on G+
t . Applying the abstract min-max theorem

of [15] to the self-adjoint operator DV,γ with the splitting of H associated to the
free projectors Λ± = P±

0,0, we thus conclude that there are at least ⌈q⌉ eigenvalues
of DV,γ (counted with multiplicity) in the interval (0, 1 − e). Indeed, for ψ+ in
Λ+C∞

c (R3,C4) one has

Q1−e(ψ
+) = sup

ψ−∈Λ−C∞
c (R3,C4)

{〈

ψ++ψ−, DV,γ(ψ
++ψ−)

〉

L2
−(1−e)‖ψ++ψ−‖2L2

}

.

So, if λk,γ denotes the k-th positive eigenvalue of DV,γ counted with multiplicity,
from [15] we find that

1− e ≥ inf
W subspace of Λ+C∞

c
dimW=⌈q⌉

sup
ψ∈(W⊕Λ−C∞

c )\{0}

〈ψ,DV,γψ〉L2

‖ψ‖2L2

= λ⌈q⌉,γ .
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The first statement of the lemma is thus proved.

The second statement is easier. We notice that DV,γ ≥ DV,0, so, invoking once
again the min-max principle of [15], we see that λk,γ ≥ λk,0. Moreover the essential
spectrum of DV,0 is R \ (−1, 1), so limk→∞ λk,0 = 1 . Taking N ≥ 0 such that
λ⌈q⌉+N+1, 0 > 1− e/2, we conclude that for any γ ∈ Γ≤q there are at most ⌈q⌉+N
eigenvalues of DV,γ in the interval [0, 1− e/2] and the lemma is proved.

Thanks to Lemma 3.6, we can obtain more information on minimizing sequences:

Lemma 3.7. Consider the Dirac-Fock problem with 0 < q < Z . Assume that
κ < 1− π

4α q and that condition (1.4) is satisfied. Let (γn) be a minimizing sequence

for (EDF − trH) in Γ+
≤q . For each n define pn := 1[0,1− e

2 ]
(DV,γn) where e is given

in Lemma 3.6. Then

trH(γn) → q and ‖γn − pnγnpn‖X → 0 .

Proof. Let µn ∈ (0, 1− e] be such that there are less than ⌈q⌉ eigenvalues of DV,γn

(counted with their multiplicity) in the interval [0, µn) and at least ⌈q⌉ in the interval
[0, µn] . Then

inf
γ∈Γ≤q , γ=P

+
γnγ

tr
(

(DV,γn − 1)γ
)

= tr
(

(DV,γn − µn)1[0,µn)(DV,γn)
)

+ (µn − 1)q .

We define p′n := 1(1− e
2 ,∞)(DV,γn) . Since γn = T (γn) we may write

tr
(

(DV,γn − µn)γn
)

= tr
(

(DV,γn − µn)pnγnpn
)

+ tr
(

(DV,γn − µn)p
′
nγnp

′
n

)

,

hence

tr
(

(DV,γn − 1)γn
)

− inf
γ∈Γ≤q , γ=P

+
γnγ

tr
(

(DV,γn − 1)γ
)

= tr
(

(DV,γn − µn)p
′
nγnp

′
n

)

+tr
[

(DV,γn − µn)
(

pnγnpn − 1[0,µn)(DV,γn)
)]

+ (1 − µn)
(

q − trH(γn)
)

.

Moreover tr
(

(DV,γn − µn)p
′
nγnp

′
n

)

, tr
[

(DV,γn − µn)
(

pnγnpn− 1[0,µn)(DV,γn)
)]

and

(1− µn)
(

q − trH(γn)
)

are nonnegative, so Lemma 3.3 implies that

trH(γn) → q and tr
(

(DV,γn − µn)p
′
nγnp

′
n

)

→ 0 .

But p′n(DV,γn − µn)p
′
n ≥ e

2p
′
n and p′n(DV,γn − µn)p

′
n ≥ p′n

(

|DV,γn | − 1 + e
)

p′n
so that, taking a convex combination of these two estimates:

p′n(DV,γn − µn)p
′
n ≥ e

2− e
p′n|DV,γn |p′n ,

hence ‖p′nγnp′n‖X = tr
(

p′n|D|p′nγn
)

≤ (1 − κ)−1tr
(

p′n|DV,γn |p′nγn
)

→ 0 .

