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ABSTRACT

Context. Accurate detections of frequent small-scale extreme ultraviolet (EUV) brightenings are essential to the investigation of the physical
processes heating the corona.
Aims. We detected small-scale brightenings, termed campfires, using their morphological and intensity structures as observed in coronal EUV
imaging observations for statistical analysis.
Methods. We applied a method based on Zernike moments and a support vector machine (SVM) classifier to automatically identify and track
campfires observed by Solar Orbiter/Extreme Ultraviolet Imager (EUI) and Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly
(AIA).
Results. This method detected 8678 campfires (with length scales between 400 km and 4000 km) from a sequence of 50 High Resolution EUV
telescope (HRIEUV) 174 Å images. From 21 near co-temporal AIA images covering the same field of view as EUI, we found 1131 campfires, 58%
of which were also detected in HRIEUV images. In contrast, about 16% of campfires recognized in HRIEUV were detected by AIA. We obtain a
campfire birthrate of 2 × 10−16 m−2 s−1. About 40% of campfires show a duration longer than 5 s, having been observed in at least two HRIEUV
images. We find that 27% of campfires were found in coronal bright points and the remaining 73% have occurred out of coronal bright points.
We detected 23 EUI campfires with a duration greater than 245 s. We found that about 80% of campfires are formed at supergranular boundaries,
and the features with the highest total intensities are generated at network junctions and intense H I Lyman-α emission regions observed by
EUI/HRILya. The probability distribution functions for the total intensity, peak intensity, and projected area of campfires follow a power law
behavior with absolute indices between 2 and 3. This self-similar behavior is a possible signature of self-organization, or even self-organized
criticality, in the campfire formation process.

Key words. Sun: corona – Sun: UV radiation – techniques: high angular resolution

1. Introduction

Brightenings in the extreme ultraviolet (EUV) have been
observed in the solar atmosphere for many years (Vaiana et al.
1973a,b; Golub et al. 1974; Alipour & Safari 2015; Madjarska
2019; Shokri et al. 2022). The smallest of these brightenings in
the quiet Sun (QS) were measured by Berghmans et al. (2021)
in 174 Å images taken by the Extreme Ultraviolet Imager (EUI,
Rochus et al. 2020) on board the Solar Orbiter mission (Müller
et al. 2020). These tiny EUV brightenings, coined “campfires” in
the quiet Sun that have been found to date are short-lived events
in the low corona with structures that take the form of small-scale
loops, elongated loops, loop apexes, and contact points between
loops (Berghmans et al. 2021; Mandal et al. 2021). These camp-
fires have length scales ranging from 400 to 4000 km with typical
lifetimes of less than 200 s. Campfires reach temperatures peak-
ing at about 1 MK (Berghmans et al. 2021) and occur at heights
of 1–5 Mm above the Sun’s visible surface (Zhukov et al. 2021).

Campfires may be rooted in low-lying magnetic structures,
and magnetic reconnection might be their formation mecha-
nism, however this has not yet been shown beyond reasonable

? Supplementary material (S1–S3) is available at
https://www.aanda.org

doubt. Hence, one aspect to explore is to check for similarities
to other flaring events, for instance, large flares, microflares, and
nanoflares (Parker 1988). Panesar et al. (2021) studied the mag-
netic properties of 52 campfires and found that most of them
occur above magnetic polarity inversion (i.e., “neutral”) lines
with a magnetic flux cancelation rate of 1018 Mx h−1. These
authors concluded that magnetic flux cancelation could be the
primary mechanism in the formation of campfires. Also, they
estimated the magnetic energy for the system of campfires in
the range 1026–1027 erg, which might be sufficient to locally
heat the solar corona depending on their occurrence frequency.
Chen et al. (2021) used a 3D magnetohydrodynamic simulation
with MURaM code and came to the conclusion that magnetic
reconnection may well be the primary driver of most campfires.
They also proposed that campfires can significantly contribute to
quiet-Sun coronal heating.

Chitta et al. (2021) recently applied an automatic method
based on different intensity thresholds to Atmospheric Imag-
ing Assembly (AIA) images to identify such tiny flare-like
phenomena. These authors estimated about 100 small events
emerge per second on the entire Sun, which is insufficient
to supply the required energy for quiet Sun coronal heat-
ing. Coronal bright points (CBPs) are larger brightenings that
include small-scale loops in the low corona with X-ray or EUV

Article published by EDP Sciences
A128, page 1 of 12

https://doi.org/10.1051/0004-6361/202243257
https://www.aanda.org
http://orcid.org/0000-0003-3643-5121
http://orcid.org/0000-0003-2326-3201
http://orcid.org/0000-0002-5022-4534
http://orcid.org/0000-0003-0972-7022
http://orcid.org/0000-0002-9270-6785
http://orcid.org/0000-0003-1529-4681
http://orcid.org/0000-0001-7090-6180
http://orcid.org/0000-0003-4290-1897
http://orcid.org/000-0001-6353-5887
http://orcid.org/0000-0001-6913-1330
http://orcid.org/0000-0002-6760-0954
http://orcid.org/0000-0003-3764-0928
http://orcid.org/0000-0003-3137-0277
http://orcid.org/0000-0002-7762-5629
http://orcid.org/0000-0003-1438-1310
http://orcid.org/0000-0003-1679-0986
http://orcid.org/0000-0001-6060-9078
http://orcid.org/0000-0001-7298-2320
http://orcid.org/0000-0002-0631-2393
http://orcid.org/0000-0002-2542-9810
https://www.aanda.org/10.1051/0004-6361/202243257/olm
https://www.edpsciences.org


A&A 663, A128 (2022)
0 5 10 15 17 20 25 29 30 35 40 41 45 50 53 55 60 65 70 75 77 80 85 89 90 95 10
0

10
1

10
5

11
0

11
3

11
5

12
0

12
5

13
0

13
5

13
7

14
0

14
5

14
9

15
0

15
5

16
0

16
1

16
5

17
0

17
3

17
5

18
0

18
5

19
0

19
5

19
7

20
0

20
5

20
9

21
0

21
5

22
0

22
1

22
5

23
0

23
3

23
5

24
0

24
5

Time Interval (s)

