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Abstract. This paper presents a study on different NLP solutions for
French homographs disambiguation for text-to-speech systems. Solutions
are compared using a home-made corpus of 8137 sentences extracted from
the Web, comprising roughly one hundred instances of each of 34 pairs
of prototypical words. A disambiguation system based on per-case Lin-
ear Discriminant Analysis (LDA) classifiers using contextual word em-
beddings as input features achieves state-of-the-art F-scores superior to
0.96.

Keywords: End-to-End Text-to-Speech · Letter-to-Sound · Heterophonic
Homographs.

1 Introduction

English and French are considered to have the most opaque orthographies among
languages with alphabetic (as opposed to logographic or syllabary) writing sys-
tems: fluent reading of French requires a visual attention span (VAS = the
number of distinct visual elements that can be processed simultaneously at a
glance) [3] of up-to 5 to 6 characters (see Fig. 1). Note that this VAS is highly
structured: the whole span is not screened and processed for all characters. On
the other hand, some words may require a larger span (and likely several saccades
and fixations through the text) to get properly pronounced, such as homographs.
An heterophonic homograph is ‘one of two or more words spelled alike but dif-
ferent in meaning or pronunciation’ (such as ‘mon fils’ my son vs. ‘des fils’ which
is the plural of ‘fil’, a thread or wire). The correct classification of a homograph
has always been an issue for natural language processing when it comes to text-
to-speech (TTS) systems and the analysis of texts. And so, using a word that has
homographs, can change the meaning and context of a text if read or analyzed
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by a machine. Moreover, French has a significant amount of homographs1 which
are usually not well analyzed [4].

In this study, we will try to get the best results possible generating the
pronunciation of homographs, using different approaches and methods. We will
first show that popular end-to-end neural TTS systems with text input such
as Tacotron2 can be trained to perform a rather performative letter-to-sound
(LTS) alignment and mapping, using both aligned and non-aligned acoustic cor-
pora as well a pronunciation dictionary. We also tested the performance of a
part-of-speech (POS) tagging transformer to bias this LTS mapping. We fi-
nally compared these models with homograph classification models also built
on FlauBERT; a French version of BERT. Classification is performed by Linear
Discriminant Analysis (LDA) trained on a corpus of 8137 homographs observed
in context.

Fig. 1. Histograms of the distance of context characters left and right from the current
character a minimum-length decision tree [2] has to question to pronounce it correctly.
Minimum length training of these isolated words is very efficient. Left: French (using
entries from the Robert dictionary); Right: English (using CMUDICT). Word entries
are augmented with POS tags. On these datasets, French uses much more this infor-
mation than English. Weighted means are 0.15 vs. -0.07: French seems to use a bit
more look-ahead context. Note however that these data depend on the grapheme-to-
phoneme alignments. Both writings need an attention span of more than 10 letters.

2 State of the art

Early solutions for letter-to-sound conversion consisted in storing orthography/pronunciation
pairs of a finite list of words in a lexicon enriched with lexical, syntactic or se-
mantic information that condition the retrieval of the right pronunciation given

1
789 according to https://fr.wiktionary.org/wiki/Catégorie:Homographes_non_homophones_en_français
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orthography and information provided by POS taggers or homograph disam-
biguators [5]. Statistical LTS models have then been introduced to generalize
LTS mapping to out-of-vocabulary words: neural sequence-to-sequence models
are the current state of the art [1, 16].

The first generation of end-to-end (E2E) neural TTS such as Tacotron2 [13]
or Deep Voice [11] proposed to generalise from character input to acoustic output
from fairly large sets of parallel text and speech audio data, implicitly learning
LTS mappings. Taylor and Richmond [15] showed that this implicit LTS models
underperformed explicit LTS. Reported LTS errors (close to 10%) were quite
alarming. Latest generation of E2E models now opt for a phonetic input [12].
Note that phonological variations (ways of words are pronounced) depend on lin-
guistic context – hopefully captured by the text encoder – but also on speaking
style and speaker components that usually bias embeddings computed by the
phonetic encoder of current E2E neural TTS. An external component should
thus restore the covariation between these segmental and suprasegemental com-
ponents. With implicit LTS models, speaker and expressivity components can
implicitely modulate the phonological variations at all levels in a more ecological
framework. Experiments comparing explicit and implicit LTS have not yet been
confirmed on French. our experience with implicit LTS on French is rather more
positive, given appropriate supervision (see below).

