
HAL Id: hal-03858789
https://hal.science/hal-03858789

Submitted on 17 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preserving Consistency in Multi-Issue Liquid Democracy
Rachael Colley, Umberto Grandi

To cite this version:
Rachael Colley, Umberto Grandi. Preserving Consistency in Multi-Issue Liquid Democracy. 31st
International Joint Conference on Artificial Intelligence (IJCAI 2022), International Joint Conferences
on Artificial Intelligence (IJCAI), Jul 2022, Vienna, Austria. pp.201-207, �10.24963/ijcai.2022/29�.
�hal-03858789�

https://hal.science/hal-03858789
https://hal.archives-ouvertes.fr

Preserving Consistency in Multi-Issue Liquid Democracy

Rachael Colley , Umberto Grandi
IRIT, University of Toulouse, France

{rachael.colley, umberto.grandi}@irit.fr

Abstract
Liquid democracy bridges the gap between direct
and representative democracy by allowing agents
to vote directly on an issue or delegate to a trusted
voter. Yet, when applied to votes on multiple inter-
connected issues, liquid democracy can lead agents
to submit inconsistent votes. Two approaches are
possible to maintain consistency: either modify the
voters’ ballots by ignoring problematic delegations,
or resolve all delegations and make changes to the
final votes of the agents. We show that rules based
on minimising such changes are NP-complete. We
propose instead to elicit and apply the agents’ pri-
orities over the delegated issues, designing and
analysing two algorithms that find consistent votes
from the agents’ delegations in polynomial time.

1 Introduction
Delegative voting, most notably the setting called liquid
democracy in which delegations are transitive, is currently
under scrutiny by researchers in artificial intelligence. On
the one hand, as a collective intelligence application in which
its ability to track truth messages from noisy signals is eval-
uated [Caragiannis and Micha, 2019; Becker et al., 2021;
Dhillon et al., 2021; Halpern et al., 2021; Kahng et al., 2021;
Zhang and Grossi, 2022], and on the other hand, as an algo-
rithmically rich application of interactive democracy [Boldi
et al., 2011; Kotsialou and Riley, 2020; Brill et al., 2022;
Markakis and Papasotiropoulos, 2021].

Liquid democracy is mostly studied in its simplest form:
a binary decision has to be taken by a group of voters, who
are allowed to express a direct vote (eventually including ab-
stentions) or delegate their vote to another voter. However,
its main potential lies in the fact that virtually any collective
decision mechanism can be “liquidised”— to borrow a term
from Brill and Talmon [2018], i.e., to include transitive del-
egations: for example, the liquid version of knapsack voting
(related to participatory budgeting) allows a voter to delegate
their assessment of different projects to different voters [Jain
et al., 2021]. Another example is pairwise liquid democracy
[Brill and Talmon, 2018], in which a voter can delegate rela-
tive comparisons over two competing alternatives to (possibly
different) voters in preference aggregation.

However, applying delegative voting to more complex
multi-issue collective decisions runs into the problem of
maintaining voters’ consistency (e.g., in the two settings pre-
viously mentioned, the projects approved by the agent should
not exceed a given budget, and the agent’s preferences should
be transitive) while at the same time utilising voters’ delega-
tions in the input as much as possible. Optimisation-based
approaches proposed in previous work all run into high com-
putational costs, and approximation algorithms may be hard
to defend in a social choice setting where fairness criteria and
explanatory power of the outcome are of primary importance.

Our Contribution. We propose to elicit a voter’s priorities
over the issues on which they are delegating and feed them
to tractable rules that maintain ballot consistency. Such an
elicitation can easily be performed by, for example, using
the order in which voters enter their delegations in the vot-
ing platform. We first consider two rules that minimise ei-
ther the number of ignored delegations in the voters’ ballots,
as proposed in previous work by Brill and Talmon [2018]
and Jain et al. [2021], or minimise the number of changes
to the agents’ final votes once all delegations have been re-
solved. After showing that both rules are NP-complete, we
propose two polynomial algorithms inspired by the two min-
imisation rules, that apply the agents’ priorities to output con-
sistent final votes. Our results show that although these prin-
cipled algorithms cannot be considered as approximations of
the minimisation rules, one of our algorithms respects the
agents’ priorities over their delegations more than its minimi-
sation counterpart. Furthermore, when focusing on settings
with budget constraints, we show that one of our minimisa-
tion rules outperforms the other rules when considering their
global effects on the acceptance rates of projects.

Related Work. The seminal work of Christoff and
Grossi [2017] already considered a “liquidised” version of
binary aggregation on interdependent issues. This paper
builds on this, generalising and unifying the approach of Jain
et al. [2021] and Brill and Talmon [2018], where the for-
mer pertains to approved projects respecting a budget and
the latter to accepted pairwise comparisons being transitive.
More precisely, we study liquid democracy over multiple
binary issues where the final opinions are bounded to sat-
isfy a constraint. Another model considering a liquid ver-
sion of preference aggregation is that of Harding [2021],

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

201

however, this work guides agents in choosing a proxy that
is consistent with their views. The algorithmic literature
on liquid democracy has mostly focused on eliciting rank-
ings over potential delegates to solve the problem of dele-
gation cycles [Kotsialou and Riley, 2020; Brill et al., 2022;
Dey et al., 2021] or to study game-theoretical solution con-
cepts where liquid democracy is interpreted as a voting
game [Escoffier et al., 2019; Armstrong and Larson, 2021;
Zhang and Grossi, 2021]. As already observed by Christoff
and Grossi [2017] liquid democracy relates strongly to opin-
ion diffusion, where a delegation can be interpreted as an in-
fluence link. Constraints in opinion diffusion have been con-
sidered by Friedkin et al. [2016] for real-valued beliefs and by
Botan et al. [2019] for majoritarian updates on binary issues.