20
20

-0
5-

30
 1

4:
54

:0
0

20
20

-0
5-

30
 1

4:
54

:0
5

20
20

-0
5-

30
 1

4:
54

:0
5 

&
20

20
-0

5-
30

 1
4:

57
:4

5
20

20
-0

5-
30

 1
4:

54
:1

0
20

20
-0

5-
30

 1
4:

54
:1

5
20

20
-0

5-
30

 1
4:

57
:5

7
20

20
-0

5-
30

 1
4:

54
:2

0
20

20
-0

5-
30

 1
4:

54
:2

5
20

20
-0

5-
30

 1
4:

58
:0

9
20

20
-0

5-
30

 1
4:

54
:3

0
20

20
-0

5-
30

 1
4:

54
:3

5
20

20
-0

5-
30

 1
4:

54
:4

0
20

20
-0

5-
30

 1
4:

58
:2

1
20

20
-0

5-
30

 1
4:

54
:4

5
20

20
-0

5-
30

 1
4:

54
:5

0
20

20
-0

5-
30

 1
4:

58
:3

3
20

20
-0

5-
30

 1
4:

54
:5

5
20

20
-0

5-
30

 1
4:

55
:0

0
20

20
-0

5-
30

 1
4:

55
:0

5
20

20
-0

5-
30

 1
4:

55
:0

5 
&

20
20

-0
5-

30
 1

4:
58

:4
5

20
20

-0
5-

30
 1

4:
55

:1
0

20
20

-0
5-

30
 1

4:
55

:1
5

20
20

-0
5-

30
 1

4:
58

:5
7

20
20

-0
5-

30
 1

4:
55

:2
0

20
20

-0
5-

30
 1

4:
55

:2
5

20
20

-0
5-

30
 1

4:
59

:0
9

20
20

-0
5-

30
 1

4:
55

:3
0

20
20

-0
5-

30
 1

4:
55

:3
5

20
20

-0
5-

30
 1

4:
55

:4
0

20
20

-0
5-

30
 1

4:
59

:2
1

20
20

-0
5-

30
 1

4:
55

:4
5

20
20

-0
5-

30
 1

4:
55

:5
0

20
20

-0
5-

30
 1

4:
59

:3
3

20
20

-0
5-

30
 1

4:
55

:5
5

20
20

-0
5-

30
 1

4:
56

:0
0

20
20

-0
5-

30
 1

4:
56

:0
5

20
20

-0
5-

30
 1

4:
56

:0
5 

&
20

20
-0

5-
30

 1
4:

59
:4

5
20

20
-0

5-
30

 1
4:

56
:1

0
20

20
-0

5-
30

 1
4:

56
:1

5
20

20
-0

5-
30

 1
4:

59
:5

7
20

20
-0

5-
30

 1
4:

56
:2

0
20

20
-0

5-
30

 1
4:

56
:2

5
20

20
-0

5-
30

 1
5:

00
:0

9
20

20
-0

5-
30

 1
4:

56
:3

0
20

20
-0

5-
30

 1
4:

56
:3

5
20

20
-0

5-
30

 1
4:

56
:4

0
20

20
-0

5-
30

 1
5:

00
:2

1
20

20
-0

5-
30

 1
4:

56
:4

5
20

20
-0

5-
30

 1
4:

56
:5

0
20

20
-0

5-
30

 1
5:

00
:3

3
20

20
-0

5-
30

 1
4:

56
:5

5
20

20
-0

5-
30

 1
4:

57
:0

0
20

20
-0

5-
30

 1
4:

57
:0

5
20

20
-0

5-
30

 1
4:

57
:0

5 
&

20
20

-0
5-

30
 1

5:
00

:4
5

20
20

-0
5-

30
 1

4:
57

:1
0

20
20

-0
5-

30
 1

4:
57

:1
5

20
20

-0
5-

30
 1

5:
00

:5
7

20
20

-0
5-

30
 1

4:
57

:2
0

20
20

-0
5-

30
 1

4:
57

:2
5

20
20

-0
5-

30
 1

5:
01

:0
9

20
20

-0
5-

30
 1

4:
57

:3
0

20
20

-0
5-

30
 1

4:
57

:3
5

20
20

-0
5-

30
 1

4:
57

:4
0

20
20

-0
5-

30
 1

5:
01

:2
1

20
20

-0
5-

30
 1

4:
57

:4
5

20
20

-0
5-

30
 1

4:
57

:5
0

20
20

-0
5-

30
 1

5:
01

:3
3

20
20

-0
5-

30
 1

4:
57

:5
5

20
20

-0
5-

30
 1

4:
58

:0
0

20
20

-0
5-

30
 1

4:
58

:0
5

20
20

-0
5-

30
 1

4:
58

:0
5 

&
20

20
-0

5-
30

 1
5:

01
:4

5

 HRI
EUV

 AIA
 HRI

EUV
&AIA

Fig. 1. Observation times for HRIEUV (blue lines), AIA (red lines), and simultaneously EUI and AIA (black lines). The first simultaneous image
was observed by AIA at 2020-05-30 14:57:45 UTC and HRIEUV at 2020-05-30 14:54:05 UTC.

emissions (Madjarska 2019). Alipour & Safari (2015) studied
the statistical properties of the CBPs in EUV emissions observed
by AIA during 4.4 years. They calculated an average size of
130 Mm2 and a lifetime ranging from a few minutes to several
days. Hosseini Rad et al. (2021) calculated the energy loss of
CBPs. They also showed that by extending the CBPs’ energy
to nanoflares (>1024 erg), the contribution of small-scale bursts
might increase significantly, along with their importance for
heating the corona.

