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Abstract

Recursive second-order stochastic algorithms are presented for solving ridge regression problems in the

linear and binary logistic case. The proposed algorithms allow us to update the estimates of ridge solution

when the data arrive in continuous flow. We establish the almost sure convergence with rate of proposed

algorithms. Numerical experiments on simulated and real-world data show the advantages of our algorithms

compared to alternative methods.

Keywords: Ridge regression; stochastic optimization; stochastic Newton algorithm; recursive estimation;

machine learning

1. Introduction

Ridge regression is a widely used method for multiple regression problems that uses an l2 penalty to shrink

the coefficients of correlated predictors or to provide a solution to the high dimensional problem (the number

of regressors is greater than the number of data). The method was first introduced by [13] in the context of

linear regression and have been used in many fields of application where the problem of collinearity of the

predictors was present [14, 19, 21]. This method was extended to the logistic regression framework by [27].

In [17], the authors showed how ridge estimators can be used in logistic regression to improve parameter

estimates and reduce the error committed by other predictions.

More recently, this method has become a popular tool in the field of machine learning since the use of

a Ridge penalty allows to automatically model large volumes of data without prior processing. For example,

one can implement this method in a principal component regression (PCR) model [2]. Kernel ridge regres-

sion [1, 30] combines supervised classification and ridge regression. In interpretation of voltammetric signals,

conjugation of ridge regression with Self-paced learning algorithm provides better performances than tradi-

tional models [11]. In the field of neural networks, ridge regression can be used to optimize extreme learning

machines [20].

From a computational point of view, a ridge solution is easily obtained in the linear regression case, using

the singular value decomposition method to find the optimal value of the penalty parameter (see e.g. [10]).

However, for the logistic regression case, iterative algorithms must be used since the solution is not explicit.

A ridge solution can be obtained via Newton Raphson methods [17]. A coordinate descent method has also

been proposed in this context, which is much faster [8]. Nevertheless, the large volumes of data or the use of

data arriving in continuous flow requires the use of recursive algorithms for the calculation of the estimates.

The stochastic gradient algorithm [25] has naturally been proposed in this context (e.g. [26]) but sometimes it

is not very efficient (see [3]).

In this work, we propose second-order stochastic algorithms to solve the Ridge regression problem in the

framework of linear regression and binary logistic regression. More precisely, if X denotes a random vector

of predictors of Rp and Y a real variable of interest or a discrete variable in {0, 1}, we propose stochastic

Newton type algorithms to find the value of the couple (β0, β) ∈ R×R
p which minimizes the convex function
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G : Rp+1 7−→ R defined by

G(h0, h) = E [l(X,Y, h0, h)] + λ ‖h‖2 =: E [g(X,Y, h0, h)] , (1)

where the penalty λ is a positive real number, and the function l(X,Y, h0, h) is equal to (Y − h0 − hTX)2 for

linear regression and log(1 + exp(h0 + hTX)− (h0 + hTX)Y for logistic regression.

The difficulty in the construction of a second order stochastic algorithm lies in the estimation of the inverse

of the Hessian matrix of the function to minimize. Indeed, it is necessary to be able to estimate this inverse

in a recursive and efficient way. In some cases, it is possible to use the Riccati formula (cf [3]). A second

difficulty comes from the penalty term which requires a recursive estimation of the identity matrix. Inspired

by the work of [9] and [6], we propose an approach based on a double use of Riccati’s formula to obtain

asymptotically efficient estimators for Ridge type problems. In practice, these estimators give much better

results than the usual online estimators taking into account only first order information of stochastic gradient

type. Indeed, they enable to adapt the steps in each direction, which is of particular interest for ill-conditioned

problems [5, 18].

The paper is organized as follows. In Section 2, we consider the case of the ridge linear regression while

Section 3 concerns the case of ridge logistic regression. Section 4 is devoted to numerical experiments on

simulated and real data. Proofs are postponed in Section 5.

2. Ridge linear regression

2.1. The centered case

Framework.. Let (X,Y ) be a random vector lying in R
p×R. Let us first suppose that X is a centered random

vector, with a finite moment of order 2, and Y is a random variable with variance σ2. The aim is to approximate

Y by a linear function of the form zTX+z0 where the values of z0 ∈ R and z ∈ R
p are obtained by minimizing

the penalized least squares criterion defined by:

G(z0, z) = E
[
(Y − zTX − z0)

2
]
+ λ ‖z‖2 (2)

where λ is a strictly positive real parameter. It is easy to prove that the solution (β0, βλ) of this minimization

problem is unique and given by β0 = E [Y ] and

βλ =
(
E
[
XXT + λIp

])−1
E [XY ] = (Γ + λIp)

−1
E [XY ] (3)

where Ip is the identity matrix of order p and Γ = E
[
XXT

]
.

Remark 2.1. If there exists β0 ∈ R and β ∈ R
p such that E [Y |X ] = βTX + β0, then βλ = (Γ + λIp)

−1Γβ.

Moreover, if λ = 0 and the matrix Γ is positive definite, then βλ = β.

In the following, we will focus on the recursive estimation of the parameter βλ using two approaches, the

first one, by estimating directly βλ from its expression given in (3), the second one, by using a stochastic

Newton algorithm [5, 18] to minimize the function G given in (2).

Recursive estimation of βλ.. Let us suppose that we have a sequence of independent and identically dis-

tributed random vectors (Xn, Yn)n≥1 with the same distribution as (X,Y ). One can easily suggest a non-

recursive estimator of parameter βλ. We can indeed propose :

βn =


αIp +

n∑

j=1

XjX
T
j + nλIp




−1
n∑

j=1

XjYj = (Sn + nλIp)
−1

n∑

j=1

XjYj

where for all n ≥ 1, we set Sn = αIp +
∑n

j=1XjX
T
j with α ≥ 0. When the parameter β exists, that is when

E [Y |X ] = βTX + β0, its ordinary least squares estimator is given by :

β̃n = S−1
n

n∑

j=1

XjYj .
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This estimator can be recursively calculated using the formula

β̃n = β̃n−1 + S−1
n Xn(Yn − β̃T

n−1Xn), (4)

with β̃0 = 0. In addition, matrix Sn can be recursively inverted thanks to the following Riccati inversion formula

(also called Sherman-Morrison formula) [7]:

S−1
n = S−1

n−1 − (1 +XT
n S

−1
n−1Xn)

−1S−1
n−1XnX

T
n S

−1
n−1 (5)

where we set S−1
0 = α−1Ip with α > 0, to avoid invertibility problem. This algorithm coincides with the

stochastic Newton algorithm associated with the problem of minimizing the function G in the case where

λ = 0 [5]. It of course coincides with the recursive least squares algorithm.