It remains to study the limit of un := p′nγnpn as n goes to infinity. Since
(γn)

2 ≤ γn , we have (p′nγnp
′
n)

2 + un u
∗
n = p′n(γn)

2p′n ≤ p′nγnp
′
n , hence

tr
(

|DV,γn |1/2un u∗n|DV,γn |1/2
)

→ 0 .

Now, take B ∈ B(H). By the Cauchy-Schwarz inequality,

tr
(

B |DV,γn |1/2u∗n|DV,γn |1/2
)

≤
[

tr
(

|DV,γn |1/2pnB∗B pn|DV,γn |1/2
)]1/2[

tr
(

|DV,γn |1/2un u∗n|DV,γn |1/2
)]1/2

.
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But pn has rank at most ⌈q⌉+N and
∥

∥ pn|DV,γn |1/2
∥

∥

B(H)
≤ 1 . As a consequence,

tr
(

|DV,γn |1/2pnB∗B pn|DV,γn |1/2
)

≤ (⌈q⌉+N)‖B‖2B(H) .

Since B is arbitrary, this shows that
∥

∥ |DV,γn |1/2un|DV,γn |1/2
∥

∥

σ1(H)
→ 0 , hence

‖un‖X → 0 .

Finally ‖γn− pnγnpn‖X ≤ ‖p′nγnp′n‖X +2‖un‖X → 0 and the lemma is proved.

Now we have

Corollary 3.8. With the same assumptions and notations as in Lemma 3.7, there
exists γ∗ ∈ Γ≤q such that, after extraction of a subsequence, ‖γn − γ∗‖X → 0 as n
goes to infinity.

Proof. The projector pn has rank at most ⌈q⌉+N so, after extraction, we may as-
sume that its rank equals a constant d . Then for each n there is an orthonormal fam-
ily (ϕ1

n, · · · , ϕdn) of eigenfunctions of DV,γn with associated eigenvalues λ1n, · · · , λdn ∈
[0, 1− e1

2 ] and such that pn =
∑d

i=1 |ϕin >< ϕin| . There is also a hermitian matrix
Gn = (Gijn )1≤i,j≤d with 0 ≤ Gn ≤ 1d and pnγnpn =

∑

1≤i,j≤dG
ij
n |ϕin >< ϕjn| .

After extraction, we may assume that for each i, j the sequence of coefficients
(Gijn )n≥0 has a limit Gij∗ . Moreover, arguing as in [Esteban-S. ’99, Proof of Lemma
2.1 (b) p. 514-515], one shows that, after extraction, for each i the sequence (ϕin)n≥0

has a limit ϕi∗ for the strong topology of H1/2(R3,C4) . The corollary is proved,
taking γ∗ :=

∑

1≤i,j≤dG
ij
∗ |ϕi∗ >< ϕj∗| .

We are now ready to prove Proposition 3.4:

Proof. As a consequence of Corollary 3.8, EDF (γn) converges to EDF (γ∗) and from
Lemma 2.7 (continuity of Q), P+

γn −P+
γ∗ converges to zero for the norm of B(H,F) .

So P+
γ∗γ∗ = γ∗ and γ∗ is a minimizer of EDF − trH on Γ+

≤q . For any such minimizer,
applying Lemma 3.3 we get

tr
(

(DV,γ∗ − 1)γ∗
)

= inf
γ∈Γ≤q , γ=P

+
γ∗γ

tr
(

(DV,γ∗ − 1)γ
)

.

This immediately implies that γ∗ = 1(0,µ)(DV,γ∗) + δ with 0 ≤ δ ≤ 1{µ}(DV,γ∗)
where µ = λ⌈q⌉,γ∗ is the ⌈q⌉-th positive eigenvalue of DV,γ∗ . Moreover trH(γ∗) = q
since µ ≤ 1 − e < 1 . Now, let ψ be a normalized eigenvector of DV,γ∗ with
eigenvalue λ ∈ (1 − e, 1). Then γ∗ψ = 0 and for h ∈ (0, 1) the density operator
γ(h) := γ∗ + h|ψ >< ψ| belongs to Γq+h and satisfies γ(h) = P+

V,γ∗
γ(h)P+

V,γ∗
. So,

taking r > 0 such that the assumptions of Corollary 2.12 are satisfied and choosing
R, ρ as in this corollary, we find from (2.19) that for h positive and small,

Eq+h ≤ (EDF − trH) ◦ θ(γ(h)) = Eq + (λ− 1)h+ o(h) < Eq .

