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Introduction

In this note, we recall briefly the construction of an analytic solution of the low Mach number thermohydraulic model obtained by Dellacherie et al. detailed in [5]. The thermohydraulic-neutronics problem, stated in a 1d setting reads

d dz (D(h(z)) dφ dz ) + Σ a (h(z))φ(z) = νΣ f (h(z)) k e f f φ(z), h (z) = KνΣ f (h)φ(z), z ∈ [0, L], (1) 
where the unknowns are φ, the neutron density, h, the enthalpy (a measure of the temperature) and k e f f is called the multiplication factor of neutrons. The physical data are the functions Σ a and νΣ f (respectively the absorption and fission cross section of the fissile material) and the constants D (diffusion coefficient) and K (heat transfer constant). This system is supplemented with the boundary conditions

φ(0) = φ(z) = 0, φ ≥ 0, h(0) = h e , h(L) = h s (2) 
Recall that in [5], we constructed an analytical solution of (1)(2) for any set of continuous positive functions D, Σ a , νΣ f , as a generalisation of Dellacherie and Lafitte [START_REF] Dellacherie | Une solution explicite monodimensionnelle d'un modèle simplifié de couplage stationnaire thermohydraulique-neutronique[END_REF]. Let X and Y be uniquely defined by:

-d dh (D(h)νΣ f (h) dX dh ) = Σ a (h) νΣ f (h) , -d dh (D(h)νΣ f (h) dY dh ) = 1, X(h e ) = X(h s ) = Y(h e ) = Y(h s ) = 0. Denote by Ψ(h, k e f f ) = 2( Y(h) k e f f -X(h)). Let z → h(z, k e f f ) is the unique solution of: h (z, k e f f ) = Ψ(h(z, k e f f ), k e f f ), h(0) = h e . Lemma 1.1. Equation h(L, k e f f ) = h s has a unique solution k * e f f ∈ I := (0, (max [h e ,h s ] Y X ) -1
) which provides the unique solution of the system (1), (2).

This result is the consequence of k e f f → h(L, k e f f ) decreasing from I to (+∞, 0) (see [START_REF] Dellacherie | Une solution explicite monodimensionnelle d'un modèle simplifié de couplage stationnaire thermohydraulique-neutronique[END_REF], [5]). In this extended abstract, we shall, without losing the generality, simplify the problem (assuming that D and Σ a are constant functions), we shall choose h e = 0, h s = 1, denote by λ = 1 k e f f and consider the totally adimensionnalized problem (L = 1 (unit of length), Σ a = 1, D = 1, K = 1 (physical constants), h e = 0, h s = 1 (normalizing the temperature) ):

-(Dφ ) + Σ a φ = λΣ(h)φ, h = Kφ, z ∈ [0, 1] supplemented by φ(0) = φ(1) = 0, h(0) = h e , h(1) = h s ,
where Σ is a given continuous function.

We assume throughout this paper (H) Σ(h) ≥ Σ * > 0, 0 ≤ h ≤ 1. and we define ψ λ the unique solution of ψ λ (h) = 2 -2λΣ(h) with ψ λ (0) = ψ λ (1) = 0. We intend to present a numerical method which solves the coupled problem without using the numerical methods traditionally used for solving each equation but rather concentrating on solving the equation h(1) = 1. This numerical method, as well as analytic and symbolic methods, are implemented when one knows only three values of Σ, and for simplicity again one assumes that one knows Σ(0) = σ 0 , Σ( 12 ) = σ 1 2

, Σ(1) = σ 1 . The analytic and symbolic methods are consequences of the finding of exact solutions using the incomplete Jacobi functions (which are its solutions) when Ψ is a polynomial of degree 3 or 4.

This numerical method is compared with an adapted numerical scheme, described in the first paragraph of Section ??. This numerical scheme uses the Crank-Nicholson discretization of the ODE h = φ in order to recover, from the numerical scheme, the property that the vector (φ j ) j is a generalized eigenvector of the discretized version of -φ + φ = λΣ(h)φ, hence keeping what researchers working in the neutronics computations call the spectral problem for the neutronics.