However, it will not be possible to do the same with βn because of the additional term nλIp. To recursively

calculate this estimator with the help of Riccati’s formula, the matrix Ip must be estimated with an estimator

of the form n−1
∑n

j=1 ZjZ
T
j where (Zj) are vectors of Rp. One can imagine several ways to estimate the

identity matrix. In particular, we can proceed as in [22, 9]. Let e1, e2, . . . , ep be the p vectors of the canonical

basis of Rp. Note that Ip =
∑p

j=1 eje
T
j . Consider the sequence (Zn)n≥1 of vectors in R

p defined for all n ≥ 1
by Zn = e(n mod p)+1. We then have

Ip = lim
n→∞

p

n

n∑

j=1

ZjZ
T
j (6)

We then propose to estimate parameter βλ by:

β̂n =


Sn + pλ

n∑

j=1

ZjZ
T
j




−1
n∑

j=1

XjYj (7)

under suitable weak conditions and standard arguments, one can prove the convergence of β̂n to βλ.

Theorem 1. Assume that X admits a moment of order 4 and that XY admits a second order moment. Then,

∥∥∥β̂n − βλ

∥∥∥
2

= O

(
ln lnn

n

)
a.s.

The proof is given in Section 5. We now focus on the practical implementation of the algorithm. Indeed,

using two Riccati inversion formulas in a row [6], we can recursively compute β̂n. For all n ≥ 1, we set

Wn = Qn−1 + pλZnZ
T
n and Qn =Wn +XnX

T
n with Q0 = αIp. We have for all n ≥ 0,

Sn + pλ

n∑

j=1

ZjZ
T
j = Qn

The recursive estimation algorithm of the parameter βλ is as follows:

W−1
n = Q−1

n−1 −
pλ

1 + ZT
nQ

−1
n−1Zn

Q−1
n−1ZnZ

T
nQ

−1
n−1

Q−1
n =W−1

n − (1 +XT
nW

−1
n Xn)

−1W−1
n XnX

T
nW

−1
n

β̂n = β̂n−1 +Q−1
n

(
Xn(Yn − β̂T

n−1Xn)− λpZnZ
T
n β̂n−1

)
(8)

The stochastic Newton algorithm. . Note that the stochastic Newton algorithm associated with the problem

of minimizing the function G is slightly different than the recursive calculation of β̂n. Indeed, the stochastic

Newton algorithm is defined by:

β̂SN
n = β̂SN

n−1 +Q−1
n

(
Xn(Yn −XT

n β̂
SN
n−1)− λβ̂SN

n−1

)
(9)

with β̂SN
0 bounded.
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Theorem 2. Assume that there exists η > 0 such that X and Y admit respectively moment of order 4 + 4η
and 2 + 2η. Then the estimator proposed by stochastic Newton’s algorithm defined by (9) satisfies

∥∥∥β̂SN
n − βλ

∥∥∥
2

= O
(
lnn

n

)
a.s.

The proof is given in Section 5. The difference of hypothesis here is due to the fact that this result relies

on the law of log iterated for martingales, while in Theorem 1, it relies on the law of the iterated logarithm for

independent random variables.

2.2. The general case

Let us consider the case where the random vector X is not centered and denote its covariance

Σ := E
[
(X − E [X ])(X − E [X ])T

]
.

The parameters β0,λ ∈ R and βλ ∈ R
p which minimize the penalized least squares criterion defined by (2)

satisfy

βλ = (Σ + λIp)
−1

E [(X − E [X ])(Y − E [Y ])]

β0,λ = E [Y ]− βλE [X ] .

Remark 2.2. If there exists β0 ∈ R and β ∈ R
p such that E [Y |X ] = β0 + βTX , then βλ = (Σ + λIp)

−1Σβ
and β0,λ = β0 + (β − βλ)

T
E [X ].

As in the previous section, it is possible to recursively estimate βλ. The algorithm then requires to estimate

the covariance matrix Σ instead of the matrix Γ.To estimate the variance-covariance matrix Σ, we propose

the estimator n−1Cn defined by :

Cn =

n∑

j=1

(Xj −Xn)(Xj −Xn)
T .

Remark that it is possible to recursively compute the matrix Cn as

Cn = Cn−1 +
n− 1

n
(Xn −Xn−1)(Xn −Xn−1)

T

with C0 = 0. Then, the algorithm for estimating the parameter βλ is recursively defined by

W−1
n = Q−1

n−1 −
pλ

1 + ZT
nQ

−1
n−1Zn

Q−1
n−1ZnZ

T
nQ

−1
n−1

Q−1
n =W−1

n − (1 + φTnW
−1
n φn)

−1W−1
n φnφ

T
nW

−1
n

β̂n = β̂n−1 +Q−1
n

(
φn

(
Yn + φTn β̂n−1

)
− λpZnZ

T
n β̂n−1

)
(10)

β̂n,0 = Y n − β̂T
nXn (11)

with Q0 = αIp, β̂0 bounded, φn =
√
(n− 1)/n

(
Xn −Xn−1

)
, Yn =

√
(n− 1)/n

(
Yn − Y n−1

)
and Zn =

e(n mod p)+1. Remark that Xn and Y n can of course be easily updated. The following theorem gives the

almost sure rate of convergence of the estimates.

Theorem 3. We suppose that there exists η > 0 such that X and Y admit respectively moment of order

4 + 4η and 2 + 2η, then the estimators defined by (10) and (11) satisfy

∥∥∥β̂n − βλ

∥∥∥
2

= O
(
lnn

n

)
a.s. and

∥∥∥β̂n,0 − β0

∥∥∥
2

= O
(
lnn

n

)
a.s.