Due to the variety in morphology, structure, and intensity of
campfires, along with their large numbers, automatic detection
methods need to be developed to identify, track, and determine
the occurrence frequency of these events that may play a role
in coronal heating. We applied an automatic detection algorithm
for campfires by analyzing various properties. In particular, we
used the Zernike moments (ZMs; Khotanzad & Hong 1990) and
the support vector machine (SVM; Hsu et al. 2011) to identify
campfires from both HRIEUV at 174 Å and AIA at 171 Å obser-
vations. The first few low-order ZMs describe the centroid of an
image and its orientation; however, higher order ZMs provide
information about geometry and structures (lines, shapes, etc.)
of the objects Alipour et al. (2019). Since ZMs define mapping
an image to the orthogonal complete set of functions (Zernike
polynomials), the correspondent moments are unique and inde-
pendent features. Therefore, these particular properties for ZMs
demonstrate that ZMs are suitable for training a classification
machine. A sub-image with various sizes may contain a camp-
fire or not, thus, the SVM as a mainly double-class classifier is
applied to recognize campfire and non-campfire sub-images.

This work is organized as follows: Sect. 2 gives an overview
of data analysis. The automatic identification and tracking algo-
rithms are explained in Sect. 3. The statistical analysis and
results are presented in Sect. 4. Finally, the work is summarized
and concluded in Sect. 5.

2. Data

The EUI is an instrument onboard the Solar Orbiter mission
(Müller et al. 2020) with a Full-Sun Imager (FSI) and two High-
Resolution Imager (HRI) telescopes (Rochus et al. 2020). The
HRIEUV telescope samples at 174 Å and is sensitive to temper-
atures of 1 MK. The HRILya telescope observes images in the
hydrogen Lyman-α passband centered at 1216 Å. To study the
statistical properties of campfires, we used the sequence of 50
HRIEUV and HRILya images1 with a cadence of 5 s during a 245 s
time interval from 30 May 2020. On 30 May 2020, the HRIEUV
FOV covered the SDO line-of-sight regions (Berghmans et al.
2021, Fig. 1 therein). During these observations, Solar Orbiter
was located at a distance of 0.556 AU from the Sun, which
resulted in a pixel size of 198 km. To compare the AIA (Lemen
et al. 2012) and HRIEUV images, we correct for the difference in
light travel time of 220 s for the two spacecrafts. We analyzed
21 AIA images at 171 Å during the same observation period.
Figure 1 represents the observation time interval for HRIEUV
(blue lines), AIA (red lines), and simultaneously EUI and AIA
(black lines) from the first simultaneous (EUI and AIA) image at
2020-05-30 14:54:05 UT. The last simultaneous (EUI and AIA)
image was observed at 2020-05-30 14:58:05 UT. We analysed
the AIA observations to compare the campfires detected in both
instruments. To do this, we re-mapped all images to the Carring-
ton coordinate system. Following Berghmans et al. (2021), to
preserve the HRIEUV resolution, we re-sampled the images on a
2400×2400 grid with a 0.0163 heliographic degrees pitch. Also,
we used a radius of the Carrington projection sphere of 1.004 R�
to minimize the average parallax over the FOV between the fea-
tures observed by HRIEUV and AIA (Zhukov et al. 2021). Also,

1 EUI Data Release 2: https://doi.org/10.24414/z2hf-b008
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we used the SDO Helioseismic and Magnetic Imager (HMI)
continuum images (14:35 UTC–15:10 UTC) coaligned with AIA
images to determine the supergranular cell boundaries.

3. Methods

Recently, Alipour et al. (2012) and Alipour & Safari (2015)
investigated the feature detection methods based on machine
learning and image processing for solar events (CBPs and mini-
dimmings) observed by SDO/AIA images. ZMs provide unique
and independent information for a class of features. In par-
ticular, ZMs for an event include abstractions of image infor-
mation that reflect information on overall shape, geometrical,
and morphological structure. Also, due to the Fourier term in
Zernike polynomials, the absolute value of ZMs is invariant
under rotation (Khotanzad & Hong 1990). Applying the image
normalization, the ZMs will be translational and scaling invari-
ant. This is done by transferring an image I(x, y) into new image
I(x/a + xcm, y/a + ycm) using the image centroid (xcm,ycm) and
with a proper scale factor (a) (Raboonik et al. 2017). These bits
of information about the content of a type of feature extracted by
ZMs help us decide whether a solar sub-image exhibits an event
or a non-event.

To detect CBPs from HRIEUV at 174 Å, we applied the previ-
ous CBPs automatic identification and tracking method (Alipour
& Safari 2015) with some minor updates on the training set.
Since HRIEUV at 174 Å and AIA at 171 Å campfires are tiny
events, we develop an automatic feature detection method for
campfires by collecting enough information on both campfires
and non-campfires as the training database to feed into the SVM
classifier. The automatic algorithm for campfires consists of two
main parts: a joint campfire classifier (JCC: Sect. 3.1) and a
campfire detection method (Sect. 3.2).

3.1. Joint campfire classifier

We collected (mainly by visual inspection) sub-images (for 700
events) that show signatures of tiny EUV brightenings in EUI
images. We probed the EUI sequence images for events contain-
ing small-scale loops, elongated loops, loop apexes, and contact
points between loops, collectively termed campfires, with life-
times in the range of 10–200 s and with length scales ranging
from 400 to 4000 km. For later convenience, brightening features
with sizes larger than 4000 km are classified as CBPs. We took
about 100 faint and small campfires, which were well identified
by the wavelet automated detection method (Berghmans et al.
2021). Also, by visual inspection, we collected about 600 bright-
ening features exhibiting the characteristics of these campfires.
We also collected 700 sub-images for non-campfire features
in the training set, including regions without campfires, some
regions of large coronal loops, and so forth. In the next step,
we computed the ZMs for campfires (positive class) and non-
campfire (negative class) sub-images with five different sizes of
K j×K j pixels ( j = 1 · · · 5,K1 = 13, K2 = 17, K3 = 19, K4 = 23,
and K5 = 25) for the maximum order number Pmax = 5. For
each of these five sub-images with different sizes, the ZMs with
Pmax = 5 has 21 data points placed in data set 1. We also gener-
ated ZMs with Pmax = 8 (includes 45 data points) and five box
sizes for both positive and negative classes, which are located in
data set 2. The main reason for using two different ZMs data sets
is to ensure that the classifier can identify campfires with differ-
ent data points. Also, the variety of campfire sizes is the reason
for the use of sub-images of various sizes.