We want to construct different relevant approximations of Σ(h) (namely constant, affine, polynomial of order 2) in order to see what is the influence on the value of k e f f in order to be able to study the sensitivity of the value of k e f f for these different approximations, and furthermore to understand the number of significative figures in k e f f . Usually, the benchmarks in realistic cases are using sensitivity of 10 -5 around k e f f = 1, which is a magnitude or two smaller than the results we obtain here, see Section 4.

Analytical approach

Following e.g. Abramowitz and Stegun [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF], we define the incomplete elliptic integral of the first kind

K(m, ϕ) by the relation K(m, ϕ) = ϕ 0 dθ √ 1-m sin 2 θ , 0 ≤ ϕ ≤ π 2 , m < 1. The complete elliptic integral of the first kind K(m) is defined by K(m) ≡ K(m, π 2 ).
Lemma 2.1. (i) Given two positive reals a and b such that 0 < a < b, we have

a -a dT √ (a 2 -T 2 ) (b 2 -T 2 ) = 2 b K(m) , m = a 2 b 2 and b a dT √ (T 2 -a 2 ) (b 2 -T 2 ) = 1 b K(m) , m = 1 -a 2 b 2 . (ii)
Given two reals a and b with a > 0 and b 0, we have

a -a dT √ (a 2 -T 2 ) (b 2 +T 2 ) = 2 |b| K(m) , m = -a 2 b 2 .
Recall that we are studying the model described by the following set of equations, where φ needs (physically) to be positive because it is a density flux of neutrons:

       -d 2 ϕ dz 2 + ϕ(z) = λ Σ h(z) ϕ(z), dh dz = ϕ(z) , 0 < z < 1 , h(0) = 0, h(1) = 1, ϕ(0) = 0, ϕ(1) = 0, λ ≥ 0, ϕ(z) > 0 if 0 < z < 1. ( 3 
)
Here Σ is defined by three positive real numbers σ 0 , σ 1/2 and σ 1 which represent the values of Σ at, respectively, 0, 1 2 , 1. We describe in what follows five different modellings of the function Σ from these values which lead to analytical approaches for determining the scalar parameter λ > 0 and deduce secondly the functions z -→ ϕ(z) and z -→ h(z). Introduce Definition 1. We define µ, α and δ through µ = 1 2 (σ 0 + σ 1 ), α = 1 -σ 0 µ and δ = -

σ 0 -2 σ 1/2 +σ 1 σ 0 +σ 1
. They satisfy the inequalities µ > 0, |α| < 1 and δ > -1. Furthermore γ ≡ 1 -1 3 |α| + 2 3 δ > 0. • Zero-th case: Σ is constant (α = δ = 0). Then the system modelized by the previous set of equations is totally decoupled and an exact solution can be provided with elementary arguments.

Proposition 2.1. If σ 0 = σ 1/2 = σ 1 ≡ µ > 0, the previous problem (3) admits a unique decoupled solution: we have λ µ = 1 + π 2 , ϕ(z) = π 2 sin(π z) and h(z) = 1 2 (1 -cos(π z)).
If the function Σ is no-more constant, it has been proven in [START_REF] Dellacherie | Numerical results for the coupling of a simple neutronics diffusion model and a simple hydrodynamics low mach number model without coupling codes[END_REF][START_REF] Dellacherie | Une solution explicite monodimensionnelle d'un modèle simplifié de couplage stationnaire thermohydraulique-neutronique[END_REF] that the unknown of the problem can be obtained with the following process. First integrate twice the function Σ and obtain a convex negative function

