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Abstract: The paper deals with output feedback regulation of exponentially stable systems
by an integral controller. We have recently proposed an appropriate Lyapunov functional to
prove exponential stability of the closed-loop system. The approach is dedicated in this paper
to hyperbolic systems and especially to the de Saint-Venant equations giving explicitly the gains
to ensure an exponentially stabilized integral controller: the parameters expression is deduced
directly of the Lyapunov functional based on the Forwarding approach. Numerical simulations
illustrate this approach.
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1. INTRODUCTION

Output regulation is one of the most popular problems in
control theory. The PI-controller has been introduced in
the last century and has shown some fantastic behavior
to reject constant disturbances or to reach a prescribed
constant reference. It is nowadays the most popular control
strategy.

The purpose of the control in engineering problems is
not only to find an optimal control but also to find a
control which stabilizes and regulates the system so that it
behaves in a robust way against perturbations (see Corriou
(2018) and Oustaloup (1994)). A solution of the control
problem in finite dimensional theory has been given by
Davison in Davison (1976) where an algorithm has been
presented to tune the controller’s integral part. The so-
lution has been generalized to some infinite-dimensional
systems by Pohjolainen in Pohjolainen (1982) by using
semigroup theory. The use of integral action to achieve
output regulation and cancel constant disturbances for
multivariable systems has been proven efficient by wide-
spread industrial controllers as described in Astrom (1995)
and in Bastin and Coron (2016a). However extending ro-
bust multivariable control theory to infinite-dimensional
systems is not a simple task. For example, the design
of PI controllers has been extended in a series of papers
by Pojohlainen and others to infinite-dimensional systems
governed by partial differential equations (PDE) always by
considering bounded control operators and by following
a spectral approach (see Pohjolainen (1982), Pohjolainen
(1985), Xu and Jerbi (1995), Paunonen and Pohjolainen
(2010), and Xu and Sallet (2014)). However the spectral
approach alone does not allow to deal with stabilization of
nonlinear infinite-dimensional systems. On the contrary, in
the last two decades Lyapunov approaches have allowed
to consider a large class of boundary control problems
(see for instance Bastin and Coron (2016a)). Previously,

following a Lyapunov approach, a robust output regulation
problem has been solved by using integral controllers.
More precisely, the algorithm tuning the integral controller
has been extended to more general infinite-dimensional
systems compared with the existing literature (Terrand-
Jeanne et al., 2019, 2020; Terrand-Jeanne et al., 2018).
Moreover the proofs based on the Lyapunov direct ap-
proach are simpler and potentially suitable to deal with
nonlinearities.

This paper aim is to illustrate those theoretical results on
a real and physical system that is modeled by de Saint-
Venant equations which has been widely studied (Coron
et al., 2008; Dos Santos et al., 2008; Dos Santos and Prieur,
2008; Coron, 2007; Trinh et al., 2017a).
In the first part, theoretical results are recalled, to be easily
transposed to the shallow water equations, in the second
part. The last part is dedicated to the simulations with
this new controller.

Notation: subscripts t, s, tt, . . . denote the first or second
derivative w.r.t. the variable t or s superscripts T denote
the transposed element. For an integer n, Idn is the identity
matrix in Rn×n. Given an operator A over a Hilbert space,
A∗ denotes the adjoint operator. Dn is the set of diagonal
matrices in Rn×n.

2. BOUNDARY REGULATION FOR HYPERBOLIC
PDES

In this section we adapt the framework developed in
(Terrand-Jeanne et al., 2019, 2020) to hyperbolic PDE sys-
tems with boundary control. The state space is extended
from [0, 1] to [0, L].

