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Abstract: We show that large aspect-ratio Vertical External-Cavity Surface-Emitting Lasers13

(VECSELs) with a saturable absorber can be operated in the regime of spatio-temporal mode-14

locking. The emitted pulses exhibit a spatial profile resulting from the phase locking between an15

axial plane-wave with a set of tilted waves having a hexagonal arrangement in the Fourier space.16

We show that these pulsating patterns are temporally localized, i.e. they can be individually17

addressed by modulating the optical pump.The theoretical analysis shows that the emergence of18

these pulsating patterns is a signature of a Turing instability whose critical wave vector depends on19

spherical aberrations of the optical elements. Our result reveals that large aspect-ratio VECSELs20

offer unique opportunities for studying fully developed spatio-temporal dynamics.21

© 2022 Optica Publishing Group22

1. Introduction23

Large aspect-ratio (Large Fresnel number) lasers [1, 2] are a playground for studying pattern24

formation ruled by paradigmatic partial differential equations [«–8]. A variety of dissipative25

structures have been experimentally reported as the result of self-organization, including phase26

singularities [9, 10], Turing instabilities [11] and, in bistable laser cavities, Localized Structures27

(LSs) [12–16]. The latter, in particular, have attracted a lot of attention in the last thirty years for28

their application to information processing [17]. LSs in optical resonators [18–21], often called29

Cavity Solitons, are narrow beams of light appearing in the transverse section of a resonator that30

can be individually switched on and off by a local perturbation [22].31

More recently, the concept of LSs has been extended to the time domainȷ temporal LSs32

are individually addressable pulses traveling back and forth inside the cavity [2«–26]. In33

semiconductor lasers, temporal LSs have been implemented within the regime of passive mode-34

locking (PML) induced by a saturable absorber [27–«0]. It has been shown that, if the cavity35

round-trip 𝜏 is larger than the gain recovery 𝜏𝑔 and above a critical modulation depth of the36

saturable absorber, a variety of mode-locked states with a different number of pulses per round37

trip coexist with the off solution. In these conditions, mode-locked pulses become localized and38

they can be individually addressed.39

Temporal LS have been so far implemented in laser cavities emitting on a single-transverse40

mode operation. However, it was recently shown that passively mode-locked Vertical External-41

Cavity Surface-Emitting Lasers (VECSEL) are promising candidates for fulfilling both the42

large aspect ratio condition and the requirements for temporal LSs [«1]. A VECSEL featuring43

these properties would be a laser platform ideally suited for the analysis of fully developed44

spatio-temporal dynamics. These complex phenomena are attracting an increasing interest in45



the last years [«2, ««], in particular after the observation of spatio-temporal mode-locking in46

multimode optical fibers [«», «5]. An overview of the applications of multimode photonics,47

where light is structured both in time and space, has recently appeared [«6].48

In this paper we realize a spatio-temporal mode-locked VECSEL and we operate it in the regime49

of temporal LS. The mode-locked pulses exhibit a spatial profile consisting of a combination of50

an axial plane-wave with a set of tilted waves having a hexagonal arrangement in the Fourier51

space. These plane waves are phase locked and their interference gives birth to an hexagonal52

pattern in the near-field emission profile. We show that these spatio-temporal mode-locked53

pulses can be individually addressed by shining short pump pulses, hence we call them temporal54

localized patterns. Our theoretical analysis reveals that they arise from a Turing instability whose55

critical wave vector is determined by spherical aberrations of the optical elements.56

