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THURSTON’S BOUNDED IMAGE THEOREM

CYRIL LECUIRE AND KEN’ICHI OHSHIKA

Abstract. Thurston’s bounded image theorem is one of the key
steps in his proof of the uniformisation theorem for Haken manifolds.
Thurston never published its proof, and no proof has been known up to
today, although a proof of its weaker version, called the bounded orbit
theorem is known. In this paper, we give a proof of the original bounded
image theorem, relying on recent development of Kleinian group theory.
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1. Introduction

From the late 1970s to the early 1980s, Thurston gave lectures on his
uniformisation theorem for Haken manifolds ([20, 21]). The theorem states
that every atoroidal Haken 3-manifold with its (possibly empty) boundary
consisting only of incompressible tori admits a complete hyperbolic metric in
its interior. His proof of this theorem is based on an induction making use of
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a hierarchy for Haken manifolds invented by Waldhausen [24], i.e., a system
of incompressible surfaces cutting the manifold down to balls, together with
Maskit’s combination theorem (see for instance [10, §VII]).

For simplicity, we now focus on the case of closed atoroidal Haken man-
ifolds. In the last step of the induction, we are in the situation where N
is a closed atoroidal Haken manifold obtained from a 3-manifold M with
non-empty boundary (without torus components) by pasting ∂M to itself
by an orientation reversing involution. The induction hypothesis guarantees
the existence of a convex cocompact hyperbolic structure on M . There,
Thurston used the so-called bounded image theorem to find a convex com-
pact hyperbolic structure on M , obtained by quasi-conformally deforming
the given hyperbolic structure, which can be pasted up along ∂M to give a
hyperbolic structure on N .

Let us explain the setting in more detail. Let M be an atoroidal Haken
manifold with an even number of boundary components all of which are
incompressible. In the same way as we assumed that N is closed, we as-
sume that no boundary component of M is a torus, for simplicity. Suppose
that there is an orientation-reversing involution ι : ∂M → ∂M taking each
component of ∂M to another one. Let N be the closed manifold obtained
fromM by identifying the points on ∂M with their images under ι. Suppose
moreover that N is also atoroidal.

We assume, as the hypothesis of induction, that M admits a convex com-
pact hyperbolic structure; in other words, that the interior of M is home-
omorphic to H3/Γ for a convex cocompact Kleinian group Γ. The space
of convex compact hyperbolic structures on M , which is not empty by as-
sumption, modulo isotopy is parameterised by T(∂M), as can be seen in
the works of Ahlfors, Bers, Kra, Maskit, Marden and Sullivan. From each
convex compact hyperbolic structure on M , by taking the covering of M
associated with each component S of ∂M , we get a quasi-Fuchsian group
isomorphic to π1(S), and by considering the second coordinate of the pa-
rameterisation T(S) × T(S̄) of the quasi-Fuchsian space, we obtain a map
from T(∂M) to T(S̄), where T(S̄) denotes the Teichmüller space of S with
orientation reversed. By considering this for every component of ∂M , we get
a map σ : T(∂M) → T(∂̄M) called the skinning map, where T(∂̄M) denotes
the product of T(S̄) for the components S of ∂M . Since ι is orientation-
reversing, it induces a homeomorphism ι∗ : T(∂̄M) → T(∂M).

Then the bounded image theorem can be stated as follows.

Theorem 1.1. Suppose that M is a compact (orientable) atoroidal Haken
manifold having an even number of boundary components all of which are
incompressible and none of which are tori, and assume that M is not home-
omorphic to an I-bundle over a closed surface. Assume moreover that M
admits a convex compact hyperbolic structure. Suppose that there is an ori-
entation reversing involution ι : ∂M → ∂M taking each component of ∂M
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to another component, and that by pasting each component of ∂M to its im-
age under ι, we get a closed atoroidal manifold N . Then there exists n ∈ N
depending only on the topological type of M such that the image of (ι∗ ◦ σ)n
is bounded (i.e. precompact) in T(∂M).

There are several expository papers and books on Thurston’s uniformi-
sation theorem ([16, 18, 7] among others). In all of them, a weaker version
of the bounded image theorem called the bounded orbit theorem, which is
sufficient for the proof of the uniformisation theorem, was proved and used,
instead of this original one.

Up to now, no complete proof of the bounded image theorem as stated
above was known. Kent [8] gave a proof of this theorem under the assump-
tion thatM is acylindrical, in which case the deformation space of hyperbolic
structures on M is compact.

The purpose of this paper is to give a proof of the original bounded
image theorem. Our argument relies on recent progress in Klenian group
theory, in particular, the embedding of partial cores in the geometric limit
from [4], the relation between the presence of short curves and their relative
positions and the behaviour of ends invariant from [3], and criteria of con-
vergence/divergence given in [2].

1.1. Outline. We are going to find n such that if the image of (ι∗ ◦ σm)n
is unbounded then N contains a non-peripheral incompressible torus, con-
tradicting our assumption. For that purpose we shall use the invariant m
introduced in [2].

Given a simple closed curve d on a closed surface S equipped with a
hyperbolic metric g, we define

m(g, d, µ) = max

{
sup

Y : d⊂∂Y
dY (µ(g), µ),

1

lengthg(d)

}
,

where µ(g) is a shortest marking for (S, g), µ is a full marking, and the
supremum of the first term in the maximum is taken over all incompressible
subsurfaces Y of S whose boundaries ∂Y contain d. See Definition 4.1 for
more details.

It is not difficult to see that in the setting of Theorem 1.1, for a given
sequence {mi} in T(∂M), if the sequence {σ(mi)} is unbounded, then
there is a simple closed curve d such that m(σ(mi), d, µ) is unbounded (see
Lemma 4.3). The core of our argument consists in showing, with the help
of arguments from [3] and [2], that in this situation, there is a simple closed
curve d′ ⊂ ∂M such that {m(mi, d

′, µ)} is unbounded and that d∪d′ bounds
an essential annulus in M . Using this argument repeatedly, we build (when
{(ι∗ ◦ σ)n(mi)} is unbounded) an annulus in N which goes through the in-
terior of M (viewed as a subset of N) n times. If n is large enough, this
annulus must create an essential torus in N , and contradicts the assumption
that N is atoroidal.
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Although this is the overall logic of the proof, in the following sections,
we shall present the main steps in a different order. After setting up some
preliminary definitions in Section 2, we shall discuss the topological part of
the proof in Section 3. First we show that we can add some assumptions
on the topology of M which will simplify the arguments later on. Next, we
study incompressible surfaces on ∂M which can be extended multiple times
through the characteristic submanifold of M when it is viewed as a subman-
ifold of N . This will give us an integer n which appears in Theorem 1.1. In
Section 4 we shall discuss the relation between the behaviour of the invariant
m defined above, and the convergence and divergence of Kleinian groups.
In Section 5 we shall prove our key proposition, and obtain the curve d′

mentioned above. Finally in Section 6 we shall put these pieces together to
prove our main theorem.

We would like to express our gratitude to the referee for his/her valuable
suggestions, which have made it possible to improve our exposition.

2. Preliminaries

2.1. Haken manifolds and characteristic submanifolds. An orientable
irreducible compact 3-manifold which contains a non-peripheral incompress-
ible surface is called a Haken manifold. We note that a compact irreducible
3-manifold with non-empty boundary is always Haken except for a 3-ball.
We say that a Haken manifold is atoroidal when it does not contain a non-
peripheral incompressible torus, and acylindrical when it does not contain
a non-peripheral incompressible annulus. By the torus theorem for Haken
manifolds ([25, 5, 6]), the former condition of the atoroidality is equivalent
to the one that every monomorphism from Z×Z into the fundamental group
is peripheral, i.e. is conjugate to the image of the fundamental group of a
boundary component.

The Jaco-Shalen-Johannson theory [5, 6] tells us that in a Haken mani-
fold, incompressible tori and incompressible annuli can stay only in a very
restricted place. Let us state what the theory says in the case when a Haken
manifoldM is atoroidal and boundary-irreducible, the latter of which means
that ∂M is incompressible.

For an orientable atoroidal Haken boundary-irreducible 3-manifold M ,
there exists a 3-submanifold X of M each of whose components is one of
the following:

(a) An I-bundle over a surface with negative Euler characteristic whose
associated ∂I-bundle coincides with its intersection with ∂M . Such a
component is called a characteristic I-pair.

(b) A solid torus Ξ such that Ξ ∩ ∂M consists of annuli which are incom-
pressible on both ∂Ξ and ∂M . When Ξ ∩ ∂M is connected, it winds
around the core curve of Ξ more than once.

(c) A thickened torus S1×S1×I at least one of whose boundary components
lies on a component of ∂M .
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and which satisfies the following condition: Every properly embedded essen-
tial annulus (i.e. an incompressible annulus which is not homotopic into the
boundary) is properly isotopic into X, and no component of X is properly
isotopic into another component.

Such X is unique up to isotopy, and is called the characteristic subman-
ifold of M . We note that in the case when M has no torus boundary
component, which is the assumption of our main theorem, a component of
the last type (c) does not appear.

We need to consider characteristic submanifolds in a slightly general set-
ting, for pared manifolds. We shall first give a definition of pared manifold.

Definition 2.1. A pared manifold is a pair (M,P ), whereM is a boundary-
irreducible Haken 3-manifold, and P is a union of incompressible tori and
annuli on ∂M , with the following properties.

(1) Every π1-injective map from a torus f : T → M is homotopic to a
map into a component of P .

(2) Every π1-injective map from an annulus g : A→M with g(∂A) ⊂ P
is properly homotopic to a map whose image is contained in P .

The subsurface P above is called the paring locus.

Let (M,P ) be a pared manifold. There exists a submanifold X of M
disjoint from P each of whose components is either (a) or (b) listed in the
definition of characteristic manifolds above, and which satisfies the following
conditions.

(i) No component of X is a solid torus properly homotopic into P .
(ii) No component of X is properly homotopic into another component of

X.
(iii) Every properly emessential annulus A in M that is not properly ho-

motopic into P can be properly homotoped into X.

Such a submanifold is unique up to proper isotopy, and is called the char-
acteristic submanifold of (M,P ).

Thurston’s celebrated uniformisation theorem for Haken manifolds says
that every atoroidal Haken manifold whose boundary consists of incompress-
ible tori admits a hyperbolic structure of finite volume. More generally, he
proved that every atoroidal Haken manifold, including the case when it has
non-torus boundary components, admits a (minimally parabolic) convex hy-
perbolic structure of finite volume. The term ‘convex hyperbolic structure’
will be explained in the following subsection.

