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1. Introduction

In this note, we recall briefly the construction of an analytic solution of the low Mach number thermo-
hydraulic model obtained by Dellacherie et al. detailed in [5]. The thermohydraulic-neutronics problem,
stated in a 1d setting reads

d
dz

(D(h(z))
dφ
dz

) + Σa(h(z))φ(z) =
νΣ f (h(z))

ke f f
φ(z), h′(z) = KνΣ f (h)φ(z), z ∈ [0, L], (1)

where the unknowns are φ, the neutron density, h, the enthalpy (a measure of the temperature) and ke f f is
called the multiplication factor of neutrons. The physical data are the functions Σa and νΣ f (respectively the
absorption and fission cross section of the fissile material) and the constants D (diffusion coefficient) and K
(heat transfer constant). This system is supplemented with the boundary conditions

φ(0) = φ(z) = 0, φ ≥ 0, h(0) = he, h(L) = hs (2)

Recall that in [5], we constructed an analytical solution of (1)(2) for any set of continuous positive
functions D,Σa, νΣ f , as a generalisation of Dellacherie and Lafitte [3]. Let X andY be uniquely defined by:

− d
dh (D(h)νΣ f (h) dX

dh ) =
Σa(h)
νΣ f (h) ,−

d
dh (D(h)νΣ f (h) dY

dh ) = 1,X(he) = X(hs) = Y(he) = Y(hs) = 0.

Denote by Ψ(h, ke f f ) = 2(Y(h)
ke f f
− X(h)). Let z→ h(z, ke f f ) is the unique solution of:

h′(z, ke f f ) =
√

Ψ(h(z, ke f f ), ke f f ), h(0) = he.

Lemma 1.1. Equation h(L, ke f f ) = hs has a unique solution k∗e f f ∈ I := (0, (max[he,hs]
Y
X

)−1) which provides
the unique solution of the system (1), (2).
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This result is the consequence of ke f f → h(L, ke f f ) decreasing from I to (+∞, 0) (see [3], [5]).
In this extended abstract, we shall, without losing the generality, simplify the problem (assuming that

D and Σa are constant functions), we shall choose he = 0, hs = 1, denote by λ = 1
ke f f

and consider the
totally adimensionnalized problem (L = 1 (unit of length), Σa = 1,D = 1,K = 1 (physical constants),
he = 0, hs = 1 (normalizing the temperature) ):

−(Dφ′)′ + Σaφ = λΣ(h)φ, h′ = Kφ, z ∈ [0, 1]
supplemented by φ(0) = φ(1) = 0, h(0) = he, h(1) = hs, where Σ is a given continuous function.

We assume throughout this paper
(H) Σ(h) ≥ Σ∗ > 0, 0 ≤ h ≤ 1.

and we define ψλ the unique solution of ψ′′λ (h) = 2 − 2λΣ(h) with ψλ(0) = ψλ(1) = 0. We intend
to present a numerical method which solves the coupled problem without using the numerical methods
traditionally used for solving each equation but rather concentrating on solving the equation h(1) = 1. This
numerical method, as well as analytic and symbolic methods, are implemented when one knows only three
values of Σ, and for simplicity again one assumes that one knows Σ(0) = σ0,Σ( 1

2 ) = σ 1
2
,Σ(1) = σ1. The

analytic and symbolic methods are consequences of the finding of exact solutions using the incomplete
Jacobi functions (which are its solutions) when Ψ is a polynomial of degree 3 or 4.

This numerical method is compared with an adapted numerical scheme, described in the first paragraph
of Section ??. This numerical scheme uses the Crank-Nicholson discretization of the ODE h′ = φ in order
to recover, from the numerical scheme, the property that the vector (φ j) j is a generalized eigenvector of
the discretized version of −φ′′ + φ = λΣ(h)φ, hence keeping what researchers working in the neutronics
computations call the spectral problem for the neutronics.