2. Experimental Set-up57

In this paper we design, realize and operate a PML VECSEL fulfilling large aspect-ratio condition58

and, at the same time, hosting temporal LSs. While the former requires a broad-area pumped59

region and nearly self-imaging (SI) external cavity [1«, 1», «7], temporal LSs appear from PML60

when the external cavity roundtrip is larger than the gain recombination time ( 𝜏 > 𝜏𝑔) and when61

modulation depth of the saturable absorber is above a critical value [27, «1, «8]. Accordingly, we62

consider an L-shaped VECSEL delimited by the gain mirror (also called 1/2 VCSEL) and by a63

semiconductor saturable absorber mirror (SESAM) (see Fig. 1). The gain mirror is optically64

pumped at 808 nm by a flat-top elliptical profile having an horizontal axis of 90 𝜇𝑚 and a vertical65

one of 50 𝜇𝑚 (see Supplemental 1-«). Light extraction occurs through a high reflective beam66

splitter (>99.5% reflectivity) which reflects the intracavity radiation. This L-shape geometry67

avoids the anisotropies that would have been introduced by using a transmitting splitter in a linear68

cavity. The output beam from the VECSEL is sent to the detection part where the far-field and69

near-field profiles are imaged on two CCD cameras. The near-field is also imaged on an array of70

optical fibers for spatially resolved detection at 10 GHz bandwidth. Finally, the total emission is71

monitored by a «« GHz bandwidth detection system and by an optical spectrum analyzer.72

Fig. 1. a) Experimental set-up showing the L-shape VECSEL. 𝑑1ȷ distance between the

gain section and lens 𝐿1, 𝑑2ȷ distance between 𝐿1 and lens 𝐿2, 𝑑3ȷ distance between

𝐿2 and lens 𝐿3, 𝑑4ȷ distance between 𝐿3and lens 𝐿4, 𝑑5ȷ distance between 𝐿4 and the

SESAM, HRM= high reflectivity beam splitter (>99.5% at 1.060 nm). b) Calculated

waist size of the fundamental Gaussian mode on the gain mirror (see Supplemental

1-2B, Eq. S5) as a function of the position of the SESAM (𝑥 = 𝑑5 − 𝑓𝑐) for 𝑓𝑡ℎ=»0 mm

and for two positions of 𝑧 ȷ 𝑧 = 2.5 mm (blue curve) and 𝑧 = −3.5 mm (red curve). For

𝑓𝑡ℎ = 40 mm, SI condition condition is given byȷ 𝑧0 = −0.8 mm, 𝑥0 = −1.3 𝜇m, hence,

in terms of Δ𝑧 = 𝑧 − 𝑧0, Δ𝑧 = +3.3 mm (blue curve) and Δ𝑧 = −2.7 mm (red curve).

These numerical curves fit with good agreement the experimentally measured values of

𝑤 when the VECSEL is pumped at 2«0 mW. At this power thermal lens exhibits a focal

length of 𝑓𝑡ℎ ≈ »0mm [«9].



2.1. Design of the element of the VECSEL73

The gain mirror is based on a GaAs substrate with 12 strain-balanced InGaAs/GaAsP quantum74

wells (QWs) designed for barrier optical pumping and emitting at 1.06 𝜇m. It has been designed75

for standing the high level of losses in SI external cavity (see Supplemental 1-1). The SESAM76

features a single strained InGaAs/GaAs QW located near the external surface [»0] leading to77

recombination rate approximately two orders of magnitudes faster than the gain medium. It has78

been engineered for achieving a modulation depth larger than 8 % between the saturated regime79

and the unsaturated one (saturable losses) for obtaining bistability of the VECSEL close to80

threshold [«1]. Moreover, the amount of saturable losses experienced by the electromagnetic field81

inside the cavity is varied by tuning the gain mirror and the SESAM microcavities resonances82

(𝜆𝐺 and 𝜆𝑆𝐴 respectively, 𝛿𝜆 = 𝜆𝑆𝐴 − 𝜆𝐺), as detailed in Supplemental 1-183

2.2. Design of the external cavity and SI condition84

VECSEL external cavity (see Fig. 1a)) has been designed to fulfill the requirement 𝜏 > 𝜏𝑔 ∼ 1𝑛𝑠85

and SI condition after one roundtrip. In addition, the SESAM and gain mirror need to be placed86

in conjugate planes with a magnification factor 𝑀 larger than one for saturating efficiently the87

SESAM.88

Accordingly we use a four-lenses arrangement where the first lens (L1, the one closest to89

the gain section) and the last lens (L», the one closest to the SESAM) are large numerical90

aperture aspheric collimators ( 𝑓1 = 𝑓4 = 𝑓𝑐 =8 mm) and L2 and L« are achromatic lenses having91