2.1 System description

The hyperbolic partial differential equations case is con-
sidered as studied in Coron et al. (2008) but with a domain
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2.1 System description
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[0, L] where L is the length. More precisely, the system is
given by a one dimensional n× n hyperbolic system

φt(s, t) + Λ0(s)φs(s, t) + Λ1(s)φ(s, t) = 0

s ∈ (0, L), t ∈ [0,+∞), (1)

where φ : [0,+∞)× [0, L] → Rn

Λ0(s) = diag{λ1(s), . . . , λn(s)}
λi(s) > 0 ∀i ∈ {1, . . . , �}
λi(s) < 0 ∀i ∈ {�+ 1, . . . , n},

where the maps Λ0 is in C1([0, L];Dn) and Λ1 is in
C1([0, L];Rn×n) with the initial condition φ(0, s) = φ0(s)
for s in [0, L] where φ0 : [0, L] → Rn and with the
boundary conditions

[
φ+(t, 0)
φ−(t, L)

]
= K

[
φ+(t, L)
φ−(t, 0)

]
+Bu(t) + wb (2)

=

[
K11 K12

K21 K22

] [
φ+(t, L)
φ−(t, 0)

]
+

[
B1

B2

]
u(t) + wb (3)

where φ = [φ+ φ−]
T
with φ+ ∈ R�, φ− ∈ Rn−� and where

wb ∈ Rn is an unknown disturbance, u(t) is a control input
taking values in Rm and K, B are matrices of appropriate
dimensions.

The output to be regulated to a prescribed value denoted
by yref, is given as a disturbed linear combination of the
boundary conditions. Namely, the outputs to regulate are
in Rm given as

y(t) = L1

[
φ+(t, 0)
φ−(t, L)

]
+ L2

[
φ+(t, L)
φ−(t, 0)

]
+ wy, (4)

where L1 and L2 are two matrices in Rm×n and wy is an
unknown constant disturbance in Rm. Applying the same
methodology as in (Terrand-Jeanne et al., 2019, 2020), the
aim is to find a positive real number ki and a full rank
matrix Ki such that

u(t) = kiKiz(t) , zt(t) = y(t)− yref , z(0) = z0 (5)

where z(t) takes value in Rm and z0 ∈ Rm solves the
regulation problem for all yref ∈ Rm.

The state space denoted by Xe of the system (1)-(2) in
closed loop with the control law (5) is the Hilbert space
Xe = (L2(0, L),Rn)×Rm, equipped with the norm defined
for ϕe = (φ, z) ∈ Xe as:

‖ϕe‖Xe = ‖φ‖L2((0,L),Rm) + |z|.
A smoother state space is also introduced defined as:
Xe1 = (H1(0, L),Rn)× Rm.

2.2 Output regulation

In this section, we give a set of sufficient conditions
allowing to solve the regulation problem. Our approach
follows what we have done in Terrand-Jeanne et al. (2019,
2020). Following (Bastin and Coron, 2016a, Proposition
5.1, p161) we consider the following assumption.

Assumption 1. (Input-to-State Exponential Stability). s
There exist a C1 function P : [0, L] → Dn, positive real
numbers µ, P , P and a positive definite matrix S in Rn×n

such that the Lyapunov function

V (t) =

∫ L

0

φ(t, s)�P (s)φ(t, s)ds

where φ(t, s) is the solution of (1) with wb = 0, and

(P (s)Λ0(s))s −P (s)Λ1(s)− Λ�
1 (s)P (s) � −µP (s), (6)

P Idn � P (s) � P Idn , ∀s ∈ [0, L], (7)

and

−K�
L P (L)Λ0(L)KL +K�

0 P (0)Λ0(0)K0 � −S (8)

where

KL =

[
Id� 0
K21 K22

]
, K0 =

[
K11 K12

0 Idn−�

]
. (9)

This assumption is a sufficient condition for exponential
stability of the equilibrium of the open loop system. It can
be found in (Bastin and Coron, 2016a, Prop. 5.1, p. 161)
in the case in which S may be semi-definite positive. The
positive definiteness of S is fundamental to get an input-
to-state stability (ISS) property of the open loop system
with respect to the disturbances on the boundary. More
general results are given in Prieur and Mazenc (2012).