2.2. Kleinian groups and their deformation spaces. A Kleinian group
is a discrete subgroup of PSL2(C). In this paper, we always assume Kleinian
groups to be torsion free, and finitely generated except for the case when
we talk about geometric limits. For a Kleinian group Γ, we can consider
the complete hyperbolic 3-manifold H3/Γ. The convex core of H3/Γ is the
smallest convex submanifold that is a deformation retract. The Kleinian
group Γ and the corresponding hyperbolic 3-manifold H3/Γ are said to be
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geometrically finite when the convex core of H3/Γ has finite volume. In
particular, H3/Γ is said to be convex compact, and Γ to be convex cocompact
if the convex core is compact. We also say that Γ is minimally parabolic when
every parabolic element in Γ is contained in a rank-2 parabolic subgroup.
Any convex cocompact Kleinian group is automatically minimally parabolic
since it does not have parabolic elements.

A 3-manifold M is said to have a hyperbolic structure when IntM is
homeomorphic to H3/Γ for a Kleinian group Γ, and we regard the pull-
back of the hyperbolic metric to IntM as a hyperbolic structure on M . In
particular if Γ is taken to be geomerically finite or convex cocompact, we say
that M has a geometrically finite or convex compact hyperbolic structure.
If M admits a hyperbolic structure, then M must be atoroidal.

The set of hyperbolic structures on M modulo isotopy, which we denote
by AH(M), can be identified with a subset of the set of faithful discrete rep-
resentations of π1(M) into PSL2(C) modulo conjugacy. We put on AH(M)
a topology induced from the weak topology on the representation space. We
regard an element of AH(M) both as a hyperbolic structure on M and as a
representation of π1(M) into PSL2(C) depending on the situation.

A Kleinian group G is said to be a quasi-conformal deformation of another
Kleinian group Γ if there is a quasi-conformal homeomorphism f : Ĉ → Ĉ
such that G = fΓf−1 as Möbius transformations on Ĉ. When G is a quasi-
conformal deformation of Γ, there is a diffeomorphism from H3/Γ to H3/G
preserving the parabolicity in both directions, which induces an isomorphism
between the fundamental groups coinciding with the isomorphism given by
the conjugacy G = fΓf−1. We note that a quasi-conformal deformation of
geometrically finite (resp. convex cocompact, minimally parabolic geomet-
rically finite) group is again geometrically finite (resp. convex cocompact,
minimally parabolic geometrically finite).

Let M be a compact 3-manifold admitting a minimally parabolic geo-
metrically finite hyperbolic structure m. Let QH(M) denote the set of all
minimally parabolic geometrically finite hyperbolic structures on M modulo
isotopy, which is regarded as a subset of AH(M). Marden [9] showed that
every minimally parabolic geometrically finite hyperbolic structures on M is
obtained as a quasi-conformal deformation of m. Therefore we call QH(M)
the quasi-conformal deformation space. Furthermore, if ∂M is incompress-
ible, combined with the work of Ahlfors, Bers, Kra, Maskit and Sullivan,
there is a parameterisation q : T(∂M) → QH(M), where T(∂M) denotes the
Teichmüller space of ∂M , i.e. the direct product of the Teichmüller spaces
of the components of ∂M . We shall refer to this map as the Ahlfors-Bers
map.

In the case whenM is homeomorphic to S×[0, 1] for a closed oriented sur-
face S, the deformation spaces AH(M),QH(M) are denoted by AH(S),QF(S)
respectively. The quasi-conformal deformation space QF(S) consists of
quasi-Fuchsian representations of π1(S), i.e. quasi-conformal deformations of
a Fuchsian representation, and is therefore called the quasi-Fuchsian space.
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The Ahlfors-Bers map can be expressed as qf : T(S) × T(S̄) → QF(S),
where the second coordinate T(S̄) denotes the Teichmüller space of S with
orientation reversed, which is a more natural way for parametrisation since
the boundary component S×{1} has the opposite orientation from the one
given on S × {0} if we identify them with S by dropping the second factor.

Now, let M be an atoroidal Haken 3-manifold with non-empty incom-
pressible boundary which does not contain a torus. Suppose that M has
a convex compact hyperbolic metric m, and let S be a component of ∂M .
Take a covering ofM associated with π1(S) ⊂ π1(M), and lift the hyperbolic
structure m to the hyperbolic structure m̃ on S× [0, 1]. It is known (see [16,
Proposition 7.1]) that the lifted structure m̃ is also convex cocompact, hence
can be regarded as an element of QF(S). Therefore m̃ in turn corresponds
to a point (gS(m), hS(m)) in T(S)×T(S̄). Let S1, . . . , Sk be the components
of ∂M that are not tori, and we consider the point hSi(m) ∈ T(S̄i) for each
i = 1, . . . , k. We define T(∂̄M) to be T(S̄1) × · · · × T(S̄k). The map tak-
ing g ∈ T(∂M) to (hS1(q(g)), . . . , hSk

(q(g))) ∈ T(∂̄M) is called the skinning
map, which we shall denote by σ.

2.3. Curve complexes and projections. Let S be a connected compact
orientable surface possibly with boundary, satisfying ξ(S) = 3g + n ≥ 4
where g denotes the genus and n denotes the number of the boundary com-
ponents. The curve complex CC(S) of S with ξ(S) ≥ 5 is a simplicial complex
whose vertices are isotopy classes of non-peripheral, non-contractible sim-
ple closed curves on S such that n + 1 vertices span an n-simplex when
they are represented by pairwise disjoint simple closed curves. In the case
when ξ(S) = 4, we define CC(S) to be a graph whose vertices are isotopy
classes of simple closed curves such that two vertices have smallest possible
intersection. In the case when S is an annulus, we define CC(S) to be a
graph whose vertices are isotopy classes (relative to the endpoints) of non-
peripheral simple arcs in S such that two vertices are connected when they
can be represented by arcs which are disjoint at their interiors. Masur-
Minsky [11] proved that CC(S) is Gromov hyperbolic with respect to the
path metric for any S.

A marking µ on S consists of a pants decomposition of S, which is denoted
by base(µ) and whose components are called base curves, and a collection
t(µ) of simple closed curves, called transversals of base(µ), such that each
component of base(µ) intersects at most one among them essentially. For
two markings µ, ν on S and a subsurface Y , we define dY (µ, ν) to be the
distance between πY (base(µ) ∪ t(µ)) and πY (base(ν) ∪ t(ν)), where the
projection πY : CC(S) → P(CC(Y )) is obtained by taking the intersection
of curves on S with Y and connecting the endpoints by arcs on Fr Y when
the intersection contains arcs. In [12], a marking defined as such is called
clean. In this paper, we only consider clean markings. A marking is called
full when every base curve has a transversal. In general, for two sets of
simple closed curves a, b and a subsurface Y of S, we define dY (a, b) to be
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the distance in CC(Y ) between πY (a) and πY (b) provided that both of them
are non-empty. If one of them is empty, the distance is not defined.

For a point m in T(S), its shortest marking, which is a full marking
and is denoted by µ(m), has a shortest pants decomposition of (S,m) as
base(µ(m)), and t(µ(m)) consisting of shortest transversals, one for each
component of base(µ(m)). When we talk about the distance dY between
two points in T(S) or between a point in T(S) and a marking, we identify
points m ∈ T(S) with µ(m).

2.4. Geometric limits and compact cores. Let M be an atoroidal
boundary-irreducible Haken 3-manifold. Let {ρi} be a sequence of faith-
ful discrete representations of π1(M) into PSL2(C). We define a geometric
limit of {ρi(π1(M))} to be a Kleinian group Γ such that every element γ
of Γ is a limit of some sequence {gi ∈ ρi(π1(M))}, and every convergent
sequence {γij ∈ ρij (π1(M))} has its limit in Γ.

Fixing a point x ∈ H3, and considering its projections xi in H3/ρi(π1(M))
and x∞ in H3/Γ, the geometric convergence implies the existence of pointed
Gromov-Hausdorff convergence of ((H3/ρi(π1(M)), xi)) to (H3/Γ, x∞). This
latter convergence means that there exist real numbers ri going to ∞, Ki

converging to 1, and Ki-bi-Lipschitz diffeomorphisms fi (called approximate
isometries) between ri-balls Bri(H3/ρi(π1(M)), xi) and BKiri(H3/Γ, x∞).
Suppose that {ρi} converges to ρ∞ : π1(M) → PSL2(C) as representations
and that {ρi(π1(M))} converges to Γ geometrically. Then, ρ∞(π1(M)) is a
subgroup of the geometric limit Γ.

For an open irreducible 3-manifold V with finitely generated fundamental
group, a compact 3-dimensional submanifold C in V is called a compact
core when the inclusion induces an isomorphism between their fundamental
groups. The existence of compact cores was proved by Scott [19]. The case
which interests us is when V is a hyperbolic 3-manifold.

Let H3/G be a hyperbolic 3-manifold associated with a finitely generated,
torsion free Kleinian group G. By Margulis’s lemma, there is a positive con-
stant ε0 such that the set of points of H3/G where the injectivity radii are
less than ε0 consists of a finite disjoint union of tubular neighbourhoods
of closed geodesics of length less than ε0, called Margulis tubes, and cusp
neighbourhoods each of which is stabilised by a maximal parabolic subgroup
of G, and whose quotient by its stabiliser is homeomorphic to S1×R2 when
the stabiliser has rank 1, and to S1×S1×R when the stabiliser has rank 2.
The former cusp neighbourhood is called a Z-cusp neighbourhood, and the
latter a torus cusp neighbourhood. The union of the cusp neighbourhoods
is called the cuspidal part of H3/G. The complement of the cuspidal part
is called the non-cuspidal part and is denoted by (H3/G)0. Each boundary
component of (H3/G)0 is either an open annulus or a torus. By the rel-
ative compact core theorem by McCullough [13], there is a compact core
CG ⊂ (H3/G)0 such that for each boundary component B of (H3/G)0, the
intersection CG∩B is a core annulus when B is an open annulus, and is the
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entire B when B is a torus. We call such a compact core a relative compact
core of (H3/G)0.

Let p : H3/ρ∞(π1(M)) → H3/Γ be the covering map associated with the
inclusion of ρ∞(π1(M)) into the geometric limit Γ. Let C be a relative
compact core of (H3/ρ∞(π1(M)))0. Suppose that H3/Γ has a torus cusp
neighbourhood T . We say that H3/ρ∞(π1(M)) wraps around T when p|C is
homotoped to an immersion which goes around T non-trivially, and hence
cannot be homotoped to an embedding.

3. Topological features

3.1. Coverings. In this subsection, we shall show that to prove Theo-
rem 1.1, we can put an extra assumption that all the characteristic I-pairs
of M are product bundles.

We consider an atoroidal Haken manifold as is given in Theorem 1.1. Let
p : M̃ →M be a finite-sheeted regular covering. Then p induces the covering
map between the boundaries p∂ : ∂M̃ → ∂M . This map induces a proper
embedding between Teichmüller spaces, p∗∂ : T(∂M) → T(∂M̃) which is ob-
tained by pulling back the conformal structures by p∂ . Also the involution
ι lifts to an orientation-reversing involution ι̃ : ∂M̃ → ∂M̃ taking each com-
ponent to another one. Since M̃ is also an atoroidal boundary-irreducible
Haken manifold, we can consider the skinning map σ̃ : T(∂M̃) → T(∂̄M̃).