𝑓2 = 100mm and 𝑓3 =200 mm. In the cold cavity situation, SI condition can be achieved through92

a telecentric arrangement of these optical elements, i.e. lenses are placed at distances given by the93

sum of their focal lengths (𝑑1= 𝑓1, 𝑑2= 𝑓1+ 𝑓2, 𝑑3= 𝑓2+ 𝑓3, 𝑑4= 𝑓3+ 𝑓4, 𝑑5= 𝑓4), thus making a total94

cavity length 𝐿=6«2 mm (cavity round-trip time 𝜏 ≈ 4.2 ns). In terms of ray transfer matrix from95

the gain section to the SESAM, this telecentric arrangement is described by the ABCD matrix96

©­«
𝐴 𝐵

𝐶 𝐷

ª®¬
=

©­«
1/𝑀 0

0 𝑀

ª®¬
(1)

where 𝑀 = 𝑓3/ 𝑓2 = 2, while the roundtrip transfer matrix gives the identity matrix, as required97

by SI condition.98

However, the presence of a pump induced lens onto the gain section modifies strongly the99

positions of lenses for achieving SI condition with respect to the cold cavity situation, as shown100

in Supplemental 1-2A. This pump induced lens has a focal length 𝑓𝑡ℎ spanning from 10 to 80101

mm depending on the pump level [«9] (Supplemental 1-«). SI condition can be restored only by102

modifying the position of (at least) two lenses around their telecentric position and we choose103

to adjust micrometrically the position of the SESAM and the position of 𝐿2. By calling 𝑥 the104

offset of 𝑑5 with respect to telecentric position (𝑥 = 𝑑5 − 𝑓𝑐) and 𝑧 the offset of 𝑑2 with respect to105

telecentric position (𝑧 = 𝑑2 − ( 𝑓𝑐 + 𝑓2)), the SI condition in presence of the pump induced lens isȷ106

𝑧0 ( 𝑓𝑡ℎ) = −
𝑓 2
𝑐

2 𝑓𝑡ℎ
and 𝑥0 ( 𝑓𝑡ℎ) = −

𝑓 4
𝑐

2𝑀2 𝑓 2
2
𝑓𝑡ℎ

. (see Supplemental 1-2A for full calculations). For107

focal lengths values in our experiment, one finds that 𝑧0 is of the order of few millimeters, while108

𝑥0 will be of the order of few microns since 𝑓2 >> 𝑓𝑐 . Hence, by adjusting 𝑧 and 𝑥 it is possible109

to achieve SI condition for any value of 𝑓𝑡ℎ.110

From the experimental point of view, the precision requirement on the positions of the optical111

elements make unrealistic to achieve SI condition by placing these elements at the calculated112

positions. ABCD transfer matrix from the gain section to the SESAM in presence of deviations113

from SI condition Δ𝑥 = 𝑥 − 𝑥0 and Δ𝑧 = 𝑧 − 𝑧0 readsȷ114
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The coefficients of the matrix defined in Eq. (2) can be used to calculate the stability of the115

cavity and the waist 𝑤 of the fundamental Gaussian beam on the gain mirror as a function of 𝑥116

and 𝑧 around SI condition positions, as detailed in Supplemental 1-2B117

Close to SI condition, stability of the cavity requires Δ𝑥 > 0 when Δ𝑧 > 0 and Δ𝑥 < 0 when118

Δ𝑧 < 0, while the analysis of 𝑤 is shown in Fig. 1 b). We can notice that the waist of the119

fundamental Gaussian as a function of the position of the SESAM 𝑤(𝑥) exhibits an opposite120

behavior depending on whether Δ𝑧 > 0 or Δ𝑧 < 0. For negative values of Δ𝑧 (red curve in Fig. 1121

b)), 𝑤 increases when approaching the SESAM to 𝐿4. For Δ𝑧 > 0 (blue curve in Fig. 1b)) 𝑤122

increases with the distance between the SESAM and 𝐿4. This behavior is clearly observed in the123

experiment and it enables an accurate observational assessment of the SI condition.124