This ends the proof of Proposition 3.4.

It remains to study the ground state problem for neutral molecules. We already
proved the strict binding inequalities (1.6) for q = Z (see Corollary 3.5). So the
case q = Z of Theorem 1.2 is a direct consequence of the following more general
statement:
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Proposition 3.9. Assume that Z, q, 1−κ− π
4α q are positive and that conditions

(1.4) and (1.6) are satisfied. Then there exists an admissible Dirac-Fock density
operator γ∗ ∈ Γ+

q such that

EDF (γ∗)− trH(γ∗) = Eq .

For any such minimizer, there is an energy level µ ∈ (0, 1] such that

(3.10) γ∗ = 1(0,µ)(DV,γ∗) + δ with 0 ≤ δ ≤ 1{µ}(DV,γ∗) .

When q < Z, Proposition 3.9 does not give any new information compared to
Proposition 3.4. So we just need to prove Proposition 3.9 in the case q ≥ Z. In
order to do this, we perturb the nuclear charge distribution. We first introduce a
function G ∈ C∞

c (R+) with G(r) ≥ 0 for all r ≥ 0, G(r) = 0 when 0 ≤ r ≤ 1 or
r ≥ 4, G(r) = 1 for 2 ≤ r ≤ 3 and 4π

∫∞
0
G(r)r2dr = 1. Then, to any positive

integer ℓ we associate the function gℓ(x) := ℓ−3G(|x|/ℓ) and the perturbed charge
distribution nℓ := n + (q − Z + ℓ−1)gℓ. The measure nℓ is positive and one has
Zℓ := nℓ(R

3) = q + ℓ−1 > q. The corresponding perturbed Coulomb potential is

Vℓ = −α nℓ∗ 1
|·| . Note that Vℓ−V is radial and satisfies − q−Z+ℓ−1

|x| ≤ (Vℓ−V )(x) ≤ 0

for |x| ≥ ℓ and − q−Z+ℓ−1

ℓ ≤ (Vℓ − V )(x) ≤ 0 for |x| ≤ ℓ, so ‖Vℓ − V ‖∞ ≤ q−Z+ℓ−1

ℓ ,
hence limℓ→∞ ‖Vℓ − V ‖∞ = 0.

From what we have just seen, if the constants Z, λ0 := 1 − αmax(Z, q) and
κ := ‖V D−1‖B(H) + 2αq satisfy (1.4) with q ≥ Z, then for ℓ large enough, the
modified constants Zℓ, λ

′
ℓ := 1 − αmax(Zℓ, q) and κ

′
ℓ := ‖VℓD−1‖B(H) + 2α q also

satisfy (1.4) with, in addition, q < Zℓ. So we may apply Proposition 3.4 to the
Dirac-Fock problem with nuclear charge density nℓ. This gives us the existence of
a Dirac-Fock ground state γℓ∗ of particle number q in the external field Vℓ.

We now study the behavior of the minimizers γℓ∗ when ℓ → +∞. First of all,
since ‖Vℓ − V ‖∞ → 0, EℓDF → EDF uniformly on Γ≤q , so the DF ground state
energy associated to the potential Vℓ converges to the DF ground state energy Eq
associated to V . In other words,

lim
ℓ→+∞

(

EℓDF (γℓ∗)− trH(γℓ∗)
)

= Eq .

Moreover we have the following local compactness result:

Lemma 3.10. Under the above assumptions and notations, after extraction of a
subsequence still denoted by (γℓ∗) , there exist a density operator γ∗ ∈ Γ≤q and a
sequence of positive numbers Rℓ with limRℓ = +∞, such that for any smooth,
compactly supported function η ∈ C∞

c (R3,R) , the integral operator with kernel
η(R−1

ℓ x)
(

γℓ∗ − γ∗
)

(x, y) η(R−1
ℓ y) converges to zero for the topology of X as ℓ goes

to infinity.