The second and third assumption are related to the rank
condition. Let Φ and Ψ : [0, L] → Rn×n be the matrix
function solution of the systems

Φs(s) = −Λ0(s)
−1Λ1(s)Φ(s),

Φ(0) = Idn .
(10)

and respectively

Ψs(s) = Ψ(s) (Λ1(s)− Λ′
0(s)) Λ0(s)

−1,

Ψ(0) = Idn .
(11)

We denote Φ(s) =

[
Φ11(s) Φ12(s)
Φ21(s) Φ22(s)

]
and

Φ+ =

[
Φ11 Φ12

0 Idn−�

]
, Φ− =

[
Id� 0
Φ21 Φ22

]

Assumption 2. (Rank condition 1). The matrix in Rn×n

Φ−(L) − KΦ+(L) is full rank and so is the matrix T1

defined as

T1 = [L1Φ−(L) + L2Φ+(L)] [Φ−(L)−KΦ+(L)]
−1

B.
(12)

Assumption 3. (Rank condition 2). The matrix in Rn×n

Ψ(L)Λ0(L)KL − Λ0(0)K0 (13)

is full rank and so is the matrix

T2 = −L1B +M

(
Λ0(0)

[
B1

0

]
−Ψ(L)Λ0(L)

[
0
B2

])

where

M = (L1K + L2) (Λ0(0)K0 −Ψ(L)Λ0(L)KL)
−1

. (14)

With these assumptions, the following result has been
stated (Terrand-Jeanne et al., 2019, 2020):

Theorem 1. (Regulation for hyperbolic PDE systems). s
Assume that Assumptions 1, 2 and 3 are satisfied, then
with Ki = T−1

2 there exists k∗i > 0

ki∗ =

√
µP

|M |Ψ
√
γV

∣∣T−1
2

∣∣ (15)

such that for all 0 < ki < k∗i the output regulation is
obtained, where Ψ > 0 be such that

|Ψ(s)| � Ψ , ∀s ∈ [0, L].
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and µ and γV such that this inequality issue from
forwarding techniques

V̇ (t) � −µV (t) + γV |u(t)|2 (16)

is also satisfied.

The proof of this theorem follows the same steps as in
Terrand-Jeanne et al. (2019), taking the s ∈ [0, L] instead
of s ∈ [0, 1]. This result is applied to the hyperbolic PDE
describing flows in shallow waters.
Note that the result remains for any Ki such that

T2Ki +K�
i T�

2 > 0. (17)

3. ILLUSTRATION IN DE SAINT-VENANT
EQUATIONS

Theorem 1 generalizes many available results on output
regulation via integral action for hyperbolic PDEs avail-
able in the literature. For instance, the case of 2× 2 linear
hyperbolic systems has been considered in Trinh et al.
(2017b), Dos Santos et al. (2008), (see also (Bastin and
Coron, 2016a, Section 2.2.4)). Note also that in Terrand-
Jeanne et al. (2020), this procedure is applied on a Drilling
model which is composed of a 2x2 linear hyperbolic PDE
coupled with a linear ordinary differential equation.

In order to compare the way we improve existing results,
the same example as in Dos Santos et al. (2008) is
considered.

3.1 Non Linear System

A prismatic open channel with a constant rectangular
section and a constant slope is considered. The flow
dynamics are described by the de Saint-Venant equations
de Saint Venant (1871):

∂tH + ∂s(Q/b̂) = 0, (18)

∂tQ+ ∂s

(
Q2

b̂H
+

1

2
gb̂H2

)
− gb̂H(I − J) = 0, (19)

H(s, 0) = H0(s), Q(s, 0) = Q0(s), (20)

for all s ∈ Ω = (0, L), where H(s, t) represents the water

level and Q(s, t) the water flow rate, b̂ the channel width
and g the gravitation constant. I is the bottom slope and J
is the friction slope expressed with the Manning-Strickler
expression:

J(H,Q) =
n2
MQ2

[S(H)]2[R(H)]4/3
,

with nM the Manning coefficient while S(H) = b̂H is the
wet surface and R(H) is the hydraulic radius given by:

R(H) =
S(H)

P (H)
, P (H) = b̂+ 2H:= wet perimeter.

L is the length of the reach from the upstream x = 0
to the downstream x = L, Uup = U0(t), Udo = UL(t)
are the opening of the gates at upstream and downstream
respectively. A linear model with variable coefficients can
be deduced from the non-linear PDE, in order to describe
the variation of the water level and flow for an open
channel.