Finally, it is worth noting that, close to SI condition, the ABCD roundtrip matrix can be125

approximated to (see Supplemental 1-2C)126

©­«
𝐴𝑅𝑇 𝐵𝑅𝑇

𝐶𝑅𝑇 𝐷𝑅𝑇

ª®
¬
=
©­«

1 2(𝑀2
Δ𝑥)

−2Δ𝑧

𝑓 2
𝑐

1

ª®¬
(«)

3. Experimental Results127

As shown in Fig. 1 b), the analysis of 𝑤(𝑥) from Eq. (2) together with experimental measurements128

of 𝑤(𝑥) allow to determine the cavity parameters with rspect to SI condition. As | Δ𝑥 |→ 0129

the waist of the fundamental Gaussian decreases and, when | 𝑤 |< 20 𝜇m, spatially extended130

patterns appear to match the broad pumped section. In Fig. 2 we show the time-averaged spatial131

profile of a typical pattern observed when Δ𝑥 → 0+, for a finite positive value of Δ𝑧. This pattern132

cannot be interpreted as a transverse mode imposed by the boundaries of the resonator, as the133

ones of Hermite-Gauss or Laguerre-Gauss families. While the latter self-transform in the Fourier134

space, the pattern shown in Fig. 2 exhibits non homothetic near field and far field profiles, as135

commonly observed in large aspect-ratio resonator. The far field profile reveals a bright central136

spot surrounded by a nearly hexagonal arrangement of weaker spots at 7◦ with respect the optical137

axis of the resonator. In the near field we observe an hexagonal pattern with some bright spots.138

We have analyzed the relationship between the near field profile and each wave-vector component139

observed in the far field, as shown in Fig. 2 c-f). If we consider only the axial component140

(central spot in the far field profile), the corresponding near field profile has a Gaussian shape141

(Fig. 2 d). This component comprises 90% of the optical power of the pattern. If the central142

spot in the far-field is filtered out, the near field profile obtained has twice the spatial frequency143

compared to the one obtained without the filter as can be observed in e). This indicates that144

the near-field profile is determined by the interference between an on-axis plane wave and the145

hexagonal set of tilted waves which are phase locked. The pattern shown in Fig. 2 is emitted by146

the VECSEL within a short range of 𝑥, for pumping powers 285 mW<𝑃𝑝 < 400mW and for a147

detuning range between the microcavities resonances 4.5 nm< 𝛿𝜆 < 8 nm. Within these ranges,148

the time-averaged profile shown in Fig. 2 is not affected significantly by parameter changes.149

The time behavior of the pattern of Fig. 2 is shown in Fig. « a). It features multistability150

between a set of mode-locked states with a number of pulses per roundtrip ranging from zero to151

five. The corresponding bifurcation diagram of these pulsating solution versus the pump power152

𝑃𝑝 is explored in Fig. « b). Upon increasing the pumping level (𝑃𝑝), the off solution loses its153

stability at 𝑃𝑝 = «20 mW at the advantage of a five-pulses per roundtrip mode-lock state. Then,154



Fig. 2. a) Near field and b) Far field time-averaged profiles of the patterns observed

when Δ𝑧 = +3.3mm and 22𝜇m< 𝑥 < 27𝜇m. VECSEL is pumped at «20 mW and

𝛿𝜆=5nm. In panel b) the far field has been obtained by filtering out the central part of

the profile which carries 90% of the total emitted and hinders the off axis components

on the CCD camera. The unfiltered far-field profile is plotted in the inset. This kind

of pattern is observed in the range 0.1 mm< Δ𝑧 < 4 mm. As | Δ𝑧 |→ 0, its existence

range in 𝑥 gets narrower and it requires higher level of pumping. c) Near-field profile

with intensity peaks circled in red, d) Near-field profile after filtering out the off-axis

Fourier components of the pattern and leaving only the central spot, e) Near-field profile

after filtering out the on-axis Fourier components of the pattern (central spot of in the

far-field). The contour of the peaks of the total pattern identified in c) are plotted in red.