Paper Structure. The remainder of the paper is organised
as follows. Section 2 presents the basic definitions of the
model. Section 3 presents two rules that minimise the num-
ber of delegations that have to be deleted to find consistent
votes, showing that they are intractable. In Section 4 we in-
troduce the notion of priorities over the issues as well as two
rules combining delegation deletion and the agents’ priorities,
showing that they terminate with consistent votes in poly-
nomial time (Section 4.1). In Section 4.2 we show that the
tractable rules are not efficient approximations of their min-
imisation counterparts. In Section 4.3 we compare the four
rules on how well they respect the priorities. Section 5 fo-
cuses on knapsack constraints and in Section 6 we conclude.

2 The Model
We model a group of agents N = {1, · · ·, n} making a col-
lective decision on a set of issues I = {1, · · ·,m}, where the
domain of each issue j ∈ I is D(j). Without loss of gen-
erality we will consider binary issues, thus D(j) = {0, 1}
for all j ∈ I.1 Each agent i ∈ N submits a ballot Bi ∈
Πj∈I(D(j) ∪ N\{i}), which specifies for each issue j ∈ I
if the agent gives a direct vote in D(j) or a delegation to any
other agent in N\{i}. A profile of ballots, one for each agent
in N , is denoted by B, and the vote of agent i on issue j in
profile B is denoted as Bij . We let B̂ be an n × m matrix
containing only the direct votes of the agents in profile B,
where B̂ij = Bij if Bij ∈ {0, 1} and B̂ij = ∆, otherwise.
We let X ∈ {0, 1}n×m denote a profile of votes.

Example 1. Consider two agents N = {C,D}, two issues
I = {j, k}, and a profile B composed of ballots BC =
(1, D) and BD = (C, 1), where C delegates to D on issue
k, and D delegates to C on issue j. The direct votes of the
agents are B̂ = ((1,∆), (∆, 1)).

We assume that there are no delegation cycles on any given
issue. To clarify this, we associate a labelled delegation graph
GB=(V,E) with each profile B, where V=N and edge
(C,D, j)∈E if C delegates to D on issue j in B (where j
is the label of the edge). We assume that GB is acyclic for
any issue, i.e., for each (C,D, j) ∈ E there is no j-path from

1Non-binary issues can be expressed in the binary setting by let-
ting each alternative become a binary issue where the constraint per-
mits only one alternative to be chosen.

C returning to C. This allows us to focus on preserving con-
sistency without making assumptions on how delegation cy-
cles are broken, in a similar vein as the previous work [Brill
and Talmon, 2018; Jain et al., 2021]. Thanks to the assump-
tion of acyclicity, we can define a canonical profile of votes
XB ∈ {0, 1}n×m for every B, where all delegating vot-
ers are assigned the vote of the direct voter at the end of the
delegation chain (sometimes known as a guru or an ultimate
delegate). Given a delegation graph GB , for each i ∈ N and
j ∈ I , we find the endpoint k ∈ N of the longest outgoing
j-path from i and let XB

ij = B̂kj .
We assume that the issues in I are interconnected, i.e., that

the votes of the agents have to respect a given constraint or
set of constraints Γ. For instance, in knapsack voting agents
have to respect a given budget in the set of approved projects,
or in preference aggregation the approved comparisons are
assumed to be transitive. If Xi ∈ {0, 1}m, we denote with
Xi |= Γ the fact that agent i’s vote satisfies the constraint Γ.
If X is a profile of votes, we write X |= Γ when Xi |= Γ
for all i ∈ N . The set of all consistent votes is denoted by
XΓ = {X | X |= Γ}, assuming that Γ is not a contradic-
tion, i.e. XΓ ̸= ∅. We allow for any representation of Γ, with
the only restriction being that checking if a partial vote can
be completed to a consistent one should be feasible in poly-
nomial time. For instance, budget constraints, logical for-
mulas in complete-DNF, and the transitivity of preferences
would all be acceptable constraints. Constraints expressed
as arbitrary logical formulas do not, as the problem of com-
pleting partial evaluations is equivalent to SAT. Formally, if
X ∈ {0, 1,∆}m is a partial vote, we write X p≈ Γ if there
exists a complete vote X ∈ {0, 1}m such that X ⊆ X and
X |= Γ.2 We assume that every agent’s (partial) direct votes
can be completed, i.e., for all i ∈ N we assume B̂i p≈ Γ.
In line with previous work, we say that a profile of ballots
B is consistent if XB |= Γ.3 From our assumptions that
delegations are acyclic and the membership problem of Γ is
tractable, we obtain that:
Remark 1. To check if a profile B is consistent is polynomial.