Proof. Since 0 ≤ γℓ∗ ≤ 1(0,1)(DVℓ,γℓ
∗
), Lemma 3.2 implies that the operator Sℓ :=

(1 − ∆)
1
2 γℓ∗(1 − ∆)

1
2 is bounded in σ1(H) independently of ℓ, so after extrac-

tion it has a weak-∗ limit S = (1 − ∆)1/2γ∗(1 − ∆)1/2 as ℓ → ∞. Consider
a function η0 ∈ C∞

c (R3,R) such that η0 ≡ 1 on B(0, 1). For any ρ > 0, the
operator Kρ = (1 − ∆)1/4η0(ρ

−1·)(1 − ∆)−1/2 is compact. This implies that
limℓ→∞ ‖Kρ(S

ℓ−S)K∗
ρ‖σ1(H) = 0 (see e.g. [31, Lemma 9] for a similar argument).

Then, we may choose a sequence of positive numbers ρℓ such that limℓ→∞ ρℓ = +∞
and limℓ→∞ ‖Kρℓ(S

ℓ − S)K∗
ρℓ
‖σ1(H) = 0 : for this, we just need the growth of ρℓ

to be sufficiently slow. Now, define Rℓ := ρ
1/2
ℓ . For any η ∈ C∞

c (R3,R) , there
is ℓ0 such that for all ℓ ≥ ℓ0 and x ∈ R3, η(R−1

ℓ x)η0(ρ
−1
ℓ x) = η(R−1

ℓ x). More-
over the operator LRℓ

:= (1 −∆)1/4η(R−1
ℓ ·)(1 −∆)−1/4 is bounded independently
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of ℓ. So limℓ→∞ ‖LRℓ
Kρℓ(S

ℓ − S)K∗
ρℓ
L∗
Rℓ
‖σ1(H) = 0 . But for ℓ ≥ ℓ0 one has

LRℓ
Kρℓ(S

ℓ − S)K∗
ρℓ
L∗
Rℓ

= (1 − ∆)1/4η(R−1
ℓ ·)(γℓ∗ − γ∗)η(R

−1
ℓ ·)(1 − ∆)1/4, so the

lemma is proved.

We now introduce two radial cut-off functions χǫ ∈ C∞(R3,R+) (ǫ = 0, 1) such
that χ

0
(x) = 0 for |x| ≥ 2 , χ

1
(x) = 0 for |x| ≤ 1 and χ2

0 + χ2
1 = 1 . We define the

dilated cut-off functions χǫ,ℓ(x) = χǫ(R
−1
ℓ x) and the associated localized density

operators
γℓǫ(x, y) := χǫ,ℓ(x)γ

ℓ
∗(x, y)χǫ,ℓ(y) , ǫ ∈ {0, 1} .

We have the following result:

Lemma 3.11. Assume that γℓ∗ ∈ X converges to γ∗ in the local sense of Lemma
3.10 as ℓ→ ∞. Then γℓ0, γ

ℓ
1 belong to Γ≤q and one has

(3.11) trH γℓ∗ = trH γℓ0 + trH γℓ1 , lim{EℓDF (γℓ∗)− EℓDF (γℓ0)− EℓDF (γℓ1)} = 0 ,

(3.12) lim
ℓ→∞

∥

∥

∥DVℓ,γℓ
ǫ
χǫ,ℓ − χǫ,ℓDVℓ,γℓ

∗

∥

∥

∥

B(H)
= 0 , ǫ = 0, 1 .

Proof. The statement (3.11) is in the spirit of the concentration-compactness theory
of P.L. Lions [34] (dichotomy case). Its proof presents some similarities with the
proof of Lemma 4 in [26] but it is less technical, as the present functional framework
is simpler.

Obviously, one has

trH
(

γℓ∗
)

= trH
(

γℓ∗(χ0,ℓ)
2
)

+ trH
(

γℓ∗(χ1,ℓ)
2
)

= trH
(

γℓ0
)

+ trH
(

γℓ1
)

.

Let ζ(x) := χ0

(

2
5x

)

χ1(4x). Then ζ ∈ C∞
c

(

R3,R
)

, 0 ≤ ζ ≤ 1, ζ(x) = 1 for
1
2 ≤ |x| ≤ 5

2 and ζ(x) = 0 for |x| 6 1
4 or |x| > 5. We introduce the dilated function

ζℓ(x) := ζ(R−1
ℓ x) and the associated integral operator

γℓ2(x, y) := ζℓ(x) γ
ℓ
∗(x, y) ζℓ(y) .

