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Abstract

This paper is a followup of the paper of Dellacherie et al. in [2], where we were able to obtain an analytic
solution of a monodimensional stationary system coupling two simplified models, one solving the ther-
mohydraulic equations, the other one solving the neutronic diffusion equation with one energy group. An
approximation of the analytic solution using incomplete Jacobi elliptic integrals was derived as well as the
calculation of the neutron multiplication factor ke f f , and we use this explicit approximation in a more gen-
eral case with uncertainties on the data, which are the values of some physical functions (of the temperature
T ) of the fluid characterizing the problem (namely the diffusion coefficient D, the absorption cross-section
Σa and the fission cross section νΣ f ). A thorough numerical study has been done. Using it, we demonstrate
that the physical hypotheses on these function must hold for any Monte-Carlo sampling of the values, for
example the values of the fission cross section must be increasing if the temperature T increases.

Keywords:
Ordinary differential equation, thermohydraulics, neutronics, models coupling, sensitivity analysis.

1. Introduction

In this note, we recall briefly the construction of an analytic solution of the low Mach number thermo-
hydraulic model obtained by Dellacherie et a. given in [2], detailed in [4]. In particular, the low Mach
hypothesis, along with ρu = De is constant, allows to rewrite the stationary internal enthalpy equation on
z ∈ [0, L], L > 0 being the length of the nuclear core, as

ρu
d
dz

h = EΣ f (h)φ(t, z) (1)

It is coupled to the simplified neutronic model based on the diffusion approximation with one energy group

−
d
dz

[
D(h)

d
dz
φ(z)

]
+

[
Σa(h) −

νΣ f (h)
ke f f

]
φ(z) = 0. (2)

In (1) and (2), the constant E is the energy released by a fission (E > 0 is in Joule), Σ f (h) is the fission
(macroscopic) cross section (Σ f (h) > 0 is in m−1) and φ(z) – solution of (2) – is the scalar neutron flux
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(φ(z) ≥ 0 is in m−2·s−1). In (2), D(h) is the diffusion coefficient (D(h) > 0 is in m), Σa(h) is the absorption
(macroscopic) cross section (Σa(h) > 0 is in m−1) and ν is the average number of neutron produced by a
fission. At last, ke f f > 0 is the neutron multiplication factor: ke f f ∈]0, 1[, ke f f = 1 and ke f f > 1 means that
the nuclear core is respectively subcritical, critical and supercritical.

We supplement the system (1)-(2), written for φ ∈ C2
0([0, L]) (which means that φ satisfies homogeneous

Dirichlet boundary conditions φ(0) = φ(L) = 0)1 and h ∈ C3([0, L]), with the constraint φ ≥ 0 on [0, L]
and with the boundary conditions h(0) = he, h(L) = hs. Note that the total energy released by fission of the
core [0, L] is given by E

ν = De(hs − he), hence the complete set of boundary conditions yield the condition∫ L
0 νΣ f (h(z))φ(z)dz = 1 on the flux φ.

We constructed an analytical solution of (1)-(2) in [5], following the ideas of [4].

It is straightforward to show that this system is equivalent to following ODE on h, supplemented by the
expression of φ (the expression of Ψ is described in Lemma 2.1): (h′)2 = Ψ(h(z), ke f f ), h(0) = he, h(L) = hs,

φ(z) =
De
E

√
Ψ(h(z),ke f f )
νΣ f (h(z)) .

The problem is thus equivalent to2 state the problem as

find ke f f such that the unique solution of h′ =

√
Ψ(h(z), ke f f ), h(0) = he satisfies h(L) = hs. (3)

In [2], we presented a numerical method for solving this problem avoiding this ODE solving, by approxi-
mating the equation (3) by an equation which solution is a Jacobi elliptic equation (where the solution of
the ODE is an incomplete Jacobi function). We use here this approximate solution to perform a sensitivity
analysis on the coupling functions D,Σa,Σ f .

2. Analytic solution and its analytic approximation

We assume in this set-up that we only know the values of D,Σa, νΣ f at three values of the temperature (or
rather the enthalpy h1, h2, h3), and that our problem is now to find a relevant approximation of the functions
above in order to obtain an ODE that we can solve analytically.

Define X,Y the functions of class C2([hmin, hmax]) given by
−

d
dh

[
D(h)νΣ f (h)

dX
dh

]
=

Σa(h)
νΣ f (h)

X(he) = X(hs) = 0

,


−

d
dh

[
D(h)νΣ f (h)

dY
dh

]
= 1,

Y(he) = Y(hs) = 0.