The boundary conditions considered here are the multi-
variable case, ∀s ∈ Γ = ∂Ω the boundary of Ω, with for an
underflow gate:

Q(s, t) = U(t)b̂κj

√
2g(Hup −Hdo) (21)

and for an overflow gate (spillway):

Q(s, t) = (κj b̂)
3 [2g(Hup − U(t))]

3/2
(22)

Hup Hdo are the water height at the upstream, resp. at
downstream, of the considered gate, κj is the water flow
rate coefficient of the gate considered, U(t) is the control
of the considered gate.
The variables to control are the height of water at down-
stream H(L, t) and the water flow at upstream Q(0, t),
considering two underflow or overflow gates.

3.2 Linearized system

An equilibrium state (∂t(.) ≡ 0) of the system (18)-(19),
i.e. H(s, t) = He(s), Q(s, t) = Qe ∀t and ∀s without
any assumptions on I, J , satisfies the following equations
(Dos Santos and Bastin, 2007; Dos Santos et al., 2008):

∂sQe = 0, ∂sHe = gb̂He

I + 2Je +
4
3Je

1
1+2He/b̂

gbHe −Q2
e/(b̂H

2
e )

(23)

The fluvial case is considered and it follows that:

He >
3

√
Q2

e/(gb̂
2) (24)

A linearized model is used to describe the variations
around this equilibrium profile. The following notations
are introduced:

h(s, t)=̂H(s, t)−He(s), q(s, t)=̂Q(s, t)−Qe.

The linearized model around (He, Qe) is written as
Dos Santos and Prieur (2008), Dos Santos et al. (2008)

∂tΦ(s, t) + Λ0,N (s)∂sΦ(s, t) + Λ1,N (s)Φ(s, t) = 0(25)

with ∂tb̂h(s, t) + ∂sq(s, t) = 0, (26)

∂tq(s, t) + cd∂sb̂h(s, t) + (c− d)∂sq(t, s)

+γb̂h(s, t) + δq(s, t) = 0, (27)

and c =
√
gHe +

Qe

Heb̂
, d =

√
gHe − Qe

Heb̂
,

γ = −g

(
I + 2Je(s) +

4
3Je(s)

1 + 2He(s)/b̂

)
= −cd

∂sHe(s)

He(s)
,

δ =
2gJe(s)b̂He(s)

Qe
, Φ =

[
b̂h(s, t)
q(t, s)

]
.

and

Λ0,N (s) =

[
0 1
cd c− d

]
, Λ1,N (s) =

[
0 0
γ δ

]

In order to explicit the control laws, the gate charac-
teristics (22-21) are linearized around the steady-state
(He, Qe):

q(0, t) = Bh,0b̂h(0, t) +Bu,0u0(t), (28a)

q(L, t) = Bh,Lb̂h(L, t) +Bu,LuL(t), (28b)

For the underflow gates, the coefficients are

Bu,0 = κ0b̂
√
2g(Hup −He(0)), (29)

Bh,0 =
−Qe(0)

2
√
2g(Hup −He(0))

, (30)

Bu,L = κLb̂
√
2g(He(L)−Hdo), (31)

Bh,L =
Qe(L)

2
√
2g(He(L)−Hdo)

(32)

where κ0 and κL are the gate water flow coefficients, while
u0 and uL denote the variations of the control signals at
the upstream and downstream gates respectively, around
the equilibrium. For spillways, the coefficients are:

Bu,0 = 3(κj b̂)
2Qe(0)1/3, (33)

Bh,0 = 0, (34)

Bu,L = −3(κj b̂)
2Qe(L)1/3, (35)

Bh,L = 3b̂(κj)
2Qe(L)1/3 (36)

Writing the system (25) in Riemann coordinates, (Dos San-
tos et al., 2008; Bastin and Coron, 2016b), one gets, with

φ =

[
q(s, t) + db̂h(s, t)

q(t, s)− cb̂h(s, t)

]

∂tφ(s, t) + Λ0(s)∂sφ(s, t) + Λ1(s)φ(s, t) = 0 (37)

Λ0(s) =

[
c 0
0 −d

]
,

Λ1(s) =
1

c+ d

[
γ + cδ − cd′ −γ + dδ + cd′

γ + cδ − c′d −γ + dδ + c′d

]
(38)

The boundary conditions (2) of the system (37) terms are:

K =

[
0 k0
kL 0

]
and B =

[
b0 0
0 bL

]
, (39)

with b0 �= 0 and bL �= 0.