Concerning the processing of specific LTS mappings by E2E TTS, Taylor et
al [15] compared explicit vs. implicit LTS results focusing on French liaisons.
They show that Tacotron2 over-inserts liaison sounds, leading to a significant
preference for an explicit LTS control.

Nicolis et al [10] describe an explicit heterophonic homograph disambiguation
system for English based on per-case classifiers using contextual word embed-
dings as input features. They report an accuracy of 0.991 with as little as 100
sentences of training material.

The current paper builds on these experiments. Our main contributions are:

– Enhanced implicit LTS for E2E TTS using grapheme-to-phoneme alignments
gathered during pre-training the TTS system with both orthographic and
phonetic input. Implicit LTS for general text input (more than 100 hours of
read speech) achieves an accuracy of 0.989 for all input characters and 0.999
when considering only word characters.

– Homograph-specific LDA classifiers using contextual word embeddings using
a similar approach as proposed by [10] achieves good performance

– Performance and generalization can be improved by clustering homographs
into groups

3 Dataset and models

We collected 8137 sentences comprising at least one heterophonic homograph.
The samples were collected from various sources: articles from various jour-
nals, google searches, etc. Most sentences are kept in their original phrasing, in-
between punctuation marks. We nevertheless cleaned (removing lists of proper
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Table 1. Multispeaker audio data used to train the Tacotron2.

Speaker Sex Type #Utts #Duration
All Aligned All Aligned

NEBa F Audiobooks 83021 45099 71:16 34:30
DG M Audiobooks 20179 7749 17:16 6:31
RO F Read sentences 9371 0 0:00 9:57
IZ F Scripted dialogs 11073 386 9:28 0:17
AD F Read sentences 6476 2853 5:05 2:14
Total 130105 56102 112:59 43:35

a Part of this data is available at https://zenodo.org/record/4580406.

nouns, dates, etc) and shortened part of them (removing unnecessary clauses,
inserts, etc). Since some homographs occur frequently (e.g. we have 1373 occur-
rences of the auxiliary ”est” in the homograph dataset), we end-up with 9997
homographs.

3.1 Our baseline: end-to-end TTS augmented with phone prediction

Using Multidimensional Scaling, we analyzed the latent space computed by the
output of the text encoder of a Tacotron2 [13] trained on 113 hours of a multi-
speaker French data (see Table 1). Speaker embeddings are simply added to the
output of the text encoder. This baseline model was trained for 250 Epochs, a
batchsize of 128 and a learning rate of 4e−5. We used the HPC facilities provided
by the Jean-Zay supercomputer in Paris.

Fig. 2. Distributions of durations of activation (ms) of 6 character sequences: when
one phoneme is encoded by two letters, the second character gets mostly activated in
double consonants, while the first is activated for vowels.

The text encoder was trained using both text and phonetic input when hand-
checked (38% of the utterances): while this representation mixing has been shown
to improve spectrogram estimation [6], it also provides a letter-to-sound align-
ment [1] as a by-product of the Tacotron2 attention map: using activation pat-
terns (see sample statistics in Fig. 2) and joint projection of input phones and
characters embeddings into a common latent space (see Fig. 3) using Multidi-
mensional Scaling (MDS), we obtain a lawful correspondence between phones
and characters [9], including pauses and spaces/punctuations.

We thus enriched the original Tacotron2 with an additional task: phone pre-
diction from the text encoder’s output. This prediction is simply performed
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Fig. 3. Projection of the embeddings of the 25 most frequent phones (left) and the
15 most frequent characters (right) at the output of the text encoder. The projection
is performed on the first factorial plane of Multidimensional Scaling (MDS) of the
embeddings of all input symbols of 10% of the training data. A Gaussian mixture
model clusters scattered distributions of each character. As an example, ”s” has four
clusters, one overlapping the phone /s/, one on /z/ and two on the silence / /, reflecting
the pronunciation of ”sot”, ”asie” vs. ”tu es bien”; ”o” has five clusters, overlapping
the phones /u/, /o/, /ô/ (/O/), /x̂/ (/S/), and /õ/ (/Õ/), reflecting the pronunciation
of ”loup”, ”dos”, ”cor”, ”coeur” and ”long”.

by a full-connected layer with softmax. This model is named TC2 in the fol-
lowing. The set of target phonemes comprises the input phoneme inventory aug-

mented with a ”silent” symbol and several diphones such as /k&s/, /i&j/, /d&z/̂
(/dZ/) . . . paired with single characters such as ”x” (in ”six”), ”y” (in ”appuyer”)
or ”j” (as in ”jazz”). We also have symbols for hiatus, syntactic vs. breath pauses,
often paired with punctuations and sometimes with spaces.