(4)

Let

Ψ(h, ke f f ) = 2(νΣ f (h))2[X(h) −
1

ke f f
Y(h)]. (5)

1Unlike in [2], we can state this problem as a classical ODE problem.
2Note that the boundary conditions h′(0) = h′(L) = 0 are built in Ψ
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Lemma 2.1. If φ, h are solutions of (1)-(2), with φ(0) = φ(L) = 0, h(0) = he, h(L) = hs, then

(h′(z))2 = Ψ(h(z), ke f f ). (6)

Proof. The equation on φ writes

−
d
dz

(D(h)
dφ
dz

) + νΣ f (h)
d
dh

[
D(h)νΣ f (h)

dX
dh

]
φ =

νΣ f (h)
ke f f

d
dh

[
D(h)νΣ f (h)

dY
dh

]
φ.

Replacing φ in terms of h through De
dh
dz = EΣ f (h)φ yields

−
d
dz

(D(h)
dφ
dz

) +
De

E
ν

d
dh

[
D(h)νΣ f (h)

dX
dh

]
h′(z) =

De

E
ν

ke f f

d
dh

[
D(h)νΣ f (h)

dY
dh

]
h′(z).

Integrating in z yields

−D(h)
dφ
dz

+
De

E
νD(h)νΣ f (h)

dX
dh

=
De

E
ν

ke f f
D(h)νΣ f (h)

dY
dh

+ C0.

Multiplying by φ(z)
D(h(z)) := De

EDΣ f (h) h
′(z) yields

−φ
dφ
dz

+ (
De

E
)2ν2 dX

dh
h′ = (

De

E
)2 ν2

ke f f

dY
dh

h′ +
De

E
C0

D(h)
h′

Σ f (h)
.

Integration from 0 to L yields C0 = 0 thanks to X(he) = Y(he) = 0, φ(0) = φ(L) = 0 and X(hs) = Y(hs) =

φ(L) = 0. Hence one has

(
De

E
)2ν2X(h(z)) − (

De

E
)2 ν2

ke f f
Y(h(z)) =

1
2

(φ(z))2.

This proves Lemma 2.1.

3. Interpolation

3.1. The Jacobi equation

We assume that the quantities D,Σa, νΣ f are only known at three values of the enthalpy h, namely
h1 < h2 < h3. We want to obtain a good approximation of D,Σa, νΣ f . The first idea would be to interpolate
D,Σa, νΣ f and to solve the equation. However Ψ would be a polynomial of degree 6 or a rational fraction.
The first step that we shall deal with is to use an analytic transformations in order to reduce the problem as
follows:

1. we consider the polynomial 1
νΣ f (h)D(h) , of degree 2, of value 1

νΣi
f Di at each point (h1, h2, h3).

2. we consider the change of variable, depending on he, hs as well, introducing u(h) =
∫ h

0
ds

νΣ f (s)D(s)

x(h) = −1 + 2
u(h) − u(he)
u(hs) − u(he)

. (7)

This provides a list of points −1 < x1 < x2 < x3 < 1, associated with he < h1 < h2 < h3 < hs.
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3. We derive the quantities X and Y such that

−
d2Y
dx2 = DνΣ f (h(x)),−

d2X
dx2 = DΣa(h(x)), X(−1) = X(1) = Y(−1) = Y(1) = 0. (8)

For example, from (??) one deduces −d2X
dx2 = ( u(hs)−u(he)

2 )2(DΣa)(h). We then derive an approximate analyti-
cal solution through the following

1. interpolate3 the quantities DνΣ f and DΣa as functions of x (using the values at x1, x2, x3). Note that
these two functions are dimensionless, as well as x.

2. compute aX , bX , aY , bY such that, in the space V = {x(1 − x)(ax + b), (a, b) ∈ R2}, X (resp. Y) is the
solution of the variational problem (8)

3. state the approximate ODE as dx
dz =

√
x(1 − x)

[
(aX −

aY
ke f f

)x + (bX −
bY

ke f f
)
]
, which is equivalent to the

Jacobi equation of parameter m(ke f f ) = −
aX−

aY
ke f f

bX−
bY

ke f f

:

φ′(z) =

(
bX −

bY

ke f f

) 1
2 √

1 − m(ke f f ) sin2 φ(z).