The proof is given in Section 5.

Remark 2.3. We can easily propose a stochastic Newton algorithm based on the same idea in the section

3.2.
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2.3. Remark on the recursive least squares estimator.

To close this section, let us consider the historical framework of Ridge regression which consists, starting

from a sequence of N observations (Xj , Yj)1≤j≤N of Rp×R, in finding the value that minimizes the following

criterion :

G(z0, z) =

N∑

j=1

(Yj − z0 − zTXj)
2 + λ ‖z‖2 .

The ridge solution is then given by the couple (Y N , β̂N ) with β̂N = (SN + λIp)
−1
∑N

j=1XjYj and the

computation and the search for the optimal value of the regularity parameter λ is done via the use of the

singular value decomposition of the matrix SN . We can however note that it is possible to compute recursively

the estimator β̂N using the formulas defining the recursive least squares estimator (4)-(5 ) by choosing α = λ
(cf. [15]). When p is large, this method of computation can be more efficient than the direct computation.

3. Ridge logistic regression

3.1. Framework

Let X be a random vector of Rp and Y be a random variable in {0, 1}. We assume that the conditional

distribution of Y |X is a Bernoulli distribution. More precisely,

L(Y |X) = B
(
π(β0 + βTX)

)
with π(x) =

exp(x)

1 + exp(x)
,

where (β0, β) = (β0, β1, . . . , βp) is a vector of Rp+1 giving the vector of unknown parameters. It is easy to

show that (β0, β) minimizes the function G defined for all z0 ∈ R and z ∈ R
p by:

G(z0, z) = = E
[
log
(
1 + exp(z0 + zTX)

)
− (z0 + zTX)Y

]
.

Estimating the ridge logistic regression parameter consists in minimizing the penalized criterion defined for all

(z0, z) ∈ R× R
p by :

Gλ(z0, z) = G(z0, z) + λ ‖z‖2 = E [gλ(X,Y, (z0, z))] . (12)

where λ > 0 is the penalty term. Let us denote by βλ the vector of Rp+1 defined by:

βλ = argmin
(z0,z)∈Rp+1

Gλ(z0, z)

Unlike the linear ridge regression, the parameter βλ does not have an explicit expression. Remark that if X
admits a first order moment, the functional G is differentiable with

∇z0Gλ(z0, z) = E
[
π
(
z0 + zTX

)
− Y

]
and ∇zGλ(z0, z) = E

[
π(z0 + zTX)X −XY

]
+ λz.

For all x ∈ R, let us denote α(x) = π(x)(1 − π(x)). Let Ap+1 be the square matrix of order (p + 1) defined

by :

Ap+1 =

p+1∑

j=2

eje
T
j = Ip+1 − e1e

T
1

where e1, . . . , ep+1 represent the vectors of the canonical basis of Rp+1. If X admits a second order moment,

the Hessian matrix of Gλ is defined by:

Hλ(z0, z) =

(
E
[
α(z0 + zTX)

]
E
[
α(z0 + zTX)XT

]

E
[
α(z0 + zTX)X

]
E
[
α(z0 + zTX)XXT

]
+ λIp

)
= H(z0, z) + λAp+1

where the matrix H represents the Hessian matrix of the function G. Note that the matrix Hλ is positive

definite, and we can so consider in the sequel a stochastic Newton algorithm for estimating parameter βλ.
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3.2. The stochastic Newton algorithm

Let us suppose that we have a sequence of independent and identically distributed random vectors

(Xn, Yn)n≥1 taking values in R
p × {0, 1}, such that for any n ≥ 1, L(Yn|Xn) = B

(
π(β0 + βTXn)

)
. For

all n ≥ 1, let us set φn = (1, XT
n )

T . In order to estimate the parameter βλ minimizing the function Gλ, we

propose a stochastic Newton algorithm of the form:

β̂n = β̂n−1 −Q−1
n ∇gλ(Xn, Yn, β̂n−1)

where Qn = n−1Qn is an estimator of the Hessian matrix Hλ(βλ) = H(βλ) + λAp+1. The difficulty is now

to propose a recursive estimator of the matrix H−1
λ := Hλ (βλ)

−1
. In order to use the ideas introduced in

the previous section, we must first propose an estimator of the matrix Ap+1 which allows the use of Riccati’s

formula to recursively compute its inverse.

Let (Zn)n≥1 be the sequence of vectors of Rp+1 defined by Zn = cγn
−γe1 with cγ > 0 and 0 < γ < 1/4

if n mod (p + 1) = 0 , and Zn = en mod (p+1)+1 otherwise, where (ej)1≤j≤p+1 is the canonical basis of

R
p+1. Then n−1(p+1)

∑n
j=1 ZjZ

T
j −→

n→∞
Ap+1. Note that considering cγn

−γ for the first coordinate is purely

technical, and enables to verify that assumptions in [5] are satisfied, so as to obtain the rate of convergence

of Newton estimates.

By taking the ideas introduced in the previous section and adapting them to this problem, we can then

develop the following recursive Stochastic Newton algorithm to estimate βλ.

W−1
n = Q−1

n−1 −
(p+ 1)λ

1 + λ(p+ 1)ZT
nQ

−1
n−1Zn

Q−1
n−1ZnZ

T
nQ

−1
n−1

Q−1
n =W−1

n − α(β̂T
n−1φn)(1 + α(β̂T

n−1φn)φ
T
nW

−1
n φn)

−1W−1
n φnφ

T
nW

−1
n

β̂n = β̂n−1 +Q−1
n

(
φn(Yn − π(β̂T

n−1φn))− λAp+1β̂n−1

)
(13)

with Q−1
0 = α−1Ip+1 with α > 0 and β̂0 bounded. Let us make some comments about the different

matrices involved in this algorithm. For all n ≥ 1, we have Wn = Qn−1 + λ(p + 1)ZnZ
T
n and Qn =

Wn + α(β̂T
n−1φn)φnφ

T
n with Q0 = αIp+1. For all n ≥ 1, we so have

Qn = αIp+1 +
n∑

j=1

α(β̂T
j−1φj)φjφ

T
j + λ(p+ 1)

n∑

j=1

ZjZ
T
j

Let us recall that (p+ 1)n−1
∑n

j=1 ZjZ
T
j is an estimate of Ap+1 while matrix n−1Sn with

Sn =
∑n

j=1 α(β̂
T
j−1φj)φjφ

T
j is an estimate of H(βλ). Therefore, Qn := 1

nQn is an estimator of Hλ.