For aligned utterances, two input/output patterns are thus provided: the
output pattern for orthographic input has ”silent” symbols and diphones, while
that for phonetic input has one-to-one correspondence except for spaces and
punctuations that may be associated with ”silent” symbols or pauses. Of course,
both utterances are associated with the same spectrogram. Please find an excerpt
of our corpus below (note that the name of the audiofile and the timestamps
have been removed):

sans l’impérieuse exigence,|s a~ _ _ _ l _ e~ _ p e r j x _ z _ _ e^ g&z i z^ a~ _ s _ __
{s a~} {l e~ p e r j x z} {e^ g z i z^ a~ s},|s a~ _ l e~ p e r j x z _ e^ g z i z^ a~ s __

Note that TC2 was only exposed to the homographs used in the audiobooks
(plus one exemplar per homograph from the Robert lexicon, see below). The
column #obs/Audio of Table 2 gives the number of occurrences of each homo-
graph in the 113 hours corpus: This distribution is very uneven: the auxiliary
verb ”est” occurs more than 10000 times whereas the homographs ”adoptions”,
”détections”, ”négligent”, ”somnolent” and ”pressent” occur less than once.
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The resulting letter-to-sound mapping is quite accurate (see Fig. 4). The
accuracy of phonetic predictions of 4771684 word characters is superior to 99.9%
and close to 98.9% when considering punctuations and other special characters.

Note that this mapping opens up the possibility to improve pronunciation
accuracy for words not present in the audiobooks (modern terms2, loan or rare
words, etc). We thus performed the letter-to-sound alignment of the pronunci-
ation input from the Robert dictionary (1995 version) and also include some
conjugated forms. We thus added one exemplar of each homograph given in
minimal context (adding sufficient grammatical words for disambiguisation, e.g.
”Ils convient.” vs ”Il convient”). When training TC2 speaker embeddings, these
additional ”normative” out-of-context 104332 entries are set for all speakers
with no dialectal nor style variation.

The final parametrization of TC2 was trained in two steps: 10 epochs for
training the phone prediction layer from the frozen baseline, then 40 epochs for
fine-tuning the whole model.

While not having observed so many homographs (see column ”audio” in
Table 2), the pronunciation accuracy of homographs is quite good (see F-scores
in Table 2). Some scores (”convient”, ”minerai”, etc) are not so high for several
reasons: large asymmetry of the empirical distributions (frequency of appearance
of each homograph is highly imbalanced: ”est” as auxiliary is twenty times more
frequent than ”est” as noun, the use of ”minerai” or ”violent” as conjugated verbs
in our audiobooks are never encountered), limited amount of training material
and detection capabilities of the text encoder, etc.

3.2 Part-of-speech (POS) Tagging

Most homographs can be solved using POS Tagging. The few of them with
identical POS require computation of grammatical variables (such as ”convient”
or ”os”) or semantic analysis (such as ”fils”). POS Tagging has been shown to
improve pronunciation accuracy, phrasing and prosody [14]. In this paper, we
used the Hugging Face French POS tagger trained on the free French-treebank
dataset 3.

The pronunciation accuracy of homographs given this POS prediction (see
F-scores in Table 2 is rather disappointing: probably because of the asymmetri-
cal distributions of the homographs in the French-treebank dataset: this largely
explains the poor tagging of ”content”, ”couvent” and ”parent” as verbs. It also
could be due to the tag inventory that could not be appropriate to homograph
disambiguation: as an example, infinitives are either classified as verbs or infini-
tives, adjectives may be confused with nouns or past participes.

2 e.g. the root ”techniqu” is only used 5 times in our audiobook database: with no
additional patterns from a pronunciation lexicon, ”ch” will likely be mispronounced
with the post-alveolar fricative S.

3 https://huggingface.co/gilf/french-postag-model
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Fig. 4. Confusion matrix of phonetic prediction for orthographic (left) vs. phonetic
(right) input. On average, we have three characters per phone. Trained with phonetic
alignments, the output of Tacotron2 text encoder actually embeds quite precise pho-
netic representations.