We want to construct different relevant approximations of Σ(h) (namely constant, affine, polynomial of
order 2) in order to see what is the influence on the value of ke f f in order to be able to study the sensi-
tivity of the value of ke f f for these different approximations, and furthermore to understand the number of
significative figures in ke f f . Usually, the benchmarks in realistic cases are using sensitivity of 10−5 around
ke f f = 1, which is a magnitude or two smaller than the results we obtain here, see Section 4.

2. Analytical approach

Following e.g. Abramowitz and Stegun [1], we define the incomplete elliptic integral of the first kind
K(m, ϕ) by the relation K(m, ϕ) =

∫ ϕ

0
dθ√

1−m sin2 θ
, 0 ≤ ϕ ≤ π

2 , m < 1. The complete elliptic integral of

the first kind K(m) is defined by K(m) ≡ K(m, π2 ).

Lemma 2.1. (i) Given two positive reals a and b such that 0 < a < b, we have∫ a
−a

dT√
(a2−T 2) (b2−T 2)

= 2
b K(m) , m = a2

b2 and
∫ b

a
dT√

(T 2−a2) (b2−T 2)
= 1

b K(m) , m = 1 − a2

b2 .

(ii) Given two reals a and b with a > 0 and b , 0, we have
∫ a
−a

dT√
(a2−T 2) (b2+T 2)

= 2
|b| K(m) , m = − a2

b2 .

Recall that we are studying the model described by the following set of equations, where φ needs
(physically) to be positive because it is a density flux of neutrons: − d2ϕ

dz2 + ϕ(z) = λΣ
(
h(z)

)
ϕ(z), dh

dz = ϕ(z) , 0 < z < 1 ,
h(0) = 0, h(1) = 1, ϕ(0) = 0, ϕ(1) = 0, λ ≥ 0, ϕ(z) > 0 if 0 < z < 1.

(3)

Here Σ is defined by three positive real numbers σ0, σ1/2 and σ1 which represent the values of Σ at,
respectively, 0, 1

2 , 1. We describe in what follows five different modellings of the function Σ from these
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values which lead to analytical approaches for determining the scalar parameter λ > 0 and deduce secondly
the functions z 7−→ ϕ(z) and z 7−→ h(z).

Introduce

Definition 1. We define µ, α and δ through µ = 1
2 (σ0 + σ1), α = 1 − σ0

µ and δ = −
σ0−2σ1/2+σ1

σ0+σ1
. They

satisfy the inequalities µ > 0, |α| < 1 and δ > −1. Furthermore γ ≡ 1 − 1
3 |α| +

2
3 δ > 0.

• Zero-th case: Σ is constant (α = δ = 0). Then the system modelized by the previous set of equations is
totally decoupled and an exact solution can be provided with elementary arguments.

Proposition 2.1. If σ0 = σ1/2 = σ1 ≡ µ > 0, the previous problem (3) admits a unique decoupled solution:
we have λ µ = 1 + π2, ϕ(z) = π

2 sin(π z) and h(z) = 1
2 (1 − cos(π z)).

If the function Σ is no-more constant, it has been proven in [2, 3] that the unknown of the problem can
be obtained with the following process. First integrate twice the function Σ and obtain a convex negative
function V such that d2V

dh2 = Σ(h), V(0) = V(1) = 0. Second define ψλ(h) ≡ h (h − 1) − 2 λV(h). Then
the equation for the function z 7−→ h(z) becomes dh

dz =
√
ψλ(h) and the condition h(1) = 1 gives a scalar

equation for the unknown λ > 0:
∫ 1

0
dh√
ψλ(h)

= 1.

A first difficulty is to compute the integral Iλ ≡
∫ 1

0
dh√
ψλ(h)

. Then we can solve easily the equation Iλ = 1

with a Newton-like algorithm. Once λ is determined, the explicitation of the functions z 7−→ ϕ(z) and
z 7−→ h(z) is not difficult. Thus the analytical method we propose is found on an analytical determination
of the integral Iλ. We focus our attention to this question in the next sub-sections.
• First case: Σ ∈ P1.

In this case, the function Σ is a positive affine function on the interval (0, 1). Hence δ = 0 and
σ0 = µ (1 − α), σ1/2 = µ and σ1 = µ (1 + α) with µ > 0 and |α| < 1 to satisfy the constraint of positivity.
We introduce the notation ξ ≡ λ µ.