3.3. Convergence results

We are now interested in the convergence rate of the estimator β̂n. More precisely, the following theorem

gives the almost sure rate of convergence as well as the asymptotic efficiency of the estimates.

Theorem 4. Assume that there exists η > 0 such that X and Y admit moments of order 4 + 4η and 2 + 2η,

then the estimates defined by (13) satisfy

∥∥∥β̂n − βλ

∥∥∥
2

= O
(
lnn

n

)
a.s.

In addition, √
n(β̂n − βλ)

L−−−−−→
n→+∞

N (0, H−1
λ ΣλH

−1
λ ),

where Σλ = E
[
∇hgλ(X,Y, θ)∇hgλ(X,Y, θ)

T
]
.

The proof is given in section 5.
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4. Experiments

In this section, we study the performances of the second-order recursive algorithm (SR defined by (8)) for

ridge linear regression, and the stochastic newton algorithm (SN defined by (9) and (13)) for both ridge linear

regression and ridge logistic regression. We use the statistical software R [24] to carry out our numerical

experiments. In these experiments, we compare our methods to the averaged implicit stochastic gradient

descent (AI-SGD) proposed by [29] and available in the R-package sgd. As SR and SN algorithms, AI-SGD

algorithm is also a recursive algorithm, but it is a first order method. However, it usually achieves superior

results to classical stochastic gradient descent. When the data are regularized, we also compare our methods

with the cyclical coordinate descent (CDD) proposed by [8] and available in the R-package glmnet. Note that

CCD is an iterative method, not adapted to sequentially process data. Nevertheless, it is very efficient and

widely used in practice. In this section, we first consider simulated data, and then some real data sets.

4.1. Experiments on simulated data

First, we illustrate the theoretical results with synthetic data. For both ridge linear regression and ridge

logistic regression, we follow an example from [31]. We chose this model, since it considers a random vector

whose covariance matrix has eigenvalues at very different scales. In this case first-order algorithms can be

sensitive, so that it may be meaningful to use second-order algorithms.

4.1.1. Experimental model

We generated a standard Gaussian matrix X̃ ∈ R
p×N with N = 12000 and p = 200. We computed

the SVD (Singular Value Decomposition) of the matrix X̃ , i.e. we got X̃ = UD̃V T . We then generated the

data matrix X with X =
√
NUDV T , where D = diag(1, 1/22, 1/32, . . . , 1/p2). We generated the outcome

values for linear regression task from the model

Y = Xβ + ε,

and the outcome values for logistic regression task from the model

Y = sign(Xβ + ε),

where β is a realization of standard Gaussian random variable, which is the parameter to estimate and

ε ∼ NN (0, 0.1IN) is the random vector error.

4.1.2. Protocol

We consider three different values of regularization parameters λ: λ = 1/NT , 100/NT or 1000/NT , where

NT is the training sample size. The value λ = 1/NT is the case chosen in [31]. The other values are chosen

to show the performances of algorithms in cases where the criterion is over penalized. For each value of λ,

we estimate βλ using the three algorithms SR,SN and AI-SGD. Each data is split into a training sample of

size 10000 and a test sample of size 2000. To compare the three algorithms, we compute the percentage

of explained variance (EV) and the Root Mean Square Error (RMSE) for linear regression task, and the

accuracies for logistic regression task. We carry out the experimentation on 50 samples before computing the

mean and the standard deviation (sd) of EV (in %), RMSE and accuracies (in %).

4.1.3. Comparison of the different algorithms

Table 1 is concerned with the performances of the three methods for the linear regression task. Results

show that SN and SR algorithms perform almost identically. In addition, their performances are better and

more stable than the first order method AI-SGD, especially in the cases where λ is small, i.e the cases where

the eigenvalues of the covariance matrix are not over harmonized.
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λ Method Training EV (sd) Test RMSE (sd)

10−4
SR 96.39 (7.73) 0.103 (0.002)

SN 96.39 (7.73) 0.103 (0.002)

AI-SGD 94.02 (9.90) 0.144 (0.021)

0.01
SR 94.94 (6.86) 0.138 (0.016)

SN 94.95 (6.85) 0.137 (0.016)

AI-SGD 93.52 (8.44) 0.158 (0.025)

0.1
SR 80.77 (19.47) 0.240 (0.062)

SN 80.78 (19.46) 0.240 (0.062)

AI-SGD 80.29 (19.61) 0.245 (0.064)

Table 1: Mean and standard deviation of RMSE and EV of SR, SN and AI-SGD algorithms in the linear regression case.

Table 2 presents the performances of SN and AI-SGD algorithms for the logistic regression task. We can

see that the second-order method SN works better than the first-order method AI-SGD on both training sample

and test sample, with higher mean and lower sd of accuracies. Similarly to the linear case, the improvement

is more obvious in the cases where λ is small.

λ Method Training Accuracy (sd) Test Accuracy (sd)

10−4 SN 93.55 (4.00) 93.45 (4.15)

AI-SGD 88.85 (5.97) 88.90 (6.10)

0.01
SN 89.77 (5.71) 89.74 (5.88)

AI-SGD 88.30 (6.31) 88.39 (6.36)

0.1
SN 86.49 (8.05) 86.45 (8.16)

AI-SGD 86.33 (8.12) 86.29 (8.25)

Table 2: Mean and standard deviation of Accuracy of SN and AI-SGD algorithms in the logistic regression case.

4.2. Experiments on real data

We consider two well-known data sets : BUZZ data set for linear regression task and COVTYPE data set

for logistic regression task. As in the previous paragraph, we compare our methods with AI-SGD, but also

with CCD. To do so, we regularize all data sets, because CCD can only work on standardized data.

4.2.1. Presentation of the data sets

BUZZ data set was created by [16], which contains examples of buzz events from the social network

Twitter. Their study focuses on the problem of predicting the level of activity related to a keyword without

having prior knowledge of the underlying social network. The data set was also studied by [31]. There exist

77 predictors, with more than 40 strongly correlated predictors, leading to a good example for ridge regression.