3.3 Linear discriminant analysis of BERT embeddings

Self-supervised NLP models such as Bidirectional Encoder Representations from
Transformers (BERT) use “auxiliary” or “pre-training” task – such as predicting
masked words, next words in an utterance, sentence order, etc. – to learn latent
representations that are further used for downstream supervised tasks [7]. Word
embeddings computed by the last transformer before the final softmax layer are
often used has representation vectors for the supervised tasks.

Since our task consists in separating two classes (no words with more than two
pronunciations in French), we combined feature selection and linear discriminant
analysis (LDA) on the BERT embeddings for each pair of homographs (see
Fig. 5).

We used FlauBERT, which stands for ”French Language Understanding via
Bidirectional Encoder Representations from Transformers”, one of the few pre-
trained French version of BERT [8]. From the original 1024 embedding dimen-
sions of the Flaubert large-cased model, we iteratively select the 110 dimensions
that are the most relevant for the LDA classification.

We explored two different ways of grouping homographs:

Embeddings of word pairs (B-wrd) builds a model for each homograph.
An example of this method is found in Appendix 7.1.

Embeddings of class pairs (B-grp) builds a model specific to each class of

homograph. Some classes are quite large such as homograpĥs ending with
”ions” or ”ent”; some are word-specfific and equivalent to B-wrd such as ”fils”
or ”plus”. This method allows us to build more general models, trained on
larger groups, that can be further applied on words not seen or trained before
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Fig. 5. Combining BERT word embeddings (using a tokenizer with a vocabulary of
68729 words and sub-word units) with feature selection and Linear Discriminant Anal-
ysis.

(or homographs that are rather difficult to observe in context). Example
of this method on a poetry paragraph from a Facebook post complaining
opacity of French orthography is found in Appendix 7.2.

4 Results

The goal of this research was to evaluate performance and accuracy of each
of four NLP methods, which were applied for the disambiguation of French
homographs: TC2, POS tagging, B-wrd and B-grp. The results of F1-scores for
each homograph after each solution are found in Table 2.

Amongst these solutions, the POS tagging performed the worst, with a mean
F1-score of .67, when POS tags are sufficient for disambiguation. This low score is
likely to be explained by the poor and unbalanced representation of homographs
in the French French-treebank. It also shows that the use of BERT embeddings
is highly dependent of the targeted task: the POS ambiguities of the rare homo-
graphs are outliers when considering the empiral distribution of word tokens.

TC2, with a mean F1-score of .8, has rather good results distributed across
all homographs compared to the POS tagging method. Especially for the ho-
mographs where POS tagging performed poorly, TC2 had much higher scores.
Rare homographs requiring calculation of grammatical variables such as number
get low scores, like ”convient”, ”os”. More detailed results about the phonetics
generated for some homographs by TC2 are given in Fig. 6.

Both methods of LDA from FlauBERT embeddings, B-wrd and B-grp, got
the highest and best scores distributed across all homographs but also com-
pared to POS tagging and Tacotron2. Both performed very well, but with minor
differences.

For B-wrd, the F1-score ranges from 0.843 to 0.999, making it the second-best
approach applied in our research.
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Table 2. Results of F1-Score for each homograph after the different methods used.
Number of observations in the 113 hours of read speech and in the 8137 sen-
tences are given in colmuns Audio (word count) and Homo (for each homograph).
Abbreviations for POS tags: Ns/Np=Noun singular/plural; Vs/Vp/Inf=Verb singu-
lar/plural/Infinitive; A/Pps=Adjective/Past Participle; Pas=Negation. No errors are
scored .999. F-scores below .25 and .50 are enlighten in red and blue.