3.2. Exact Solution
We choose to evaluate the length when ke f f = 1, using the equation

L = (bX − bY )−
1
2

∫ π
2

0

dφ√
1 − m(1) sin2 φ

. (9)

There are many possible ways to solve the problem for φ. In our computations we use the implementa-
tion with the Finite elements method, because of time efficiency. This is very helpful when using the MC
sampling methods that require in general many samples. In this section, we test the validity of the approxi-
mation. For that matter, we computed using exact integration the solution φ by solving the ODEs for X and
Y 4 and equation 5. The MATLAB symbolic package was used for all computations, the Dirichlet boundary
conditions were computed up to the tenth order. To compute the length Lexact we used instead a trapezoidal
method for integral approximations, using the interval [−1 + ε, 1 − ε] with ε = 5 × 10−7 instead of [−1, 1]
since Y - X ↘ 0 and thus the inverse diverges in the boundaries. It is possible to compute reciprocally ke f f

for some known value of L, however it comes to solving an inverse problem using newton method, which
is more complicated given the incomplete Jacobi integral.

We show only five entries in the table for the sake of illustration. Looking at the variation of the norm,
we can see that the error never exceeds 2%. The approximation of the length L is also valid with an error of
3 ∼ 4%.

4. Analysis of sensitivity with respect to νΣ f

In all this section, we consider Σi
a and Di to be constant real values. For all numerical applications,

we use (T1,T2,T3) = (585.15, 597.15, 617.15), Te = 559.15 and Ts = 633.15. We use also (Σ1
a,Σ

2
a,Σ

3
a) =

(0.05089, 0.04989, 0.04779) ; (D1,D2,D3) = (0.24799, 0.24899, 0.25198) and ν = 2.453679

3We can interpolate DνΣ f or 1
DνΣ f
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Lexact LFE ratio in %
42.2133 43.7919 0.8951
39.9453 41.9850 1.1525
40.7945 42.1138 0.7568
38.0065 40.7060 1.6543
41.1522 43.9041 1.4408

Table 1: The values Lexact, LFE and ratio =
‖φexact − φFE‖1

‖φexact‖1
in %, for some random samples using Σ1

f ∼ N(0.054, (1.35 × 10−4)2) ,

Σ2
f ∼ N(0.0516, (1.3 × 10−4)2) and Σ3

f ∼ N(0.0482, (1.2 × 10−4)2)

4.1. Model with Gaussian distribution

• At first try, we made the assumption that the three values of νΣ f come from the same distribution with
variance large enough, νΣi

f ∼ N(Σi∗
f , σ

2) given σ ' 10−2. As abuse of notation we use Σi
f instead of

νΣi
f , since ν is constant. This approach tends to be wrong, as numerically the solution is no longer

well defined Y − X < 0.

• Since the values should be sparse, we assume that the three values νΣi
f are random variables from

three different Gaussians νΣi
f ∼ N(Σi∗

f , σ
2
i ). This actually solves partially the problem, as it only

remains to tune effectively the σ2
i for i = 1, 2, 3 to make the problem mathematically solvable i.e.

Y − X ≥ 0.

4.2. Sobol Indices

4.2.1. Model with Uniform distribution
In order to perform the classic Sobol indices method we have to modify the assumption [7] about

the distribution of νΣ f . The table 2 shows a comparison between the effect of the uniform and Gaussian
distribution on the σ(L) and σ(‖φ‖∞).

σ1 σUni f (‖φ‖∞) σNorm(‖φ‖∞)
10−6 191,67784 191.9331751
10−5 199.4398211 197,4510773
10−4 253.3425816 280,1592573
10−3 1812.816971 2148,394222
10−2 4061.028384 4560,977406

σ1 σUni f (L) σNorm(L)
10−6 0.8935738035 0.8647311592
10−5 0.9061758807 0.9265941107
10−4 0.997735197 1.051759978
10−3 5.588457635 8.663453029
10−2 18.52307413 19.23950532

Table 2: Effect of different scales of variation σ1 on the output considering the uniform and normal distributions as prior for Σ f

using 400 samples for each case

We deduce from the values of the output deviations that the uniform distribution performs as well as the
normal distribution for small scale deviations (the case that is actually interesting for our study).

4.2.2. Sobol Indices S 1, S 2 and S 3

For our estimations, we use the Python SALib library that generates low-discrepancy sequence using
Saltelli’s extension of the Sobol sequence [7, 8], and compute the Sobol sensitivity analysis.
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The Table 3 provides the computed first order and total order Sobol indices S 1
1, S

1
2 and S 1

3 and S T
1 , S

T
2

and S T
3 with respect to the output L. We conclude that:

• The model is not sensitive w.r.t. the variable Σ2
f .