Figure 2 demonstrates a campfire and a non-campfire sub-
image (with a size of 23 × 23 pixels) in original HRIEUV and
reconstructed images with ZMs concerning Pmax = 5 (red
dashed line) and 8 (black line). The figure shows that the ZMs for
the campfire and non-campfire are distinguishable. For the ZMs
of a given campfire, some structures (e.g., blocks) and varia-
tions look different from non-campfire ZMs. If we select another
campfire sub-image with different sizes and then compute the
ZMs, the block structure is slightly similar, with minor differ-
ences to the ZMs of other campfires because it is the structure
and variations similarity that is registered in the moments. These
differences between ZMs of campfires and non-campfires give
us confidence in applying a machine classifier (SVM) to identify
features from HRIEUV and AIA images. In other words, the ZMs
of two classes of features (campfires and non-campfires) in mul-
tidimensional feature space (the dimension of ZMs) have enough
distributable information for a (statistically) learning machine to
detect campfires.

We set the SVM classifier with Gaussian kernel parameter
(rbf_sigma=15) in the training step to achieve a well-trained
classifier. We randomly selected 70% of both positive and neg-
ative classes (for each ZMs data set 1 and 2) to apply as the
training set. The remaining 30% of both classes was used as the
test set. We used the same labels for both ZMs sets 1 and 2. In
other words, we used two parallel classifiers for ZMs data set 1
(classifier 1) and ZMs data set 2 (classifier 2). We then com-
pared the output of both classifiers. We consider a feature as a
campfire if both classifiers have identified it in the positive class.
Thus, we collected the respective labels for campfires and non-
campfires in positive and negative classes as a joint campfire
classifier (JCC) component. Analyzing the output of the JCC,
we evaluated the performance of automatic identification for
campfires and non-campfires. To measure the performance of the
campfire classification method, we applied various classification
metrics. To do this, we use the elements of a confusion matrix
(CM) in which the number of positive (P) and negative (N) fea-
tures in the data set are terms of the CM (Powers 2011). The
components of the CM are true positive (TP: campfires correctly
recognized), false positive (FP: non-campfires incorrectly recog-
nized), true negative (TN: non-campfires correctly recognized),
and false negative (FN: campfires incorrectly recognized). The
essential metrics are: precision, recall, f1 score, accuracy, Gilbert
Skill Score (GS), Heidke skill score (HSS1, HSS2), and the true
skill statistic (TSS). The accuracy, precision, and f1 are met-
rics for balanced class classifiers. In the test set of balanced
class classifiers, the number of features and non-features are
approximately the same. The HSS and GS metrics are also
defined for the balanced class classifiers. However, the TSS is
an essential metric to measure the performance of imbalanced
class problems (Mason & Hoeksema 2010; Bloomfield et al.
2012; Barnes et al. 2016; Bobra & Couvidat 2015; Raboonik
et al. 2017; Alipour & Safari 2015). Table 1 summarizes the
metrics’ formulae and their mean value for the joint classifier.
The value of a given metric (e.g., TSS> 0.8) shows that the
classifier is well trained with acceptable performance to identify
campfires.

3.2. Identification and tracking of campfires

We applied the JCC to identify campfires from EUI images.
Figure 3 shows a schematic flowchart for the identification of
campfires in each EUI image. The algorithm automatically scans
a EUI image by a moving box. For each HRIEUV image, start-
ing from x = 13 and y = 13, we extracted a small region
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with size ∆x = ∆y = 4. We applied the joint campfire classi-
fier to identify campfires from the EUI images. We determined
the position, xc, and yc, of the maximum intensity inside the
small region. This gives the location of the brightest pixel in
the small region. In the next step, we selected larger region
square boxes around the maximum intensity position with sizes
∆x × ∆y = K j × K j ( j = 1 · · · 5) pixels. The ZMs (for both
Pmax = 5 and 8) of these sub-images are computed. Then, the
magnitudes of ZMs are fed to the JCC. The JCC picks up a
label of 1 for a campfire candidate and 2 for a non-campfire
sub-image. We applied a region growing (RG) function to the
sub-image to extract the bright pixels. We consider the candi-
date a campfire if the linear length is greater than one pixel and
smaller than 20 pixels. The image number (time) and output of
the RG function for each campfire are saved. Then we move the
small box first in x direction up to the end of the grid and then in
y direction.

In the next step, we performed a tracking algorithm in the
sequence of EUI images to obtain the duration of campfires.
The algorithm tracks the identified campfires in the sequential
HRIEUV images with an intersection of regions (joint pixels). To
do this, we compared the locations (pixels) of the campfires at
times ti (i is the image number) and ti+1 for all HRIEUV images.
Next, we marked campfires with an intersection of regions (joint
pixels in the sequence of images) with the same labels. Then,
using the labels and their related times, we computed the dura-
tion of campfires.

4. Results

4.1. HRIEUV brightenings

We applied the automatic identification and tracking method for
brightening features (CBPs and campfires) to the sequence of 50
Carrington projected HRIEUV images. Supplement S1 (available
online) provides the sequence of 50 EUI at 174 Å images and the
location of maximum intensity and time for the identified camp-
fires as MATLAB structures. Supplement S2 (available online)
gives movies for tracked campfires with the contour and label for
each.