In [31], the authors split the data set into 466600 training samples (80%) and 116650 test samples (20%).

COVTYPE data set is a well-known data set, which was collected in 1998 by [4], and was widely studied

(see for example [29, 31, 28]). Based on 581011 observations and 54 predictors, the objective of the initial

study was to predict the cover type of the forests located in Roosevelt National Park. In our study, we will re-

strict ourselves to the most frequent modality of the variable to be predicted "covertype", namely "Spruce/Fir",

which represents 48.8% of the observations. The "cover-type" variable thus becomes a binary variable, with

the "fir" modality by 1, and the other modalities by 0. We split randomly the data into 464809 training samples

(80%) and 116202 test samples (20%).

4.2.2. Results and comments

For real data, the choice of regularization parameter λ is of course important and in practice it is often cho-

sen using a cross-validation step. In [28], authors suggest to set λ to 1/n with n the number of observations,

which is in the range of the smallest values that would generally be applied in practice. In the Python-package

sklearn [23], the value of λ also defaults to 1/n. However, when data are sequentially obtained, cross-

validation approach is forbidden and n is unknown, but it is always possible to arbitrarily choose the value of

8



λ so that strong correlations are taken into account. We therefore decided to perform experiments with λ = 1
and λ = 1/n.

For BUZZ dataset, we employ ridge linear regression to predict the activity volume. Results obtained for

BUZZ dataset, are stated in Table 3. The proposed algorithms perform better than AI-SGD on BUZZ with

higher explained variance and lower RMSE on both training sample and test sample, but they perform slightly

worse than CCD. However, it is no less important to remember that CCD is a iterative method, while our

algorithms are recursive.

Method SN SR AI-SGD CCD

λ = 1/n

Training EV(%) 93.49 93.48 92.02 93.45

Test EV(%) 93.96 93.95 93.28 93.96

Training RMSE 159.09 159.13 176.07 159.46

Test RMSE 139.24 139.27 146.82 139.24

λ = 1

Training EV(%) 89.48 89.48 84.61 93.43

Test EV(%) 90.70 90.79 86.58 94.04

Training RMSE 202.15 202.15 244.49 159.80

Test RMSE 172.72 172.72 207.46 138.23

Table 3: Performances on BUZZ data set. EV and RMSE of SR, SN, AI-SGD and CCD algorithms.

For COVTYPE dataset, we use ridge logistic regression to predict the variable "covertype". We can

observe from Table 4 that the proposed method achieves the same accuracy as CCD on COVTYPE, which is

remarkable as our method is recursive. Moreover, it provides higher accuracy than AI-SGD on both training

sample and test sample.

Method SN AI-SGD CCD

λ = 1/n
Training Acc(%) 75.59 75.22 75.59

Test Acc(%) 75.66 75.37 75.66

λ = 1
Training Acc(%) 69.82 69.77 69.82

Test Acc(%) 69.80 69.72 69.80

Table 4: Performances on COVTYPE data set. Accuracy of SN, AI-SGD and CCD algorithms.

Conclusion

In this paper, recursive second-order algorithms for ridge linear regression and ridge logistic regression

have been proposed. These algorithms are perfectly adapted to the context of machine learning since they

allow an online update of the ridge solution from large volumes of data. The originality of the paper is that our

methods not only take into account second order information, but also avoid the inverse matrix calculation,

making it more appropriate for usage in an online context. Observe that this study does not focus on the

choice of the ridge parameter λ. Anyway, for any fixed choice of λ, the proposed algorithms can achieve good

and stable results, which is confirmed with experiments.

5. Proof
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5.1. Proof of Theorem 1

We set Qn = 1
nQn = 1

n

(
Sn + pλ

∑n
j=1 ZjZ

T
j

)
and H := Γ + λIp, then we have, denoting by ‖.‖F the

Frobenius norm for matrices

∥∥Qn −H
∥∥2
F
=

∥∥∥∥∥∥
1

n


αIp +

n∑

k=1

XkX
T
k + pλ

n∑

j=1

ZjZ
T
j


− Γ− λIp

∥∥∥∥∥∥

2

F

≤ 3

∥∥∥∥∥
1

n

n∑

k=1

XkX
T
k − E

[
XXT

]
∥∥∥∥∥

2

F

+ 3

∥∥∥∥∥
pλ

n

n∑

k=1

ZkZ
T
k − λIp

∥∥∥∥∥

2

F

+ 3
∥∥∥α
n
Ip

∥∥∥
2

F
.

It is obvious that ∥∥∥α
n
Ip

∥∥∥
2

= O
(

1

n2

)
.

Since X admits moment of order 4, by the law of the iterated logarithm [12],

∥∥∥∥∥
1

n

n∑

k=1

XkX
T
k − E

[
XXT

]
∥∥∥∥∥

2

F

= O
(
ln lnn

n

)
a.s.

In addition, denoting by ⌊.⌋ the integer part function,

∥∥∥∥∥
pλ

n

n∑

k=1

ZkZ
T
k − n

n
λIp

∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥

pλ

n

n∑

k=⌊ n
p ⌋p+1

ZkZ
T
k +

(
p

n

⌊
n

p

⌋
− n

n

)
λIp

∥∥∥∥∥∥∥

2

F

.

Moreover,

p2λ2

n2

∥∥∥∥∥∥∥

n∑

k=⌊ n
p ⌋p+1

ZkZ
T
k

∥∥∥∥∥∥∥

2

F

≤ p2λ2

n2

(
n−

⌊
n

p

⌋
p

) n∑

k=⌊n
p ⌋p+1

∥∥ZkZ
T
k

∥∥2
F
≤ p3λ2

n2

n∑

k=⌊n
p ⌋p+1

∥∥ZkZ
T
k

∥∥2
F
≤ p4λ2

n2
,

and ∥∥∥∥
(
p

n

⌊
n

p

⌋
− n

n

)
λIp

∥∥∥∥
2

F

≤
∥∥∥ p
n
λIp

∥∥∥
2

F
≤ p4λ2

n2
.