As profiles may not be consistent, we define consistent del-
egation rules that take a profile of ballots B and return a pro-
file of consistent votes, preserving the voters’ direct votes:
Definition 1. Given a constraint Γ, a consistent delegation
rule F takes a profile of ballots B and returns a profile of
votes such that F(B) |= Γ and B̂ ⊆ F(B).
Example 2. Consider the same setting as Example 1, with
the constraint that j and k cannot both be accepted. Thus, Γ
can be represented as ¬j ∨ ¬k (a logical formula in com-
plete DNF) and XΓ={(0, 0), (0, 1), (1, 0)}. Following the
agents’ delegations in B, the canonical profile of votes is
XB=((1, 1), (1, 1)). Thus, B is not consistent. Observe
that any consistent delegation rule would give the outcome
((1, 0), (0, 1)) (where the direct votes are not changed).

2Here we slightly abuse the subset notation, for a partial as-
signment X ∈ {0, 1,∆}m and assignment X ∈ {0, 1}m, we say
X ⊆ X when X is found by only changing ∆s in X to 0 or 1.

3Brill and Talmon [2018] also define a weaker notion of consis-
tency. Both are equivalent to our definition on acyclic profiles.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

202

3 Minimal Changes to Ballots and Votes
In this section we introduce two consistent delegation rules
that preserve vote consistency by making minimal changes,
showing that associated decision problems are NP-complete.

The first approach is to modify the profile of ballots B by
ignoring a minimal number of delegations that conflict with
the constraint, replacing them with a direct vote. This rule has
been defined in previous work on multi-issue liquid democ-
racy for the specific settings of knapsack voting [Jain et al.,
2021] and preference aggregation [Brill and Talmon, 2018].
Given a profile B, the minimal delegation change rule MDC
finds all consistent profiles B′ that replace a minimal number
of delegations with direct votes and whose canonical profile
of votes XB′

is consistent with Γ:

MDC(B)={XB′
|B′∈ argmax

{B′|B̂⊆XB′ & XB′ |=Γ}

∑
i∈N

|Bi∩B′
i|}

We now show that the following decision problem associated
with MDC is NP-complete.

MINIMALDELCHANGE. Given a profile B, constraint Γ
and integer k ≥ 0, is there a consistent profile B′ found by
changing at most k delegations of B to direct votes?

Proposition 1. MINIMALDELCHANGE is NP-complete.

Proof. A sub-problem of MINIMALDELCHANGE is the con-
sistent knapsack voting problem CKV from Jain et al. [2021]
(they also consider acyclic delegation graphs, as CKV re-
moves cycles by replacing every delegation in a cycle with
a direct vote against the issue). CKV is an NP-complete
problem, as shown by Jain et al. [2021] (Theorem 1), im-
plying that MINIMALDELCHANGE is NP-hard. To see that
MINIMALDELCHANGE is in NP, consider a certificate that
lists agents and issues, indicating delegations to be changed to
direct votes to obtain B′ from B. First we check that the list
has at most k entries. Then we check whether B′ is consis-
tent, which can be done in polynomial time by Remark 1.

The second approach, loosely inspired by related literature
on judgment aggregation (see, e.g., Lang et al. [2011]), makes
minimal changes to the canonical profile of votes XB di-
rectly, but only on issues where the voter expressed a delega-
tion. The minimal vote change rule MVC is defined as follows:

MVC(B) = argmax
{X|B̂⊆X and X|=Γ}

∑
i∈N

|Xi ∩XB
i |

In line with Proposition 1, we now show that the following
decision problem associated with MVC is NP-complete.

MINIMALVOTECHANGE. Given a profile B, constraint
Γ, and integer k ≥ 0, is there an X |= Γ such that B̂ ⊆ X

and X is found by changing at most k votes in XB?

Proposition 2. MINIMALVOTECHANGE is NP-complete.

Proof. For membership in NP, we take a certificate that lists
pairs of agents and issues to be changed in XB to define X ′.
We then check in polynomial time that the list has k or less
entries, and that X ′

i |= Γ for each i ∈ N .

To show NP-hardness, we reduce from the NP-complete
problem independent set INDSET [Karp, 1972]. The input of
INDSET is a graph G = (V,E) and integer t ≥ 0. It asks
if there is a V ′ ⊆ V with |V ′| ≥ t such that no edge in E
has both ends in V ′. Given an instance of INDSET, consider
a set of agents N = {Av | for all v ∈ V } ∪ {A}, issues
I = {Iv | v ∈ V }, and bound k = |V | − t. Next, our
constraint only allows for independent sets: ΓIND = {(Iu →
¬Iv) ∧ (Iv → ¬Iu) | (u, v) ∈ E}. First, observe that we
can check in polynomial time if a partial assignment can be
completed to one satisfying ΓIND, as we only need to check
that the vertices accepted in the partial assignment are an in-
dependent set. Finally, consider a profile of ballots B such
that agent A delegates to agent Av on issue Iv for all v ∈ V ,
and each Av only approves of Iv , rejecting all other issues.