Figure 4 represents an HRIEUV image with 449 detected
campfires (cyan contours) and 240 CBPs (purple contours),
within which 149 campfires were observed. We found that 27%
of campfires occurred inside CBPs. In other words, these camp-
fires were hosted within CBPs and the remaining 73% were
observed out-of-CBPs.

We detected 8678 campfires with length scales larger than
or equal (≥) 400 km and smaller than 4000 km. This gives a
campfire birthrate of about 2 × 10−16 m−2 s−1. The number of
events and their birthrate determined by the present method is
approximately 5.4 times larger than those obtained using the
wavelet detection scheme (Berghmans et al. 2021). Interestingly,
the derived campfire birthrate is of the same order of magnitude
as that found for explosive events (Teriaca et al. 2004), which
required more investigation for the relationship between the two
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Fig. 3. Schematic flowchart for identifica-
tion of HRIEUV and AIA campfires.
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Fig. 4. HRIEUV image at 174 Å on 30 May 2020 14:54:05 UTC projected
to Carrington coordinates. The code detected 240 coronal bright points
(CBPs: purple contours) and 449 campfires (cyan contours).

events. The wavelet detection scheme as pattern recognition is
one dependent on the threshold used that detects a different num-
ber of events with changing the threshold value. After some

minor modifications of the wavelet detection algorithm to work
in space (x, y) and time (t), the method was applicable for denois-
ing images and identifying more campfires. However, the present
campfires detection as a machine learning method identifies an
event inside a sub-image with the specific characteristics in the
feature space provided by ZMs. Figure 5 shows a campfire at
the original, artificial Gaussian, and salt-pepper noises together
with ZMs and their reconstructed images. We find that ZMs are
less sensitive to noise, as the reconstructed images are approx-
imately the same for various types of noise. This is one of the
reasons that we used ZMs instead of original images in feature
space. We note that our training positive class contains the infor-
mation of sub-images in which each sub-image has an event with
a linear length greater than 400 km and smaller than 4000 km
and lifetimes of more than 10 s. This implies that we have cho-
sen the suitable training features for the campfire class, exclud-
ing the noise features. However, the negative class may contain
many non-campfire and noise features that do not have campfire
characteristics. Since the training feature space contains the mor-
phology, structure, shape, and other information on the event, a
detected single-frame event is considered a campfire if it con-
sists of the bright pixel(s) and the neighboring pixels. In other
words, for a sub-image that contains some individual or group
of bright pixels without the characteristics of campfires in the
feature space (ZMs), it will be classified as a non-campfire.

Of the 8678 detected campfires, 3300 have lifetimes larger
than 5 s and less than 245 s. We observed 23 campfires with a
duration longer than 245 s. Figure 6 shows three tracked samples
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Table 1. Definitions of various skill scores as the measure for the performance of classifier and their mean values for campfires.

Score Formula Campfires

Recall (positive) recall+ =
TP

TP + FN
0.92 ± 0.02

Recall (negative) recall− =
TN

TN + FP
0.93 ± 0.02

Precision (positive) precision+ =
TP

TP + FP
0.93 ± 0.02

Precision (negative) precision− =
TN

TN + FN
0.92 ± 0.02

f1 score (positive) f 1+ =
2 × precision+ × recall+

precision+ + recall+
0.92 ± 0.01

f1 score (negative) f 1− =
2 × precision− × recall−

precision− + recall−
0.93 ± 0.01

Accuracy accuracy =
TP + TN

TP + FN + TN + FP
0.93 ± 0.01

Heidke Skill Score (HSS1) HSS1 =
TP − FP
TP + FN

0.85 ± 0.02

Heidke Skill Score (HSS2) HSS2 =
2 × [(TP × TN) − (FN × FP)]

(TP + FN) × (FN + TN) + (TN + FP) × (TP + FP)
0.85 ± 0.02

Gilbert Skill Score (GS) GS =
TP − CH

TP + FP + FN − CH
,

CH =
(TP + FP) × (TP + FN)

TP + FN + TN + FP
0.74 ± 0.04

True Skill Statistic (TSS) TSS =
TP

TP + FN
−

FP
FP + TN

0.85 ± 0.02
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Fig. 5. Campfire at the original, artificial Gaussian, and salt-pepper
noises (upper row) together with the reconstructed images (middle row)
and their ZMs (bottom row).

with lifetimes in the range of 15 s–25 s (campfire 1, top row),
10 s–20 s (campfire 2, middle row), and 5 s–15 s (campfire 3,
bottom row). Some factors such as identification errors (perfor-
mance scores in Table 1), displacement of the bright pixels, and
variation of the length scale for some campfires may affect the

14:54:45 14:54:50 14:54:55 14:55:00 14:55:05

14:54:40 14:54:45 14:54:50 14:54:55

14:54:25 14:54:30 14:54:35

Fig. 6. Three tracked samples with duration in the range of 15 s–25 s
(campfire 1, top row), 10 s–20 s (campfire 2, middle row), and 5 s–15 s
(campfire 3, bottom row).

number of detected campfires. We found that the tracking algo-
rithm suffers the false negative error in which the actual number
of events is probably more than the detected campfires. There-
fore, this affects the duration of detected events, and the actual
lifetime for some campfires is more than the values mentioned
above. So, the 3300 campfires with a duration of at least 5 s are
the lower limit for this algorithm.