We then have ∥∥Qn −H
∥∥2
F
= O

(
ln lnn

n

)
a.s. (14)

Note that the difference between two inverse matrices can be written as

Q
−1

n −H−1 = Q
−1

n (H −Qn)H
−1,

so that ∥∥∥Q−1

n −H−1
∥∥∥
2

op
≤
∥∥∥Q−1

n

∥∥∥
2

op

∥∥H −Qn

∥∥2
op

∥∥H−1
∥∥2
op
.

We proved that
∥∥Qn −H

∥∥2
F
= O

(
ln lnn

n

)
a.s. Furthermore, we have

∥∥∥Q−1

n

∥∥∥
2

op
≤ 1

λmin(Qn)
2

and
∥∥H−1

∥∥2
op

≤
1

λmin(H)2 . It is obvious that λmin(H) ≥ λ, thus

∥∥∥H−1
∥∥∥
2

op
≤ 1

λ2 = O(1). Moreover, Qn converges to H , so

that we have also

∥∥∥Q−1

n

∥∥∥
2

op
= O(1) a.s. To sum up, we have

∥∥∥Q−1

n −H−1
∥∥∥
2

op
= O

(
ln lnn

n

)
a.s.
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In addition, since XY admits a moment of order 2, we have, by the law of the iterated logarithm,

n−1

∥∥∥∥∥∥

n∑

j=1

XjYj − E[XY ]

∥∥∥∥∥∥

2

= O
(
ln lnn

n

)
a.s.

We now focus on the rate of convergence of β̂n. We have βλ = H−1
E[XY ]. Therefore,

∥∥∥β̂n − βλ

∥∥∥
2

=

∥∥∥∥∥∥
1

n
Q

−1

n

n∑

j=1

XjYj −H−1
E[XY ]

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
(Q

−1

n −H−1)
1

n

n∑

j=1

XjYj +H−1


 1

n

n∑

j=1

XjYj − E[XY ]



∥∥∥∥∥∥

2

≤ 2

∥∥∥∥∥∥
(Q

−1

n −H−1)
1

n

n∑

j=1

XjYj

∥∥∥∥∥∥

2

+ 2

∥∥∥∥∥∥
H−1


 1

n

n∑

j=1

XjYj − E[XY ]



∥∥∥∥∥∥

2

≤ 2
∥∥∥Q−1

n −H−1
∥∥∥
2

op

∥∥∥∥∥∥
1

n

n∑

j=1

XjYj

∥∥∥∥∥∥

2

+ 2
∥∥H−1

∥∥2
op

∥∥∥∥∥∥
1

n

n∑

j=1

XjYj − E[XY ]

∥∥∥∥∥∥

2

= O
(
ln lnn

n

)
a.s

which concludes the proof.

5.2. Proof of Theorem 2

The aim is to apply Theorem 3.3 in [5], thus we have to prove that the hypotheses (A1b), (A1c), (A2a),

(A2b), (A2c), (H1), (H2a) and (H2b) in [5] are satisfied.

Verification of (A1b). We have for all h ∈ R
p,

g(X,Y, h) =
1

2
((Y −XTh)2 + λ ‖h‖2),

so that

∇g(X,Y, h) = −X(Y −XTh) + λh

= −XY +XXTβ +XXT (h− β) + λ(h− β) + λβ.

As X and ǫ admit moments of order 4 + 4η and 2 + 2η, we have

E

[
‖∇g(X,Y, h)‖2+2η

]
≤ 51+2η

E

[
‖XY ‖2+2η

]
+ 51+2η

E

[
‖X‖4+4η

]
‖h− β‖2+2η

+ 51+2η(λ ‖h− β‖)2+2η + 51+2η(λ ‖β‖)2+2η + E

[
‖X‖4+4η

]
E

[
‖β‖2+2η

]

≤ Cη(1 + ‖h− β‖2+2η).

Then hypothesis (A1b) is satisfied.

Verification of (A1c). For all h ∈ R
p,

Σ(h) := E
[
∇g(X,Y, h)∇g(X,Y, h)T

]

= E[(Y −XTh)2XXT ] + λ2hhT − 2λE[hTX(Y −XTh)]

= E[(Y −XTβ)2XXT ] + E[((XT (h− β))2XXT ]− 2λE[hTX(Y −XTβ)]

− 2λE[hTX(Y −XT (h− β))] + λ2hhT .
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As X admits a moment of order 4 and (Y −Xβ) admits a moment of order 2, the function Σ is continuous on

β. Hypothesis (A1c) is then satisfied.

Verification of (A2a). For all h ∈ R
p, we have

∥∥∇2G(h)
∥∥
op

=
∥∥E
[
XXT

]
+ λIp

∥∥
op

≤ E

[
‖X‖2

]
+ λ.

Hypothesis (A2a) is then satisfied.

Verification of (A2b) and (A2c). We have

∇2G(h) = E
[
XXT

]
+ λIp.

Since E
[
XXT

]
is non-negative, ∇2G(h) is positive definite and Hypothesis (A2b) is then satisfied. In addi-

tion, ∇2G(.) is 0-Lipschitz, and (A2c) is so satisfied.

Verification of (H2b). With the help of equality (14), one directly has, denoting Qn := 1
nQn,

∥∥Qn −H
∥∥2
F
= O

(
ln lnn

n

)
a.s

and hypothesis (H2b) is so satisfied, which concludes the proof, i.e all the hypotheses are satisfied, and

according to [5], we obtain the conclusion.

5.3. Proof of Theorem 3

We set Qn := 1
nQn = 1

n

(
Cn + αIp + pλ

∑n
j=1 ZjZ

T
j

)
and H = (Σ + λIp), then we have

∥∥Qn −H
∥∥2
F
=

∥∥∥∥∥∥
1

n


αIp + Cn + pλ

n∑

j=1

ZjZ
T
j


− Σ− λIp

∥∥∥∥∥∥

2

F

≤ 3

∥∥∥∥
1

n
Cn − Σ

∥∥∥∥
2

F

+ 3

∥∥∥∥∥
pλ

n

n∑

k=1

ZkZ
T
k − λIp

∥∥∥∥∥

2

F

+ 3
∥∥∥α
n
Ip

∥∥∥
2

F
.