From Lemma 3.10,

lim
ℓ→∞

∥

∥γℓ2 − ζℓ(x)γ∗ (x, y) ζℓ(y)
∥

∥

X
= 0 .

Moreover, recalling our notation F = H1/2(R3,C4), we may write a decomposition
of the form γ∗ =

∑

n≥1 cn |ψn〉 〈ψn| with

〈ψn, ψn′〉F = δn,n′ , cn ≥ 0 and
∑

n≥1

cn = ‖γ∗‖X <∞ .

Then for each n, limℓ→∞ ‖ζℓψn‖F = 0, since ζ vanishes on B(0, 1/4). In addition,
there is C > 0 such that, for all ℓ ≥ 1 and ψ ∈ F , ‖ζℓψ‖F ≤ C‖ψ‖F . So, when
ℓ→ ∞, Lebesgue’s dominated convergence theorem tells us that

‖ζℓ(x)γ∗(x, y)ζℓ(y)‖X =
∑

n≥1

cn ‖ζℓψn‖2F → 0 ,

hence limℓ→∞
∥

∥γℓ2
∥

∥

X
= 0. So, using inequality (2.6), we find that the norms

∥

∥

∥ργℓ
2
∗ 1

|·|

∥

∥

∥

L∞(R3)
,
∥

∥

∥Wγℓ
2

∥

∥

∥

B(H)
and

∥

∥

∥

γℓ
2(x,y)
|x−y|

∥

∥

∥

B(H)
converge to 0 as ℓ→ ∞.

Now, we write

EℓDF
(

γℓ∗
)

− EℓDF
(

γℓ0
)

− EℓDF
(

γℓ1
)

= Aℓ +Bℓ
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where

Aℓ :=
i

Rℓ

1
∑

ǫ=0

trH
{

(α · ∇χǫ) (R−1
ℓ x)γℓ∗(x, y)χǫ,ℓ(y)

}

= O
(

1

Rl

)

and

Bℓ := α

∫∫

R3×R3

(χ0,ℓ)
2(x)(χ1,ℓ)

2(y)

|x− y|
(

ργℓ
∗
(x)ργℓ

∗
(y)−

∣

∣γℓ∗(x, y)
∣

∣

2
)

d3x d3y .

We have

χ0,ℓ(x)χ1,ℓ(y)

|x− y| =
χ0,ℓ(x)χ1,ℓ(y)

|x− y|

(

1{|x−y|≤Rℓ
2

} + 1{|x−y|>Rℓ
2

}

)

≤ 1

|x− y|1
{

Rℓ
2 ≤|x|≤ 5Rℓ

2

}1{Rℓ
2 ≤|y|≤ 5Rℓ

2

} +
2

Rℓ
,

hence

(3.13)
χ0,ℓ(x)χ1,ℓ(y)

|x− y| ≤ (ζℓ)
2(x)(ζℓ)

2(y)

|x− y| +
2

Rℓ
.

In addition, we have the inequalities 0 ≤ ργℓ
∗
(x)ργℓ

∗
(y)−

∣

∣γℓ∗(x, y)
∣

∣

2 ≤ ργℓ
∗
(x)ργℓ

∗
(y)

and the identity (ζℓ)
2(x)(ζℓ)

2(y)ργℓ
∗
(x)ργℓ

∗
(y) = ργℓ

2
(x)ργℓ

2
(y). As a consequence, we

get the estimate

0 6 Bℓ 6 α

∫∫

R3×R3

ργℓ
2
(x)ργℓ

2
(y)

|x− y| +O
(

1

Rℓ

)

≤ αq
∥

∥

∥ργℓ
2
∗ 1

| · |
∥

∥

∥

L∞(R3)
+O

(

1

Rℓ

)

,

so (3.11) is proved.

In order to prove (3.12) one writes

(3.14) DVℓ,γℓ
0
χ0,ℓ − χ0,ℓDVℓ,γℓ

∗
=

[

DVℓ,γℓ
∗
, χ0,ℓ

]

− αWγℓ
∗−γℓ

0
χ0,ℓ .