A campfire’s intensity in HRIEUV is computed by integrating
all corresponding pixel values at each image. The peak intensity
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is the maximum intensity during the observed campfire dura-
tion. The total intensity of an event obtains the summing of
the intensity over the whole duration. Figure 7 shows the posi-
tion of 8678 campfires, supergranular boundaries, an average of
50 HRILya images, and the frequency of campfires’ (centroid)
shortest distances from the supergranular boundaries for HRILya
intensity. To determine the supergranular boundaries, we applied
the ball tracking method on the respective SDO/HMI continuum
images (Potts et al. 2004; Attie & Innes 2015; Attie et al. 2016)
for tracking solar photospheric flows. The shortest distance of a
campfire centroid (center of brightness in HRIEUV) from super-
granular boundaries is computed. We observed that campfires
with a higher total intensity were mostly placed at supergranular
junctions and high HRILya emission regions. We found that most
(80%) of campfires are placed near supergranular boundaries
(Fig. 7a). In other words, about 80% of the events have the short-
est distances (minimum distance of a campfire centroid from
the nearest supergranular boundaries) less than 5 Mm. The typ-
ical diameter of solar supergranules is significantly larger than
20 Mm (e.g., Del Moro et al. 2004; Noori et al. 2019). About
2/3 of campfires have the HRILya intensity of the centroid in
the range of 400–900 DN/s (Fig. 7b,c). We also found that the
high HRILya intensities were distributed around the supergranu-
lar boundaries (Fig. 7b). The supergranular boundaries are the
places for a high concentration of magnetic fields and converg-
ing photospheric flows (Priest 2014). As we observed, camp-
fires are short-lived features similar to other types of small-
scale transients: explosive events (Porter & Dere 1991), CBPs
(Yousefzadeh et al. 2016; Madjarska 2019), mini-coronal mass
ejections (Honarbakhsh et al. 2016), and blinkers (Harrison
1997; Shokri et al. 2022). These are predominantly localized
and analogous to those of flaring events (with a different amount
of the involved energy). Panesar et al. (2021) showed that most
of the 52 campfires in their investigation were above mag-
netic neutral lines with a considerable rate of flux cancelation
(van Ballegooijen & Martens 1989), which indicates that flux
cancelation (i.e., an inherently resistive, magnetic reconnection
mechanism) could be the primary mechanism in the formation
of campfires. Therefore, it might be possible to hypothesize that
campfires are flare-like events, but on a vastly smaller scale (e.g.,
Giovanelli 1946; Dungey 1953). This hypothesis needs to be
investigated in further detail.

Figure 8 shows the probability distribution function (PDF)
and complementary cumulative distribution function (CCDF) of
the total intensity (first row), peak (maximum) intensity (second
row), projected area (third row), and duration (fourth row) of
campfires (black lines). To obtain the projected area for a camp-
fire, we used every pixel area that a campfire occupies at some
stage during its duration (Berghmans et al. 2021). As shown in the
figure, the distributions show heavy-tailed behaviors. The power
law and lognormal distributions are well-known distributions for
modeling of such heavy-tailed flaring events (Lin et al. 1984;
Crosby et al. 1993; Krucker & Benz 1998; Parnell & Jupp 2000;
Pauluhn & Solanki 2007; Bazarghan et al. 2008; Klimchuk et al.
2009; Tajfirouze & Safari 2012; Farhang et al. 2019; Verbeeck
et al. 2019). The power law distribution function is

PDF(x, xmin, α) =
α − 1
xmin

(
x

xmin

)−α
, (1)

where xmin is the cut-off and α is the power law index. To deter-
mine the minimum value for the cut-off (xmin), we first create a
power law fit that begins from a unique guess cut-off within the
data. Then, the minimization of the distance between the data
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Fig. 7. (a) Position of 8678 campfires (color dots: the total intensity of
campfires) and supergranular boundaries (white lines). The color map
indicates the pixels’ integrated intensity of campfires. (b) Average of 50
HRILya images, supergranular boundaries (white lines), and position of
campfires (green dots). (c) Frequency (number) of campfires’ shortest
distances (distance (D) of campfires centroid from the supergranular
boundaries) for HRILya intensity <400 DN/s (blue line), 400–900 DN/s
(black line), and >900 DN/s (red line). About 2/3 of campfires have the
HRILya intensity of the centroid in the range of 400–900 DN/s.

and power law fit guides to select the optimal value for xmin
(Clauset et al. 2009). The lognormal function is

PDF(x, µ, σ) =
1

xσ
√

2π
exp

(
−

(ln x − µ)2

2σ2

)
, (2)

where µ is the mean and σ is the shape parameter.
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Fig. 8. Probability distribution function (PDF; left column) and complementary cumulative distribution function (CCDF; right column) of the total
intensity (first row), peak intensity (second row), projected area (third row), and duration (fourth row) of campfires observed by HRIEUV (black
line). Power laws (power law fit: blue dashed lines) and lognormal functions (lognormal fit: red line) are fitted to each distribution.

We applied a maximum-likelihood approach (Clauset et al.
2009) for fitting the power law and lognormal distributions to
the total intensity, peak intensity, projected area, and duration
for campfires. We applied a hypothesis test via Kolmogorov–
Smirnov statistic that the null hypothesis supposes no signifi-
cant difference between the observational distribution and the
desired model. Instead, the alternative hypothesis supposes a sig-

nificant difference between the observation and the model. Cal-
culating a p-value, we can decide whether the model hypothe-
sis is plausible for our data or not. A p-value smaller than 0.1
refutes the null hypothesis indicating that the specific model
is ruled out (Mayo & Cox 2006). In contrast, we cannot
refute the null for a p-value greater than 0.1. Using the boot-
strapping approach, we determined the uncertainty and true
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Table 2. Parameters and p-values of fitted power law and lognormal distributions for peak intensity, total intensity, projected area, and duration of
campfires.

Data set Power law Lognormal

α p-value µ σ p-value

Total intensity 2.13 ± 0.1 0.7 9.40. ± 0.02 1.78 ± 0.01 0.2
Peak intensity 2.72 ± 0.05 0.4 8.72 ± 0.01 1.06 ± 0.01 0.2
Area projected 3.02 ± 0.12 0.2 −0.78 ± 0.06 1.34 ± 0.04 0.2
Duration 2.62 ± 0.05 0.2 0.83 ± 0.06 1.53 ± 0.07 0.8

value of the parameters for both the power law and lognormal
distributions.