We have already checked that (see the proof of Theorem 1)

∥∥∥α
n
Ip

∥∥∥
2

F
= O

(
1

n2

)
and

∥∥∥∥∥
pλ

n

n∑

k=1

ZkZ
T
k − λIp

∥∥∥∥∥

2

F

= O

(
1

n2

)
.

In addition, we have

∥∥∥∥
1

n
Cn − Σ

∥∥∥∥
2

F

≤ 2

∥∥∥∥∥
1

n

n∑

k=1

(Xk − E [X ]) (Xk − E [X ])T − Σ

∥∥∥∥∥

2

F

+ 2
∥∥∥
(
Xn − E [X ]

) (
Xn − E [X ]

)T∥∥∥
2

F

= 2

∥∥∥∥∥
1

n

n∑

k=1

(Xk − E [X ]) (Xk − E [X ])
T − Σ

∥∥∥∥∥

2

F

+ 2
∥∥Xn − E [X ]

∥∥4 .

Then, with the help of the law of the iterated logarithm (applied twice), one has

∥∥∥∥
1

n
Cn − Σ

∥∥∥∥
2

F

= O

(
ln lnn

n

)
a.s and

∥∥Qn −H
∥∥2
F
= O

(
ln lnn

n

)
a.s. (15)
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Thus,

∥∥∥β̂n − βλ

∥∥∥
2

=

∥∥∥∥∥∥
1

n
Q

−1

n

n∑

j=1

(Xj −Xn)(Yj − Y n)−H−1
E [(X − E [X ])(Y − E [Y ])]

∥∥∥∥∥∥

2

≤ 2

∥∥∥∥∥∥

(
Q

−1

n −H−1
) 1

n

n∑

j=1

(Xj −Xn)(Yj − Y n)

∥∥∥∥∥∥

2




=: T1

+ 2

∥∥∥∥∥∥
H−1


 1

n

n∑

j=1

(Xj −Xn)(Yj − Y n)− E [(X − E [X ])(Y − E [Y ])]



∥∥∥∥∥∥

2




=: T2

Moreover, by the law of the iterated logarithm,

T2 ≤ 2
∥∥H−1

∥∥2
op

∥∥∥∥∥∥
1

n

n∑

j=1

(Xj −Xn)(Yj − Y n)− E [(X − E [X ])(Y − E [Y ])]

∥∥∥∥∥∥

2

≤ 4
∥∥H−1

∥∥2
op




∥∥∥∥∥∥
1

n

n∑

j=1

XjYj − E[XY ]

∥∥∥∥∥∥

2

+
∥∥XnY n − E[X ]E[Y ]

∥∥2



= O

(
ln lnn

n

)
a.s.

In addition, thanks to equation (15),

T1 ≤ 2
∥∥∥Q−1

n −H−1
∥∥∥
2

F

∥∥∥∥∥∥
1

n

n∑

j=1

(Xj −Xn)(Yj − Y n)

∥∥∥∥∥∥

2

= O

(
ln lnn

n

)
a.s.

We now focus on the rate of convergence of β̂n,0. We have β̂n,0 = Y n − β̂T
nXn, and β0,λ = E [Y ]− βλE [X ].

Therefore, by the law of the iterated logarithm

∥∥∥β̂n,0 − β0,λ

∥∥∥
2

=
∥∥∥Y n − β̂T

nXn − E [Y ]− βλE [X ]
∥∥∥
2

≤ 2
∥∥Y n − E [Y ]

∥∥2 + 2
∥∥∥β̂T

nXn − βλE [X ]
∥∥∥
2

≤ 2
∥∥Y n − E [Y ]

∥∥2 + 4
∥∥∥β̂T

n − βλ

∥∥∥
2 ∥∥Xn

∥∥2 + 4 ‖βλ‖2
∥∥E [X ]−Xn

∥∥2

= O
(
ln lnn

n

)
a.s,

which concludes the proof.

5.4. Proof of Theorem 4

The aim here is to apply Theorem 3.3 in [5]. Similar to the proof of Theorem 2, we have to prove that

the hypotheses (A1b), (A1c), (A2a), (A2b), (A2c), (H1), (H2a) and (H2b) in [5] are satisfied. Compared to the

previous proof, the main difficulty here is to verify (H1).

Verification of (A1b). Since |Y | ≤ 1 and the function π is also bounded by 1, we have

‖∇gλ(φ, Y, z̃)‖ ≤ (|Y |+ |π(z̃Tφ)|) ‖φ‖+ λ ‖z‖ ≤ 2‖φ‖+ λ ‖z − β‖ + λ‖β‖
≤ 2 ‖φ‖ + λ

∥∥∥z̃ − β̃
∥∥∥+ λ ‖β‖ ,

13



where φ = (1, XT )T , z̃ = (z0, z
T )T and β̃ = (β0, β

T )T . Then hypothesis (A1b) is satisfied since X admits

moment of 2 + 2η.

Verification of (A1c). For all z̃ ∈ R
p+1,

Σ(z̃) := E
[
∇gλ(φ, Y, z̃)∇gλ(φ, Y, z̃)T

]
= E

[
(Y − π(z̃Tφ))2φφT

]
+ zzT − 2λE

[
zTφ(Y − π(z̃Tφ))

]
,

Since π is continuous and bounded, since Y is bounded, and since φ admits a second order moment, the

function Σ(.) is continuous on R
p+1. Hypothesis (A1c) is then satisfied.

Verification of (A2a). We have π(1− π) ≤ 1
4 , and therefore for all z̃ ∈ R

p+1, we have

∥∥∇2Gλ(z̃)
∥∥
op

≤ 1

4
E

[
‖φ‖2

]
+ λ.

Therefore, hypothesis (A2a) is satisfied.

Verification of (A2b). We have for all z′ ∈ R
p+1,

∇2Gλ(z
′) = E

[
π
(
(z′)Tφ

) (
1− π

(
(z′)Tφ

))
φφT

]
+ λ(Ip+1 − e1e

T
1 ),

thus for all z̃ = (z0, z
T )T ∈ R

p+1 such that z̃ 6= 0, we have

z̃T∇2Gλ(z
′)z̃ = z̃TE

[
π
(
(z′)Tφ

) (
1− π

(
(z′)Tφ

))
φφT

]
z̃ + ‖z‖2 .