Lemma 3.1. If (ι̃ ◦ σ̃)n has bounded image for some n ∈ N, then so does
(ι ◦ σ)n.

Proof. The map p∗∂ properly embeds T(∂M) into T(∂M̃). By the definition
of the maps σ̃ and ι̃, we have p∗∂ ◦(ι◦σ) = (ι̃◦ σ̃)◦p∗∂ , and hence p∗∂ ◦(ι◦σ)n =
(ι̃ ◦ σ̃)n ◦ p∗∂ . Therefore, if the image of (ι̃ ◦ σ̃)n is bounded, the properness
of p∗∂ implies that the image of (ι ◦ σ)n must also be bounded. □

This result allows us to work on manifolds with topological features that
will make the arguments simpler.

Lemma 3.2. Let M be an orientable atoroidal Haken manifold with in-
compressible boundary. Then there is a double covering of M all of whose
characteristic I-pairs are product I-bundles.

Proof. Let Ξ1, . . . ,Ξp be the characteristic I-pairs of M that are twisted I-

bundles. Take their double coverings Ξ̃1, . . . , Ξ̃p corresponding to the orien-
tation double coverings of the base surfaces. For each Ξj among Ξ1, . . . ,Ξp,
its frontier components (i.e. the closures of the components of ∂Ξj \ ∂M)

are annuli. Each of such annuli has two pre-images in Ξ̃j which are taken
to each other by the unique non-trivial covering translation.

Let C be the closure of a component ofM \(Ξ1∪· · ·∪Ξp). Let A1, . . . , Ak
be the components of C∩ (Ξ1∪· · ·∪Ξp), which are annuli on ∪pl=1∂Ξl \ ∂M .
We prepare two copies C+ and C− of C. Each Aj among A1, . . . Ak, which

is contained some Ξi among Ξ1, . . . ,Ξp, has two lifts A+
j and A−

j in Ξ̃i. Now
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we identify the copy of Aj in C
+ to A+

j in Ξ̃i and the one in C− to A−
j in Ξ̃i

for each annulus among A1, . . . Ak. We repeat the same procedure for every
component C of M \ (Ξ1 ∪ · · · ∪Ξp), and get a manifold M̃ , which will turn
out to be a double cover of M as shown below.

Define a homeomorphism t : M̃ → M̃ to be the covering translation on
each Ξ̃i and the map taking C± to C∓ preserving the identification with C
for each of C±. It is clear from the definition that this homeomorphism t
is a free involution. By taking the quotient of M̃ under ⟨t⟩ ∼= Z2, we get a

manifold naturally identified with M . Thus we see that M̃ is a double cover
of M . Since Ξ̃i is a product I-bundle and all of the characteristic I-pairs
contained in C± are product bundles by our definition of Ξ1, . . . ,Ξp, we see

that M̃ is a double cover as desired. □
For some of our arguments we shall need a stronger assumption than

having only product bundles:

Definition 3.3. Let M be a compact orientable Haken 3-manifold with
incompressible boundary. We say that M is strongly untwisted if and only
if:

(A) Every characteristic I-pair is a product bundle.
(B) For any characteristic I-pair Ξ and any simple closed curve d ⊂ ∂M ,

the simple closed curve d can be homotoped on ∂M into at most one
component of Ξ ∩ ∂M .

We are going to construct a cover with the properties (A) and (B) above.
In order to do that, we need to examine how characteristic I-pairs are at-
tached to other components of the characteristic submanifold. In the follow-
ing proof of Lemma 3.4, it will turn out that there are two situations ((a)
and (b) below) where the second condition of ‘strong untwistedness’ breaks
down.

Lemma 3.4. Let M be a compact orientable atoroidal Haken manifold with
incompressible boundary. Then there is a finite-sheeted regular covering of
M which is strongly untwisted.

Proof. By Lemma 3.2, we have a double covering all of whose characteristic
I-pairs are product I-bundles. Therefore, we may assume that M satisfies
the first condition (A) of ‘strong untiwistedness’, and we shall construct a
covering satisfying the second condition.

To construct such a covering, let us analyse how this second condition
(B) can fail to hold. Let d ⊂ ∂M be a simple closed curve, and let W a
characteristic I-pair. Since no components of W ∩ ∂M are annuli, d can be
homotoped on ∂M into at most two components of W ∩ ∂M . Furthermore,
if d can be homotoped into two such components, then d lies (up to isotopy
on ∂M) on a component Tj (characteristic solid torus or a characteristic
thickened torus) of T , and there are two possibilities: (a) Tj ∩ ∂M is an
annulus when Tj is a solid torus, and is the union of an annulus and a torus
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when Tj is a thickened torus; or (b) d separates two consecutive components

of Tj ∩M \ T both lying in the same characteristic I-pair. We shall show
that we can take a finite-sheeted covering of M so that neither (a) nor (b)
can happen.

First, we consider the condition (a). Let Tj be a component of T such that
Tj ∩ ∂M is an annulus (and Tj is a solid torus) or the union of an annulus

and a torus (when Tj is a thickened torus). This implies that Tj ∩M \ Tj
is connected, hence is an annulus, which we denote by A. Since Tj is a
characteristic solid torus or characteristic thickened torus, the annulus A is
essential, and hence is not homotopic to Tj∩∂M fixing the boundary. Then,
we can choose a simple closed curve α, which is not contractible in M , on
the component of ∂Tj on which d lies so that both α ∩ A and α ∩ ∂M are
connected, i.e. arcs. Since π1(Tj) is either Z or Z×Z, we can take a k-sheeted

cyclic covering T̃j of Tj so that α cannot be lifted homeomorphically, whereas
the annulus A is homeomorphically lifted. (For instance, in the case when
π1(Tj) ∼= Z, we choose k which is coprime with the element represented by
α.) Then the preimage of the annulus A is k copies of A, which we denote by

A1, . . . , Ak. Let C be M \ Tj . We prepare k copies of C, which we denote

by C1, . . . , Ck. By pasting Cj along Aj to T̃j , we can make a k-sheeted

cyclic covering of M in which T̃j does not satisfy the condition (a). If there
is another component Tj′ of T with the condition (a), we repeat the same
process for all the k lifts of Tj′ at the same time. Repeating the process, we
get a finite-sheeted covering of M in which there is no characteristic solid
torus or a characteristic thickened torus with the condition (a). We use the
same symbolM and T for this finite-sheeted covering, abusing the notation.

Now we turn to the condition (b). We consider three colours named the

colour 0, 1 and 2 and we choose a colour for each annulus of T ∩M \ T so
that, on ∂T , no two consecutive annuli have the same colour. We take three
copies of each component of T and ofM \ T which we name the lift 0, 1 and

2. Consider a component U of T , a component V of M \ T and an annulus
E ⊂ U ∩ V with the colour k ∈ {0, 1, 2}. For every j ∈ {0, 1, 2}, we glue
the lift j of V to the lift (j + k) mod 3 of U along the appropriate lifts of

E. Using the same construction for each component of T ∩M \ T , we get a

triple cover M̂ of M in which any two consecutive components of T̂ ∩M̂ \ T̂
lie in different components of M̂ \ T̂ . In particular there is no characteristic

solid torus or characteristic thickened torus in M̂ for which the condition
(b) holds.

Thus, we have shown that by taking a finite-sheeted covering, we can
make both of the situations (a) and (b) disappear, which means, as we saw
above, that the covering is strongly untwisted. □

Lemmas 3.1 and 3.4 show that to prove Theorem 1.1, we have only to
consider the case when M is strongly untwisted.
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3.2. Vertically extendible surfaces. Let M be an atoroidal Haken man-
ifold as in Theorem 1.1. Let X be the characteristic submanifold of M .
Assume that every I-bundle in X is a product I-bundle.

Definition 3.5. Given an incompressible subsurface F ⊂ ∂M , we say that
F is one-time vertically extendible if there is an incompressible surface F 1 ⊂
∂M and an essential I-bundle VF ⊂M with VF∩∂M = F∪F 1 and F 1 ⊂ ∂X
up to isotopy. We call F 1 a first elevation of F .

It follows from the definition of characteristic submanifold that there is
an isotopy which takes VF into the characteristic submanifold X. From now
on, we assume that if F is one-time vertically extendible then F ⊂ X and
VF ⊂ X.

We note solid torus components in X may add some complications in the
case when F is an annulus. If F is contained in such a component of X,
there may be more than one possible first elevation (even up to isotopy) and
the I-bundles corresponding to two disjoint annuli may intersect (even up
to isotopy).

We now define multiple elevations by induction.

Definition 3.6. Given an incompressible subsurface F in ∂M and n ≥ 2,
we say that F is n-time vertically extendible if there is an essential surface
F 1 ⊂ ∂M and an essential I-bundle VF ⊂ M with VF ∩ ∂M = F ∪ F 1 and
ι(F 1) is (n − 1)-time vertically extendible. An (n − 1)-th elevation Fn of
ι(F 1) is defined to be an n-th elevation of F .

We say that two multi-curves c, d ⊂ ∂M intersect minimally if for every
multicurves c′, d′ homotopic to c and d respectively, ]{c ∩ d} ≤ ]{c′ ∩ d′}.
Let F,G ⊂ X ∩ ∂M be two incompressible surfaces. We say that F and G
intersect minimally if ∂F intersects ∂G minimally.

Lemma 3.7. Let F,G ⊂ ∂M be connected incompressible subsurfaces which
intersect minimally and are not disjoint. If F and G are n-time vertically
extendible, then so is F ∪G.
Proof. If F andG are one-time vertically extendible, as was remarked before,
we may assume that F,G ⊂ X ∩ ∂M . Since they intersect minimally and
are not disjoint, they must lie in the same component H of X∩∂M which is
not an annulus. Then the component V of X containing H is an I-bundle,
which is a product I-bundle by assumption, and can be parametrised as
H × [0, 1].

Then, by moving F and G by isotopies, we have VF = F×[0, 1] ⊂ H×[0, 1]
and VG = G×[0, 1] ⊂ H×[0, 1], and F 1 = F×{0, 1}\F, G1 = G×{0, 1}\G.
Since F 1, resp. G1, lies in the component of X∩∂M which does not contain
F and G, F 1 and G1 lie in the same component of X ∩ ∂M . Therefore
F 1 ∪G1 lies in X ∩ ∂M . Thus we have proved that if F and G are one-time
vertically extendible then F ∪ G is also one-time vertically extendible and
F1 ∪G1 is its first elevation.
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The case of n > 1 follows by induction. □
Corollary 3.8. For any natural number n, there is an (possibly empty)
incompressible surface Σn ⊂ X ∩ ∂M such that each component of Σn is n-
time vertically extendible, no component of Σn can be isotoped on ∂M into
another component of Σn and every n-time vertically extendible surface can
be isotoped into Σn.