Table 2 shows the p-values and fit parameters for power
law and lognormal distributions (Fig. 8) of the total intensity,
peak intensity, area, and duration for the campfires. The p-values
larger than 0.1 for both the power law and lognormal mod-
els mean we could not reject these models for the total inten-
sity, peak intensity, projected area, and duration distributions.
As expected, the lognormal distribution is a simpler explanation
for most data because the power law distribution only has a fit
parameter (α) and the lognormal model has two fit parameters (µ,
σ). However, in rare cases, a power law may be a better fit than
a lognormal distribution if the data is inherently generated by
mechanisms that obey a power law model. Multiplying random
positive variables together is a simple mechanism for generat-
ing a lognormal distribution. However, the preferential attach-
ment (Gheibi et al. 2017) and cellular automaton avalanche
models (Lu et al. 1993; Farhang et al. 2019) are examples of
generation mechanisms of a power law distribution. Pauluhn
& Solanki (2007) developed a model to simulate the nanoflare
emissions observed by the Solar and Heliospheric Observatory
(SOHO)/Solar Ultraviolet Measurements of Emitted Radiation
(SUMER). In their model, an initial kick is generated by a power
law distribution and evaluated by a multiplicative random pro-
cess. The distribution of the resultant energies obeys a lognormal
distribution, which saved the power law property in the mem-
ory of light curves. To determine the power law index for such
light curves (e.g., small-scale emissions observed by SUMER
and AIA), Bazarghan et al. (2008), Tajfirouze & Safari (2012),
Upendran & Tripathi (2021) developed methods based on neural
networks.

We obtained a power law index of about 2.1±0.1, 2.7±0.05,
3.0 ± 0.05, and 2.6 ± 0.05 for the total intensity, peak intensity,
projected area, and duration (Fig. 8), respectively. The power
law index (for peak intensity and total intensity of campfires
as a class of small-scale events) greater than 2 is in agreement
with the previous findings for energetic events (e.g., Krucker
& Benz 1998; Pauluhn & Solanki 2007; Bazarghan et al. 2008;
Tajfirouze & Safari 2012; Reale 2014). Furthermore, the power
law index of about 2.7 for the peak intensity distribution of
campfires is in the range of indices obtained for the distribu-
tion of energy-loss flux of CBPs (Hosseini Rad et al. 2021).
Generally, however, when deriving a power law index, there are
error sources such as the instrument sensitivity, performance of
a feature detection method (identification and tracking), estima-
tion of modeling parameters, and the specific time of observa-
tions at a solar cycle (e.g., Parnell & Jupp 2000; Parnell et al.
2002; Hosseini Rad et al. 2021). An accurate determination
of the power law index for the energy distribution of flaring-
like instabilities (from picoflares to large X-class flares) and
their generating mechanisms is still an open problem (Verbeeck

AIA 2020-05-30 14:57:45 UTC
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Fig. 9. Positions of 147 campfires (cyan contours) in an AIA 171 Å
image re-mapped to Carrington coordinates. The positions of 240 CBPs
(purple contours) are shown.

et al. 2019). Nevertheless, the power law behaviors may result
from the self-similar features such as magnetic reconnection that
generates campfires, similarly to magnetic field instabilities of
self-organized criticality (Lin et al. 1984; Crosby et al. 1993;
Aletti et al. 2000; Georgoulis et al. 2001; Parenti et al. 2006;
Klimchuk et al. 2009; McAteer et al. 2016; Aschwanden et al.
2016; Farhang et al. 2018).

4.2. Comparing AIA and HRIEUV campfires

To compare the campfires observed in AIA 171 Å images with
the same FOV as HRIEUV 174 Å images, first we identified fea-
tures in the original AIA images based on JCC. To do this, we
used a moving box (Sects. 3.1 and 3.2) with sizes slightly larger
than half of the moving boxes for HRIEUV due to the different
resolution of the two instruments. Then we remapped the images
to Carrington coordinates.

Figure 9 shows an AIA 171 Å image (remapped to Car-
rington coordinates) with 147 campfires (cyan contours). At
AIA’s 12 s cadence, 21 images are available during the HRIEUV
image sequence (at the same FOV as HRIEUV). For AIA images,
the method picked up 1131 campfires. As one output of the

A128, page 9 of 12



A&A 663, A128 (2022)

EUI-14:54:00

5 10 15 20 25

Pixels

5

10

15

20

25

Pi
xe

ls
EUI-14:56:05

5 10 15 20 25

Pixels

5

10

15

20

25
EUI-14:58:05

5 10 15 20 25

Pixels

5

10

15

20

25
AIA-15:02:09

5 10 15 20 25

Pixels

5

10

15

20

25
AIA-15:02:33

5 10 15 20 25

Pixels

5

10

15

20

25

Fig. 10. Campfire (supplement S3 movies, label 63, available online) was observed by both HRIEUV (position: x = 737, y = 1539 in Fig. 4) and AIA
(two latest sub-image at final stage). Its duration was more than 245 s in the EUI (14:54:00–14:58:05 UTC) observations. The actual duration in the
range of 293 s–312 s was observed in AIA images. The difference in light travel time of 220 s needs to be considered between the two spacecraft.

classifier, we observed that the campfire sub-images consist
of at least two or more bright pixels (with linear length scale
≥880 km). We also observed that CBPs hosted about 48% of
the campfires. We observed about 500 campfires detected in
at least a sequence of two AIA images. Comparing the posi-
tions and times of features, we found that 50% of the camp-
fires observed in 21 AIA images were also detected in HRIEUV at
174 Å images (e.g., Figs. 4 and 9). However, about 16% of camp-
fires detected in HRIEUV images were observed at AIA images.
These differences in the number of campfires detected by AIA
and HRIEUV may be related to the different spatial resolution
due to the different heliocentric distances. At 0.556 AU from the
Sun, EUI provides a spatial resolution of about 198 km, slightly
less than half of AIA. These differences between the two analy-
ses may be related to the slight differences in the AIA 171 Å and
HRIEUV 174 Å bandpasses. A portion of these differences may
relate to the different sizes of a feature in AIA and EUI, which
are determined via a region-growing approach. In other words,
some of the campfires detected in AIA with a length scale of
about 4000 km have slightly larger length scales in EUI observa-
tions, so they were not considered as EUI campfires. Also, due
to differences in the spatial resolution of the two instruments, we
considered different lower limits on the length scale of camp-
fires of about two pixels in both instruments (about 400 km at
EUI and 880 km at AIA) to avoid the detection of the noise
features.