Assume there is an independent set V ′ ⊆ V with |V ′| ≥ t.
Given that XB

A =(1, · · ·, 1), consider XA containing votes for
the issues Iv with v ∈ V ′ and against the remaining issues.
The resulting profile of votes is consistent: for each v ∈ V ,
XAv

is consistent as only one issue is accepted, and XA |=
ΓIND as XA reflects an independent set. Thus, we also have
a solution to our problem as the number of votes changed is
|V | − |V ′| ≤ |V | − t = k. Next assume that there is no
independent set of size at least t, and suppose t′ < t is the
size of the largest independent set of G. Observe that in order
to make XB

A consistent, at least |V | − t′ votes need to be
reverted. As |V |−t′ > |V |−t = k, there is no solution to our
problem either. Hence, MINIMALVOTECHANGE is NP-hard,
thus NP-complete.

4 Eliciting and Applying Priorities over Issues
In order to provide tractable and principled rules to preserve
vote consistency, we propose to elicit from the voters their
priorities over the issues they choose to delegate on—this
could be, e.g., the order in which the voter expressed their del-
egations. In doing so we discard a fixed parameter tractability
analysis of MDC and MVC,since Jain et al. [2021] already pro-
vided extensive negative results for this approach.4

We assume that voters specify a total ordering over the is-
sues on which they express a delegation. To simplify the pre-
sentation, we assume that these orderings are on the whole set
of issues I (the two assumptions are equivalent since consis-
tent delegation rules never change direct votes). We denote
this order by ≺i for each agent i ∈ N , and we write ≺i (k)
for the issue with the kth highest priority in ≺i.

In parallel with the minimisation rules presented in Sec-
tion 3, we present two approaches based on either delegation
changes or vote changes. First, the priority delegation chang-
ing rule (PDC) described in Algorithm 1 iteratively alters an
agent’s delegation to a direct vote if its addition is inconsis-
tent. Second, the priority vote changing rule (PVC) described
in Algorithm 2 iteratively adds consistent votes from XB fol-
lowing the order of priorities. We now define some notation

4Jain et al. [2021, Theorem 1] show that their version of MDC is
tractable only under restrictive conditions such as when voters dele-
gate on at most one issue. Moreover, their problem is NP-complete
even when restricting many parameters to be small constants.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

203

Algorithm 1 Priority delegation changing (PDC)

1: Input: B, ≺i for all i ∈ N
2: t = 0
3: Find X0 = B̂
4: while Xt /∈ {0, 1}n×m do
5: Xt+1 := Xt

6: for i ∈ N and k ∈ [1,m] do
7: j :=≺i (k)
8: if vote(Xt, i, j) = ∆ and vote(Xt, Bij , j) ∈

{0, 1} then
9: if (bal(Xt+1, i)−j , vote(X

t, Bij , j)) p≈ Γ

then vote(Xt+1, i, j) := vote(Xt, Bij , j)

10: else vote(Xt+1,i,j):=1−vote(Xt, Bij , j)

11: X := Xt

used in the algorithms. Recall that B̂ denotes an n ×m ma-
trix containing only the direct votes of B. We let bal(X, i)
denote the vector of votes recorded for agent i in matrix X
and vote(X, i, j) denote the vote recorded in X for agent
i on issue j. Furthermore, (X−j , xj) denotes the vector X
with the entry for issue j appended with a new entry xj .

Algorithm 1 inputs the profile B and the agents’ priorities
over the issues ≺i, and then sets the counter t to 0. On line 4
the algorithm starts a while-loop that continues until every
agent has a vote in {0, 1} for every issue. Each iteration of the
while-loop checks whether an update can be made for each
agent following their priority order over the issues. In the
current Xt, if i does not have a vote for j and their delegate
does (on line 8), we check if adding their delegate’s vote is
consistent, if so we update Xt+1

i with it (line 9), otherwise
we add the opposite (line 10). Note that the update to Xt+1

is simultaneous as it uses information from Xt. Hence, the
order of agents in the for-loop does not affect the outcome.

Algorithm 2 describes PVC, it inputs the profile B and the
agents’ priorities. It then finds B̂ and the canonical profile
of votes XB . For each agent i ∈ N it checks in the priority
order ≺i (line 4) if they have a vote recorded in X0 (line 6).
If the addition of XB

ij is consistent then we update X0
i with it

(line 7), if not we update the opposite (line 8).

Example 3. Consider agents N = {C,D,E, F} and issues
I = {j, k} where at most one issue can be accepted, i.e.,
Γ = ¬j ∨ ¬k. Consider profile B in which agents C and
D vote directly, BC = (1, 0) and BD = (0, 1), whereas
the remaining agents delegate as such: BE = (C,D) and
BF = (E,E). Agent E has the priority j ⪰E k while F has
the priority k ⪰F j. PDC first considers delegations of the
highest priority issue. The top priority issue for E is j and
their delegate has a vote for j in X0. As E currently has no
votes in X0 we let X1

Ej = 1. Then the delegation on the sec-
ond priority issue k is not consistent, thus, X1

Ek = 0. As in
X0, E does not have any votes, F ’s votes can only be added
in the second iteration. Thus, X2

F = (1, 0) and PDC(B) =
((1, 0), (0, 1), (1, 0), (1, 0)). PVC first computes the canoni-
cal profile of votes XB = ((1, 0), (0, 1), (1, 1), (1, 1)), where
XB

E and XB
F are inconsistent. For similar reasons as when

Algorithm 2 Priority vote changing (PVC)