For the system (1)-(2) with these parameters, it is shown
in Dos Santos et al. (2008) that the output of dimension
m = 2 defined in (4) with

L1 =




c

c+ d
0

0
−1

c+ d


 and L2 =




0
d

c+ d
1

c+ d
0


 (40)

can be regulated with a proportional controller provided
the condition on the gain and the Lyapunov function
below, Dos Santos et al. (2008)

U(t) =
A

c

∫ L

0

(φ+)
2e−µx/c +

B

d

∫ L

0

(φ−)
2eµx/ddx (41)

|k0kL| < 1, µ sufficiently small (42)

It has been shown that adding an integral term preserves
the stability provided that the gain coefficientsm0 and mL

of the integral part satisfy, to control q(0, t) and h(L, t):

m0 < 0, mL > 0,
d

c
< 1 (43)

|k0kL| < 1, |k0| < 1, |kL| <
c

d
(44)

On another hand, employing (Coron and Hayat (2019)-
Dos Santos and Prieur (2008)), Assumption 1 is satisfied

assuming that |k0kL| < 1 − ε, ε depending on the time-
delay and properties of the Riemann coordinates. The links
between the control law and the boundary conditions (29)-
(32) or (33)-(36) can be done as follows:

u0(t) =
q(0)

Bu,0
+ q(0)

Bh,0

Bu,0

(1− k0)

(d(0) + c(0) ∗ k0)
(45)

−Bh,0

Bu,0

[
b0ki

∫
Ki,11q(0, τ) +Ki,12b̂h(L, τ)dτ

]

(d(0) + c(0) ∗ k0)

uL(t) =
b̂h(L)

Bu,L

[(
c(L) + kLd(L)

1− kL

)
−Bh,L

]
(46)

+
bLki

Bu,L(1− kL)

∫
Ki,21q(0, τ) +Ki,22b̂h(L, τ)dτ

3.3 Tuning the control gain

Taking into account the definition of the function γ and δ,
both systems (10) and (11) can be solved. Indeed,

Φs(s) =−Λ0(s)
−1Λ1(s)Φ(s), (47)

=


3

4

∂sHe(s)

He(s)

(
1 −1
−1 1

)
+

δ

(c+ d)


−1 −d

cc

d
1




Φ(s)

=Θ(s)Φ(s) (48)

So Φ can be evaluated, and the same is done for Ψ(s).

Ψs(s) =Ψ(s) (Λ1(s)− Λ′
0(s)) Λ0(s)

−1, (49)

= Ψ(s)


−∂sHe

4He



2c+ 3d

3c

d
3d

c
3c+ 2d


+

δ

c+ d

(
1 −1
1 −1

)

Computing all those data, assumptions on the rank 2 and
3 are satisfied if

k0 �=
Φ22(L)− kLΦ12(L)

Φ21(L)− kLΦ11(L)
(50)

and k0 �=
d(0)

c(0)

Ψ11(L)c(L)−Ψ12(L)d(L)kL
Ψ21(L)c(L)−Ψ22(L)d(L)kL

(51)

One can notice that previous stability conditions (41) are
emerging from above equations. Indeed taking constants
functions c and d, k0kL is linked to the ratio c

d as Φ21 and
Φ11 are linked by the same ratio c

d example given.

Taking the values of ki and Ki given by previous results
(Terrand-Jeanne et al., 2019, 2020),

Ki = T−1
2 and ki∗ =

√
µP

|M |Ψ
√
γV

∣∣T−1
2

∣∣ , (52)

then the shallow water equations can be regulated.