One has

[

DVℓ,γℓ
∗
, χ0,ℓ

]

=
−i
Rℓ

(α · ∇χ0) (R
−1
ℓ x) + α

χ0,ℓ(y)− χ0,ℓ(x)

|x− y| γℓ∗(x, y) ,

so

(3.15)
∥

∥

[

DVℓ,γℓ
∗
, χ0,ℓ

]∥

∥

B(H)
= O

(

1

Rℓ

)

.

Now, for any test function ψ ∈ C∞
c

(

R3,C4
)

,

(Wγℓ
∗−γℓ

0
χ0,ℓ ψ)(x) =

∫

R3

χ0,ℓ(x)(χ1,ℓ)
2(y)ργℓ

∗
(y)ψ(x)

|x− y| d3y

−
∫

R3

(1− χ0,ℓ(x)χ0,ℓ(y))χ0,ℓ(y)γ
ℓ
∗(x, y)ψ(y)

|x− y| d3y .

Using (3.13) once again, one gets

∥

∥

∥

∫

R3

χ0,ℓ(x)(χ1,ℓ)
2(y)ργℓ

∗
(y)ψ(x)

|x− y| d3y
∥

∥

∥

L2(d3x)
≤

(

∥

∥

∥ργℓ
2
∗ 1

| · |
∥

∥

∥

L∞(R3)
+

2q

Rℓ

)

‖ψ‖H .

Moreover, arguing as in the proof of (3.13), one easily gets

(3.16)
(1− χ0,ℓ(x)χ0,ℓ(y))χ0,ℓ(y)

|x− y| ≤ ζℓ(x)ζℓ(y)

|x− y| +
2

Rℓ
,
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hence

∥

∥

∥

∫

R3

(1− χ0,ℓ(x)χ0,ℓ(y))χ0,ℓ(y)γ
ℓ
∗(x, y)ψ(y)

|x− y| d3y
∥

∥

∥

L2(d3x)

≤
(

∥

∥

∥

γℓ2(x, y)

|x− y|
∥

∥

∥

B(H)
+

2q

Rℓ

)

‖ψ‖H .

The above estimates imply that limℓ→∞ ‖Wγℓ
∗−γℓ

0
χ0,ℓ‖B(H) = 0 . Combining this

with (3.14) and (3.15) one gets (3.12) for ǫ = 0. The case ǫ = 1 is proved in the
same way.

Before proving Proposition 3.9 we need a last lemma:

Lemma 3.12. Assume that γℓ∗ ∈ X converges to γ∗ in the local sense of Lemma
3.10 as ℓ→ ∞. Then:

(3.17) P−
V,γ∗

γ∗ = 0 ,

(3.18) lim inf
ℓ→∞

(

EℓDF − trH
)

(γℓ1) ≥ 0 .

Proof. Let ξ(ℓ) := ‖Vℓ − V ‖L∞(R3) + max
ǫ=0,1

∥

∥

∥DVℓ,γℓ
ǫ
χǫ,ℓ − χǫ,ℓDVℓ,γℓ

∗

∥

∥

∥

B(H)
.

From the definition of Vℓ and from (3.12), we know that limℓ→∞ ξ(ℓ) = 0. From
the Euler-Lagrange equation satisfied by γℓ∗ , there is a (finite or infinite) set Iℓ of
integers and an orthonormal sequence (ψℓn)n∈Iℓ of common eigenvectors of γℓ∗ and
DVℓ,γℓ

∗
, satisfying:

DVℓ,γℓ
∗
ψℓn = λℓnψ

ℓ
n , γℓ∗ =

∑

n∈Iℓ
gℓn

∣

∣ψℓn
〉 〈

ψℓn
∣

∣ ,
〈

ψℓn, ψ
ℓ
n′

〉

H = δn,n′ ,

0 < λℓn < 1 , 0 < gℓn ≤ 1 ,
∑

n∈Iℓ
gℓn = trH

(

γℓ∗
)

= q .