1: Input: B, ≺i for all i ∈ N
2: Find X0 = B̂
3: Find XB

4: for i ∈ N and k ∈ [1,m] do
5: j :=≺i (k)
6: if vote(X0, i, j) = ∆ then
7: if (bal(X0, i)−j , vote(X

0, XB
ij , j)) p≈ Γ then

vote(X0, i, j) := vote(X0, XB
ij , i)

8: else vote(X0, i, j) := 1− vote(X0, XB
ij , j)

9: X := X0

using PDC, PVC then changes E’s vote to X0
E = (1, 0). How-

ever, for F , it first tries X0
Fk = 1 in accordance with F ’s

priorities, which is consistent, entailing that X0
Fj = 0. Thus,

PVC(B) = ((1, 0), (0, 1), (1, 0), (0, 1)).

4.1 Complexity of PDC and PVC
In the absence of constraints it is easy to see that all four rules
output the canonical profile of votes associated to the profile.

Remark 2. When Γ = ⊤, PDC, PVC, MDC and MVC give the
same outcome, namely XB .

We next show that PDC and PVC always terminate and out-
put a consistent profile of votes.

Proposition 3. For any acyclic profile B and constraint Γ,
PDC and PVC terminate, PDC(B) |= Γ and PVC(B) |= Γ.

Proof. We start from PDC. Due to the while-loop on line 4,
if Algorithm 1 terminates, it does so with X ∈ {0, 1}n×m.
We assume for a contradiction that Algorithm 1 does not ter-
minate, and therefore, Xt

ij = ∆ for all t > T after some
iteration T ∈ N and for some i ∈ N and j ∈ I . Note that
Bij /∈ {0, 1} as the algorithm does not change any direct
votes to ∆. Therefore, Bij is a delegation, and since votes
are propagated following delegations we can infer that also
Xt

Bijj
= ∆. By the acyclicity of B, the delegation chain

on issue j starting at agent i must end at a direct voter for
j, whose vote will then eventually reach voter i, against our
assumption. Next, we show that every agent’s votes are con-
sistent with Γ. Recall that the initial direct votes are consis-
tent, i.e., B̂i p≈ Γ for all i ∈ N . Each time a vote is added,
we check if its addition allows for a consistent completion
and if not, the opposite is added. As XΓ ̸= ∅, the process is
guaranteed to give a consistent completion of votes.

Next we show the same for PVC. Algorithm 2 first finds
XB . It then inspects the cells of X0 with a for-loop on
line 4, cycling though every agent and issue (in order of their
priorities), after which it will terminate. In line 6, it inspects
every entry of X0 without a vote X0

ij = ∆ and then updates
it to a vote in {0, 1} from line 7 to line 8. Thus, the algo-
rithm always returns X ∈ {0, 1}n×m. We next show that
the agents’ votes are consistent. The algorithm starts with B̂,
which by assumption is such that B̂i p≈ Γ for all i ∈ N . It
then iteratively adds votes from XB if they can be completed

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

204

to a consistent set of votes, and the opposite otherwise. This
will always lead to votes X0

i |= Γ. Therefore, PVC always
terminates with Xn×m and Xi |= Γ for all i ∈ N .

We show that both rules run in polynomial time. Recall
that n is the number of voters, m the number of issues, and
let ℓ be the time to check if a partial vote has a Γ-consistent
completion (we assumed that ℓ is polynomial in n and m).

Proposition 4. PDC terminates in O(nm(n+ ℓ)) time.

Proof. In each iteration of while-loop on line 4, Algo-
rithm 1 first checks if Xt ∈ {0, 1}n×m in O(nm) time.
Since each issue has at least one direct voter, in the first it-
eration of the while-loop the for-loop on line 6 checks
at most m(n − 1) delegations, to see if their delegate has
a vote in X0, each taking constant time. As the profile is
acyclic, at least one vote for each issue is added in each it-
eration. Thus, in iteration t, the for-loop checks at most
m(n − t) delegations. Therefore, Algorithm 1 requires at
most

∑n
t=1 nm + (n − t)m ∈ O(mn2) time to check the

while-loop condition and if a voter’s delegate has a direct
vote. Furthermore, once for each delegation, we check if the
addition of their delegate’s vote has a Γ-consistent comple-
tion, in total taking at most m(n − 1)ℓ steps. Hence, Algo-
rithm 1 terminates in O(nm(n+ ℓ)) time.

Proposition 5. PVC terminates in O(nm(n+ ℓ)) time.

Proof. Algorithm 2 first finds XB in O(n2m) time, where
for each issue and each agent it takes at most O(n) time to
unravel the delegation chain until a direct voter is found. For
each delegation in B, the for-loop on line 4 will check, fol-
lowing the order given by the priorities, if the addition of the
vote found in XB along with the votes already in X0 can be
completed to comply with Γ. As there are at most m(n − 1)
delegations and each completion check takes ℓ steps, this can
be done in O(nmℓ) time. Summing the two figures we obtain
that Algorithm 2 gives an outcome in O(nm(n+ℓ)) time.