The theoretical equations are too long to be readable
here. We implement the de Saint-Venant equations, and
calculate the value of each term in the following section.
Simulation are done, employing boundary conditions (45)-
(46).
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Bu,0 = κ0b̂
√

2g(Hup −He(0)), (29)

Bh,0 =
−Qe(0)

2
√
2g(Hup −He(0))

, (30)

Bu,L = κLb̂
√

2g(He(L)−Hdo), (31)

Bh,L =
Qe(L)

2
√
2g(He(L)−Hdo)

(32)

where κ0 and κL are the gate water flow coefficients, while
u0 and uL denote the variations of the control signals at
the upstream and downstream gates respectively, around
the equilibrium. For spillways, the coefficients are:

Bu,0 = 3(κj b̂)
2Qe(0)1/3, (33)

Bh,0 = 0, (34)

Bu,L = −3(κj b̂)
2Qe(L)1/3, (35)

Bh,L = 3b̂(κj)
2Qe(L)1/3 (36)

Writing the system (25) in Riemann coordinates, (Dos San-
tos et al., 2008; Bastin and Coron, 2016b), one gets, with

φ =

[
q(s, t) + db̂h(s, t)

q(t, s)− cb̂h(s, t)

]

∂tφ(s, t) + Λ0(s)∂sφ(s, t) + Λ1(s)φ(s, t) = 0 (37)

Λ0(s) =

[
c 0
0 −d

]
,

Λ1(s) =
1

c+ d

[
γ + cδ − cd′ −γ + dδ + cd′

γ + cδ − c′d −γ + dδ + c′d

]
(38)

The boundary conditions (2) of the system (37) terms are:

K =

[
0 k0
kL 0

]
and B =

[
b0 0
0 bL

]
, (39)

with b0 �= 0 and bL �= 0.

For the system (1)-(2) with these parameters, it is shown
in Dos Santos et al. (2008) that the output of dimension
m = 2 defined in (4) with

L1 =




c

c+ d
0

0
−1

c+ d


 and L2 =




0
d

c+ d
1

c+ d
0


 (40)

can be regulated with a proportional controller provided
the condition on the gain and the Lyapunov function
below, Dos Santos et al. (2008)

U(t) =
A

c

∫ L

0

(φ+)
2e−µx/c +

B

d

∫ L

0

(φ−)
2eµx/ddx (41)

|k0kL| < 1, µ sufficiently small (42)

It has been shown that adding an integral term preserves
the stability provided that the gain coefficientsm0 and mL

of the integral part satisfy, to control q(0, t) and h(L, t):

m0 < 0, mL > 0,
d

c
< 1 (43)

|k0kL| < 1, |k0| < 1, |kL| <
c

d
(44)

On another hand, employing (Coron and Hayat (2019)-
Dos Santos and Prieur (2008)), Assumption 1 is satisfied

assuming that |k0kL| < 1 − ε, ε depending on the time-
delay and properties of the Riemann coordinates. The links
between the control law and the boundary conditions (29)-
(32) or (33)-(36) can be done as follows:

u0(t) =
q(0)

Bu,0
+ q(0)

Bh,0

Bu,0

(1− k0)

(d(0) + c(0) ∗ k0)
(45)

−Bh,0

Bu,0

[
b0ki

∫
Ki,11q(0, τ) +Ki,12b̂h(L, τ)dτ

]

(d(0) + c(0) ∗ k0)

uL(t) =
b̂h(L)

Bu,L

[(
c(L) + kLd(L)

1− kL

)
−Bh,L

]
(46)

+
bLki

Bu,L(1− kL)

∫
Ki,21q(0, τ) +Ki,22b̂h(L, τ)dτ

3.3 Tuning the control gain

Taking into account the definition of the function γ and δ,
both systems (10) and (11) can be solved. Indeed,

Φs(s) =−Λ0(s)
−1Λ1(s)Φ(s), (47)

=


3

4

∂sHe(s)

He(s)

(
1 −1
−1 1

)
+

δ

(c+ d)


−1 −d
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d
1




Φ(s)

=Θ(s)Φ(s) (48)

So Φ can be evaluated, and the same is done for Ψ(s).