by decreasing 𝑃𝑝, the VECSEL emission switches to states with a lower number of pulses per155

roundtrip and, at every jump, 𝑃𝑝 is increased to determine the stability of each branch and, when156

𝑃𝑝<285 mW, the VECSEL switches to the off solution. The width of the pulse is below the157

time resolution of our detection system (10 ps, «« GHz) and auto-correlation measurements158

of the electromagnetic field gives a coherence time of 2.6 ps which is in agreement with the159

spectral envelope of 1 nm (267 GHz) FWHM shown Fig. « c). Spatially resolved measurements160

at different points of the pattern reveal that the whole pattern is pulsating as a unique coherent161

structure.162

The multistabilty between different mode-locked states shown in Fig. « indicates that the163

patterns observed are temporal LSs, i.e. they are individually addressable pulses traveling back164

and forth in the external cavity [27, «0]. In order to demonstrate the possibility of using these165

pulsating patterns as bits of informations, we have injected a short pump pulse into the gain166

section to write these temporal localized patterns individually. The system is prepared in the167

multistable parameter region (285mW< 𝑃𝑝 < 318mW) where LSs exist and the amplitude of the168

addressing pump pulse is chosen to be sufficiently large to bring the system beyond the upper limit169

of the multistable region, where only the solution composed on five pulses per roundtrip is stable.170

The addressing pulse is sent to the gain section synchronously with the cavity roundtrip for about171



Fig. «. Spatially integrated intensity output of the pattern shown in Fig. 2. a) Coexisting

pulsating states of the pattern, b) Total output power emitted by the VECSEL versus the

pump power 𝑃𝑝 for different pulsating states of the pattern, ranging from no pulse to

five pulses per roundtrip, c) Optical spectra corresponding to different pulsating states

of the pattern.

one thousand roundtrips. The addressing process is depicted in Fig. » by using a space-time172

diagram where the pump pulse is represented using a color code, while the trajectory of the LS is173

represented by a black trace. In Fig. » we illustrate the writing operation. In Fig. » (left), we174

choose an initial condition where no LS is present inside the cavity before the addressing pulse.175

The pump pulse is sufficiently short to switch on a single LS which persists after the perturbation176

is removed. In Fig. » (right) we repeat the operation with a LS already existing in the cavity177

before the dressing pulse. Other initial conditions can be chosen with similar results, provided178

that the addressing pulse is separated in time from the preexisting LS of at least 𝜏𝑔.179

4. Discussion and Theoretical Analysis180

Our experimental results provide evidence of a novel spatio-temporal laser regime which, to the181

best of our knowledge, can hardly be traced back to any laser model in the literature. Stationary182

pattern emission from large aspect-ratio laser has been previously observed and explained as a183

Turing instability leading to transverse traveling waves [10,11, »1]. The physical origin of this184

instability has been attributed to the presence of a (positive) detuning between the gain curve185

resonance and the closest resonator resonance. The laser emits tilted waves whose frequency186

matches the gain resonance and whose longitudinal wave vector fulfill the resonance condition of187

the resonator. This mechanism does not apply to our system where the set of longitudinal cavity188

resonances is very dense (less than 500 MHz free spectral range) compared to the width of all189

other relevant spectral filtering curves, such as microcavities resonances (> 9 nm, i.e.more than 1190

THz), gain and saturable absorption curves (more than 10 THz).191

In order to describe the spatio-temporal dynamics observed we employ the Haus master192

equation for PML adapted to the long cavity limit [«0, »2]. However, this leads to a four193



Fig. ». Spatio-temporal diagram of the writing process of a time localized pattern.