Proof. If there is no surface that is n-time vertically extendible, we set Σn to
be ∅. Otherwise, let Σ ⊂ X be an n-time vertically extendible incompressible
surface. If every n-time vertically extendible surface can be isotoped into Σ,
we are done, by taking Σn = Σ.

Otherwise, there is an n-time vertically extendible surface F which cannot
be isotoped into Σ. Moving F by an isotopy we can assume that F intersects
Σ minimally. By Lemma 3.7, each connected component of F ∪Σ is n-time
vertically extendible, and we replace Σ with Σ ∪ F , and call this enlarged
surface Σ. We repeat this operation as long as there is an n-time vertically
extendible surface which cannot be isotoped into Σ. Every time we add a
surface, either we decrease the Euler characteristic of Σ or we add a disjoint
annulus which cannot be isotoped into Σ. Hence this process must terminate
after finitely many steps. The final resulting surface is Σn. □

Since an n-time vertically extendible surface is m-vertically extendible for
any m ≤ n, we have Σn ⊂ Σm up to isotopy.

In the next lemma we show that, when N is atoroidal, M cannot contain
an n-time extendible surface for sufficiently large n. In the last section, this
result will lead us to the constant n of Theorem 1.1.

Lemma 3.9. There is L depending only on the topological type of ∂M
such that if there is an L-time vertically extendible surface, then N is not
atoroidal.

Proof. Letting g denote the genus of ∂M , we set K = 3g − 3, which is the
number of curves in a pants decomposition of ∂M . Since no components of
Σn can be isotoped into another component, ∂Σn has at most 2K boundary
components. Using this observation, we show in the following claim that
Σn+2K must be a proper subsurface of Σn even up to isotopy.

Claim 3.10. For any n ∈ N, if Σn is non-empty and any component of Σn

can be isotoped into Σn+2K , then N cannot be atoroidal.

Proof. Suppose that Σn ̸= ∅, and that any component of Σn can be isotoped
into Σn+2K . Since Σn+j is contained in Σn for any j ≥ 0 up to isotopy as
observed above, and no component of Σn+j can be isotoped into another
component, we have then Σn+j = Σn for any j ≤ 2K up to isotopy. Let F
be a component of Σn+2K with minimal Euler characteristic, and F j its j-th
elevation. By definition, ι(F j) is (n+2K − j)-time vertically extendible for
any j ≤ 2K. Therefore ι(F j) can be isotoped into Σn. Since Σn = Σn+2K
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and F has minimal Euler characteristic, ι(F j) is a component of Σn, up to
isotopy. In particular ∂(ι(F j)) ⊂ ∂Σn up to isotopy.

Let V j be the I-bundle cobounded by ι(F j−1) and F j . We note that by
definition, F j and ι(F j) are identified in N and that the interior of V j is
embedded in N . Taking the union of the I-bundles V j in N for j ≤ 2K,
we get a map F × [0, 2K] → N such that F × {j} is sent to F j . Let c be a
component of ∂F . The image of the annulus c× [0, 2K] goes 2K + 1 times
through ∂Σn. Since ∂Σn has at most 2K components, there is a component
c′ of ∂Σn through which c×[0, 2K] goes at least twice. The image of the part
of this annulus between two such instances forms a torus T embedded in N .
Considering the component of ∂M through which T goes, we can construct
an infinite cyclic covering of N in which T lifts to an infinite incompressible
annulus. It follows that T is incompressible and non-peripheral. Hence N
is not atoroidal. □

As mentioned before, we have Σn ⊂ Σm for any m ≤ n. Consider mono-
tone increasing indices nj such that Σnj+1 is smaller than Σnj in the sense
that at least one component of Σnj cannot be isotoped into Σnj+1. Since
no component of Σn can be isotoped into another component, we have then
either χ(Σnj+1) > χ(Σnj ) or Σnj+1 has fewer connected components than
Σnj . It follows that there are at most K such nj , namely, there is J ≤ K
such that for any n ≥ nJ + 1, we have Σn = Σn+1. By Claim 3.10, if
nj−nj−1 ≥ 2K for some j ≤ J or if ΣnJ ̸= ∅, then N is not atoroidal. Since
J ≤ K, we can now conclude the proof just by setting L = 2K2. □

4. Convergence, divergence and subsurface projections

In this section, we shall review the relations between the invariant m men-
tioned in the introduction and the convergence and divergence of Fuchsian
and Kleinian groups.

4.1. Subsurface projections and Fuchsian groups. We first recall the
definition of the invariant m from [2], and see how it controls the behaviour
of sequences of Fuchsian groups.

Definition 4.1. Let S be a (possibly disconnected) closed surface of genus
at least 2 and g a point in its Teichmüller space. Regarding g as a hyperbolic
structure on S, we let µ(g) be a shortest marking for (S, g) (See Section 2.3).
Although there might be more than one shortest markings, its choice does
not matter for our definition and arguments. We fix a full and clean marking
µ consisting of a pants decomposition and transversals on S independent of
g. For any essential simple closed curve d on S, we define

m(g, d, µ) = max

{
sup

Y : d⊂∂Y
dY (µ(g), µ),

1

lengthg(d)

}
,

where the supremum of the first term in the maximum is taken over all
incompressible subsurfaces Y of S whose boundaries ∂Y contain d.
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It follows from [2, Lemma 5.2] that two curves with unbounded m cannot
intersect:

Lemma 4.2. Let {mj} be a sequence in T(S) and let c1, c2 be simple closed
curve on S. If m(mj , ci, µ) −→ ∞ as j → ∞ for both i = 1, 2, then
i(c1, c2) = 0.

Proof. This is just a special case of [2, Lemma 5.2] for Fuchisan groups.
We note that the assumption of bounded projections of end invariants is
unnecessary in this special case for which end invariants are empty. □

The invariantm is related to the divergence and convergence of a sequence
by the following lemma:

Lemma 4.3. Let µ be a full marking on S, and let {mi} be a sequence in
T(S). Then every subsequence of {mi} contains a convergent subsequence if
and only if {dS(µ(mi), µ)} is bounded for a shortest marking µ(mi) of mi

and {m(mi, c, µ)} is bounded for every essential simple closed curve c on S.

Proof. It follows from classical results on Fenchel-Nielsen coordinates that
any subsequence of {mi} contains a converging subsequence if and only if the
sequence {µ(mi)} is a finite set and {lengthmi

(µ(mi))} is bounded. By [2,
Lemma 2.3], the sequence {µ(mi)} is infinite if and only if passing to a sub-
sequence, either {dS(µ(mi), µ)} is unbounded or there is an incompressible
subsurface Y such that dY (µ(mi), µ) −→ ∞ (and hence m(mi, c, µ) −→ ∞
for any component c of ∂Y ).

On the other hand, if the sequence {µ(mi)} consists of finite elements,
then lengthmi

(µ(mi)) is unbounded if and only if passing to a subsequence,
there is a curve c with lengthmi

(c) −→ 0 (and hencem(mi, c, µ) −→ ∞). □
4.2. Relative convergence of Kleinian groups. We shall next estab-
lish a necessary condition on the invariant m for algebraic convergence on
a submanifold. We start with a fundamental result. Thurston proved in
[23] the following which is the first half of the theorem often referred to
as the ‘broken window only’ theorem. We note that the latter half of the
broken window only theorem should need some rectification (see [17]) but is
irrelevant to the present paper.

Theorem 4.4. Let M be an atoroidal Haken 3-manifold and X its char-
acteristic submanifold. Then for any curve γ in M \ X and any sequence
{ρi ∈ AH(M)}, the length of the closed geodesic in H3/ρi(π1(M)) represent-
ing the free homotopy class of ρi(γ) is bounded as i −→ ∞.

Using arguments from [2], we establish the following necessary condition
for algebraic convergence on a submanifold.

Theorem 4.5. Let M be an atoroidal boundary-irreducible Haken 3-
manifold all of whose characteristic I-pairs are product I-bundles. Let {mi}
be a sequence in T(∂M), and {ρi : π1(M) → PSL2(C)} a sequence of rep-
resentations corresponding to {q(mi)}. Let µ ⊂ ∂M be a full and clean
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marking, and W ⊂ M a submanifold with paring locus P which is a union
of disjoint non-parallel essential annuli on ∂W . (See Definition 2.1 for the
definition of pared manifolds.) We assume the following:

(a) The closure of ∂W \ ∂M is a union of essential annuli contained in P .
(b) For any non-contractible simple closed curve c in P , lengthρi(c) is

bounded as i −→ ∞.
(c) For any essential annulus E ⊂W disjoint from P , there is a component

c of ∂E such that {m(mi|S, c, µ)} is bounded for the component S of
∂M on which c lies.

(d) If M is an I-bundle, then P ̸= ∅.
Then the sequence of the restrictions {ρi|π1(W )} has a convergent subse-

quence up to conjugation.

Proof. We follow the argument of [2, Proposition 6.1] with some modifica-
tions as below. We note that the condition (c) above will replace the as-
sumption of ‘bounding projection without combinatorial wrapped parabol-
ics’ imposed there. The condition (a) will allow us to work on the sub-
manifold W rather than the whole manifold. Following [2, Lemma 6.2],
we start with constructing a pants decomposition r of ∂W with uniformly
bounded length. In the first paragraphs of the proof of [2, Lemma 6.2], the
assumption of bounded projection is used to find the first curves in r. In our
relative setting, we do not have an equivalent assumption. Instead, we use
the conditions (b) and (d) above and Theorem 4.4 to find the first curves as
below.

Denote by ci a shortest pants decomposition of ∂M with respect to mi.
Note that {dY (mi, µ) = dY (µ(mi), µ)} is bounded for any essential subsur-
face Y that is not an annulus with its core curve in ci if and only if {dY (ci, µ)}
is bounded. Let X be the characteristic submanifold of the pared manifold
(W,P ). Consider a multicurve r on ((W \X) ∩ ∂W ) ∪ P which is maximal

in the sense that any simple closed curve in ((W \X)∩∂W )∪P either inter-
sects r or is homotopic on ∂W to a component of r. We note that it contains
a curve isotopic to each boundary component of X∩∂W by the maximality,
and is not empty by (d). By our assumption (b) and Theorem 4.4, there is
L such that lengthρi(r) ≤ L.