If z 6= 0, it is obvious that z̃T∇2Gλ(z
′)z̃ > 0. Otherwise we have z0 6= 0, and z̃ = (z0, 0)

T
, so that

z̃T∇2Gλ(z
′)z̃ = E

[
π
(
(z′)Tφ

) (
1− π

(
(z′)Tφ

))]
‖z0‖2 > 0.

Thus ∇2Gλ(z
′) is positive definite and hypothesis (A2b) is so satisfied.

Verification of (A2c). For all x ∈ R, we have

π′(x) =
exp(x)(exp(x) + 1)− exp(x)2

(1 + exp(x))2
=

exp(x)

(1 + exp(x))2
=

1

4cosh(x/2)2
≤ 1

4
.

Thus, for all x, x′, |π(x) − π(x′)| ≤ 1
4 |x− x′|. In addition, we have

|(π(1 − π))′(x))| = |(π′(x)(1 − 2π(x))| ≤ |(π′(x)|.

Thanks to the Cauchy-Schwarz inequality, we have for all z̃ ∈ R
p+1,

∥∥∥∇2Gλ(z̃)−∇2Gλ(β̃)
∥∥∥
op

≤ E

[
|(π(1− π))(z̃Tφ)− (π(1 − π))(β̃T φ)| ‖φ‖2

]

≤ 1

4
E

[
‖φ‖3

] ∥∥∥z̃ − β̃
∥∥∥ .

The Hessian is then Lipschitz and hypothesis (A2c) is so satisfied.

Verification of (H1). Let us denote Qn = 1
nQn and remark that

λmin

(
Qn

)
≥ min




α

n
+
λ(p+ 1)

n

⌊
n

p+ 1

⌋
,
α

n
+
λ(p+ 1)1−2γ

n

⌊n/(p+1)⌋∑

k=1

k−2γc2γ



 .

Since we are interested by the asymptotic behavior of the smallest eigenvalue, let us suppose from now that

n > p+ 1. First, remark that
λ(p+ 1)

n

⌊
n

p+ 1

⌋
≥ λ

n− p

n
−−−−−→
n→+∞

λ.
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In addition,

⌊n/(p+1)⌋∑

k=1

k−2γc2γ ≥ c2γ

∫ ⌊n/(p+1)⌋+1

1

t−2γdt =
c2γ

1− 2γ

(
(⌊n/(p+ 1)⌋+ 1)

1−2γ − 1
)
.

Thus,

λmax(Q
−1

n ) = O
(
n2γ
)
.

As αk ≤ 1
4 , we have

λmax(Qn) ≤ λmax

(
αIp+1

n
+

1

n

n∑

k=1

1

4
φkφ

T
k +

(p+ 1)λ

n

n∑

k=1

ZkZ
T
k

)
.

Note that since γ < 1/2,

λ(p+ 1)

n

⌊n/(p+1)⌋∑

k=1

k−2γc2γ = O
(
n−2γ

)
(16)

and one can so check that

∥∥∥∥∥
(p+ 1)λ

n

n∑

k=1

ZkZ
T
k − λAp+1

∥∥∥∥∥

2

F

= O
(
n−2γ

)
. (17)

By the strong law of large numbers, we have

1

n

(
αIp+1 +

n∑

k=1

1

4
φkφ

T
k

)
a.s.−−−−−→

n→+∞

1

4
E
[
φφT

]
.

Thus hypothesis (H1) is satisfied and according to Theorem 3.1 in [5], β̂n converges almost surely to β̃.

Verification of (H2a). Let us consider Bn :=
∑n

j=1 α(β̂
T
j−1φj)φjφ

T
j , which can be written as

Bn =

n∑

k=1

∇2G(β̂k−1) +

n∑

k=1

ψk,

where G(z̃) = E
[
log(1 + exp(z̃Tφ)) − z̃TφY

]
and ψk = ak − ∇2G(θ̂k) with ak := α(β̂T

k−1φk)φkφ
T
k . Note

that (ψk) is a sequence of martingale differences with respect to the filtration (Fn) with Fn = σ ((φ1, Y1), ..., (φn, Yn)).
Besides,

E

[
‖ψk‖2F |Fk−1

]
≤ E

[
‖ak‖2F |Fk−1

]
≤ 1

16
E

[
‖φ‖4

]
,

where ‖.‖F is the Frobenius norm. Thanks to the law of large numbers for martingales, we have that for all

δ > 0, ∥∥∥∥∥
1

n

n∑

k=1

Ψk

∥∥∥∥∥

2

F

= o

(
lnn1+δ

n

)
a.s. (18)

Remark that the function h 7→ ∇2G(h) is continuous. Moreover, since β̂n converges almost surely to β̃, we

have by continuity ∥∥∥∥∥
1

n

n∑

k=1

∇2G(β̂k−1)−∇2G(β̃)

∥∥∥∥∥
F

a.s.−−−−−→
n→+∞

0.

Then, coupled with equality (17), it comes that Qn converges almost surely to ∇2
λG
(
β̃
)

and according to

Theorem 3.2 in [5], ∥∥∥β̂n − βλ

∥∥∥
2

= O
(
lnn

n

)
a.s.
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Verification of (H2b). Since the function h 7→ ∇2G(h) is 1
4E[‖φ‖

3]-Lipschitz, there exists a positive random

variable B such that
∥∥∥∥∥
1

n

n∑

k=1

∇2G(β̂k−1)−∇2G(βλ)

∥∥∥∥∥
F

≤ B

4n
E

[
‖φ‖3

] n∑

k=1

√
log k√
k

= O
(√

lnn

n

)
a.s.

Then, coupled with (18), it comes that

∥∥∥∥
1

n
Bn −∇2G

(
β̃
)∥∥∥∥

2

F

= o

(
(lnn)1+δ

n

)
a.s,

and coupled with equality (17), we obtain

∥∥∥Qn −∇2
λG
(
β̃
)∥∥∥

2

F
= O

(
n−2γ

)
.

All the hypotheses are satisfied, and according to [5], we obtain the conclusion.
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