The trajectory of the LS is represented by a black trace, while the pump evolution is

represented on the space time diagram using a color code is by sending a 120 ps pulse

to the gain section between (left) round-trip 𝑛1 = 7800 and round-trip 𝑛2 = 12500 and

(right) between round-trip 𝑛1 = 6800 and round-trip 𝑛2 = 12500. The pulsed pump

beam has a Gaussian spatial profile and a waist of 1« 𝜇𝑚

dimensional, stiff, multi-scale partial differential equation (PDE). A qualitative model for the194

dynamics of the transverse profile of temporal LS, such as the one derived in [»«, »»], can be195

obtained adapting New’s method of PML [»5] to the situation at hand. This method exploits the196

scale separation between the pulse evolution, the so-called fast stage in which stimulated emission197

is dominant, and the slow stage that is controlled by the gain recovery processes. Under the198

hypothesis that the spatio-temporal profile can be factored into a product of a transverse profile199

and a short temporal pulse that corresponds to the temporal LS, one can obtain a simplified200

description of the slow evolution of the transverse profile of the temporal LS 𝐴 (𝑟⊥, 𝜃) as201

𝜕𝐴

𝜕𝜃
=

[
𝑓
(
|𝐴|2

)
+ L⊥

]
𝐴, (»)

where 𝜃 is the round-trip number and we defined the effective nonlinearity as202

𝑓 (𝑃) = (1 − 𝑖𝛼1) 𝐽1 (𝑟⊥) ℎ (𝑃) + (1 − 𝑖𝛼2) 𝐽2ℎ (𝑠𝑃) − 𝑘, (5)

The nonlinear response of the active material to a pulse is ℎ (𝑝) = (1 − 𝑒−𝑝) /𝑝. We define 𝑘 as203

the round-trip cavity loss and in Eq. (5) we introduced the line-width enhancement factors 𝛼 𝑗 of204

the two active media, that relax toward the pumping power 𝐽 𝑗 . The ratio of the saturation fluences205

of the absorber and of the gain is denoted by the parameter 𝑠. The effect of finite size optical206

pumping is taken into account by the spatial dependence of 𝐽1 (𝑟⊥) > 0. Saturable absorption207

is obtained by setting 𝐽2 < 0. It is worth noting that, if the function ℎ(𝑃) is replaced by the208

Lorentzian line saturation for continuous wave beams ℎ (𝑃) → 1/(1 + 𝑃) in Eqs. (»,5), one209

obtains the equations obtained in [»6,»7], used for describing (stationary) spatial auto-solitons in210

continuous wave bistable interferometers.211

The spatio-temporal linear operator L⊥ can be determined by using the Fresnel transform [»8],212

which permits the analytical calculation of the transverse effects occurring at each round-trip213

from the round-trip ABCD matrix. The latter includes diffraction and wavefront curvature214

occurring in the quasi-telecentric cavity as well as diffraction and thermal lensing (in the parabolic215

approximation) taking place within the microcavities. In addition, we considered the influence216

of weak spherical aberrations. The latter are essentially due to the presence of the two short217
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Fig. 5. (a) Stability analysis of the uniform solution over the upper state of the bistable

solution branch. A long wavelength modulational instability band is present, however

it is inhibited for a system size of 𝐿⊥ = 8.3776 which corresponds to a low frequency

cut-off of 𝑞𝑐 = 2𝜋/𝐿⊥ = 0.75 (orange vertical dashed line). A second narrow band

that corresponds to a Turing instability may appear at a wavevector 𝑞𝑇≃
√︁
𝐵̃/𝑆 = 3.01.

This diagram is obtained after the emergence of the Turing instability for a value of

𝐽1 = 0.78𝐽𝑡ℎ that corresponds to an intensity 𝐼 = 1. It is above the fold located at

𝐽𝐹 ≃ 0.661𝐽𝑡ℎ. (b) A branch of CW (blue) and spatially periodic (red) solutions of

Eq. (»). The intensity of the field is shown as a function of the scaled gain bias 𝐽1/𝐽𝑡ℎ.