Next, following the proof of [2, Proposition 6.1], we add curves to r until

we get a pants decomposition. Since r is already maximal in ((W \X) ∩
∂W ) ∪ P we only need to extend it to the union Z of the characteristic
I-pairs in X. By assumption, Z is a product I-bundle in the form Σ × I
(Σ may be disconnected). We denote by f : Z → Σ the projection along the
fibres, and for a subsurface F ⊂ Σ and for j = 0, 1, we use the symbol Fj
to denote f−1(F ) ∩ Σ× {j}. For each component F of Σ that is not a pair
of pants, by the assumption (c), there is j ∈ {0, 1} such that {dFj (ci, µ)}
is bounded. Let Sj be the component of ∂M containing Fj , and denote by
θi = ρi ◦ I∗ : π1(Sj) → PSL2(C) the representation induced by the inclusion
I : Sj ↪→ M . The quotient manifold H3/θi(π1(Sj)) covers H3/ρi(π1(M)),
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and has end invariant mi|Sj on one side. Now, replacing ρi with θi, we can
follow the proof of [2, Lemma 6.2] starting at the penultimate paragraph (i.e.
the third paragraph on p. 836) to find a simple closed curve ai contained in
F as follows. By Theorem 4.4 and the assumptions (a,b), each boundary
component of F is homotopic to a closed geodesic in H3/θi(π1(Sj)) with
length bounded as i −→ ∞. We note that the assumption (d) implies that F
is not the entire S, and hence has non-empty boundary. Then the argument
of the proof of Lemma 6.2, which makes use of [2, Lemma 2.11], gives us a
simple closed curve ai in F homotopic to a closed geodesic in H3/θi(π1(Sj))
with bounded length such that the distance from f(ci ∩Fj) in CC(F ) is also
bounded as i −→ ∞. Thus we have a constant L′ and a sequence of curves
{ai} on F such that `ρi(ai) ≤ L′ and {dFj (f

−1(ai) ∩ Fj , ci)} is bounded as
i −→ ∞.

Up to isotopy, f(r ∩ Z) consists of boundary components of Σ since Z
is contained in X and r lies outside X. We denote f(r ∩ Z) by s. If {ai}
has a constant subsequence, then we pass to an appropriate subsequence of
{ρi}, and add ai (independent of i) to s. If not, by [2, Lemma 2.3], there
is a subsurface Y ⊂ F with dY (ai, µ) −→ ∞, passing to a subsequence.
Since {dFj (ci, µ)} and {dFj (f

−1(ai) ∩ Fj , ci)} are bounded, Y must be a
proper subsurface of F (even up to isotopy). If, passing to a subsequence,
there is k ∈ {0, 1} such that Yk = f−1(Y ) ∩ Sk is an annulus containing a
component of ci for all i, we add the projection by f of this component of ci
to s. Otherwise, by the assumption (c), there exists k ∈ {0, 1} with bounded
{dYk(ci, µ)}. Hence, passing to a subsequence, dYk(ci, f

−1(ai) ∩ Sk) −→ ∞,
and by [15, Theorem B], `ρn(∂Y ) → 0. In this case, we add ∂Y to s. We
repeat the above construction letting F be a component of Σ \ s until Σ \ s
becomes a union of annuli and pair of pants. Adding f−1(s) to r, we obtain
a pants decomposition of ∂W , which we shall still denote by r, such that
{`ρn(r)} is bounded.

Next we attach a transversal with bounded length to each component
d of r such that there is an essential annulus E with d ⊂ ∂E and that
{m(mi|S, d, µ)} is bounded (where S is the component of ∂M on which d
lies). Let d be such a curve. If d is contained in ci, we replace ci with a short-
est pants decomposition not containing d. Since {m(mi|S, d, µ)} is bounded,
there is a positive lower bound on {`mi(d)}, and there is an upper bound on
{`mi(ci)} by our definition of ci. Considering the covering associated with
the inclusion S ↪→M we can use the arguments of [2] (proof of Proposition
6.1, the part after the proof of Lemma 6.2, starting from the fifth paragraph
on p. 836) to obtain a transversal td to d with bounded length `ρi(td).

By the assumption (c), the union of r and all the transversals defined
above is doubly incompressible in Thurston’s sense [23, Section 2]. Then
we can deduce from Thurston’s relative boundedness theorem [23, Theorem
3.1] that the restriction of {ρi|π1(W )} has a convergent subsequence. □
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5. Unbounded skinning and annuli

The following proposition is the main step of our proof of Theorem 1.1.

Proposition 5.1. Let M be an orientable atoroidal boundary-irreducible
Haken 3-manifold that is strongly untwisted. Let {mi} be a sequence in
T(∂M), let σ be the skinning map, and assume that there is a simple closed
curve d on ∂M such that m(σ(mi), d, µ) −→ ∞ for a full clean marking
µ. Then, passing to a subsequence, there is a properly embedded essential
annulus A ⊂M with ∂A = d ∪ d′ such that m(mi, d

′, µ) −→ ∞.

We are going to show that any subsequence of {mi} contains a further
subsequence for which the conclusion holds. To simplify the notations we
shall use the same subscript i for all subsequences.

5.1. Re-marking. Our manifold M is either connected or has two com-
ponents. In the case when M has two components, by considering the
component on which d lies, and abusing the symbol M to denote this com-
ponent, we can assume thatM is connected. Recall that, by the assumption
throughout this section,M is strongly untwisted. Let ρi : π1(M) → PSL2(C)
be a representation corresponding to q(mi).

As a first step for the proof of Proposition 5.1, we change the markings of
M so that the behaviour of the ρi can be read more easily from the behaviour
of their end invariants.

Lemma 5.2. Let d be an essential simple closed curve on ∂M , and let
d1, . . . , dp be disjoint simple closed curves on ∂M representing the homotopy
classes of simple closed curves on ∂M homotopic to d in M , where d1 = d.
Furthermore, we assume that

(*) {m(mi, dj , µ)} is bounded for every j = 2, . . . , p.

Then there is a sequence of orientation-preserving homeomorphisms {ψi :
M →M} such that, passing to a subsequence, the following hold:

(1) For any essential simple closed curve c ⊂ ∂M , either {m(ψi∗(mi), c, µ)}
is bounded or m(ψi∗(mi), c, µ) −→ ∞,.

(2) If A ⊂ M is an essential annulus disjoint from all the dj such that
m(ψi∗(mi), ∂kA,µ) −→ ∞ for both boundary components ∂1A and ∂2A
of A, then `ρi◦ψ−1

i∗
(∂A) −→ 0.

(3) For every dj among d1, . . . , dp defined above,
(i) ψi(dj) = dj for every i and j,
(ii) for every j = 1, . . . , p, {m(ψi∗(mi), dj , µ)} is bounded if and only

if {m(m1, dj , µ)} is bounded, and
(iii) {m(σ ◦ ψi∗(mi), dj , µ)} is bounded if and only if {m(σ(mi), dj , µ)}

is bounded.

Proof. We shall first define the homeomorphisms ψi, and then verify the
desired properties. Let Ξ be a component of the characteristic submanifold
X of M \ d. Suppose first that Ξ is a solid torus. The components of
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∂Ξ \ ∂M are incompressible annuli. We define ψi on soid-torus components
Ξ of X to be a composition of Dehn twists along these frontier annuli with
the following properties:

(a) If Ξ is a solid torus, then πF (µ(ψi∗(mi))) is constant with respect to i
for every component F of Ξ ∩ ∂M except for at most one.

By the assumption (*), passing to a subsequence, we need not compose Dehn
twists along annuli of the frontier components of Ξ to achieve the condition
(a) when Ξ ∩ ∂M contains an annular neighbourhood of d (up to isotopy),
and hence ψi, as defined for the moment, also satisfies the following:

(b) For every j = 1, . . . , p, we have ψi(dj) = dj and πAj (µ(ψi∗(mi))) =
πAj (µ(mi)) for an annulus Aj on ∂M whose core curve is dj .

If Ξ is not a solid torus, Ξ is a product Ξ = F×I. (Recall that we have an
assumption that every characteristic I-pair of M is a product bundle. This
implies that an I-pair in the characteristic submanifold X of M \ d is also a
product I-bundle.) Let F0 be a component of Ξ∩∂M which does not contain
a curve homotopic on ∂M to d1 (there is always such a component sinceM is
strongly untwisted). Since the curve complex of F0 has finitely many orbits
under the action of the mapping class group of F0 (relative to ∂F0), there
is a sequence of orientation-preserving homeomorphisms gi : F0 → F0 fixing
∂F0 such that, passing to a subsequence, πF0(µ(gi∗(mi))) is constant. We
then define ψi on Ξ by extending gi along the fibres, i.e. ψi(x, t) = (gi(x), t)
for any (x, t) ∈ Ξ = F0 × I.

Thus we have the following.

(c) there are R > 0 and a component F0 of Ξ ∩ ∂M not containing any
curve homotopic on ∂M to d1 such that dY (µ(ψi∗(mi)), µ) ≤ R for any
incompressible subsurface Y ⊂ F0.

We note that since Ξ is a component of the characteristic submanifold of
M \ d, if ∂Ξ contains a curve dj , then it must be peripheral, and hence the
action of ψi on Ξ does not affect the property (b).

We repeat the construction above for all the components of the charac-
teristic submanifold X, and we extend the resulting homeomorphisms to a
homeomorphism of M which is isotopic to the identity on the complement
of the characteristic submanifold.

We now verify the properties (1, 2, 3) for ψi thus constructed.
The first property (1) can be obtained by passing to a subsequence for

any sequence of homeomorphisms. Therefore, we are done with (1).
We next turn to proving the property (3). By the assumption (*), taking

a subsequence, we may assume that πF (µ(mi)) is constant whenever F is an
annulus containing a curve dj for j ̸= 1. Wet first show the following claim.

Claim 5.3. For every j = 1, . . . , p and for any sequence of incompressible
subsurfaces Yi ⊂ ∂M with its boundary containing dj which are not a pair
of pants, {dYi(µ, ψi(µ))} is bounded.
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Proof. Fix j = 1, . . . , p, and consider a sequence of incompressible subsur-
faces Yi ⊂ ∂M each of which contains dj in its boundary. If all of the Yi
are annulli after passing to a subsequence, the conclusion follows from the
property (b). From now on, taking a subsequence, we assume that none of
the Yi are annuli.

Assume first that there is a simple closed curve c ⊂ ∂M intersecting Yi
which lies outside the characteristic submanifold X. Then by our construc-
tion of ψi, we have ψi(c) = c, and hence

dYi(µ, ψi(µ)) ≤ dYi(µ, c) + dYi(c, ψi(µ))

≤ dYi(µ, c) + dYi(ψi(c), ψi(µ))

≤ dYi(µ, c) + dψ−1
i (Yi)

(µ, c)

≤ 4i(c, µ) + 2,

where the last inequality is due to Masur–Minsky [11, Lemma 2.1]. Thus
we are done in this case.

Otherwise, taking a subsequence, we may assume that Yi is contained
in Ξi ∩ ∂M for a component Ξi of the characteristic submanifold X. Tak-
ing a further subsequence, we may assume that Ξi = Ξ does not depend
on i. Since Yi is not an annulus, Ξ is a product I-pair F × I. Let
F0 be the component of Ξ ∩ ∂M given by the property (c). Let us de-
note by Y ′

i the projection of Yi to F0 along the fibres, (setting Y ′
i = Yi

if Yi ⊂ F0). By our definition of d1, . . . , dp, the boundary of Y ′
i con-

tains some dk with k ≥ 2. Then, {m(mi, dk, µ)} is bounded by the
assumption (*), and ψi(dk) = dk by the property (b). In particular
{dY ′

i
(µ(ψi(mi)), ψi(µ)) = dψ−1

i (Y ′
i )
(µ(mi), µ)} is bounded. On the other

hand, by the property (c), {dY ′
i
(µ(ψi∗(mi)), µ)} is bounded. Thus we see

that {dY ′
i
(µ, ψi(µ)) ≤ dY ′

i
(µ, µ(ψi∗(mi))+dY ′

i
(µ(ψi∗(mi), ψi(µ))} is bounded.