Ψs(s) =Ψ(s) (Λ1(s)− Λ′
0(s)) Λ0(s)

−1, (49)

= Ψ(s)


−∂sHe

4He



2c+ 3d

3c

d
3d

c
3c+ 2d


+

δ
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(
1 −1
1 −1

)

Computing all those data, assumptions on the rank 2 and
3 are satisfied if

k0 �=
Φ22(L)− kLΦ12(L)

Φ21(L)− kLΦ11(L)
(50)

and k0 �=
d(0)

c(0)

Ψ11(L)c(L)−Ψ12(L)d(L)kL
Ψ21(L)c(L)−Ψ22(L)d(L)kL

(51)

One can notice that previous stability conditions (41) are
emerging from above equations. Indeed taking constants
functions c and d, k0kL is linked to the ratio c

d as Φ21 and
Φ11 are linked by the same ratio c

d example given.

Taking the values of ki and Ki given by previous results
(Terrand-Jeanne et al., 2019, 2020),

Ki = T−1
2 and ki∗ =

√
µP

|M |Ψ
√
γV

∣∣T−1
2

∣∣ , (52)

then the shallow water equations can be regulated.

The theoretical equations are too long to be readable
here. We implement the de Saint-Venant equations, and
calculate the value of each term in the following section.
Simulation are done, employing boundary conditions (45)-
(46).
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4. SIMULATION

To compare with existing results, the case of the Samber
river is taken, as in Dos Santos and Prieur (2008), river
located in Belgium. Physical parameters of this river are
given in Table 1, and the gates are overflow ones.

For the regulation of the Sambre, a PID controller is
actually used on site.

4.1 Data

Fig. 1. Picture of the Sambre river

parameters B L slope I µ0 K

(m) (m) (m1.s−1) = µL (m1/3.s−1)

values 40 11239 7.92e−5 0.4 33

Table 1. Parameters of a reach of the Sambre
river

For all numerical simulations we use the Chang and
Cooper theta-scheme of order 2 (Cordier et al., 2004;
Dos Santos and Prieur, 2008).

4.2 Simulation results

For an initial condition satisfying our compatibility con-
ditions, we choose Q#(0) = 10m3.s−1, H#(0) = 3.75m,
H#(L) = 4.65m.
In these numerical simulations, we consider the stabil-
ity problem around the following equilibrium: Qe =
12m3.s−1, He(0) = 3.80m, He(L) = 4.7m for which the
flow is fluvial. In figure (2), the proportional part is simu-
lated, showing the offset, then with the integral controller
which was deduced initially from (43) of Dos Santos et al.
(2008). Using the results developed here, the theoretical
gains controller are defined by:

Ki =

(
−1.0810 −6.7957
−0.9330 6.5483

)
(53)

k∗i = 0.0484 (54)

For the simulations done here, the value of the gain kiKi

is

Ki,comm =

(
−0.0011 −0.0059
−0.0009 0.0061

)

in order to compare with previous results. In figure (3),
simulations, with integral gains m0 = −0.005, mL =
0.005, are recalled and compared with our new controller
Ki,comm. As one can notice, the convergence is obtained
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around t = 8000s instead of t = 20000s. The proportional
gains product is k0 ∗ kL = 0.0128 instead of 0.041 pre-
viously. So, one can notice that with a proportional part
reduced, our controller reaches the reference more quickly
than in (Dos Santos and Prieur, 2008; Dos Santos et al.,
2008). We can underline that the control (gates opening)
is physically feasible, figure (4).

The next simulation, figure (5), is obtained with the
same proportional gains and ki = 0.001 (to get the same
Ki,comm than above) than simulation (S1) of Dos Santos
and Prieur (2008), showing the efficiency and the improve-
ment of this approach.

5. CONCLUSION

For a long time, the regulation problem has been studied
for different classes of distributed parameter systems. In
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this paper we have followed the construction of a Lyapunov
functional to address the regulation problem using an
integral controller in the case of de Saint-Venant equations.
This work gives explicit integral gain and the previous
results are clearly improved by our approach. The interest
of our approach is that it may be used to the case in which
the control and measurements operators are not bounded.
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Novel, B. (2008). Boundary control with integral action
for hyperbolic systems of conservation laws: Stability
and experiments. Automatica, 44(5), 1310–1318.

Dos Santos, V. and Bastin, G.and Touré, Y. (2007).
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