The stable (unstable) solutions are depicted as solid (dashed) lines. The unstable CW

branch bifurcates unstable from the off state and it is stabilized at the fold F. The

stable periodic branch that corresponds to rolls bifurcates from the CW solution at

the branching point BP (black circle) which corresponds to a Turing bifurcation. The

emerging pattern further losses its stability via an Andronov-Hopf bifurcation (red

square). The two insets show the intensity of the emerging periodic pattern at the points

marked as green diamonds. (c) Equivalent regime in two dimensions where we show

the intensity profile as well as the far field Fourier spectrum after removal of the on axis

homogeneous component (inset). It consists in a regular hexagonal pattern whose wave-

vector is |𝑞𝑇 | ≃ 3 is given by the stability analysis of the uniform state. The bias current

is 𝐽1 = 0.777𝐽𝑡ℎ and
(
𝐿𝑥 , 𝐿𝑦

)
= (8.378, 7.255). Other common parameters areȷ

𝐵 = 1, 𝐶 = 0, 𝑆 = 0.11, 𝛼1 = 1.5, 𝛼2 = 0.5, 𝐽2 = −0.12, 𝑘 = 0.1, 𝑠 = 15, 𝑑 = 0.003,

focal distances collimators 𝐿1 and 𝐿4 which are challenged by wide angular spread of the beams.218

In agreement with experimental observations we assume that 𝑓𝑐 (𝑟⊥) = 𝑓0 + 𝜎𝑟2
⊥ with 𝜎 ≪ 1219

representing a small aberration coefficient. For the experimental conditions (nearly SI condition220

and 𝑓0/ 𝑓2,3 ≪ 1), the effect of spherical aberration can be analytically reduced to a transverse221

Bilaplacian operator. The details of these calculations will be discussed elsewhere. Describing222

the wavefront curvature, the diffraction and aberrations as small perturbations to the field profile223

at each roundtrip, the spatio-temporal linear operator L⊥ reads224

L⊥ = 𝑖𝐶𝑟2
⊥ +

(
𝑑 + 𝑖𝐵

)
∇2
⊥ + 𝑖𝑆∇4

⊥ , (6)

where we define the following dimensionless parametersȷ the effective diffraction parameter225

𝐵̃ = 𝜆𝐵𝑅𝑇/(4𝜋) + 𝑙2
1,⊥

+ 𝑙2
2,⊥

, the wavefront curvature 𝐶̃ = 𝜋𝐶𝑅𝑇/𝜆 and the aberration parameter226

𝑆 =
(
𝜆

2𝜋

)3
𝜎 𝑓 2

0
. Here, 𝐵𝑅𝑇 and 𝐶𝑅𝑇 are, respectively, the coefficients 𝐵 and𝐶 of the ray transfer227

roundtrip matrix and 𝑙 𝑗 ,⊥ being the normalized micro-cavity diffraction lengths. As shown in228

Eq. («) (see also Supplemental 1-2C), close to self-imaging conditions, 𝐵𝑅𝑇 ≈ 2(𝑀2
Δ𝑥) and229

𝐶𝑅𝑇 ≈ −2Δ𝑧

𝑓 2
𝑐

, hence Δ𝑥 controls the diffraction while Δ𝑧 rules the wavefront curvature which is230

equivalent to a parabolic transverse potential in Eq. (6. The finite size of lenses and the numerical231

aperture of the whole optical system is modeled by a diffusion parameter 𝑑 that penalizes high232

transverse spatial frequencies 𝑞⊥.233

Close to SI condition, for positive diffraction (Δ𝑥 ⪆ 0), the VECSEL resonator is stable for234



focusing wavefront curvature ˜(𝐶 ⪅0, i.e. Δ𝑧 ⪆ 0). Experimental results show that, when 𝐵 → 0,235

a modulated pattern featuring well defined transverse wave vectors appear. This phenomenology236

can be explained as the result of a supercritical Turing instability. It was shown in [»9] that237

Eq. (») forbids the appearance of a Turing instability while it allows for a long wavelength238

instability and the formation of a band of unstable spatial frequencies in the range 𝑞 ∈ [0, 𝑞𝑀 ].239

However, the presence of the Bilaplacian operator describing optical aberrations changes this240

picture, as it introduces a new spatial scale in the system and it renders the appearance of a241

Turing bifurcation possible. This is shown in Fig. 5(a) where we plot the result of the stability242

analysis of the homogeneous state for a value of the pump within the bistability region where the243