4.2 Approximation Bounds
Next we assess whether PDC and PVC are good polynomial
approximations of MDC and MVC, giving a negative response.
This is unsurprising, as PDC and PVC aim to respect priorities
rather than minimise changes. We abuse notation by defining
flip(F(B)) to count the number of changes that F makes
when finding a consistent outcome on profile B. This corre-
sponds to delegations in B being ignored by PDC and MDC,
or direct votes being reverted in XB by PVC and MVC.

Proposition 6. For each n ≥ 3 and m ≥ 2 there is a profile
B such that flip(PDC(B)) = O(nm)× flip(MDC(B)).

Proof. Consider N = {A1, · · ·, An} and I = {i1, · · ·, im},
and XΓ = {(0, · · ·, 0), (1, · · ·, 1)}. Consider profile B where
BA1 = (1, · · ·, 1), BA2 = (0, · · ·, 0), and for the remaining
agents let BAt

= (At−2, At−1, · · ·, At−1) for t ∈ [3, n], each
with priorities ix ≻At

iy if and only if x < y. As replacing
the delegation of A3 on issue i1 to a direct vote of 0 gives
a consistent profile, flip(MDC(B)) = 1. However, PDC
returns the vote XAt

= (1, · · ·, 1) when t is odd and XAt
=

A4 A2 A3 · · · A3 A3 A1 A2 · · · A2

A1 1 1 · · · 1 A2 0 0 · · · 0

(a) Profile from Proposition 6

A4 A1 A2 · · · A2 A3 A1 A2 · · · A2

A1 1 1 · · · 1 A2 0 0 · · · 0

(b) Profile from Proposition 7

Figure 1: The profiles from (a) Proposition 6 and (b) Proposition 7
when N = {A1, A2, A3, A4} and |I| = m.

(0, · · ·, 0) when t is even. Thus, for the n − 2 delegating
agents, At with t ≥ 2, all of their delegations are flipped for
the issues in I\{i1}. Thus, flip(PDC(B)) = (n− 2)(m−
1), and flip(PDC(B)) = O(nm)× flip(MDC(B)).

Proposition 7. For each n ≥ 3 and m ≥ 2 there is a profile
B such that flip(PVC(B)) = O(m)× flip(MVC(B)).

Proof. Consider N = {A1, · · ·, An} and I = {i1, · · ·, im},
and XΓ = {(0, · · ·, 0), (1, · · ·, 1)}. The ballots of B are as
follows: BA1

= (1, · · ·, 1), BA2
= (0, · · ·, 0), and the re-

maining agents have the ballot BAt
= (A1, A2, · · ·, A2) for

t ∈ [3, n], with the priorities ix ≻At
iy for x < y. The canon-

ical profile XB is inconsistent since XAt
= (1, 0, · · ·, 0)

for t > 2. MVC alters the delegated vote of such voters
on issue i1, hence flip(MVC(B)) = n − 2. PVC instead
reverts all delegated votes except for the one on issue i1,
hence flip(PVC(B)) = (n − 2) × (m − 1). Therefore,
flip(PVC(B)) = O(m)× flip(MVC(B)).

4.3 Comparing Rules on Priorities
In this section we compare the four consistent delegation
rules with respect to the agents’ priorities over the issues. We
use the topi function which identifies agent i’s highest prior-
ity issue from a subset of issues according to ≺i.We first de-
fine the sets of issues on which a rule F does not respect agent
i’s delegations, either with respect to their delegate (del):

deliF (B)={j | j∈I, Bij /∈{0, 1} and F(B)ij ̸=F(B)Bijj},

or with respect to the canonical profile of vote (dir):

diriF (B)={j | j ∈ I and XB
ij ̸= F(B)ij}.

The set deliF (B) identifies the issues on which the votes
of agent i in F(B) differ from their delegate’s vote, whereas
diriF (B) identifies the issues on which the votes of agent i
in the outcome F(B) differ to their votes in XB . Note

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

205

that there is no logical connection between these sets. In-
tuitively, agents want lower priority issues to be in these
sets, as they reflect the delegations that have been ignored
in finding consistent votes. For a profile B, rules F and
F ′, and measure c ∈ {del, dir}, we say that an agent i top-
prefers ciF (B) to ciF ′(B) (denoted by ciF (B) ⪰top

i ciF ′(B))
if topi(ciF (B)) ⪯i topi(ciF ′(B)), where topi(c) gives the
highest element of c with respect to ≺i. Thus, top-preferring
ciF (B) to ciF ′(B) entails that the top issue whose delegation
is ignored using F has a lower priority than the top issue us-
ing F ′. Let cBF = (c1F (B), · · ·, cnF (B)), and cBF ′ ⪯top

N c′
B
F

if and only if ciF ′(B) ⪯top
i ciF (B) for every i ∈ N .

The following proposition shows that PVC respects issues
with higher priorities than its minimisation counterpart MVC.

Proposition 8. dirBMVC ⪯top
N dirBPVC for any profile B.