It follows from the construction of ψi that dYi(µ, ψi(µ)) = dY ′
i
(µ, ψi(µ)), and

hence {dYi(µ, ψi(µ))} is also bounded. □

Now we can show that the sequence {ψi} satisfies the property (3) by the
condition (*) and the following claim.

Claim 5.4. For any j = 1, . . . , p, the sequence {m(ψi∗(mi), dj , µ)} is
bounded if and only if {m(mi, dj , µ)} is bounded, and {m(σ◦ψi∗(mi), dj , µ)}
is bounded if and only if {m(σ(mi), dj , µ)} is bounded.

Proof. Let {Yi ⊂ ∂M} be a sequence of incompressible subsurfaces
with dj ⊂ ∂Yi which are not pairs of pants. Since dYi(mi, µ) =
dψi(Yi)(µ(ψi∗(mi)), ψi(µ)), the triangle inequalities

dYi(µ(mi), µ) ≤ dψi(Yi)(µ(ψi∗(mi)), µ) + dψi(Yi)(µ, ψi(µ)), and

dψi(Yi)(µ(ψi∗(mi)), µ) ≤ dψi(Yi)(µ(ψi∗(mi)), ψi(µ)) + dψi(Yi)(ψi(µ), µ)
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lead to

dψi(Yi)(µ(ψi∗(mi)), µ)− dψi(Yi)(µ, ψi(µ))

≤ dYi(µ(mi), µ) ≤ dψi(Yi)(µ(ψi∗(mi)), µ) + dψi(Yi)(µ, ψi(µ)).

Thus by applying Claim 5.3, we see that {dYi(µ(mi), µ)} is bounded if and
only if {dψi(Yi)(µ(ψi∗(mi)), µ)} is bounded.

Since ψi(dj) = dj by the property (b), we also have lengthmi
(dj) =

lengthψi∗(mi)(dj), and we conclude that {m(ψi∗(mi), dj , µ)} is bounded if

and only if {m(mi, dj , µ)} is bounded.
Since σ commutes with ψi∗, the same argument shows that that {m(σ ◦

ψi∗(mi), d, µ)} is bounded if and only if {(σ(mi), d, µ)} is bounded. □

To conclude the proof of Lemma 5.2, it remains to establish the property
(2). We restate the property as a claim.

Claim 5.5. Let A ⊂ M be an essential annulus with its boundary compo-
nents denoted by ∂1A and ∂2A. Suppose that m(ψi∗(mi), ∂kA,µ) −→ ∞ for
both k = 1 and k = 2. Then lengthρi◦ψ−1

i∗
(∂1A) −→ 0.

Proof. Let a1, . . . , aq be homotopically distinct simple closed curves on
∂M representing all the homotopy classes (in ∂M) homotopic to ∂1A in
M . By renumbering them, we can assume ak = ∂kA for k = 1, 2. If
lengthψi∗(mi)(ak) −→ 0 for some k = 1, . . . , q, we are done.

To deal with the remaining case, we now assume that there is a positive
constant ε such that lengthψi∗(mi)(ak) ≥ ε for every i ∈ N and k = 1, . . . , q.
Then, there are a constant L and simple closed curves ck,i for every i ∈ N and
k = 1, . . . , q such that ck,i intersects ak essentially and lengthψi∗(mi)(ck,i) ≤
L. There is also K1 such that dY (ck,i, µ(ψi∗(mi))) ≤ K1 for any j, i and
any incompressible subsurface Y ⊂ ∂M intersecting ck,i that is neither an
annulus nor a pair of pants, since by definition, the length of µ(ψi∗(mi)) is
also bounded from above by a constant.

Since m(ψi∗(mi), ak, µ) −→ ∞ and `ψi∗(mi)(ak) ≥ ε for k = 1, 2,
there are incompressible subsurfaces Yk,i such that ak ⊂ ∂Yk,i and
dYk,i(µ(ψi∗(mi)), µ) −→ ∞ for k = 1, 2. If, passing to a subsequence, Y1,i
and Y2,i are both annuli, then, up to homotopy, they lie on the boundary
of the same component Ξ of the characteristic submanifold (which is, up to
passing to a further subsequence independent of i). However, the assump-
tion that m(ψi∗(mi), ak, µ) −→ ∞ contradicts (a) when Ξ is a solid torus,
and (c) when Ξ is an I-pair. Therefore, we can assume that one of the
Yk,i(k = 1, 2), say Y1,i is not an annulus.

Suppose now that Y1,i is not eventually contained in the characteristic
submanifold X (up to homotopy), even after passing to a subsequence. By
taking a subsequence, we can assume that none of the Y1,i are contained inX.
Then, there is a simple closed curve c ⊂ ∂M disjoint from X which intersects
Y1,i for all i, by passing to a further subsequence. By Theorem 4.4 there is a
constant L such that lengthρi◦ψ−1

i∗
(c) ≤ L. Since dY1,i(µ(ψi∗(mi)), µ) −→ ∞
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by our assumption, we have dY1,i(c1,i, c) −→ ∞. Then it follows from [15,
Theorem B] that lengthρi◦ψ−1

i∗
(∂Y1,i) −→ 0, and hence in particular, we have

lengthρi◦ψ−1
i∗
(∂1A) −→ 0.

Next suppose that Y1,i eventually lies in X. Taking a subsequence, we
can assume that all the surfaces Y1,i lie in the same component Ξ of X.
Since Y1,i is not an annulus, Ξ must be an I-bundle, which has a form of
Ξ = F × I. By (c), there is another surface Y3,i ⊂ ∂Ξ such that Y1,i and
Y3,i bound an I-bundle compatible with the I-bundle structure of Ξ, and
are projected along the fibres of Ξ = F × I to the same surface Zi in F and
dY3,i(µ(ψi∗(mi)), µ) ≤ R. We note that by our definition of a1, . . . , aq, there
is k0 ≥ 2 such that ak0 lies on ∂Y3,i. Then since dY3,i(µ(ψi∗(mi)), ck0,i) ≤ K1,
we have dY3,i(ck0,i, µ) ≤ R +K1. We shall make use of {c1,i} and {ck0,i} to
apply [15, Theorem B] as before. Since they do not lie on the same surface,
we first need to project them to F . This leads to the following claim:

Claim 5.6. There are K > 0 and two sequences of simple closed curves
{d1,i} and {dk0,i} on F such that lengthρi◦ψ−1

i∗
(dk,i) ≤ K for all i and k =

1, k0, and dZi(d1,i, dk0,i) −→ ∞.

Proof. Let k be either 1 or k0. If ck,i is contained in Ξ for sufficiently
large i, then we let dk,i be the projection of ck,i to F . We also note that
lengthρi◦ψ−1

i∗
(dk,i) ≤ L then.

Suppose that this is not the case. We let S be the component of ∂M
containing ck,i. Following [15, page 138] we extend the multicurve B :=
Fr(Ξ ∩ S) to a complete geodesic lamination λ by performing Dehn twists
around B infinitely many times to ck,i and adding finitely many isolated
leaves spiralling around B. There is a unique pleated surface hk,i : S →
H3/ρi(π1(S)) realising λ which induces ρi ◦ ψ−1

i∗ between the fundamental
groups. Let Rλ be the ε-thick part of S with respect to the hyperbolic
metric induced by hk,i. By the efficiency of pleated surfaces ([22, Theorem
3.3], [15, Theorem 3.5]), there is a constant K2 such that lengthhk,i(ck,i ∩
Rλ) ≤ L+K2i(ck,i, B) (the relation between the alternation and intersection
numbers comes from (4.3) in [15]). In particular, there is an arc κk,i in
ck,i ∩ (Ξ ∩ S) ∩ Rλ intersecting Yk,i and having length at most L+K2. By
Theorem 4.4, the length of each component of B on hk,i is bounded by a
constant L′ independent of i. By joining one or two copies of κk,i (depending
on whether κk,i intersects one or two components of B ∪ FrRλ) with arcs
on B ∪ FrRλ, we can construct in S ∩ Ξ a simple closed curve dk,i such
that lengthhk,i(dk,i) ≤ 2(L + K2 + L′ + ε). Furthermore, this construction

implies that there is a constant K3 such that dY (dk,i, ck,i) ≤ K3 for any
incompressible subsurface Y ⊂ S ∩ Ξ intersecting both dk,i and ck,i, and
in particular for Y = Yk,i. We use the same symbol dk,i to denote the
projection of dk,i on F along the fibres of Ξ = F × I.

Thus we have lengthρi◦ψ−1
i∗
(dk,i) ≤ 2(L+K2+L

′+ε), and dZi(d1,i, dk0,i) ≥
dY1,j (c1,i, µ)−dYk0,i(ck0,i, µ)−2K3 ≥ dY1,j (c1,i, µ)−R−K1−2K3 −→ ∞. □
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Continuation of Proof of Claim 5.5. Set ϑi = ρi◦ψ−1
i∗ ◦I∗ : π1(S) → PSL2(C)

where I∗ : π1(S) → π1(M) is the homomorphism induced by the inclusion.
Following [15], we denote by C0(ϑi,K) the set of simple closed curves on
S whose translation lengths with respect to ϑi are less than or equal to
K. By the claim above, we see that both d1,i and dk0,i lie in C0(ϑi,K)
and that dY1,i(d1,i, dk0,i) −→ ∞. In particular, diamY1,i(C0(ϑi,K)) −→ ∞.
It follows from [15, Theorem B] that lengthϑi(∂Y1,i) −→ 0. In particular,
lengthϑi(∂1A) −→ 0, and hence lengthρi◦ψ−1

i∗
(∂1A) −→ 0. □

This also concludes the proof of Lemma 5.2. □

By Claim 5.4, proving Proposition 5.1 for {ρi} is equivalent to proving it
for {ρi ◦ ψ−1

i∗ }. Thus we may assume that {ρi} satisfies the following.

(I) For any simple closed curve c ⊂ ∂M , either {m(mi, c, µ)}
(resp. {m(σ(mi), c, µ)},) is bounded or m(mi, c, µ) −→ ∞ (resp.
m(σ(mi), c, µ) −→ ∞).

(II) If A ⊂ M is an essential annulus such that m(mi, ∂kA,µ) −→
∞ (k = 1, 2) for both boundary components ∂1A and ∂2A of A, then
lengthρi(∂A

∗
1) −→ 0.

5.2. End invariants and wrapping. In this subsection, we shall discuss
how algebraic limits projects to geometric limits and how this is reflected in
the behaviour of the end invariants.