Homograph POS Sounds #obs F1-Score
Audio Homo POS TC2 B-wrd B-grp

Actions Np/Vp [aksjÕ]/[aktjÕ] 38 44/37 .22 .95 .991 .995
Adoptions Np/Vp [adOpsjÕ]/[adOptjÕ] 0 149/149 .92 .97 .993 .993
Affections Np/Vp [afEksjÕ]/[afEktjÕ] 10 148/106 .99 .98 .999 .999
Collections Np/Vp [kOlEksjÕ]/[kOlEktjÕ] 11 145/139 .04 .97 .978 .989
Détections Np/Vp [detEksjÕ]/[detEktjÕ] 0 58/44 .99 .97 .967 .989
Intentions Np/Vp [ẼtãsjÕ]/[ẼtãtjÕ] 13 101/40 .27 .91 .950 .987
Options Np/Vp [OpsjÕ]/[OptjÕ] 6 80/38 .80 .69 .843 .999
Portions Np/Vp [pOKsjÕ]/[pOKtjÕ] 12 93/52 .80 .73 .972 .999

Affluent Ns/Vp [aflyã]/[afly] 4 143/148 .98 .89 .999 .999
Couvent Ns/Vp [kuvã]/[kuv] 13 149/142 .04 .83 .976 .989
Ferment Ns/Vp [fEKmã]/[fEKm] 7 102/104 .68 .84 .995 .995
Parent Ns/Vp [paKã]/[paK] 9 140/153 .08 .94 .987 .997
Résidenta Ns/Vp [rezidã]/[rezid] 0 101/99 .95 .62 - .990

As N/Vs [as]/[a] 342 157/141 .95 .94 .995 .999
Bus N/Vs [bys]/[by] 4 163/149 .15 .92 .993 .993
But Ns/Vs [byt]/[by] 88 125/149 .50 .91 .993 .993
Sens N/Vs [sãs]/[sã] 213 208/155 .99 .95 .997 .997
Vis N/Vs [vis]/[vi] 128 120/99 .98 .94 .990 .999

Content A/Vp [kÕtã]/[kÕt] 56 167/190 .04 .94 .997 .999
Excellent A/Vp [EksElã]/[EksEl] 60 213/96 .56 .80 .979 .999
Négligent A/Vp [negliZã]/[negliZ] 1 106/108 .92 .79 .978 .981
Somnolent A/Vp [sOmnOlã]/[sOmnOl] 1 77/56 .97 .56 .978 .999
Urgent A/Vp [yKZã]/[yKZ] 16 166/114 .98 .94 .975 .978
Violent A/Vp [vjOlã]/[vjOl] 48 248/110 .86 .75 .991 .999

Convient Vs/Vp [kÕvjẼ]/[kÕvi] 40 108/71 - .41 .962 .965
Pressent Vs/Vp [prEsã]/[prEs] 1 64/84 - .73 .976 .994

Est Ns/Vs [Est]/[E] 10624 114/116 .94 .90 .957 .965
Minerai Ns/Vs [min@rE]/[min@re] 4 36/17 .97 .48 .962 .970

Cacher A/Inf [kaSEK]/[kaSe] 56 69/112 .83 .77 .987 .991
Fier A/Inf [fjEK]/[fje] 35 217/148 .11 .94 .992 .997

Fils Ns/Np [fis]/ [fil] 270 158/105 - .85 .995

Os Ns/Np [Os]/[o] 38 91/72 - .32 .966

Plus A/Pas [plys]/[ply] 5307 219/404 - .71 .967

Reporter Ns/Inf [K@pOKtEK]/[K@pOKte] 107 59/84 .75 .58 .994 .995
Supporter Ns/Inf [sypOKtEK]/[sypOKte] 42 89/105 .91 .70 .982 .986

a As an example, this homograph was not included in the training dataset. The
B-wrd model nevertheless scores .999.
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Finally, for B-grp, the F1-score ranges from 0.957 to 0.997. Its results are
always higher than the minimum of B-wrd’s results.

5 Comments

We tried to populate the corpus of different French homographs with a balanced
set of utterances in their respective contexts, in order to unbias homograph
recognition. Several solutions were applied for the disambiguation of French ho-
mographs. We worked on POS, Tacotron2, LDA/BERT models and trained the
model to get more accurate results using four different methods:

– POS is very accurate for most homographs but its performance heavily de-
pends on empirical distributions of the underlying BERT model and the
corpus with TAG labels used for supervised training. Hence, the extremely
low scores especially below .25 (highlighted in red) are probably due to un-
derrepresented homophones (e.g. ”collections”, ”intentions”, ”couvent” or
”parent” as verbs. It is our low anchor.