V such that d 2 V dh 2 = Σ(h), V(0) = V(1) = 0. Second define ψ λ (h) ≡ h (h -1) -2 λ V(h).
Then the equation for the function z -→ h(z) becomes dh dz = ψ λ (h) and the condition h(1) = 1 gives a scalar equation for the unknown λ > 0:

1 0 dh √ ψ λ (h) = 1.
A first difficulty is to compute the integral

I λ ≡ 1 0 dh √ ψ λ (h)
. Then we can solve easily the equation I λ = 1 with a Newton-like algorithm. Once λ is determined, the explicitation of the functions z -→ ϕ(z) and z -→ h(z) is not difficult. Thus the analytical method we propose is found on an analytical determination of the integral I λ . We focus our attention to this question in the next sub-sections.

• First case: Σ ∈ P 1 .

In this case, the function Σ is a positive affine function on the interval (0, 1). Hence δ = 0 and σ 0 = µ (1 -α), σ 1/2 = µ and σ 1 = µ (1 + α) with µ > 0 and |α| < 1 to satisfy the constraint of positivity. We introduce the notation ξ ≡ λ µ. Proposition 2.2. With the notations introduced previously, the functions V and ψ λ admit the algebraic expressions V(h) = µ h (h -1) 1 2 -α 6 + α 3 h and ψ λ (h) = h (h -1) ξ (1

+ α 3 ) -1 -2 α ξ 3 h . Then we have I λ = 2 ξ 1+ |α| 3 -1 K(m) with m = 2 |α| ξ 3 ξ+|α| ξ-3 .
• Second case: Σ ∈ P 2 .

In this case, the polynomial ψ λ is a polynomial of degree 4 with real coefficients and ψ λ is positive on the interval (0, 1). We have also ψ λ (0) = ψ λ (1) = 0. Recall that ψ λ (h) = h (h -1) -2 λ V(h) with V ≡ Σ the Lagrange interpolate polynomial such that Σ(0) = σ 0 , Σ( 12 ) = σ 1/2 and Σ(1) = σ 1 . All these coefficients are supposed positive:

σ 0 > 0, σ 1/2 > 0, σ 1 > 0. One has σ 0 = µ (1 -α), σ 1/2 = µ (1 + δ) and σ 1 = µ (1 + α).
In this sub-section, we exclude the case of a linear interpolation, id est δ 0, in coherence with the hypothesis that the degree of the polynomial ψ λ is exactly equal to 4. Lemma 2.2. With the above notations and properties, introduce the notation ξ ≡ λ µ; then ξ > 0. Introduce also the two other roots p and g of the polynomial ψ λ . We can write ψ λ (h) = a 0 h (h -1) (hp) (hg). Then a 0 = 2 3 ξ δ. Denote by σ ≡ p + g the sum and π ≡ p g the product and the two roots p and g. We have a 0 σ = 2 3 ξ (δ + α) and a 0 π = 1 -ξ + 1 3 α ξ -2 3 δ ξ. The above relations have been computed with the help of the SageMath [6] formal calculus software. Observe that with the above notations and properties, if the integral I λ is a positive real number, the roots p and g cannot be equal to 0 or 1. Proposition 2.3. We keep active the above notations.

(i) If the discrete positive family (σ 0 , σ 1/2 , σ 1 ) is the trace of a concave function, id est if σ 1/2 -σ 0 > σ 1 -σ 1/2 , we have δ > 0, a 0 > 0 and γ ξ > 1. The two roots of the function ψ λ are real with opposite signs. To fix the ideas, p

< 0 < 1 < g. If we set ∆ ≡ σ 2 -4 π = 1 a 2 0 ξ (5 δ 2 + α 2 + 6 δ) ξ -6 δ , we have p = 1 2 (σ - √ ∆) and g = 1 2 (σ + √ ∆)
with σ and π introduced in Lemma (2.2). (ii) Conversely, if the function ψ λ are real zeros with opposite signs, then σ 1/2 -σ 0 > σ 1 -σ 1/2 . Proposition 2.4. We suppose as in Proposition (2.3) that the function ψ λ (h) has two real zeros p and g that satisfy p < 0 < 1 < g. Then the integral I λ ≡