Proposition 2.2. With the notations introduced previously, the functions V and ψλ admit the algebraic
expressions V(h) = µ h (h − 1)

(1
2 −

α
6 + α

3 h
)

and ψλ(h) = h (h − 1)
(
ξ (1 + α

3 ) − 1 − 2α ξ
3 h

)
. Then we have

Iλ = 2√
ξ
(
1+
|α|
3

)
−1

K(m) with m =
2 |α| ξ

3 ξ+|α| ξ−3 .

• Second case: Σ ∈ P2.
In this case, the polynomial ψλ is a polynomial of degree 4 with real coefficients and ψλ is positive

on the interval (0, 1). We have also ψλ(0) = ψλ(1) = 0. Recall that ψλ(h) = h (h − 1) − 2 λV(h) with
V ′′ ≡ Σ the Lagrange interpolate polynomial such that Σ(0) = σ0, Σ( 1

2 ) = σ1/2 and Σ(1) = σ1. All these
coefficients are supposed positive: σ0 > 0, σ1/2 > 0, σ1 > 0. One has σ0 = µ (1−α), σ1/2 = µ (1+δ) and
σ1 = µ (1 + α). In this sub-section, we exclude the case of a linear interpolation, id est δ , 0, in coherence
with the hypothesis that the degree of the polynomial ψλ is exactly equal to 4.

Lemma 2.2. With the above notations and properties, introduce the notation ξ ≡ λ µ; then ξ > 0. Introduce
also the two other roots p and g of the polynomial ψλ. We can write ψλ(h) = a0 h (h − 1) (h − p) (h − g).
Then a0 = 2

3 ξ δ. Denote by σ ≡ p + g the sum and π ≡ p g the product and the two roots p and g. We
have a0 σ = 2

3 ξ (δ + α) and a0 π = 1 − ξ + 1
3 α ξ −

2
3 δ ξ.

The above relations have been computed with the help of the SageMath [6] formal calculus software.
Observe that with the above notations and properties, if the integral Iλ is a positive real number, the roots
p and g cannot be equal to 0 or 1.
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Figure 1: Homographic transformation T for the computation of the integral Iλ; case p < 0 < 1 < g. It is defined by the
constraints T (p) = b, T (0) = −b, T (1) = −a and T (g) = a. The coefficients 0 < a < 1 < b are determined in Proposition 2.4.

Proposition 2.3. We keep active the above notations.
(i) If the discrete positive family (σ0, σ1/2, σ1) is the trace of a concave function, id est if σ1/2 −σ0 >

σ1 − σ1/2 , we have δ > 0, a0 > 0 and γ ξ > 1. The two roots of the function ψλ are real with opposite
signs. To fix the ideas, p < 0 < 1 < g. If we set ∆ ≡ σ2 − 4 π = 1

a2
0
ξ
[
(5 δ2 + α2 + 6 δ) ξ − 6 δ

]
, we have

p = 1
2 (σ −

√
∆) and g = 1

2 (σ +
√

∆) with σ and π introduced in Lemma (2.2).
(ii) Conversely, if the function ψλ are real zeros with opposite signs, then σ1/2 − σ0 > σ1 − σ1/2 .

Proposition 2.4. We suppose as in Proposition (2.3) that the function ψλ(h) has two real zeros p and g
that satisfy p < 0 < 1 < g. Then the integral Iλ ≡

∫ 1
0

dh√
ψλ(h)

can be computed with the help of the following

formulas: A = −

√
g (g−p)

1−p , B =

√
(1−p) (g−p)

g , a = A+1
A−1 , b = B+1

B−1 , m = 1− a2

b2 , Iλ = 1√
a0

(
1− a

b
) 1√

g−p K(m) .
Moreover, we have 0 < a < 1 < b and 0 < m < 1.

Proof. The general ideas of the proof are given in the book [1]. A detailed proof and a complete description
of the other cases p < g < 0 < 1, 0 < 1 < p < g and p and g conjugate complex numbers can be founded
in [4].