– Tacotron2 performed quite well on average. Compared to POS tagging,
it has full coverage of homographs and its text encoder seems to be able
to perform some semantic calculations to solve complex cases such as ”fils”
or ”plus”. Poor performance for ”minerai”, ”reporter”, ”convient” and ”os”
are largely explained by the empirical distribution of the examplars in the
113speech data: all ”minerai” and ”reporter” are nouns, the 40 ”convient”
are all from ”convenir” (none from ”convier”) and only 1 ”os” is singular.

– B-wrd works on the embeddings of words pairs of the homograph extracted
from balanced corpora. Unlike both previously mentioned solutions, this one
is very accurate, with almost perfect scores.

– B-grp groups homographs according to the proximity of POS tags and gram-
matical variables involved in the disambiguation: the prediction of the pro-
nunciation and meaning of the homograph would depend on the group it
belongs. The two advantages of this model are: (a) its generalisation capa-
bilities (see performance on the unseen homograph ”résident” in table 2),
(b) its robustness, since LDA works on bigger samples.

6 Conclusions and perspectives

We extend the work performed by Nicolis et al [10] on English. We collected a
significant database of heterophonic homographs for French. We show that the
grouping of homographs into grammatical cases offers generalization and robust-
ness. Some groupings are not so successful: ”est” and ”minerai” should certainly
be treated separately. More generally, grouping should be automatized, in par-
ticular when considering other rare homographs (e.g. ”bis”, ”hélas”, ”sus”). We
did not consider here the problem of phonological variation: some homographs
could be pronounced with optional liaisons, mute-es, schwas, depending on nu-
merous factors such as speed, context or speaker’s style. One possibility is to use
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representation mixing and only overwrite parts of the words that are ambigu-
ous: ”fils” when used as ”thread/wire” could be rewriten as "{f i l}s, ”est”
when used as the auxiliary ”is” as {e^}t, etc. The idea is to combine the B-grp
precision for solving rare heterophonic homographs with the TC2 flexibility for
handling implicit LTS. First results are encouraging but the interaction with
other components should be analyzed.

We also show that text encoders of current end-to-end TTS are capable
of performing quite impressive LTS mapping, given proper LTS alignment and
mixed input training. Augmenting training material with homographs in context
– and not only entries in isolation provided by the text/phonetic alignment data
– will certainly improve performance of LTS mapping while keeping the flexibility
of orthographic input for phonological variation.

We are currently exploring the impact of multi-speaker training on LTS map-
ping, in particular phonological variations and phrasing. Building TTS with or-
thographic input is a prerequisite for shaping latent spaces that can capture
segmental and suprasegmental variations in the same embeddings.
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7 appendices

7.1 Example of embeddings of word pairs (B-wrd)

For example, processing two sentences using the word ”as” by the LDA from
FlauBERT embeddings of ”as”:

% do_traite_homographes_heterophones.py

>>Les as.

[’Les</w>’, ’as</w>’, ’.</w>’]

Les {a s}.

>>Tu les as mangés.

[’Tu</w>’, ’les</w>’, ’as</w>’, ’mangés</w>’, ’.</w>’]

Tu les {a} mangés.

7.2 Example of embeddings of class pairs (B-grp)

Phonetization of heterophone homographes of a FaceBook post of French poetry
with no errors:

Nous {p o^ r t j o~} les {p o^ r s j o~}.

Les poules du {k u v a~} {k u v}.

Mes {f i s} ont cassé mes {f i l}.

Il {e^} à l’{e^ s t}.

Je {v i} ces {v i s}.

Cet homme {e^} {f j e^ r}. Peut-on s’y {f j e}?

Avant, nous {e d i t j o~} de belles {e d i s j o~}.

Je suis {k o~ t a~} qu’ils {k o~ t} ces histoires.

Il { k o~ v j e~} qu’ils {k o~ v i} leurs amis.

Ils ont un caractère {v j o^ l a~}: ils {v j o^ l} leurs promesses.

Nos {e~ t a~ s j o~} sont que nous {e~ t a~ t j o~} ce procès.

Ils {n e g l i z^} leurs devoirs, je suis moins {n e g l i z^ a~} qu’eux.

Ils {r e z i d} à Paris chez le {r e z i d a~} d’une nation étrangère.

Les cuisiniers {e k s e^ l} à faire ce mets {e k s e l a~}.

Les poissons {a f l y} à un {a f l y a~}.
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Fig. 6. Average F1-score of the first 15 homographs processed by our Tacotron2 end-to-
end system augmented with phone prediction. Phonological variations of homographs
are aggregated.