Proof. We assume for a contradiction that there exists a
profile B such that dirBMVC ⪯̸top

N dirBPVC. Therefore,
there is an agent i ∈ N such that topi(diriMVC(B)) ≺i

topi(diriPVC(B)). Suppose that topi(diriMVC(B)) is i’s kth

priority and that topi(diriPVC(B)) is i’s mth priority (thus,
m < k). MVC outputs a consistent vote including i’s first
(k− 1) top-priority issues. Thus, the partial truth assignment
Xi including i’s direct votes and accepting the delegations on
the top (k − 1) priority issues is such that Xi p≈ Γ. PVC on
the other hand only accepts the delegations on i’s top (m−1)
priorities and rejects the delegation on the mth issue. Yet if
Xi p≈ Γ, then any X ′ ⊆ Xi is such that X ′ p≈ Γ, includ-
ing the partial assignment accepting i’s direct votes and their
delegations on the first m priority issues. We have reached a
contradiction as PVC rejected a partial assignment that could
be completed.

We now show that the analogous result is not true for PDC.

Proposition 9. There exists profiles B and B′ such that
delBMDC ⪯top

N delBPDC and delB
′

PDC ⪯top
N delB

′

MDC .

Proof. First we give B such that delBMDC ⪯top
N delBPDC. We

have N={C,D,E, F} and issues I={i, j, k} with the set
of consistent votes being XΓ = {(1, 0, 0), (0, 1, 1)}. We let
BC = (1, 0, 0), BD = (0, 1, 1), BE = (0, 1, 1) and agent
F delegates as such: BF = (C,D,E) with the following
priorities over the issues i ≻F j ≻F k. PDC first adds
F ’s delegation on i giving XF = (1,∆,∆), and then at-
tempts to add the delegations on j and k but rejects both
giving XF = (1, 0, 0). Thus, delFPDC(B) = {j, k}. MDC
returns X ′

F = (0, 1, 1), where only the delegation on is-
sue i is changed, thus delFMDC(B) = {i}. All agents T ∈
N\{F} are direct voters, hence delTMDC(B)=delTPDC(B)=∅.
As topF (delFMDC) ≺F topF (delFPDC), we can conclude that
delBMDC ⪯top

N delBPDC.
Now let N , I, and XΓ be as in the first part of the

proof, and let profile B′ be composed of BC=(0, 1, 1),
BD=(1, 0, 0), BE=(C,C, 1), and BF=(E,E,D), with E
and F having the priority i ≻ j ≻ k. The first iteration
of Algorithm 1 gives XE = (0, 1, 1) and XF = (∆,∆, 0).

In the second iteration we have XF = (1, 0, 0), as the del-
egations to E are inconsistent. Therefore, delCPDC(B

′) =
delDPDC(B

′) = delEPDC(B
′) = ∅, whereas, delFPDC(B

′)={i, j}.
MDC however lets XF=(0, 1, 1) where delFMDC(B

′)={k}. As
topF (delFMDC(B

′)) ≺F topF (delFPDC(B
′)), we have that

delB
′

PDC ⪯top
N delB

′

MDC.

5 Knapsack Constraints
In this section we focus on knapsack or budget constraints,
i.e., sets of feasible votes respecting a budget limit L ∈ N of
the form ΓL={X |

∑
j∈I xj≤L}. They have the property

that turning a vote from acceptance to rejection in a consis-
tent ballot preserves consistency. This property is exploited
by Jain et al. [2021] in their algorithm to remove cycles and
solve inconsistent delegations. However, this can lead to re-
jecting a large number of issues and potentially leaving funds
unassigned. In this section we evaluate this factor for the four
rules we proposed. Let count(X) =

∑
i∈N ,j∈I xij be the

number of acceptances in the profile of votes X .
Remark 3. Given a profile B and budget constraint ΓL,
we have that count(XB) ≥ count(F(B)) for F ∈
{MDC,MVC,PDC,PVC}.
Proposition 10. For any profile B, count(MVC(B)) ≥
count(F(B)) for F ∈ {MDC,PVC,PDC}.

Proof. B is an arbitrary profile and ΓL a budget constraint.
MVC(B) outputs all consistent profiles of votes obtained from
XB with a minimal number of 1s changed to 0s. Our rules
do not change 0s to 1s, as rejections do not use any of the
budget. Note that if X,X ′ ∈ MVC(B) then count(X) =
count(X ′). Thus, any other consistent delegation rule must
approve at most the same number of issues as MVC(B).

An analogous result showing that PVC accepts more issues
than MDC or PDC does not hold, as can be shown by coun-
terexample. To conclude, the approach of minimal delegation
changes proposed in the literature might not be appropriate
for budgeting applications, where it is outperformed by min-
imal vote changes in terms of number of projects accepted.

6 Conclusion
Existing approaches in the literature looked at changes to the
ballots of voters to maintain consistency, in knapsack voting
and in preference aggregation. We generalise this by studying
liquid democracy on multiple interconnected issues, putting
forward two novel ideas: first, we propose two rules that start
by resolving delegations and then make changes to the final
votes and, second, we design polynomial algorithms to main-
tain vote consistency by eliciting agents’ priorities.

The main open problem is whether PDC can be improved,
since Proposition 9 shows that it does not use priorities in the
best way. We conjecture that this cannot be done in polyno-
mial time, but a result showing this impossibility is yet to be
shown. Our result in Section 5 shows that specific constraints
require specific treatment, and thus the choice of a consistent
delegation rule is not trivial. Hence a prominent direction for
future research is to specify our general setting on specific
classes of constraints.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

206

Acknowledgments
The authors acknowledge the support of the ANR JCJC
project SCONE (ANR 18-CE23-0009-01).

References
[Armstrong and Larson, 2021] Ben Armstrong and Kate

Larson. On the limited applicability of liquid democracy.
In Appears at the 3rd Games, Agents, and Incentives Work-
shop (GAIW 2021). Held as part of the Workshops at the
20th International Conference on Autonomous Agents and
Multiagent Systems, 2021.

[Becker et al., 2021] Ruben Becker, Gianlorenzo D’Angelo,
Esmaeil Delfaraz, and Hugo Gilbert. Unveiling the truth
in liquid democracy with misinformed voters. In Interna-
tional Conference on Algorithmic Decision Theory (ADT),
2021.

[Boldi et al., 2011] Paolo Boldi, Francesco Bonchi, Carlos
Castillo, and Sebastiano Vigna. Viscous democracy for
social networks. Communications of the ACM, 2011.

[Botan et al., 2019] Sirin Botan, Umberto Grandi, and Lau-
rent Perrussel. Multi-issue opinion diffusion under con-
straints. In Proceedings of the 18th International Joint
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), 2019.

[Brill and Talmon, 2018] Markus Brill and Nimrod Talmon.
Pairwise liquid democracy. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intel-
ligence (IJCAI), 2018.

[Brill et al., 2022] Markus Brill, Théo Delemazure, Anne-
Marie George, Martin Lackner, and Ulrike Schmidt-
Kraepelin. Liquid democracy with ranked delegations.
Proceedings of the 36th AAAI Conference on Artificial In-
telligence (AAAI), 2022.

[Caragiannis and Micha, 2019] Ioannis Caragiannis and Evi
Micha. A contribution to the critique of liquid democracy.
In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence (IJCAI), 2019.

[Christoff and Grossi, 2017] Zoé Christoff and Davide
Grossi. Binary voting with delegable proxy: An analysis
of liquid democracy. In Proceedings Sixteenth Conference
on Theoretical Aspects of Rationality and Knowledge
(TARK), 2017.

[Dey et al., 2021] Palash Dey, Arnab Maiti, and Amatya
Sharma. On parameterized complexity of liquid democ-
racy. In Algorithms and Discrete Applied Mathematics -
7th International Conference (CALDAM), 2021.

[Dhillon et al., 2021] Amrita Dhillon, Grammateia Kot-
sialou, and Dimitris Xefteris. Information aggregation
with delegation of votes. Center for Open Science, 2021.

[Escoffier et al., 2019] Bruno Escoffier, Hugo Gilbert, and
Adèle Pass-Lanneau. The convergence of iterative dele-
gations in liquid democracy in a social network. In Al-
gorithmic Game Theory - 12th International Symposium
(SAGT), 2019.

[Friedkin et al., 2016] Noah E. Friedkin, Anton V.
Proskurnikov, Roberto Tempo, and Sergey E. Parsegov.
Network science on belief system dynamics under logic
constraints. Science, 354(6310):321–326, 2016.

[Halpern et al., 2021] Daniel Halpern, Joseph Y Halpern,
Ali Jadbabaie, Elchanan Mossel, Ariel D Procaccia, and
Manon Revel. In defense of fluid democracy. arXiv
preprint arXiv:2107.11868, 2021.

[Harding, 2021] Jacqueline Harding. Proxy selection in tran-
sitive proxy voting. Social Choice and Welfare, pages 1–
31, 2021.

[Jain et al., 2021] Pallavi Jain, Krzysztof Sornat, and Nim-
rod Talmon. Preserving consistency for liquid knapsack
voting. In 20th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2021.

[Kahng et al., 2021] Anson Kahng, Simon Mackenzie, and
Ariel Procaccia. Liquid democracy: An algorithmic
perspective. Journal of Artificial Intelligence Research,
70:1223–1252, 2021.

[Karp, 1972] Richard M. Karp. Reducibility among com-
binatorial problems. In Proceedings of a symposium on
the Complexity of Computer Computations, pages 85–103.
Springer, 1972.

[Kotsialou and Riley, 2020] Grammateia Kotsialou and
Luke Riley. Incentivising participation in liquid democ-
racy with breadth-first delegation. AAMAS, 2020.

[Lang et al., 2011] Jérôme Lang, Gabriella Pigozzi, Marija
Slavkovik, and Leendert van der Torre. Judgment aggre-
gation rules based on minimization. In Proceedings of the
13th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK), 2011.

[Markakis and Papasotiropoulos, 2021] Evangelos Markakis
and Georgios Papasotiropoulos. An approval-based model
for single-step liquid democracy. In Algorithmic Game
Theory - 14th International Symposium (SAGT), 2021.

[Zhang and Grossi, 2021] Yuzhe Zhang and Davide Grossi.
Power in liquid democracy. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI), 2021.

[Zhang and Grossi, 2022] Yuzhe Zhang and Davide Grossi.
Tracking truth by weighting proxies in liquid democracy.
Proceedings of the 21st International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 2022.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

207

	Introduction
	The Model
	Minimal Changes to Ballots and Votes
	Eliciting and Applying Priorities over Issues
	Complexity of PDC and PVC
	Approximation Bounds
	Comparing Rules on Priorities

	Knapsack Constraints
	Conclusion