If the sequence σ0, σ1/2, σ1 is convex, id est if σ1/2 − σ0 < σ1 − σ1/2 , we have δ < 0, a0 < 0
and the discriminant ∆ introduced in Proposition 2.3 can be negative or positive. In the case ∆ < 0
and we have two conjugate roots for the polynomial ψλ. In the case ∆ > 0, we have of course the case
p < 0 < 1 < g studied at Proposition 2.4; this case must be completed by the two sub-cases p < g < 0 < 1
and 0 < 1 < p < g. All these cases are detailed in [4].
• Third case: Σ is a continuous positive function, affine in each interval (0, 1

2 ) and ( 1
2 , 1).

The function Σ is defined by its values Σ(0) = σ0, Σ( 1
2 ) = σ1/2 and Σ(1) = σ1. We introduce new

parameters, still denoted by α and β to represent the data: σ0 = σ1/2 (1 − α) and σ1 = σ1/2 (1 + β).
Then the inequalities α < 1 and β > −1 express the constraints σ0 > 0 and σ1 > 0. Moreover, σ1/2 is
positive.
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Lemma 2.3. If the continuous function Σ defined on (0, 1) by its values Σ(0) = σ0, Σ( 1
2 ) = σ1/2 and

Σ(1) = σ1 is affine in each interval (0, 1
2 ) and ( 1

2 , 1), the function ψλ defined by the conditions
d2ψλ
dh2 = 1 − 2 λΣ and ψλ(0) = ψλ(1) = 0

admits the following expression

ψλ(h) =

 ψ0(h) = −2
3 α ξ h3 + (α ξ − ξ + 1) h2 +

(β−5α
12 ξ + ξ − 1

)
h if h ≤ 1

2
ψ1(h) = 2

3 β ξ (1 − h)3 + (−β ξ − ξ + 1) (1 − h)2 +
(5 β−α

12 ξ + ξ − 1
)

(1 − h) if h ≥ 1
2 ,

with ξ ≡ λσ1/2. We have in particular ψλ( 1
2 ) =

β−α
24 ξ+ 1

4 (ξ−1). Moreover, if ψλ is positive on the interval
(0, 1), dψλ

dh (0) =
β−5α

12 ξ + ξ − 1 > 0 and dψλ
dh (1) = −

(5 β−α
12 ξ + ξ − 1

)
< 0.

Remark 1. We observe that the expression of ψ1 is obtained from the expression of ψ0 by making the
transformations α←→ (−β) and h←→ (1 − h).

Proof. The function Σ admits the algebraic expressions: Σ(h) = (2α h − α + 1)σ1/2 if h ≤ 1
2 and

Σ(h) = (2 β h− β+ 1)σ1/2 if h ≥ 1
2 . We integrate two times, enforce the conditions ψλ(0) = ψλ(1) = 0 and

impose the continuity of ψλ and dψλ
dh at the specific value h = 1

2 . The result follows.

We have to compute the integral Iλ ≡
∫ 1

0
dh√
ψλ(h)

. We have the following calculus: Iλ =
∫ 1/2

0
dh√
ψ0(h)

+∫ 1
1/2

dh√
ψ1(h)

=
∫ 1/2

0
dh√
ψ0(h)

+
∫ 1/2

0
dh√
ψ1(1−h)

. Due to the Remark 1, the determination of the second term relative

to ψ1 is very analogous to the term associated to ψ0.

Proposition 2.5. Recall that ψ0(h) = −2
3 α ξ h3 + (α ξ − ξ + 1) h2 +

(β−5α
12 ξ + ξ − 1

)
h.

(i) If the polynomial ψ0(h) has two complex roots, we write it under the form ψ0(h) ≡ a0 h (h2+µ h+ζ4)
with a0 = 2

3 |α| ξ > 0 and we have the inequality µ2 − 4 ζ4 < 0; we introduce m = 1
2 −

µ

4 ζ2 that satisfies

0 < m < 1 and ϕ0 = 2 arctan
( 1
ζ
√

2

)
. Then we have I0 = 1

ζ
√

a0
K(ϕ0, m).