Then γℓǫ =
∑

n∈Iℓ g
ℓ
n

∣

∣ψℓǫ,n
〉 〈

ψℓǫ,n
∣

∣ with ψℓǫ,n(x) = χǫ,ℓ(x)ψ
ℓ
n(x), ǫ = 0, 1. Moreover,

trH
(

γℓǫ
)

=
∥

∥γℓǫ
∥

∥

σ1(H)
=

∑

n∈Iℓ

gℓn
∥

∥ψℓǫ,n
∥

∥

2

H ,
∥

∥γℓǫ
∥

∥

X
=

∑

n∈Iℓ

gℓn
∥

∥ψℓǫ,n
∥

∥

2

F .

For n ∈ Iℓ we have
∥

∥

∥

(

DV,γℓ
0
− λℓn

)

ψℓ0,n

∥

∥

∥

H
≤ ξ(ℓ). On the other hand, (2.12) implies

that ‖ ( |DV,γℓ
0
|+ λℓn)

−1‖B(H) ≤ 1
λ0

with λ0 = 1− αmax(q, Z) > 0. Thus,

∥

∥

∥P−
V,γℓ

0

ψℓ0,n

∥

∥

∥

H
≤

∥

∥

∥

(

|DV,γℓ
0
|+ λℓn

)−1
∥

∥

∥

B(H)

∥

∥

∥P−
V,γℓ

0

(

DV,γℓ
0
− λℓn

)

ψℓ0,n

∥

∥

∥

H
≤ ξ(ℓ)

λ0
.

As a consequence,

∥

∥

∥P−
V,γℓ

0
γℓ0

∥

∥

∥

σ1(H)
6

∑

n∈Iℓ
gℓn

∥

∥

∥P−
V,γℓ

0
ψℓ0,n

∥

∥

∥

H
‖ψℓ0,n‖H 6 q

ξ(ℓ)

λ0
= o(1)ℓ→∞ .

Then, recalling that limℓ→∞ ‖γℓ0 − γ∗‖X = 0 and using (2.14), we get (3.17).

In order to prove (3.18), we write

tr
(

DV,γℓ
1
γℓ1 (Λ

+ − Λ−)
)

= tr
(

D0,γℓ
1
Λ+γℓ1 Λ

+
)

− tr
(

D0,γℓ
1
Λ−γℓ1 Λ

−
)

+ tr
(

(V χ1,ℓ)γ
ℓ
∗ χ1,ℓ (Λ

+ − Λ−)
)

.
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We have
tr
(

D0,γℓ
1
Λ+γℓ1 Λ

+
)

> tr
(

DΛ+γℓ1 Λ
+
)

= ‖Λ+γℓ1Λ
+‖X .

Moreover, using Tix’ inequality [45] one gets

− tr
(

D0,γℓ
1
Λ−γℓ1 Λ

−
)

≥
(

1− α
(π

4
+

1

π

)

q

)

∥

∥Λ−γℓ1Λ
−∥
∥

X
.

In addition, one has

‖V χ1,ℓD
−1‖B(H) =

∥

∥

∥

(

(n1|·|≤Rℓ/2) ∗ | · |−1 + (n1|·|>Rℓ/2) ∗ | · |−1
)

χ1,ℓD
−1

∥

∥

∥

B(H)

≤ 2Z

Rℓ
+ 2n

(

R
3 \B(0, Rℓ/2)

)

= o(1)ℓ→∞

and the Euler-Lagrange equation satisfied by γℓ∗ implies that ‖Dγℓ∗D‖σ1(H) = O(1) ,
so

lim
ℓ→∞

tr
(

(V χ1,ℓ)γ
ℓ
∗ χ1,ℓ (Λ

+ − Λ−)
)

= 0 .

Gathering these informations, we get the lower estimate

tr
(

DV,γℓ
1
γℓ1 (Λ

+−Λ−)
)

≥
∥

∥Λ+γℓ1Λ
+
∥

∥

X
+
(

1−α
(π

4
+

1

π

)

q
)

∥

∥Λ−γℓ1Λ
−∥
∥

X
+o(1)ℓ→∞ .

On the other hand, we may write tr
(

DV,γℓ
1
γℓ1 (Λ

+ − Λ−)
)

= Iℓ + Jℓ +Kℓ with

Iℓ := trH
(

(

DV,γℓ
1
χ1,ℓ − χ1,ℓDVℓ,γℓ

∗

)

γℓ∗χ1,ℓ

(

Λ+ − Λ−)
)

Jℓ := trH
(

Λ+χ1,ℓDVℓ,γℓ
∗
γℓ∗χ1,ℓΛ

+
)

,

Kℓ :=− trH
(

Λ−χ1,ℓDVℓ,γℓ
∗
γℓ∗χ1,ℓΛ

−) .