Let us now fix the assumptions and notations which will be used in most
results of this section.

Setting 5.7. We consider an orientable atoroidal compact boundary-
irreducible Haken 3-manifold M without torus boundary components, and
a sequence of representations ρi ∈ QH(M) corresponding to Ahlfors-Bers
coordinates mi ∈ T(∂M). We have a non-contractible simple closed curve
d ⊂ ∂M , and we denote by d1, ..., dp ⊂ ∂M simple closed curves representing
all homotopy classes of ∂M on ∂M which are homotopic to d in M , with
d = d1. We assume that `ρi(d

∗) −→ 0.
We also assume that we have a submanifold Vd of M whose frontier con-

sists of incompressible annuli and which has the following three properties:

(i) Vd contains all the curves dj (j = 1, . . . , p), and dj is not peripheral in
Vd ∩ ∂M for every j = 1, . . . , p.

(ii) The restriction of ρi to π1(Vd) converges to a representation
ρ∞ : π1(Vd) → PSL2(C).

(iii) If A ⊂ Vd is an essential annulus disjoint from d with core curve a
which is not homotopic to d in M , then lengthρi(a) −→ 0 if and only
if A is properly homotopic to the closure of a component of ∂Vd \ ∂M .

Suppose first p ≥ 2. If a component of the characteristic submanifold
containing d (up to isotopy) is a solid torus, then it contains all of d1, . . . , dp
up to isotopy. We let T be this characteristic solid torus in this case. If the
component is an I-pair, then p = 2, and it contains d2 up to isotopy. In this
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case, we let T be A× [0, 1] such that A× {0} is an annular neighbourhood
of d whereas A × {1} is that of d2. Since FrVd consists of annuli, by the
condition (i) above, T can be assumed to be contained in Vd by moving it
by an isotopy in both cases. If p = 1, we set T = ∅.

Given j = 1, . . . , p, we denote by Fj the component of Vd ∩ ∂M \
∪
k ̸=j dk

containing dj .
The sequence of groups {ρi(π1(Vd))} converges geometrically to a Kleinian

group Γ containing ρ∞(π1(Vd)), passing to a subsequence.

In the next section, we shall construct Vd having the properties above,
which shows that our argument in the present section really works.

Assuming the existence of Vd for the moment, we now prove that every
component of Vd \T has a compact core which is embedded in the geometric
limit H3/Γ making use of the work of [4].

Lemma 5.8. In Setting 5.7, let W be a submanifold of Vd which is the
closure of a component of Vd\T . Then there is a relative compact core CW ⊂
H3/ρ∞(π1(W )) which is homeomorphic to W and on which the restriction of
the covering projection H3/ρ∞(π1(W )) → H3/Γ induced by the inclusion is
injective. Furthermore, for the closures of two components W1,W2 of Vd \T
(in the case when T is non-empty and separates W ), the compact cores CW1

and CW2 can be taken so that their images in H3/Γ are disjoint.

Proof. Our conditions in Setting 5.7 imply the assumptions of [4, Propo-
sition 4.4], and applying this proposition, we see that there is a compact
submanifold of H3/Γ which lifts to a compact core CW of H3/ρ∞(π1(W ))
such that the restriction of the covering projection H3/ρ∞(π1(W )) → H3/Γ
to CW is injective. Let ΓW ⊂ Γ be the geometric limit of {ρi(π1(W ))}.
Then the restriction of the covering projection H3/ρ∞(π1(W )) → H3/ΓW
to CW must also be injective.

By [4, Lemma 4.6], ρ∞(π1(W )) is either a generalised web group or a
degenerate group without accidental parabolic elements. It follows then
from [1, Corollary C and Theorem E] that CW is homeomorphic to W . The
last sentence of our lemma also follows from [4, Proposition 4.4]. □

We next show that by performing Dehn twists along embedded annuli
bounded by d and dj (j = 2, . . . , p), we can make each Fj embedded in the
algebraic limit and mapped injectively in the geometric limit by the covering
projection.

In the next lemma and the following, we shall use the expression ‘the
outward side of a cusp’. We say that an embedding of the surface Fj ⊂ ∂Vd
into the geometric limit H3/Γ lies on the outward side of a cusp if the cusp
lies on the same side of the embedding of Fj as the embeddings of the
components of Vd \T intersecting Fj . Otherwise we say that the embedding
of Fj lies on the inward side of the cusp.

Lemma 5.9. In Setting 5.7, we denote by Dj the right-hand Dehn twist
along an embedded annulus bounded by d = d1 and dj (j = 2, . . . , p). Then
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for each j, there is a sequence {ai(j)} of integers with the following proper-
ties:

– The sequence {θi = ρi ◦ Dai(j)
j∗ |π1(Fj)} converges algebraically to a repre-

sentation θ∞ : π1(Fj) → PSL2(C).
– There is an embedding hj : Fj → H3/θ∞(π1(Fj)) inducing θ∞ such that
the restriction of the covering projection ΠFj : H3/θ∞(π1(Fj)) → H3/Γ to
hj(Fj) is an embedding and its image ΠFj ◦hj(Fj) lies on the outward side
of the cusp corresponding to ρ∞(d) = θ∞(d) when the latter is a rank-2
cusp.

Proof. This is a relative version of [2, Lemma 4.5].
Let W ′ and W ′′ be the components of Vd \T intersecting Fj (we set W

′ =
W ′′ if there is only one such component), and set F ′

j = Fj ∩W ′ and F ′′
j =

Fj ∩W ′′. By Lemma 5.8, there are compact cores CW ′ ⊂ H3/ρ∞(π1(W
′))

and CW ′′ ⊂ H3/ρ∞(π1(W
′′)), homeomorphic to W ′ and W ′′ respectively, on

which the restrictions of the covering projections to H3/Γ are injective. The
inclusions induce embeddings f ′ : F ′

j ↪→ ∂CW ′ and f ′′ : F ′′
j ↪→ ∂CW ′′ which

lift to embeddings g′ : F ′
j ↪→ H3/ρ∞(π1(Fj)) and g

′′ : F ′′
j ↪→ H3/ρ∞(π1(Fj)).

The restrictions of the covering projection ΠFj : H3/ρ∞(π1(Fj)) → H3/Γ to
g′(Fj ∩W ′) and to g′′(Fj ∩W ′′) are embeddings.

If T does not separate Fj , we set ǧ = g′ = g′′, otherwise, we put g′

and g′′ together to get an embedding ǧ : Fj \ T → H3/ρ∞(π1(Fj)). Mov-
ing CW ′ , CW ′′ , f ′ and f ′′ by isotopies, we may assume that they send
the boundary of Fj \ T into the ε-thin part. Then for an appropriate
choice of ε, the map ǧ sends the boundary of Fj \ T to the boundary
of the ε1-thin part of H3/ρ∞(π1(Fj)), where ε1 is smaller than the three-
dimensional Margulis constant. It is then easy to extend ǧ to an embedding
g : Fj → H3/ρ∞(π1(Fj)) such that g(T ∩ Fj) lies on the boundary of the
ε2-thin part with ε2 ≤ ε1. By Lemma 5.8 and by our construction, the re-
striction of ΠFj ◦ g to Fj \ T , which is ΠFj ◦ ĝ, is an embedding and with an
appropriate choice of ε, the composition ΠFj ◦g maps Fj∩T to the boundary

of the ε0-thin part of H3/Γ.
If ρ∞(d) belongs to a rank-1 maximal parabolic subgroup of Γ, then it is

easy to change g on Fj ∩ T so that ΠFj ◦ g is an embedding. In this case,
we simply take ai to be 0.

Otherwise, ρ∞(d) belongs to a rank-2 maximal parabolic subgroup of
Γ. We denote by T0 the boundary of the corresponding torus cusp-
neighbourhood in H3/Γ, i.e. the boundary of the corresponding component
of the ε2-thin part. Let Z be the union of ΠFj ◦ g(Fj \ T ) and T0. Then
ΠFj ◦ g(Fj) is contained in Z by our way of extending ǧ to g as described
above. As is explained in [2, Lemma 3.1], ΠFj ◦g is homotopic to a standard
map fk wrapping k times around T0 for some k ∈ Z, and there are two
standard embeddings f0, f1 : Fj → Z such that f0(Fj) lies on the outward
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side of the cusp associated with d and f1(Fj) lies on its inward side, both
without wrapping around T0.

Let {qi : Bri(H3/ρi(π1(M)), xi) → BKiri(H3/Γ, x∞)} be a sequence of Ki-
bi-Lipschitz approximate isometry on the ri-ball with ri −→ ∞,Ki −→ 1
given by the geometric convergence as explained in Section 2.4. By [2,
Lemma 3.1], there is si ∈ Z such that q−1

i ◦f0 is homotopic to q−1
i ◦ΠFi◦g◦D

si
j .

The conclusion follows, taking ai(j) = si and setting hj to be the lift of f0
to H3/θ∞(π1(Fj)). □

Next we study how the embedding of a compact core in the geometric
limit as above affects the end invariants.

Lemma 5.10. In Setting 5.7, for each j = 1, . . . , p, suppose that there
is an embedding hj : Fj → H3/ρ∞(π1(Fj)) inducing ρ∞|π1(Fj) such that

the restriction of the covering projection ΠFj : H3/ρ∞(π1(Fj)) → H3/Γ to
hj(Fj) is an embedding.

If ΠFj (hj(Fj)) lies on the outward side of the cusp associated with
ρ∞(d) ∈ ρ∞(π1(M)) ⊂ Γ, then {m(mi, dj , µ)} is bounded whereas
m(σ(mi), dj , µ) −→ ∞. If ΠFj (hj(Fj)) lies on the inward side of the
cusp associated with ρ∞(d) then {m(σ(mi), dj , µ)} is bounded whereas
m(mi, dj , µ) −→ ∞.