(ii) If the polynomial ψ0(h) has three real roots, we set ψ0(h) ≡ a0 h (r−−h) (r+−h) with a0 = 2
3 |α| ξ >

0 and 0 < r− < r+; we consider m =
r−
r+
∈ (0, 1) and ϕ0 = arcsin

( 1√
2 r−

)
. The integral I0 is computed

with the following expression: I0 = 2√
a0 r+

K(ϕ0, m).

• Fourth case and fifth cases: Σ is a P2 polynomial or a continuous positive function, piecewise affine. The
function h 7−→ V(h)

h (1−h) is approximated by an affine function, as described in [3].

3. Numerical method

After adimensionalization, the problem can be formulated with the formulation (3). We introduce a
nonregular meshing 0 = z0 < z1 < ... < zN−1 < zN = 1 of the interval [0, 1] and we set ∆z j+1/2 ≡ z j+1 − z j

for j = 1, ... , N. We integrate the differential equation dh
dz = ϕ(z) with the Crank-Nicolson scheme:

h j+1−h j
∆z j+1/2

= 1
2
(
ϕ j + ϕ j+1

)
for j = 0, ... , N − 1 .

Then after two integrations, the first equation can be written as ϕ j =
√
ψλ(h j) and the Crank-Nicolson

scheme takes the form h j+1−h j
1
2

(√
ψλ(h j)+

√
ψλ(h j+1)

) = ∆z j+1/2(λ).

We impose the values h j ≡ sin2 ( π j
2 N

)
in order to take into account the singularities and two boundary

conditions of the problem at z = 0 and z = 1. The notation ∆z j+1/2(λ) in the right hand side of the previous
relation is justified by the fact that if the numbers h j are given, the left hand side is a simple function of the
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Figure 2: Function h 7−→ Σ(h) on the left, h 7−→ V(h) on the right.

scalar λ. The number λ is a priori not known, but we have the natural relation
∑N−1

j=0 ∆z j+1/2(λ) = 1 that
takes the form

N−1∑
j=0

h j+1 − h j

1
2

( √
ψλ(h j) +

√
ψλ(h j+1)

) = 1 . (4)

Lemma 3.1. Recall that V is the unique solution of V ′′ = Σ, V(0) = V(1) = 0. We have observed
previously that ψλ(h) = h (h − 1) − 2 λV(h). Define λ∗ = max[0,1]

h(h−1)
V(h) .

i) For λ > λ∗, ψλ(h j) > 0
ii) Equation (4) has a unique solution λ ∈ (λ∗,+∞) when

∑N−1
j=0

h j+1−h j
1
2

(√
ψλ∗ (h j)+(

√
ψλ∗ (h j+1)

) ∈ R̄+ > 1.

For a fixed discretization with N intervals, a Newton algorithm can be implemented without difficulty.
With this procedure, we recover on one hand an approximated value λN of the unknown λ and on the
other hand the entire approximate solution of the problem h j ≈ h(x j) and ϕ j ≈

√
ψλ(h j). Observe that at

convergence of the Newton algorithm, the abscissas x j are a function of the solution λN and the converged
space mesh is a result of the problem. This coupled problem can be reduced to a single equation with only
one real variable even after discretization!

4. Numerical results

They are presented in Figures 2 and 3. They correspond to the decrasing data σ0 = 8, σ1/2 = 6 and
σ1 = 3. We obtain the following exact values for the scalar parameter: λ = 1.89036 in the decoupled case
(case 0), λ = 1.99533 in the affine case (case 1), λ = 1.86593 in the parabolic case (case 2), λ = 1.89454
in the piecewise affine case (case 3), λ = 1.85769 in the parabolic case approached by an affine function
(case 4) and λ = 1.88614 in the piecewise affine case projected on affine functions (case 5). For each of
these six cases, our analytical-numerical approach gives converging results at second order accuracy for the
parameter λ, hence showing the powerfulness and precision of the explicit calculations that one describes
using the elliptic integrals.
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