1 0 dh √ ψ λ (h)
can be computed with the help of the following

formulas: A = -g (g-p) 1-p , B = (1-p) (g-p) g , a = A+1 A-1 , b = B+1 B-1 , m = 1-a 2 b 2 , I λ = 1 √ a 0 1-a b 1 √ g-p K(m) . Moreover, we have 0 < a < 1 < b and 0 < m < 1.
Proof. The general ideas of the proof are given in the book [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]. A detailed proof and a complete description of the other cases p < g < 0 < 1, 0 < 1 < p < g and p and g conjugate complex numbers can be founded in [4].

If the sequence σ 0 , σ 1/2 , σ 1 is convex, id est if σ 1/2 -σ 0 < σ 1 -σ 1/2 ,
we have δ < 0, a 0 < 0 and the discriminant ∆ introduced in Proposition 2.3 can be negative or positive. In the case ∆ < 0 and we have two conjugate roots for the polynomial ψ λ . In the case ∆ > 0, we have of course the case p < 0 < 1 < g studied at Proposition 2.4; this case must be completed by the two sub-cases p < g < 0 < 1 and 0 < 1 < p < g. All these cases are detailed in [4].

• Third case: Σ is a continuous positive function, affine in each interval (0, 1 2 ) and ( 12 , 1). The function Σ is defined by its values Σ(0) = σ 0 , Σ( 12 ) = σ 1/2 and Σ(1) = σ 1 . We introduce new parameters, still denoted by α and β to represent the data:

σ 0 = σ 1/2 (1 -α) and σ 1 = σ 1/2 (1 + β).
Then the inequalities α < 1 and β > -1 express the constraints σ 0 > 0 and σ 1 > 0. Moreover, σ 1/2 is positive. scalar λ. The number λ is a priori not known, but we have the natural relation N-1 j=0 ∆z j+1/2 (λ) = 1 that takes the form

N-1 j=0 h j+1 -h j 1 2 ψ λ (h j ) + ψ λ (h j+1 ) = 1 . (4) 
Lemma 3.1. Recall that V is the unique solution of V = Σ, V(0) = V(1) = 0. We have observed previously that

ψ λ (h) = h (h -1) -2 λ V(h). Define λ * = max [0,1] h(h-1) V(h) . i) For λ > λ * , ψ λ (h j ) > 0 ii) Equation (4) has a unique solution λ ∈ (λ * , +∞) when N-1 j=0 h j+1 -h j 1 2 √ ψ λ * (h j )+( √ ψ λ * (h j+1 ) ∈ R+ > 1.
For a fixed discretization with N intervals, a Newton algorithm can be implemented without difficulty. With this procedure, we recover on one hand an approximated value λ N of the unknown λ and on the other hand the entire approximate solution of the problem h j ≈ h(x j ) and ϕ j ≈ ψ λ (h j ). Observe that at convergence of the Newton algorithm, the abscissas x j are a function of the solution λ N and the converged space mesh is a result of the problem. This coupled problem can be reduced to a single equation with only one real variable even after discretization!

Numerical results

They are presented in Figures 2 and3. They correspond to the decrasing data σ 0 = 8, σ 1/2 = 6 and σ 1 = 3. We obtain the following exact values for the scalar parameter: λ = 1.89036 in the decoupled case (case 0), λ = 1.99533 in the affine case (case 1), λ = 1.86593 in the parabolic case (case 2), λ = 1.89454 in the piecewise affine case (case 3), λ = 1.85769 in the parabolic case approached by an affine function (case 4) and λ = 1.88614 in the piecewise affine case projected on affine functions (case 5). For each of these six cases, our analytical-numerical approach gives converging results at second order accuracy for the parameter λ, hence showing the powerfulness and precision of the explicit calculations that one describes using the elliptic integrals. 
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 1 Figure 1: Homographic transformation T for the computation of the integral I λ ; case p < 0 < 1 < g. It is defined by the constraints T (p) = b, T (0) = -b, T (1) = -a and T (g) = a. The coefficients 0 < a < 1 < b are determined in Proposition 2.4.
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 2 Figure 2: Function h -→ Σ(h) on the left, h -→ V(h) on the right.
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Figure 3 :