From (3.12), we have |Iℓ| ≤ q ξ(ℓ) = o(1)ℓ→∞. Moreover the Euler-Lagrange
equation satisfied by γℓ∗ implies that DVℓ,γℓ

∗
γℓ∗ is a self-adjoint operator satisfying

0 ≤ DVℓ,γℓ
∗
γℓ∗ ≤ γℓ∗ . As a consequence, Jℓ ≤ trH

(

Λ+γℓ1Λ
+
)

and Kℓ ≤ 0 , so

tr
(

DV,γℓ
1
γℓ1 (Λ

+ − Λ−)
)

≤ trH
(

Λ+γℓ1Λ
+
)

+ o(1)ℓ→∞ .

Combining our lower and upper estimates on tr
(

DV,γℓ
1
γℓ1 (Λ

+ − Λ−)
)

we con-

clude that

(

1− α
(π

4
+

1

π

)

q
)

∥

∥Λ−γℓ1Λ
−∥
∥

X
+ ‖Λ+γℓ1Λ

+‖X − trH
(

Λ+γℓ1Λ
+
)

6 o(1)ℓ→∞ .

But
(

1− α
(

π
4 + 1

π

)

q
) ∥

∥Λ−γℓ1Λ
−∥
∥

X
and

(

‖Λ+γℓ1Λ
+‖X − trH

(

Λ+γℓ1Λ
+
)

)

are both

nonnegative, so

lim
ℓ→∞

∥

∥Λ−γℓ1Λ
−∥
∥

X
= lim
ℓ→∞

(

‖Λ+γℓ1Λ
+‖X − trH

(

Λ+γℓ1Λ
+
)

)

= 0 .

As a consequence,
(

EℓDF − trH
)(

γℓ1
)

> tr
(

DVℓ
γℓ1
)

− trH(γℓ1)

= ‖Λ+γℓ1Λ
+‖X − trH

(

Λ+γℓ1Λ
+
)

−
∥

∥Λ−γℓ1Λ
−∥
∥

X
− trH

(

Λ−γℓ1Λ
−)+ tr

(

(Vℓχ1,ℓ)γ
ℓ
∗χ1,ℓ

)

= o(1)ℓ→∞

and (3.18) is proved.
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Thanks to lemmas 3.10, 3.11 and 3.12, we are now ready to prove Proposition
3.9 for q ≥ Z:

Proof. Recalling that limℓ→∞
(

EℓDF (γℓ∗)− trH(γℓ∗)
)

= Eq, we deduce from (3.11)

and (3.18) the inequality lim supℓ→∞
(

EℓDF (γℓ0)− trH(γℓ0)
)

≤ Eq . But from Lemma
3.10, we find that lim ‖γℓ0 − γ∗‖X = 0, so

EDF (γ∗)− trH(γ∗) = lim
ℓ→∞

(

EℓDF (γℓ0)− trH(γℓ0)
)

≤ Eq .

On the other hand, with q′ := trH(γ∗) we have q′ = limℓ→∞ trH(γℓ0) ≤ q, and
(3.17) tells us that γ∗ is in Γ+

≤q′ , hence EDF (γ∗)− trH(γ∗) ≥ Eq′ ≥ Eq .

As a consequence, γ∗ is a minimizer of EDF − trH both on Γ+
≤q′ and Γ+

≤q. Then
the strict binding inequality (1.6) implies that q′ = q. Finally, applying Lemma 3.3
to the constant sequence γn = γ∗ we find that

tr
(

(DV,γ∗ − 1)γ∗
)

= min
g∈Γ≤q , P

+
γ∗g=g

tr
(

(DV,γ∗ − 1)g
)

.

So γ∗ is of the form p+ δ with p = 1(0,µ)(DV,γ∗) and 0 ≤ δ ≤ 1{µ}(DV,γ∗) for
some 0 < µ ≤ 1 .

Proposition 3.9 is thus true. This ends the proof of Theorem 1.2.
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Henri Poincaré 2 (2001), no. 5, p. 941–961.
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