VECSEL emits temporal LS. The real part of the two dominant eigenvalues reveals the presence244

of a Turing instability at a wave-vector 𝑞𝑇≃

√︃
𝐵/𝑆 in addition to the band of unstable spatial245

frequencies in the range 𝑞 ∈ [0, 𝑞𝑀 ]. It is worth noting that the finite size of the pump profile246

imposes a low frequency cut-off for the wave-vectors allowed in the system, 𝑞𝑐 = 2𝜋/𝐿⊥. This247

spatial frequency filtering eventually controls which instability can develop ȷ if 𝑞𝑀 < 𝑞𝑐 the long248

wavelength instability is inhibited and the Turing pattern remains the unique spatial instability249

that can emerge, provided that 𝑞𝑇 is resonant, i.e. an integer multiple of 𝑞𝑐, i.e with 𝑛 ∈ N.250

Consequently, this instability can be expected to appear by tuning the value of 𝐵 within narrow251

range, in good agreement with experimental observations.252

In Fig. 5(b) we show the result of numerical simulations of Eq. (») as well as path continuation253

using Pde2Path [50] for a system with one transverse spatial dimension and with homogeneous254

pumping. It reveals that a homogeneous emission of temporal LS appear subcritically below the255

lasing threshold. The corresponding C-shape is represented by the blue line in Fig. 5(b). When256

the system size is chosen such that 𝑞𝑇/𝑞𝑐 = 4, a periodic pattern can emerge from a homogeneous257

emission while increasing the pump power. As in the experiment, the periodic pattern appears as258

a modulation of an homogeneous on-axis emission which dominates the far-field profile. This259

Turing pattern can be observed at a fixed pump level by tuning the value 𝐵, as this parameter260

will change the value of the critical wave-vector 𝑞𝑇 with respect to 4𝑞𝑐. In this case the pattern261

will appear with a finite modulation amplitude of the homogeneous emission, fixed by the pump262

power. In two transverse dimensions, the dynamics is more complex since only the magnitude263

of the unstable wave-vector |𝑞𝑇 | is fixed by the linear stability analysis leading to an annular264

distribution of unstable wave vectors in the two-dimensional plane spanned by 𝑞⊥ =
(
𝑞𝑥 , 𝑞𝑦

)
.265

Stripes, squares or hexagonal patterns can be selected depending on the kind of nonlinearity266

coupling the different wave-vectors that must all emerge with magnitude |𝑞𝑇 |. However, the267

structure of the nonlinearity in Eq. » favors the emergence of hexagonal patterns as can be seen268

in Fig. 5(c). The far field represented in the inset of Fig. 5(c) exhibits (in Log scale) the typical269

spectrum associated with hexagonal patterns after filtering out the on-axis component. The value270

of 𝑞𝑇 ∼ 3 matches the result of the linear stability analysis.271

In conclusion, we have realized and operated a laser platform enabling the investigation of272

fully developed spatio-temporal dynamics. In this paper, we have operated it in the regime of273

spatio-temporal mode-locking and we have reported the first observation of temporal localized274

Turing patterns, but other novel laser regimes will be investigated in the future, including the275

generation of spatio-temporal LS, also called dissipative light bullets [»«]. The theoretical276

analysis has revealed the important role of optical aberrations when approaching SI condition,277

thus suggesting that spatial control of light in our VECSEL will demand aberration engineered278

optical elements and/or counterbalancing nonlinear effects. An alternative path is based on279

the introduction of spatially patterned laser parameters. In particular, the spatial shaping of280

the pumped region opens interesting perspectives since, thanks to SI condition, the pump281

pattern will be reproduced in the near-field emission of the laser. This can be achieved, for282

example, by depositing an absorptive mask onto the gain mirror. Preliminary results indicate the283

possibility of implementing spatially decorrelated sources of temporal LS in a single VECSEL.284



As illustrated in [«6], several applications can be envisaged for the VECSEL we have studied285

in this paper. Among them we underline spatio-temporal processing of information, frequency286

combs multiplexing in the same cavity [51] and speckle-free imaging with short pulses [52].287
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