 3 Figure 3: Functions h -→ ψ 0 (h) and h -→ ψ 1 (h) on the left, z -→ ϕ(z) in the middle and z -→ h(z) on the right.

Lemma 2.3. If the continuous function Σ defined on (0, 1) by its values Σ(0) = σ 0 , Σ( 12 ) = σ 1/2 and Σ(1) = σ 1 is affine in each interval (0, 1 2 ) and ( 1 2 , 1), the function ψ λ defined by the conditions d 2 ψ λ dh 2 = 1 -2 λ Σ and ψ λ (0) = ψ λ (1) = 0 admits the following expression

, with ξ ≡ λ σ 1/2 . We have in particular ψ λ ( 12 ) = β-α 24 ξ + 1 4 (ξ -1). Moreover, if ψ λ is positive on the interval (0, 1), dψ λ dh (0) = β-5 α 12 ξ + ξ -1 > 0 and dψ λ dh (1) = -5 β-α 12 ξ + ξ -1 < 0.

Remark 1. We observe that the expression of ψ 1 is obtained from the expression of ψ 0 by making the transformations α ←→ (-β) and h ←→ (1h).

Proof. The function Σ admits the algebraic expressions:

We integrate two times, enforce the conditions ψ λ (0) = ψ λ (1) = 0 and impose the continuity of ψ λ and dψ λ dh at the specific value h = 1 2 . The result follows.

We have to compute the integral

. We have the following calculus:

. Due to the Remark 1, the determination of the second term relative to ψ 1 is very analogous to the term associated to ψ 0 .

If the polynomial ψ 0 (h) has two complex roots, we write it under the form ψ 0 (h) ≡ a 0 h (h 2 +µ h+ζ 4 ) with a 0 = (ii) If the polynomial ψ 0 (h) has three real roots, we set ψ 0 (h) ≡ a 0 h (r -h) (r +h) with a 0 = 2 3 |α| ξ > 0 and 0 < r -< r + ; we consider m = r - r + ∈ (0, 1) and ϕ 0 = arcsin 1 √ 2 r - . The integral I 0 is computed with the following expression: I 0 = 2 √ a 0 r + K(ϕ 0 , m).

• Fourth case and fifth cases: Σ is a P2 polynomial or a continuous positive function, piecewise affine. The function h -→ V(h) h (1-h) is approximated by an affine function, as described in [START_REF] Dellacherie | Une solution explicite monodimensionnelle d'un modèle simplifié de couplage stationnaire thermohydraulique-neutronique[END_REF].

Numerical method

After adimensionalization, the problem can be formulated with the formulation (3). We introduce a nonregular meshing 0 = z 0 < z 1 < ... < z N-1 < z N = 1 of the interval [0, 1] and we set ∆z j+1/2 ≡ z j+1z j for j = 1, ... , N. We integrate the differential equation dh dz = ϕ(z) with the Crank-Nicolson scheme:

h j+1 -h j ∆z j+1/2 = 1 2 ϕ j + ϕ j+1 for j = 0, ... , N -1 . Then after two integrations, the first equation can be written as ϕ j = ψ λ (h j ) and the Crank-Nicolson scheme takes the form

We impose the values h j ≡ sin 2 π j 2 N in order to take into account the singularities and two boundary conditions of the problem at z = 0 and z = 1. The notation ∆z j+1/2 (λ) in the right hand side of the previous relation is justified by the fact that if the numbers h j are given, the left hand side is a simple function of the