Figure 10 shows a campfire (supplement S3 movies)
observed by HRIEUV (first three images) and AIA (two last
images) from left to right. The duration of this campfire was
greater than 245 s in the HRIEUV images re-mapped to Carring-
ton coordinates with the same region as the AIA images. We
detected this campfire in the AIA images with a duration greater
than 293 s.

5. Conclusions

In this work, we apply machine learning-based automatic iden-
tification and tracking algorithms for CBPs and campfires to a
sequence of 50 HRIEUV at 174 Å and 21 AIA at 171 Å images
recorded on 30 May 2020. The method uses information on fea-
tures provided by ZMs that is fed into the SVM classifier to iden-
tify brightening features. The joint campfire classifier (JCC), as
the combination of several SVM classifiers, uses a variety of
information extracted with different moving box sizes and two
maximum order numbers (Pmax = 5 and 8) for ZMs to detect
campfires from both HRIEUV and AIA images. We measured
the performance metric of the JCC machine (Table 1), which
shows that the machine is well trained to identify the camp-
fires. The tracking algorithm applied the RG function to extract

bright pixels and followed events with the joint pixels through
the sequence of images.

We detected 8678 campfires with a birthrate of about 2 ×
10−16 m−2 s−1 in HRIEUV images. About 3300 campfires have
a duration longer than 10 s, among which 23 campfires have a
duration longer than 245 s (the last point at the tail of the duration
PDF in Fig. 8). Due to the false-negative error (i.e., erroneously
identifying some of the campfire features as non-campfires) of
the JCC machine for campfires, the 3300 events with a duration
of more than 10 s is a lower limit for the detection algorithm. It
may well be possible that the actual number of campfires and
their birthrate are higher than those identified by the present
algorithm. In addition, CBPs hosted about 27% of campfires and
the rest occurred out of CBPs. By applying the JCC machine to
21 AIA images (the same FOV of HRIEUV images), we observed
1131 campfires with the linear length scale approximately in the
range of 880 km–4000 km. We observed that 500 campfires have
a duration in the range of 12 s–264 s. We compared the AIA and
HRIEUV features (e.g., Figs. 4 and 9) that show about 50% of
the campfires observed in AIA were also identified in HRIEUV.
In contrast, about 16% of campfires recognized in HRIEUV were
detected in AIA data.

Due to the differences in the spatial resolution of the two
instruments, the tiny HRIEUV brightenings may appear weaker
and fuzzier (i.e., very close to the background oscillations) in
the AIA observations; hence, we presume that they were not
detected by this classifier machine. This may imply that achiev-
ing observations of higher spatial resolution (i.e., closer Solar
Orbiter perihelia) will give rise to (perhaps even significantly)
more campfire detections. Another reason may be related to the
differences of 174 Å of HRIEUV and 171 Å of AIA observa-
tions. Tiwari et al. (2019) observed Hi–C brightening features
for active regions that were bigger than HRIEUV’s campfires.
Joulin et al. (2016) and Chitta et al. (2021) studied the quiet-Sun
small-scale brightening EUV events with SDO/AIA. The present
method may provide accurate detections of smaller brightenings
for HRIEUV at heliocentric distances <0.3 AU, so that the role of
these events in the dynamics and, possibly, heating of the solar
corona may be investigated in greater detail (Berghmans et al.
2021).

Using a maximum likelihood estimation, we determined a
power law index of about 2.1 ± 0.05, 2.7 ± 0.04, 3.0 ± 0.05,
and 2.6± 0.05, respectively, for the distribution of the total inten-
sity, peak intensity, projected area, and duration. The power law
behavior is one of the primary characteristics of self-organized
criticality systems such as flaring events (Lu et al. 1993; Vlahos
et al. 1995; Strugarek & Charbonneau 2014; McAteer et al. 2016;
Aschwanden et al. 2016, 2018; Farhang et al. 2019). However,
there are no unique reports for the power law index of flaring
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events and the variety of power law indexes ranging from 1.5
to 2.16 (e.g., Hudson 1991; Georgoulis & Vlahos 1998; Veronig
et al. 2002; Aschwanden & Freeland 2012) and 1.5 to 2.7 (e.g.,
Krucker & Benz 1998; Berghmans & Clette 1999; Hosseini Rad
et al. 2021) for large flares (M- and X- class) and small-scale flares
(nanoflares, microflares, etc.), respectively, have been widely
reported. This self-similar (or scale-free) property may shed light
on the triggering process of campfires. In this context, recent stud-
ies of Panesar et al. (2021) and Kahil et al. (2022) show that
a majority of campfires are associated with the cancelation of
magnetic flux in the photosphere. We showed that the majority
of HRIEUV campfires were placed at regions of intense HRILya
emission and supergranular boundaries (lanes and junctions). We
determined the supergranular boundaries by applying the ball-
tracking method on the SDO/HMI images (Fig. 7). About 2/3
of campfires have their HRILya intensity (for the centroid) in the
range of 400–900 DN/s. These pieces of evidence, along with the
accumulation of campfires above network boundaries and neutral
lines, suggest that magnetic reconnection may be considered an
essential mechanism in the formation of campfires as dynamically
evolving episodes of energy release.
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