Proof. Suppose that ΠFj (hj(Fj)) lies on the outward side of the cusp asso-
ciated with ρ∞(d) ∈ ρ∞(π1(M)) ⊂ Γ. Let c ⊂ Fj be a simple closed curve
intersecting dj essentially, c∗ the closed geodesic homotopic to ΠFj (hj(c)),

and denote by ψi : BKiri(H3/ρi(π1(M)), xi) → Bri(H3/Γ, x∞) an approxi-
mate isometry associated with the geometric convergence of {ρi(π1(M))} to
Γ as explained in Section 2.4. For i large enough, ψ−1

i (c∗) is a quasi-geodesic
lying outside the thin part. on the same side as Fj of the Margulis tube as-
sociated with ρi(d). Let Sj be the component of ∂M containing Fj . In
the covering H3/ρi(π1(Sj)) of H3/ρi(π1(M)), the closed geodesic homotopic
to ρi(c) lies above the Margulis tube associated with ρi(d). Therefore, by
[3, Theorem 1.3] there is a constant D such that dY (c, µ(mi)) ≤ D for any
surface Y ⊂ Sj with dj ⊂ FrY . Thus for any full marking µ, there is D′

such that dY (µ, µ(mi)) ≤ D′ for any surface Y ⊂ S with dj ⊂ FrY .
To conclude that {m(mi, dj , µ)} is bounded, it remains to show that

lengthmi
(dj) is bounded away from 0. Assume the contrary, that

lengthmi
(dj) −→ 0 after passing to a subsequence. Then, there is an an-

nulus joining the closed geodesic d∗j ⊂ H3/ρi(π1(S)) representing ρi(d) with

d+j ⊂ ∂C(H3/ρi(π1(S))) corresponding to dj , which lies entirely in the εi-

thin part with εi −→ 0. Since ψ−1
i (c∗) has bounded length, it cannot inter-

sect such an annulus, whereas ψ−1
i (c∗) lies in a uniformly bounded neigh-

bourhood of the convex core for large i. Since c∗ and ΠFj (hj(Fj)) lie on the
same side of the cusp associated with ρ∞(d), this contradicts the assump-
tion that ΠFj (hj(Fj)) lies on the outward side of the cusp associated with
ρ∞(d) ∈ Γ.
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Since lengthρi(d) −→ 0 and {m(mi, dj , µ)} is bounded, it follows from
[14, Short Curve Theorem] that m(σ(mi), dj , µ) −→ ∞.

A quite similar argument works also when ΠFj (hj(Fj)) lies on the inward
side of the cusp associated with ρ∞(d) ∈ Γ. □

Corollary 5.11. In Setting 5.7, assume that p ≥ 2, and consider j ≤
p such that {m(mi, dj , µ)} is bounded. Then there is an embedding h :
Fj → H3/ρ∞(π1(Fj)) inducing ρ∞ such that the restriction of the covering
projection ΠFj : H3/ρ∞(π1(Fj)) → H3/Γ to h(Fj) is an embedding whose
image lies on the outward side of the cusp corresponding to ρ∞(d).

Proof. As can be seen in the proof of Lemma 5.9, if ρ∞(d) belongs to a rank-
1 maximal parabolic subgroup of Γ, then ai(j) = 0 for any i and θ∞ = ρ∞.
Therefore, our claim of this corollary follows immediately from Lemmas 5.9
and 5.10.

Otherwise, ρ∞(d) belongs to a rank-2 maximal parabolic subgroup of Γ.
By Lemma 5.9, there is a sequence of integers {ai(j)} and an embedding
hj : Fj → H3/θ∞(π1(Fj)) inducing θ∞ between the fundamental groups such
that the restriction of the covering projection ΠFj : H3/θ∞(π1(Fj)) → H3/Γ
to hj(Fj) is an embedding and its image ΠFj ◦ hj(Fj) lies on the out-
ward side of the cusp corresponding to θ∞(d) = ρ∞(d). By Lemma 5.10,
{m(Dai

j∗mi, dj , µ)} is bounded. Since {m(mi, dj , µ)} is bounded by assump-

tion, this is possible only when {ai(j)} is bounded. Then we may take
ai(j) = 0 for any i in Lemma 5.9 so that θ∞ = ρ∞, and the conclusion
follows. □

We now put these results together to get the result which we shall use to
prove Proposition 5.1.

Lemma 5.12. In Setting 5.7, suppose that {m(mi, dj , µ)} is bounded for
j ̸= 1. Then, there is a relative compact core for H3/ρ∞(π1(Vd)) home-
omorphic to Vd on which the restriction of the covering projection Πd :
H3/ρ∞(π1(Vd)) → H3/Γ is injective. Furthermore, a cusp neighbourhood
corresponding to ρ∞(d) intersects the compact core in an annular neigh-
bourhood of d1.

Proof. By Lemma 5.8, for the components W of Vd \T , we have embeddings
gW : W → H3/ρ∞(π1(Vd)) inducing ρ∞|π1(W ), on the union of which the
restriction of Πd is injective.

If p = 1, then T = ∅ by definition, and hence W = Vd. We can take a
cusp neighbourhood corresponding to ρ∞(d) intersecting gW (W ) along an
annulus in the homotopy class of d. Since p = 1, such an annulus is isotopic
on ∂Vd to an annular neighbourhood of d1 = d.

Suppose that p ≥ 2, and assume that {m(mi, dj , µ)} is bounded for every
j ̸= 1. Then by Corollary 5.11, for every j ̸= 1, there is an embedding
gj : Fj → H3/ρ∞(π1(Vd)) inducing ρ∞|π1(Fj) on which the restriction of Πd

is injective. Furthermore, it follows from the construction that gj and gW
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agree on Fj∩W . Putting together the maps gW for all the componentsW of
Vd\T and the gj for all j ̸= 1, we get an embedding g : Vd → H3/ρ∞(π1(Vd))
inducing ρ∞|π1(Vd) on which the restriction of Πd is injective.

Changing g by an isotopy, we may assume that g(Vd) intersects a cusp
neighbourhood C associated with ρ∞(d) along an annulus A ⊂ g(∂Vd) which
is a regular neighbourhood of g(dk) for some k = 1, . . . , p. Then g(Fk) lies
on the inward side of C. This is possible only if Πd ◦g(Fk) lies on the inward
side of C; for the restriction of Πd is injective on g(Vd), and hence it cannot
wrap around C.

By assumption, for every j ̸= 1, {m(mi, dj , µ)} is bounded. It follows
then from Corollary 5.11 that Πd(g(Fj)) lies on the outward side of C for
j ̸= 1. Hence the only possibility is that A is a regular neighbourhood of
g(d1). □

5.3. Completion of the proof of Proposition 5.1.

Proof of Proposition 5.1. If M is an I-bundle, then m(σ(mi), d, µ) =
m(mi, d2, µ) and the conclusion follows. In the other cases, we shall prove
the proposition by contradiction. Assume that M is not an I-bundle,
that m(σ(mi), d, µ) −→ ∞, and that {m(mi, dj , µ)} is bounded for every
j = 2, . . . , p.

By Lemma 5.2, after re-marking and passing to a subsequence, we may
assume that {ρi = q(mi)} satisfies:

(1) for any simple closed curve c ⊂ ∂M , either {m(mi, c, µ)}
(resp. {m(σ(mi), c, µ)}) is bounded or m(mi, c, µ) −→ ∞ (resp.
m(σ(mi), c, µ) −→ ∞);

(2) if A ⊂ M is an essential annulus such that ∂A does not intersect d
(hence any of dj) and m(mi, ∂jA,µ) −→ ∞ for both boundary compo-
nents ∂1A and ∂2A of A, then lengthρi(∂A

∗
1) −→ 0.

We note that by Lemma 5.2, {m(mi, dj , µ)} is bounded for every j =
2, . . . , p and m(σ(mi), d, µ) −→ ∞ even after re-marking.

Taking a further subsequence, we can also assume that for any essential
annulus E ofM , either lengthρi(∂E) −→ 0 or lengthρi(∂E) is bounded away
from 0. Let A =

∪
k Ak be a maximal family of pairwise disjoint non-isotopic

essential annuli such that

[i] the length of the core curve of each annulus Ak tends to 0
(lengthρi(∂Ak) −→ 0 for any k),

[ii] ∂A does not intersect d, and
[iii] no component of A contains a curve homotopic to d.

Denote by Vd the component ofM \N(A) containing d, where N(A) denotes
a thin regular neighbourhood of A. Let P be the closure of Vd \ ∂M , which
is a union of annuli. Next we shall control the geometry of Vd and the length
of d.
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Claim 5.13. Passing to a subsequence, the restrictions {ρi|π1(Vd)} converge
and lengthρi(d) −→ 0.

Proof. Let us first assume that m(mi, d1, µ) −→ ∞, and verify the hypothe-
ses of Theorem 4.5 with W = Vd. The hypothesis (a) follows from the con-
struction of Vd. The hypothesis (b) follows from the property (2) above. By
Lemma 4.2, {m(mi, c, µ)} is bounded for any simple closed curve c intersect-
ing d. This observation combined with the assumption that {m(mi, dj , µ)}
is bounded for any j = 2, . . . p, the property (2) above and the maximality of
A yields the hypothesis (c). Now by Theorem 4.5 we can take a subsequence
in such a way that the restrictions {ρi|π1(Vd)} converge.

If lengthmi
(d) −→ 0, we are done. Otherwise, since we are assuming that

m(mi, d, µ) −→ ∞, there is a sequence of subsurfaces Yi ⊂ ∂M such that
dYi(mi, µ) −→ ∞ and d ⊂ ∂Yi. Consider a simple closed curve c ⊂ Vd ∩ ∂M
intersecting d. Since {ρi|π1(Vd)} converges, {lengthρi(c)} is bounded. Then
we have dYi(mi, c) −→ ∞ (for dYi(mi, µ) −→ ∞) and it follows from [15,
Theorem 2.5] that lengthρi(d) −→ 0.

Suppose now that {m(mi, d1, µ)} is bounded. Since {m(σ(mi), d1, µ)} −→
∞ by assumption, lengthρi(d) −→ 0 by [14, Short Curve Theorem]. We add
to P a thin regular neighbourhood of d on ∂Vd and we can verify as above
that the hypotheses of Theorem 4.5 are satisfied for (Vd, P ). □

Now we are in the situation of Setting 5.7, and we use its notations. By
Lemma 5.12, g(F1) lies on the inward side of the cusp corresponding to
ρ∞(d), and g(Fj) lies on the outward side for every j = 2, . . . , p. Then
Lemma 5.10 implies that {m(σ(mi), d1, µ)} is bounded. This contradicts
our assumption. □

6. The proof of Theorem 1.1

Now we shall complete the proof of Theorem 1.1. By Lemmas 3.1
and 3.4, we can assume that every M is strongly untwisted. Let L be
the number provided by Lemma 3.9, and consider a sequence {mi} such

that {mL+1
i = (ι∗ ◦ σ)L+1mi} has no convergent subsequence. Since M is

not an interval bundle, by [4, Theorem 1.1], on each component S of ∂M ,
there is a simple closed curve aS such that `σ(aS) is bounded. It follows that

dS(µ(m
L+1
i ), µ)) is bounded. By Lemma 4.3, passing to a subsequence, there

is a simple closed curve dL+1 ⊂ ∂M such that m(mL+1
i , dL+1, µ) −→ ∞.

Then we have m(σ(mL
i ), ι(dL+1), µ) −→ ∞. By Proposition 5.1, passing to

a further subsequence, there is an incompressible annulus AL bounded by
ι(dL+1) and another simple closed curve dL ⊂ ∂M withm(mL

i , dL, µ) −→ ∞.
Repeating this, we get a family of simple closed curves {dk, 0 ≤ k ≤ L+ 1}
such that dk ∪ ι(dk+1) bounds an incompressible annulus. This means that
an annular neighbourhood of ι(dL+1) is L-time vertically extendible, con-
tradicting Lemma 3.9. This completes the proof of Theorem 1.1.
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bonne, 31062 Toulouse Cedex 4, France, and Department of Mathematics,
Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan


