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Dynamics of a gas bubble in a straining flow: deformation, oscillations, self-propulsion

Javier Sierra-Ausin,∗ Paul Bonnefis, Antonia Tirri,† David Fabre, and Jacques Magnaudet
Institut de Mécanique des Fluides de Toulouse (IMFT),

Université de Toulouse, CNRS, Toulouse, France.
(Dated: November 17, 2022)

We revisit from a dynamical point of view the classical problem of the deformation of a gas
bubble suspended in an axisymmetric uniaxial straining flow. Thanks to a recently developed
Linearized Arbitrary Lagrangian-Eulerian approach, we compute the steady equilibrium states and
associated bubble shapes. Considering perturbations that respect the symmetries of the imposed
carrying flow, we show that the bifurcation diagram is made of a stable and an unstable branch of
steady states separated by a saddle-node bifurcation, the location of which is tracked throughout
the parameter space. We characterize the most relevant global mode along each branch, namely
an oscillatory mode that becomes neutrally stable in the inviscid limit along the stable branch,
and an unstable non-oscillating mode eventually leading to the breakup of the bubble along the
unstable branch. Next, considering perturbations that break the symmetries of the carrying flow,
we identify two additional unstable non-oscillating modes associated with the possible drift of the
bubble centroid away from the stagnation point of the undisturbed flow. One of them corresponds
merely to a translation of the bubble along the elongational direction of the flow. The other is
counterintuitive, as it corresponds to a drift of the bubble in the symmetry plane of the undisturbed
flow, where this flow is compressional. We confirm the existence and characteristics of this mode
by computing analytically the corresponding leading-order disturbance in the inviscid limit, and
show that the observed dynamics are made possible by a specific self-propulsion mechanism that we
explain qualitatively.

I. INTRODUCTION

The dynamics of a gas bubble (more generally a drop) freely suspended in a viscous fluid undergoing a uniaxial
straining flow has received considerable attention since the pioneering work of Taylor [1]. When the fluid inertia
cannot be neglected, the bubble shape results from the competion of pressure and viscous stresses that act to increase
the interface deformation and the capillary stress that resists it. Under certain conditions, capillary effects are
insufficient to keep the deformation finite, leading eventually to the breakup of the bubble. This physical configuration
is commonly described in terms of the Weber (We) and Reynolds (Re) numbers which characterize the relative
importance of inertial forces with respect to capillary and viscous forces, respectively. At low-but-finite Reynolds
number, Acrivos & Lo [2] showed that no steady bubble shape exists beyond a critical Weber number, Wec, increasing

as Re3/4. The same qualitative conclusion was reached in the inviscid limit by Miksis [3] who determined the
corresponding O(1)-value of Wec. Subsequently, Ryskin & Leal [4] computed the steady bubble shape over a wide
range of We and Re by solving the full stationary Navier-Stokes equations on a boundary fitted grid. They found
that Wec increases monotonically with Re and recovered with a good accuracy the predictions of [2] and [3] in the
respective limits. These findings were confirmed by Kang & Leal [5] who considered the time-dependent bubble
evolution, starting from some arbitrary initial shape. Among other things, they showed that the critical Weber
number is highly sensitive to this initial condition, observing that it decreases as the initial elongation of the bubble
is increased beyond that of the steady solution. They also considered the case of oscillating bubbles in the inviscid
limit and showed that their oscillation frequency decreases as We increases and vanishes for We = Wec.

In this study, we revisit this rich phenomenology with the help of a global linear stability approach. Obviously, the
chief technical difficulty in this free-boundary problem stands in the fact that the geometry of the flow domain is a priori
unknown.This is why up to now it has been tackled numerically either with boundary integral methods in the creeping-
flow limit (Re = 0) [6, 7] or in the potential flow limit [8, 9], or with Navier-Stokes solvers making use of time-evolving
boundary fitted grids [4, 5]. Here, we overcome this difficulty by making use of the recently developed Linearized
Arbitrary Lagrangian-Eulerian approach [10], which allows the governing equations and boundary conditions of the
problem to be expanded rigorously on an appropriate reference domain. We specify the problem in Sec. II and
provide an overview of the Linearized Arbitrary Lagrangian-Eulerian methodology in appendix A. In Sec. III we take
advantage of this approach to determine the complete bifurcation diagram of the system by considering perturbations
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FIG. 1: Sketch of the physical configuration with the symmetry axis r = 0 and the symmetry plane z = 0 of the
undisturbed straining flow, and the corresponding (r, θ, z) coordinate system.

respecting the symmetries of the imposed straining flow. This diagram is found to comprise a stable and an unstable
branch connected through a saddle-node bifurcation. The stable branch corresponds to the previously computed
steady states. The unstable branch, which was only reported before under creeping-flow conditions [7], is shown to
be associated with the breakup of the bubble under subcritical conditions. In Sec. IV, we characterize the dominant
linearly unstable or marginally stable mode of the system along each branch. By letting the bubble centroid move
freely, we also identify two unstable modes that break the symmetries of the imposed straining flow and, to the
best of our knowledge, were not described up to now. We observe that in one of them the bubble drifts away from
the symmetry axis of the straining flow. We show that this surprising dynamics are associated with an original
self-propulsion mechanism.

II. STATEMENT OF THE PROBLEM

We consider a gas bubble with negligible viscosity and constant volume Vb immersed in a Newtonian fluid, with
dynamic viscosity µ and density ρ. The surface tension γ acting at the interface is assumed constant and the flow is
considered incompressible. The fluid is subject to a uniaxial straining flow which, in the (er, eθ, ez) basis sketched
in Fig. 1, induces the velocity field U∞ = −S2 rer + Szez, where S denotes the uniform strain rate. The bubble
centroid stands initially at the origin r = z = 0 which is also the hyperbolic point of the straining flow. The stationary
configuration (but not necessarily the eigenmodes to be considered later) is assumed to stay axisymmetric about the
z-axis (r = 0) and also exhibits a mirror symmetry with respect to the midplane z = 0 (see fig. 1). Defining the
equilibrium diameter d of the bubble such that Vb = π

6 d
3, we characterize the bubble deformation in the parameter

space (Oh,We). The Ohnesorge number, Oh = µ√
ργd

, is defined as the ratio of the viscous force µUcd based on the

capillary velocity scale Uc = (γ/(ρd))1/2 and the capillary force γd. Similarly, the Weber number, We = ρS2d3

4γ , is

defined as the ratio of the inertial force ρU2
o d

2 based on the outer velocity scale Uo = Sd/2 and the capillary force. A

Reynolds number may also be built by combining these two parameters in the form Re =
√

We
Oh = ρUod

µ . The bubble

elongation may be characterized through the aspect ratio χ = dz
dr

, with dz and dr the major and minor axis lengths,
respectively.

Let Ω(t) and Γb(t) denote the time-dependent fluid domain and bubble-fluid interface, respectively. The problem
is governed by the set of equations

∂tΩu + u · ∇Ωu = ρ−1∇Ω ·ΣΩ in Ω(t) , (1)

∇Ω · u = 0 in Ω(t) , (2)

∂tΩη = u · n on Γb(t) , (3)

ΣΩ · n = (−pb + γκ)n on Γb(t) , (4)

supplemented with appropriate boundary conditions at r = 0, z = 0 and in the far field. In (1)-(4), the subscript Ω

is used to stress the fact that the time and space derivatives are to be evaluated in the time-dependent domain Ω(t).
The no-penetration condition (3) implies that, at any location x on the interface, the time derivative of the interface
position η(x, t) must coincide with the normal component u · n of the local fluid velocity u(x, t), n(x, t) denoting the
local unit normal directed into the fluid. The stress tensor in the fluid is ΣΩ(u, p) = −pI + 2µDΩ(u), with p, I and
DΩ(u) the pressure, the unit tensor and the strain-rate tensor, respectively. The normal projection of (4) expresses
the fact that the normal stress n ·ΣΩ ·n balances the difference between the uniform pressure pb(t) inside the bubble
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and the local capillary pressure γκn, with κ(x, t) = ∇ · n(x, t) the local mean curvature of the interface. Last, the
tangential projection of (4) yields the shear-free condition n× (ΣΩ · n) = 0 which holds if the interface is free of any
contamination.

Determining the steady solutions of (1)-(4) and performing subsequently a rigorous global linear stability analysis
of the system is made difficult by the deformable nature of the fluid domain. Developing robust and efficient compu-
tational strategies to achieve this goal is currently an active research area in the field of fluid-structure interactions;
e.g. [11, 12] and references therein. Here we adopt a Linearized Arbitrary Lagrangian-Eulerian approach, hereinafter
referred to as L-ALE, which is a hybrid formulation combining the Eulerian and Lagrangian descriptions of the fluid
motion. This approach, initially developed by one of us [10], is well adapted to the treatment of problems involving
deformable fluid interfaces subjected to capillary forces. An overview of the L-ALE methodology and of its numerical
implementation is given in appendix A.

An important strength of this approach is that steady-state solutions are computed using the steady form of the
governing equations, i.e. the time derivatives in (1) and (3) are dropped. Making use of a Newton algorithm combined
with a suitable continuation method (see appendix A), this allows the determination of both stable and unstable steady
states, which would not be possible with a time-marching approach. Once a steady state is reached, its linear stability
is assessed by examining the evolution of disturbances with a prescribed eigenmode form. In the present problem,
the base configuration exhibits an axial symmetry about the z-axis. It is thus relevant to consider disturbances of
velocity, pressure and position in the form Ψ(r, z)eimθ−iωt, with θ the polar angle in the cylindrical coordinate sys-
tem sketched in Fig. 1 and m the corresponding wavenumber. Unstable eigenmodes satisfying Im(ω) > 0 can be
classified as stationary (s) if Re(ω) = 0 or oscillating (o) if Re(ω) 6= 0. They can also be classified as symmetric (S)
or antisymmetric (A) with respect to the plane z = 0. In what follows, we classify the modes using a nomenclature
that summarizes their three characteristic properties, starting with their polar wavenumber m. For instance a ‘0 - S
(s)’ mode is axisymmetric (m = 0), symmetric with respect to the plane z = 0, and stationary.

III. BIFURCATION DIAGRAM

Figure 2(a) displays the bifurcation diagram obtained by setting the Ohnesorge number to the constant value
Oh = 10−2. This diagram reveals the existence of two branches below a critical Weber number Wec ≈ 2.27 beyond
which no stationary solution exists. Previous studies, for instance [5], showed that the bubble extends indefinitely
when We > Wec and eventually breaks up. We tracked the two branches found for We ≤ Wec using the pseudo-
arc-length continuation method described in appendix A. Bubbles standing along the lower branch exhibit a convex
shape while those along the upper branch are characterized by the presence of a concave neck in the symmetry plane.
For a given We < Wec, solutions found along the lower branch (corresponding to the bubble with the smaller aspect
ratio) are linearly stable in the sense that, following the nomenclature introduced above, all eigenmodes belonging
to the 0 - S subspace are damped. In contrast, the solutions found along the upper branch are unstable due to the
existence of an amplified eigenmode of the 0 - S (s) type. In the creeping-flow limit, Gallino et al. [7] identified
this branch as an edge state of the underlying dynamical system, a qualification that still holds in the presence of
finite-Reynolds-number effects. More precisely, if the initial conditions are located in the basin of attraction of this
branch, the system first converges toward the corresponding steady state, before the solution becomes unstable at
some point and the bubble eventually breaks up. The route to breakup then takes the form of a specific unstable
deformation mode, hereinafter referred to as Mode 0-S (s), shown with thin red contours in fig. 2(a). Compared
to the corresponding equilibrium shape, this mode is characterized by an increase in the bubble elongation and a
reduction in the diameter of the neck. The parametric dependence of the critical Weber number with respect to the
Reynolds number is reported in Fig. 2(b). Present results are found to agree well with those of [4] (solid black line).

In particular, the Re3/4-dependence predicted in [2] (after it was reinterpreted in [4]) in the low-Re limit, and the
asymptotic value We∞c ≈ 2.77 determined in [3] in the inviscid limit are recovered. It may be observed that the
stationary bubble shape corresponding to critical conditions is convex for intermediate and large Ohnesorge numbers,
Oh & O(10−2) say, but becomes slightly concave in the neighborhood of the symmetry plane at lower Oh.

IV. LINEAR STABILITY

A. Symmetry-preserving unstable or least stable modes

In experiments, the bubble centroid is usually constrained to stay fixed at the stagnation point of the undisturbed
flow using computer-controlled devices [13, 14]. Under such circumstances, the oscillations (for stable cases) or the
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FIG. 2: Bifurcation diagram. (a): variation of the bubble elongation with the Weber number for a fixed value of
the Ohnesorge number, here Oh = 10−2; (b) variation of the critical Weber number with the Reynolds number.
Bullets: present results obtained with the L-ALE approach (the red bullet in (a) pinpoints the critical Weber

number where the saddle-node bifurcation takes place); solid black line in (a− b): empirical correlation proposed in
[4]; dashed line in (a): unstable branch determined with the continuation method. In (b), the blue line is the

maximum Weber number We = We∗c(Re) beyond which Mode 0-S (o) stops oscillating; the red line indicates the
minimum Reynolds number beyond which Mode 1-S (s) (see Sec. IV B) is unstable. In both panels, bubble shapes

are shown for selected values of the parameters corresponding to the green bullets; the black and red contours
correspond to the steady state and the unstable Mode 0-S (s), respectively.

deformations leading to breakup (for unstable cases) are expected to respect the polar and mirror symmetries of
the base flow. This is why we first consider eigenmodes belonging to the subspace 0-S following the nomenclature
introduced above. Two such modes emerge as the most unstable or least stable ones. One is the already mentioned
unstable Mode 0-S (s), found along the upper branch of the bifurcation diagram. This mode is stationary, i.e. it is
associated with a frequency such that Re(ω) = 0, and emerges from the saddle-node bifurcation at the critical Weber
number Wec. In contrast, the second mode, hereinafter referred to as Mode 0-S (o), is oscillating and stable. Figure
3(a) shows how the frequency of this mode (black line) decreases as We increases and becomes eventually zero at
a critical Weber number We = We∗c . At this specific value, the complex eigenvalue associated with Mode 0-S (o)
splits into two real eigenvalues. Both are negative, i.e. the corresponding two modes are damped, but they behave
in opposite ways as We −We∗c increases within the interval [We∗c ,Wec]. The damping rate of the mode associated
with the smallest eigenvalue (in absolute value) decreases continuously and vanishes eventually at We = Wec, leading
to the amplification of Mode 0-S (s) beyond the saddle-node point (red line in Fig. 3(a)). In contrast, the damping
rate of the original Mode 0-S (o) (green line in Fig. 3(a)) increases continuously from We∗c to Wec, making this
mode aperiodic throughout this interval. The spatial structure of modes 0-S (o) and 0-S (s) at a slightly subcritical
Weber number (We = 2.5) is illustrated in Fig. 3(b − c). Mode 0-S (o) is associated with the complex eigenvalue
ω = 1.3284 − 0.0044i and therefore oscillates with a period T = 2π/1.3284 ≈ 4.73. These oscillations result from
the competition of inertial and capillary effects. They are characterized by a periodic sequence of compressional
(t = T/4) and extensional (t = 3T/4) displacements of the bubble surface in the z-direction. Conversely, Mode 0-S
(s) is unstable (ω = +0.2797i) and is characterized by a growing elongation of the bubble along its symmetry axis
and a continuous shrinking wthin its equatorial plane.

Variations of the growth rate of Mode 0-S (s) with respect to Wec−We are displayed in Fig. 4(a). The growth rate
exhibits a marked increase with the distance to the threshold, scaling as (Wec −We)α with α = 1/4 and α = 1/2 in
the high- and low-Reynolds-number limits, respectively. The (Wec −We)1/4-scaling is seen to hold up to Oh ≈ 10−3,
while the (Wec −We)1/2-scaling applies for Oh & 10−1. Variations of the oscillation frequency (ωr) of Mode 0-S
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FIG. 3: (a): Variation of the frequency (black lines), growth rate of Mode 0-S (o) (green lines) and of Mode 0-S (s)
(red lines) with respect to We, for three values of the Ohnesorge number. The black bullet and red square help to

identify the critical Weber numbers We∗c and Wec, respectively. (b): Pressure disturbance and bubble shape for
Mode 0-S (o) (lower branch of the bifurcation diagram), for We = 2.5 and Oh = 1× 10−4. The black contour and

grey lines represent the bubble shape and the streamlines in the base state, respectively. The colors show the
imaginary part of the pressure disturbance at time t = T/4 and the contours display the bubble shape at t = T/4

(cyan), t = T/2 (orange), t = 3T/4 (dark blue), and t = T (magenta), with T the period of oscillation. (c): Same for
Mode 0-S (s) (upper branch of the bifurcation diagram), for the same (We,Oh) pair.

(o) with respect to We∗c −We are displayed in Fig. 5. The frequency is also found to grow as (We∗c −We)α with
α = 1/4 and α = 1/2 in the high- and low-Reynolds-number limits, respectively. The similarity of the above two
scalings, albeit with the role of Wec played by We∗c in the case of Mode 0-S (o), suggests a close connection between
the dynamics of the two modes. As the respective positions of the black bullet and red square in Fig. 3(a) makes
clear (see also the blue line in the range Re < 10 in Fig. 2(b)), We∗c is slightly lower than Wec when viscous effects are
large, and coincides with Wec when Oh→ 0. These findings are in line with those reported in [5]. That Mode 0-S (o)
exhibits aperiodically damped oscillations within a finite interval [We∗c(Oh),Wec(Oh)] in the presence of significant
viscous effects was also pointed out in [15]. Indeed, assuming the steady bubble shape to be spherical and accounting
for viscous effects in the dynamic boundary condition only through the influence of normal stresses (i.e. ignoring the
shear-free condition), it was found in [15] that this aperiodically damped regime emerges for Oh & 0.12. Based on an
expansion around We = 0, it was predicted that ωr scales as (Wec0 −We)1/2, with Wec0 ≈ 3.23. According to the
inset in Fig. 5, this prediction holds for We∗c −We & 0.3 but fails to predict the rapid variations of the frequency near
the critical Weber number.

The decay rate of Mode 0-S (o) is plotted in Fig. 4(b). This plot confirms the conclusion of Fig. 3(a), showing
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FIG. 4: Variations of the growth rate of modes 0-S (o) and 0-S (s). (a): with respect to Wec −We for Mode 0-S (s)
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circles, red squares and blue triangles refer to We = 0.1, 0.2 and 0.4, respectively. The dashed lines indicate the

asymptotic scalings.

that this mode is stable throughout its domain of existence. Its decay rate increases linearly with Oh and is virtually
independent of We. This mode becomes neutrally stable in the inviscid limit Oh → 0, and We∗c then coincides with
Wec as the right panel in Fig. 3(a) shows. This is no surprise since the problem becomes time-reversible in this limit
and the bifurcation becomes a conservative saddle-node one, with two purely complex eigenvalues changing into two
purely real ones. That Mode 0-S (o) is stable for finite Reynolds numbers indicates that inertial and capillary effects
stay in balance in the corresponding dynamics, with viscous effects providing an additional stabilizing ingredient. This
scenario works as long as the elongation of the bubble is small enough for the latter to remain in the basin of attraction
of the stable steady state, i.e. close to the lower branch of the bifurcation diagram in Fig. 2(a). Conversely, if the
bubble aspect ratio is large enough, breakup occurs through a Mode 0-S (s) deformation after the system has first
approached the unstable (upper) branch of the bifurcation diagram and then moved away from it. In this case, the
capillary force in the neck region close to the z = 0 symmetry plane is weaker than with a Mode 0-S (o) deformation
having the same magnitude, owing to the larger concavity of the bubble surface (compare the blue contours in Figs.
3(b) and 3(c)). This makes the capillary force insufficient to balance the compressional force exerted by the base
flow in that region. Beyond the linear stage considered here, this situation leads unavoidably to breakup through the
classical end-pinching scenario [16, 17].

One can wonder how relevant the dynamics associated with the unstable branch of the bifurcation diagram are from
an experimental point of view. In other words, how can this branch be reached in practice, and how Mode 0-S (s) can
be triggered. Elements of answer stand in [16] which considered the transient response of a previously elongated drop
once the extensional flow is stopped. It was observed that, provided the drop has reached a sufficient elongation prior
to the stop, such that it has already taken a waisted shape, it eventually breaks up via an end-pinching instability
[17] instead of relaxing towards its initial shape. These observations suggest that the unstable branch may be reached
by first elongating the bubble for some time under suitable supercritical conditions, i.e. by imposing a Weber number
We1 > Wec, until the bubble attains the desired waisted shape. Then, after having identified the subcritical Weber
number We2 < Wec at which the bubble achieves the same or a very similar stationary shape on the unstable branch,
the imposed strain may be suitably reduced to decrease the Weber number We(t) down to the value We2. Provided
this transient is calibrated in such a way that the disturbance it generates remains small (which may represent a
serious experimental challenge), the subsequent dynamics would correspond for some time to those of the linearly
unstable Mode 0-S (s) described here.
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B. Symmetry-breaking unstable modes

In cases where the bubble centroid is left free, one has to consider eigenmodes breaking either the axial symmetry
about the r = 0 axis or the mirror symmetry about the z = 0 plane. Two new unstable modes are then detected. To
the best of our knowledge, these modes have not been characterized so far. One of them, denoted as Mode 0-A (s), is
unstable for every (We,Re). This mode is stationary but antisymmetric with respect to the plane z = 0. As Fig. 6(b)
shows, this mode corresponds to a drift of the bubble centroid along the direction of elongation of the undisturbed
flow. The existence of this unstable mode is the reason why in experiments a dynamic control such as that described
in [14] has to be applied in order to prevent the bubble (or drop) from escaping along the extensional direction of the
flow.

The second mode, which we refer to as Mode 1-S (s), is also stationary. It is symmetric with respect to the plane
z = 0 and associated with the wavenumber m = 1 in the polar direction eθ. As the red line in Fig. 2(b) indicates,
this mode is unstable when the Reynolds number exceeds a value of the order of 20 which only weakly depends on
the Weber number. Beyond this threshold the bubble is found to drift radially in the z = 0 plane; the direction of
this drift is arbitrary since it is dictated by the definition of the angle θ. What is remarkable is that this drift is
performed against the compressional component of the undisturbed flow. Since no external force is applied to the
system, this unexpected motion may be thought of as an example of self-propulsion. The possibility for a deformable
body immersed in a potential flow to self-propel was examined in several studies, especially [18–20]. It was concluded
that a deformable body experiencing a net rate of deformation may self-propel provided its time-dependent shape
presents some asymmetry. However, these references mostly considered oscillatory deformations of bodies moving in
a fluid at rest. In contrast, the mode involved in the present case is stationary in the sense defined in Sec. II and the
bubble moves in a straining flow. These two features make the present situation quite different from those envisaged
in the aforementioned references.

The above predictions, especially those concerning Mode 1-S (s), need confirmation. For this purpose, following the
approach of [15, 21], we considered the low-Oh (hence high-Re) regime and determined analytically to first order in
We the evolution of a linear perturbation of the bubble shape, assuming that the disturbed flow is strictly irrotational.
That is, assuming u = ∇φ, we sought the harmonic function φ satisfying

∂tη = ∇φ · n , ∂tφ+
1

2
(∇φ · ∇φ) + ρ−1pb = ρ−1γ∇ · n on Γb . (5)

For this, assuming that the Weber number is low enough for the undisturbed bubble to be close to a sphere, we



8

10!4 10!3 10!2 10!1

We

10!2

100

!
i

Mode 0-A (s)

Mode 1-S (s)
9 We1=

2

(a)

-2 0 2
r cos(θ)

-0.5    0    0.5

z

(b)

-2 0 2

-0.5    0    0.5

r cos(θ)
(c)

FIG. 6: Modes 0-A (s) and 1-S (s) in a high-Reynolds-number case. (a): variation of the growth rate of the two
modes with respect to We, computed through the truncated potential flow solution of (7)-(8) (lines), and the L-ALE
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pressure disturbance (colours) and bubble shape (contours) for Mode 0-A (s) with We = 10−1 and Re = 103,

corresponding to the black bullet in (a). The almost superimposed blue and dashed white contours refer to the
results provided by the L-ALE approach and the truncated potential flow solution, respectively. (c): same with

Mode 1-S (s), corresponding to the red bullet in (a). In (b)− (c), the black contour represents the bubble shape in
the base state and the grey lines show the corresponding streamlines.

expanded the velocity potential and the bubble shape in the form

φ = Sd2

4 (φs + εφmu ) , η = d
2 (ηs + εηmu ) ,

φs = P 0
2 (ζ)( 1

2r
2
s + 1

3r
−3
s ) , ηs = 1 ,

φmu =
∑∞
n=0 χ

m
n (t)r

−(n+1)
s Y mn (Θ, ϕ) , ηmu =

∑∞
n=1 δ

m
n (t)Y mn (Θ, ϕ) ,

(6)

with Y mn (Θ, ϕ) = Pmn (ζ)e−imϕ the spherical harmonics, Pmn the associated Legendre polynomial and ζ = cos Θ. The
corresponding spherical coordinate system is such that Θ = 0 (π) on the positive (negative) half of the z-axis defined
in Fig. 1, the meridional angle ϕ is equivalent to the angle θ defined in the same figure, and rs is the radial position
(normalized by d/2) measured from the centroid of the undisturbed bubble. Injecting the ansatz (6) in (5) and keeping
only terms of O(ε) yields the eigenvalue problem

χ̇mn = (n− 1)(n+ 2)δmn (7)

+
5

2

(1

2
We
) 1

2

{ (n− 1−m)(n−m)(n− 2)

(2n− 3)(2n− 1)
χmn−2 −

n(n+ 1)− 3m2

(2n− 1)(2n+ 3)
χmn −

(n+ 3)(n+ 1 +m)(n+ 2 +m)

(2n+ 3)(2n+ 5)
χmn+2

}
,
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δ̇mn = −(n+ 1)χmn (8)

+
5

2

(1

2
We
) 1

2

{ (n− 1−m)(n−m)(n+ 1)

(2n− 3)(2n− 1)
δmn−2 +

n(n+ 1)− 3m2

(2n− 1)(2n+ 3)
δmn −

n(n+ 1 +m)(n+ 2 +m)

(2n+ 3)(2n+ 5)
δmn+2

}
,

with the dot denoting the time derivative. Solving the problem (7)-(8) for m = 0 and m = 1 up to n = Nmax (with
Nmax large enough that the eigenvalues no longer vary by further increasing the number of harmonics) reveals that
modes 0-A (s) and 1-S (s) are also the most unstable ones in the potential flow limit. Their growth results from
imbalances among the terms of the right-hand side of (7)-(8), which involve the velocity ∇φs of the undisturbed
straining flow. In (7), the imbalance is between the variations of the dynamic pressure, −∇φs · ∇φu, and those of
the capillary pressure, −∇ · (∇ηu). In (8), it is between the variations of the normal velocity at the interface induced
by the velocity disturbance, ers · ∇φu (with ers the unit radial vector), and those induced by the disturbance of the
interface position, −∇φs · ∇ηu. Figure 6(a) shows how the growth rate of the two modes varies with We according
to the above truncated potential model and to the L-ALE approach. Both solutions indicate that the growth rate

increases as We1/2, as may be anticipated from the form of the right-hand sides in (7)-(8). The growth rate of Mode
1-S (s) is slightly smaller than that of Mode 0-A (s). Hence to observe the former in a laboratory experiment, it is
necessary to prevent the bubble from moving along the z-axis. As the location of the bullets in the figure shows,
the growth rates estimated with the L-ALE approach are lower than those resulting from the truncated potential
flow model, especially in the case of Mode 1-S (s). This is due to the fact that finite-We effects affecting the steady
state solution are not taken into account in the low-We potential flow expansion, nor are viscous effects arising in
the boundary layer that surrounds the bubble. Although these effects are expected to be weak for Re = 103, they
are likely to be stabilizing, hence to reduce the growth rate. Despite these limitations, the truncated potential flow
solution is found to provide a reliable estimate of the bubble deformation for modes 0-A (s) and 1-S (s) (dashed
contour in Figs. 6(b)− (c)). At leading order, this deformation takes the form η0

u(Θ, t) ∝ cos Θ for Mode 0-A (s) and
η1
u(Θ, φ, t) ∝ sin Θ cosϕ for Mode 1-S (s). In summary, the above perturbative approach confirms that the presence

of the unstable Mode 1-S (s) and its unexpected dynamics are not artifacts of the L-ALE approach. This mode is
part of the intrinsic dynamical response of the system when the bubble centroid is not constrained to stay at the
stagnation point of the uniaxial flow.

The bubble shapes and the pressure disturbance distribution displayed in Fig. 6(c) help to understand the physical
mechanism that makes the self-propulsion associated with Mode 1-S (s) possible. Consider that the bubble is initially
spherical and stands at the stagnation point. If a disturbance in the form of Mode 1-S (s) is applied, the geometric

centroid of the bubble shifts to a radial position r0 6= 0. At this position, due to the radial pressure gradient −ρS
2

4 r0

induced by the carrying flow, the disturbance past the bubble is no longer symmetric, even though the latter is still
considered spherical. This pressure gradient is responsible for the left/right asymmetry in the pressure distribution
of Fig. 6(c). That the pressure disturbance at the bubble surface reaches its extrema approximately midway between
the z-axis and the symmetry plane z = 0 is a classical feature of a nearly-inviscid flow past a sphere translating in a
straining flow (see e.g. [22]). These pressure extrema having opposite signs, they result in a net thrust (corresponding
to an added-mass force) propelling the bubble in the direction opposite to the pressure gradient, i.e. from left to right
in the figure. Moreover, the pressure on the outer side of the interface being equal to that within the bubble minus
the capillary pressure, the asymmetric pressure distribution tends to make the bubble shape more asymmetric by de-
creasing (increasing) the mean curvature of the interface on the high- (low-) pressure side. Again, these deformations
change the position of the bubble centroid, and they do it cooperatively with the above added-mass effect, as both
mechanisms act to move the bubble to a position r > r0 (i.e. to push it to the right in Fig. 6(c)). Since the inward
velocity of the straining flow increases with r, so does the relative velocity between the carrying flow and the bubble
centroid. This in turn enhances the pressure asymmetry at the bubble surface, which reinforces both the added-mass
thrust and the asymmetric changes in the interface curvature, and so on. This qualitative scenario confirms that
applying an asymmetric perturbation corresponding to the mode m = 1 to an initially spherical bubble resting at
the stagnation point allows it to move radially thanks to what may be considered as a self-propulsion mechanism
assisted by the straining flow. This mechanism grounds on the cooperative effect of capillary and inertial stresses, the
latter resulting from the interaction of the carrying flow with the velocity disturbance. Of course this picture only
holds as long as viscous effects are weak enough. Indeed, since the bubble leads the fluid, the drag resulting from the
corresponding relative velocity resists the bubble drift (whereas the two cooperate in the case of Mode 0-(A) (s) in
which the bubble lags the fluid). Therefore, it is only under conditions where this drag is small enough for the inertial
forces involved in the above scenario to dominate that the bubble may drift. This is why Mode 1-S (s) only grows
when the Reynolds number is large enough, i.e. Re & 20 according to the red line in Fig. 2(b). This is also why this
intriguing behavior was not observed in the experiments of [13] in which the Reynolds number was kept very low (in
the range 10−2 − 10−4) by using very viscous oils as suspending fluid.
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V. SUMMARY

In this study, we employed the recently developed L-ALE approach to revisit the dynamics of a gas bubble immersed
in a uniaxial straining flow. This approach proved to be able to accurately determine the equilibrium shapes of the
bubble, as well as the maximum Weber number Wec(Oh) beyond which no equilibrium is possible. As already
reported in the literature, the return to equilibrium of a slightly disturbed bubble under subcritical conditions takes
place through damped oscillations, except within a small interval [We∗c ,Wec] where an aperiodic damped regime takes
place. We analyzed the eigenmode associated with these behaviors in detail. In particular, we characterized the
scaling laws governing the variations of the corresponding eigenvalue with Oh and We∗c −We. Thanks to a suitable
continuation method, we also found a second branch of solutions linked to the branch of stable solutions through a
saddle-node point. This branch was not identified up to now, except in the creeping-flow limit. Indeed, equilibrium
shapes corresponding to this second branch are always unstable, which makes them unreachable with traditional
time-marching approaches. The linear stability analysis revealed that the most amplified eigenmode on that branch
is stationary and is characterized by the occurrence of a neck on the symmetry plane of the bubble. In the nonlinear
stage, this would eventually lead to the breakup of the bubble through the end-pinching mechanism. We sketched
how this unstable branch and the above stationary mode may be approached in a laboratory experiment. We also
examined the case where the bubble centroid is not constrained to stay at the stagnation point of the undisturbed
flow, a situation that was not considered in previous studies. In this case, two other unstable modes arise. The most
amplified one corresponds to the drift of the bubble along the elongational axis of the undisturbed flow. Surprisingly,
the slightly less amplified second mode leads to a drift of the bubble within the symmetry plane of the undisturbed
flow, a region where this flow is directed toward the stagnation point. To check this unexpected prediction, we
considered the low-We inviscid limit in which a truncated potential flow model can be established. We solved the
corresponding eigenvalue problem and confirmed the predictions of the L-ALE approach in that limit. We also
presented a qualitative scenario explaining why, after imposing an asymmetric initial perturbation to the bubble, the
pressure and the interface curvature distributions develop growing asymmetric components that cooperate to make
the bubble drift against the base flow possible when viscous effects are weak enough.

Appendix A: Overview of the L-ALE approach

Free-boundary problems involving a Newtonian fluid contained in a time-dependent fluid domain Ω(t) bounded by
a fixed boundary Γs and a free boundary Γb(t) subjected to capillary effects are governed by (1)-(4) supplemented
with appropriate boundary conditions on Γs. In the L-ALE approach, we first consider a reference domain Ω0, which
is fixed and allows unknowns to be evaluated in an Eulerian manner, and the physical domain Ω(t), which depends
upon time and where Lagrangian quantities are evaluated. Let x0 and x denote the local position (with respect to
some fixed origin) of a given geometrical point in Ω0 and Ω, respectively. Then, the two domains are connected
through the diffeomorphism Φ : Ω0 7→ Ω, with Φ(x0, t) = x. In the L-ALE approach, this diffeomorphism is linearized
in the form Φ(x0, t) = x0 + ξ(x0), where ξ(x0) is a displacement field such that ||ξ(x0)|| = ||x − x0|| ∼ O(ε0||x0||)
with ε0 � 1. The field ξ(x0) propagates the Lagrangian displacement of the interface η into the fluid domain. This
displacement field is arbitrary since it is not determined by the governing equations (1)-(4), i.e. it is not dictated
by the actual motion of the fluid elements, except at the free boundary. It only needs to obey the no-penetration
condition (3), plus some mild smoothness properties. Usually, the smoothness of ξ is ensured by assuming that its
distribution within the fluid domain is governed by an elliptic equation, such as the Laplace equation or the Cauchy
equation for an elastic material. An illustration of the L-ALE methodology is depicted in fig. 7(a). The sketch shows
how the free boundary, labelled Γb in the physical domain Ω and Γb,0 in the reference domain Ω0, transforms from one
domain to the other. Although the geometric properties of this boundary, especially its unit normal n and tangent
t, may be evaluated in both domains, we always evaluate them in Ω0, after which they may be mapped forward onto
the physical domain via Φ if needed.

The L-ALE formalism leads to an approach in which the governing equations and the deformation of the physical
domain are solved simultaneously and consistently, which ensures the stability of the algorithms involved. Such an
approach, in which the unknown to be determined is the state vector q = [u, p, pb, ξ, η]T (T denoting the transpose),
is sometimes referred to as ‘monolithic’. To obtain the steady-state solution of (1)-(4), we solve the corresponding
steady nonlinear problem using a Newton method, following the methodology introduced in [10].

That is, the steady-state solution, q0 = [u0, p0, pb,0,0, 0]T, is determined iteratively by solving the system of
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×x
×x0

Ω

Ω0
Γb

Γs Γs

Γb,0

n
0
(n+1)

t
0
(n+1)n0(n)

t0(n)

Ω(n)≡Ω0
(n+1)

Ω(n-1)≡Ω0
(n)

Ω(0)≡Ω0
(1)

(a) (b)

FIG. 7: Sketch of the geometrical transformations involved in the L-ALE approach. (a): general framework,
showing in particular the current physical domain Ω and free boundary Γb (black), and the reference domain Ω0 and

free boundary Γb,0 (blue); (b): successive updates of the reference domain during the iterations of the Newton
method.

equations governing the increment q′ = [u′, p′, p′b, ξ, η]T, namely

LNS [q′] ≡ u′ · ∇Ω0
u0 + u0 · ∇Ω0

u′ − ρ−1∇Ω0
·ΣΩ0

(u′, p′) + QΩ0
(ξ) = −u0 · ∇Ω0

u0 + ρ−1∇Ω0
·ΣΩ0

in Ω0 ,
Ldiv[q

′] ≡ ∇Ω0
· u′ −∇Ω0

u0 : ∇T
Ω0

ξ = −∇Ω0
· u0 in Ω0 ,

Lkin[q′] ≡ u′ · n0 + u0 · n′ = −u0 · n0 on Γb,0 ,
Ldyn[q′] ≡ (p′b − p′ − γκ′)n0 + 2µDΩ0

(u′) · n0 = (p0 − pb,0 + γκ0)n0 on Γb,0 ,
+(pb,0 − p0 − γκ0)n′ + 2µDΩ0

(u0) · n′ −2µDΩ0
(u0) · n0

Lcom[q′] ≡ ξ − ηn0 = 0 on Γb,0 ,
LE [ξ] ≡ ∇Ω0

·E(ξ) = 0 in Ω0 ,
(A1)

where the Ω0 subscript indicates that the corresponding spatial derivative is evaluated in the reference domain Ω0

bounded (partly) by the free boundary Γb,0. In (A1), the first four equations correspond to the linearized form of the
governing equations (1)-(4). The deformation of the domain induces several extra terms in these linearized equations,
especially an extra momentum source term QΩ0

(ξ) = −u0 ·∇Ω0
u0 ·∇Ω0

ξ+ρ−1(∇Ω0
·ΣΩ0

) ·∇T
Ω0

ξ+ρ−1µ∇Ω0
·
{
∇Ω0

u0 ·
∇Ω0

ξ + (∇Ω0
u0 · ∇Ω0

ξ)T
}

in the momentum equation. The last two equations determine the displacement field ξ
throughout the domain. The elliptic operator E controls the spatial distribution of this arbitrary displacement within
Ω0, subject to the compatibility condition ξ = η′n0 on Γb,0. Here, following [12], we assume that this distribution
obeys a linear elastic response, i.e. we set E(ξ) = 2µeDΩ0

(ξ) + λe(∇Ω0
· ξ)I. With this choice, the last equation in

(A1) may be interpreted as the Cauchy equation of elasticity, the coefficients λe and µe being Lamé pseudo-coefficients
which we both set to unity.

At each iteration n, the pseudo-steady state solution is updated in the form q
(n)
0 = q

(n−1)
0 +q′ = [u0+u′, p0+p′, pb,0+

p′b, ξ, η]T. The reference domain Ω0 is also updated, based on conditions x
Ω

(n)
0

= x
Ω

(n−1)
0

+ ξ and x
Γ
(n)
0

= x
Γ
(n−1)
0

+ η

linking the position of a given point standing in the fluid domain or on the free boundary in two successive reference
configurations, as sketched in fig. 7(b). In other words, the steady-state solution is obtained by considering the
governing equations (A1) on a succession of physical domains such that the nth of them only differs slightly from the
(n− 1)th one, the latter being considered as the new reference domain during the nth-iteration.

In cases where the free boundary is a closed surface (such as for a bubble), the enclosed volume must stay equal to
its initial value, Vb, provided effects of compressibility are negligible in the corresponding medium. This implies

Lvol[q
′] ≡

∫
Γb,0

ηdS0 =

∫
Ωb,0

(1 +∇Ω0
· ξ)dV0 − Vb on Γb,0 . (A2)

The various matrices involved in the problem (A1)-(A2) are built and inverted within the finite-element software
FreeFem++. The volume fields (u, p) are discretized following a Taylor–Hood scheme, i.e. the mixed finite-element
Lagrange basis (P2,P1). The volume displacement field ξ is discretized within the P2 finite-element space. The free-
boundary displacement field η is discretized within the Galerkin-Fourier space. This displacement is orthogonally
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projected onto the local Fourier basis φk in the form η(s0) =
∑Nb

k=0 φk(s0)Xη(k), with Xη(k) the coefficients of η in
that basis, Nb the number of Fourier elements and s0 the arc length coordinate.

In the vicinity of a saddle-node bifurcation, the Jacobian matrix of (A1) is ill-conditioned. In particular it is singular
at the bifurcation point. In such situations, instead of the usual continuation procedure performed on some control
parameter, for instance We, we continue the solution on a suitable arc length with a pseudo-arc-length continuation
method. This technique consists in replacing the Jacobian matrix with a bordered matrix, i.e. a matrix with an
additional column and an additional row. The practical application of this technique, i.e. the definition of the arc
length, depends on the parameters of the problem under consideration. In the context of this paper, we build the
arc length on the pressure within the bubble, pb, and the strain rate of the base flow, S, so that the infinitesimal arc
length is (ds)2 = (dpb)

2 + (dS)2. If (A1) (or (A1)-(A2)) is written symbolically in the form L|q0 [q′] = −F(q0), the
bordered system then takes the form(

L|
q
(n−1)
0

Dbc

dpb
ds

dS
ds

)(
q′

S′

)
=

(
−F(q

(n−1)
0 )−Dbc(S

(n−1)
0 )

−dpbds (p
(n−1)
b,0 − p(0)

b,0)− dS
ds (S

(n−1)
0 − S(0)

0 ) + ∆s

)
, (A3)

where the state vector q′ is augmented with the update of the strain rate, S′, and ∆s denotes the arc length step. The
operator Dbc, which takes the form of a column vector in the bordered matrix, serves to impose the boundary conditions
on the velocity field and only depends on S. The derivative dpb

ds acts on the pressure within the bubble only, while dS
ds

only acts on the strain rate. These derivatives are determined at the initial step of the Newton method by inverting

the matrix operator L|
q
(0)
0

and computing the derivative of q with respect to S as dq
dS |q(0)

0
= −L−1|

q
(0)
0
· dFdS (q

(0)
0 ). Then,

selecting the component dpb
dS |q(0)

0
in the vector field dq

dS |q(0)
0

and making use of the definition (ds)2 = (dpb)
2 +(dS)2, the

extra derivatives involved in (A3) are computed as dpb
ds = dpb

dS |q(0)
0
{(dpbdS |q(0)

0
)2 + 1}−1/2 and dS

ds = {(dpbdS |q(0)
0

)2 + 1}−1/2.

Once the steady state is reached, the linear stability of the corresponding solution is determined by examining the

fate of disturbances with the eigenmode form q′ = [û, p̂, p̂b, ξ̂, η̂]Te−iωt, the hatted complex amplitudes depending on
x0. In cases where the base configuration is axisymmetric, as in the physical problem considered in this paper, we

rather consider disturbances of the form q′ = [û, p̂, p̂b, ξ̂, η̂]Teimθ−iωt, with θ the polar angle of the (r, θ, z) cylindrical
coordinate system and m the corresponding wavenumber, the hatted amplitudes depending now only on r and z.
Such solutions are obtained by solving the eigenvalue problem

−iω
(
û− ξ̂ · ∇Ω0

u0

)
+ LNS [q̂] = 0 in Ω0 ,

Ldiv[q̂] = 0 in Ω0 ,
−iωη̂ + Lkin[q̂] = 0 on Γb,0 ,

Ldyn[q̂] = 0 on Γb,0 ,
Lcom[q̂] = 0 on Γb,0 ,

LE [ξ̂] = 0 in Ω0 ,

(A4)

supplemented with

Lvol[q̂] = 0 on Γb,0 (A5)

if the constraint (A2) holds for the steady-state and the perturbation. In (A4), the term iωξ̂ · ∇Ω0u0 arising in the
linearized momentum equation is the acceleration of the moving domain, which must be subtracted to obtain the
actual fluid acceleration in Ω0. Here, the reference domain is that corresponding to the steady-state solution of (A1),

i.e. Ω0 ≡ Ω
(N)
0 , with N the number of iterations carried out to reach the steady solution through the Newton method,

as depicted in fig. 7(b). The eigenpairs of (A4)-(A5) are obtained using the SLEPc library.
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