• Independence : We have S 1 + S 2 + S 3 ≈ 99.5% which means that the interaction effect can be
neglected. Therefore, the variables Σ1

f and Σ3
f are independent.

Sobol Index Σ1
f Σ2

f Σ3
f

First order 0.2944 0.0365 0.6685
Bootstrap CI1 0.0402 0.0174 0.0671

Total order 0.2929 0.0372 0.6731
Bootstrap CIT 0.0241 0.0032 0.0491

Table 3: Computed first order Sobol indices S 1
1, S

1
2, S 1

3 and total order indices S T
1 , S

T
2 and S T

3 using Σ1
f , Σ2

f and Σ3
f following from

uniform distribution as priors, along with their bootstrap confidence quantiles at level 95%

4.3. Parameter estimation σ1

In this section, we show the effect of the parameter σ1 on the model. We keep σ2,3 ' 10−4 constant.
Same relationships can be induced for σ3. We take Σ1∗

f = 0.054, Σ2∗
f = 0.0516, Σ3∗

f = 0.0482.
We track the behavior of the variance of ‖φ‖∞ and L, by varying the deviation σ1 in the interval [1 ×

10−4, 10 × 10−4] and [1 × 10−4, 5 × 10−4] respectively. We generate for each value of σ1 200 samples, and
analyse the deviation of the outputs.

Figure 1: σ(‖φ‖∞) vs σ1 Figure 2: σ(L) vs σ1

From figures 1 and 2, we claim at level of certainty of 95% that both outputs’ deviations are linearly
correlated with σ1 having R2

φ = 0.9811, R2
L = 0.9573, and we can write:

σ(‖φ‖∞) =α∞σ1,3 + β∞

σ(L) =αLσ1,3 + βL,
(10)
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5. Analysis of the mean parameter Σi∗
f

In all the previous sections we focused on the stability with respect to the deviation σ small (scale errors
(10−5)). In this section we will analyze the effect of the mean value of the parameters, we can interpret this
analysis as of large scale errors (10−2). We use σ1,2,3 = 10−4.

5.1. Activation point

Since we have a physical monotony condition on the values Σi
f , there is no solution for Σ1

f < Σ2
f , but it

remains not sufficient. To study these activation points Σ
i,act
f , we keep the deviation very small σ ≈ 10−6

and vary Σ1∗
f . From figure 3-left/right resp. we claim at level 98% the following equality:

Σ
1,act
f =0.020798 + 0.60713Σ2∗

f

Σ
3,act
f =Σ2∗

f − 0.00298
(11)

Figure 3: left: the distribution of Σ1,act
f given different entries Σ2∗

f ∈ [0.049, 0.053] and its fitted linear regression with Σ3
f = 0.048,

right: the distribution of Σ3,act
f given different entries Σ2∗

f ∈ [0.049,Σ1,act
f ] and its fitted linear regression, with Σ1

f = 0.054

These activation constraints (11) replace the monotony condition with a necessary and sufficient condi-
tion.

5.2. Stability w.r.t. Σ1
f

In this section we consider the effect of the entry Σ1
f on the stability of the solution. To quantify, we

will take into consideration three parameters: The norm L1([−1, 1]) of the solution φ , the length L and the
parameter m.
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From figure 4, we can see that the monotony condition Σ1
f > Σ2

f corresponds to the condition m > 1

with equality at m = 1. At the right of Σ
1,act
f , the linear form Kφ = ‖φ‖1 is continuous and concave. It is

worth mentioning that the solutions never touch, i.e. Σ
1,a
f , Σ

1,b
f =⇒ φ(Σ1,a

f ) − φ(Σ1,b
f ) has a constant sign.

Finally, we can define a reciprocal map (L, ‖φ‖1) 7→ Σ1
f , as the value of the norm ‖φ‖1 will pinpoint to two

Figure 4: the evolution of the three parameters m, ‖φ‖1 and length L with respect to the entry Σ1
f ∈ [0.05, 0.07]

different points and the length L allows to decide the side.
It is worth mentioning that when Σ1

f grows bigger, none of the variables are well controlled, in fact in the
neighborhood of Σ1

f = 0.1 solutions do no longer exist and m↗ 3. It is not a realistic error approximation,
and therefore not subject of the study.
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