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A B S T R A C T

The evaluation of conservative treatments’ efficacy on natural building stones are usually based on standard
recommendation routines finalized to evaluate compatibility and harmfulness of products in turn of the
substrate. However, the visualization and the quantification of products inside pore structure of natural stones is
not immediate through standard tests, so that imaging and advanced techniques are recently proposed in
material conservation field to improve knowledge on penetration depth, modification of pore-air interface at
different scale and monitor dynamic absorption processes. Moreover, natural stones are usually characterized by
complex structure, which changes due to conservative treatments have to be inspected at different scale (from
micrometer to nanometer).
In this prospective, the assessment of laboratory practices able to integrate multiscale methods and give back a

complete overview on interaction between new conservative formulates and natural stones is of high interest.
In this paper, we propose a methodological routine for efficacy assessment of conservative products,

incorporating classical and innovative nondestructive techniques. Validation of the workflow has been verified on
a high porous natural stone treated with new hybrid formulates appropriately customized for conservation
issues.
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� The study intends to add new insights on problems related to consolidation of high porous carbonate stone,
application methods in consolidating natural stones and methods to evaluate efficacy of new products.

� A multi-scale laboratory investigation procedure is proposed by integrating standard and innovative
nondestructive methods. Merits and limits of each applied method are discussed during validation.

� The possibility to incorporate standard routines and/or substitute destructive testing with non-destructive
ones seem to be a valid alternative to evaluate efficiency and monitor behavior of stones treated with
consolidating products.

 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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� Chemistry
� Physic
� Engineering
� Materials Science

More specific
subject area

� Masonry
� Polymers
� Conservation

Method name Advanced and multi-scale laboratory investigation

ethod details

A multi-scale laboratory investigation procedure finalized to inspect consolidants’ efficacy is
roposed; it is based on the integration of innovative nondestructive methods to standard well known
aboratory tests.

The routine includes two operative steps, namely the application of (a) standard recommendation
rocedures and (b) the noninvasive advanced testing by X-ray and neutron sources (Fig. 1). All tests
ave to be performed on laboratory samples which dimension and shape is determined in accordance
ith standard guidelines, when applicable.

onditioning laboratory samples

rtificially aged vs Unweathered fresh laboratory samples

As a function of general proprieties of the natural stone to test, preliminary aging procedure aimed
o mime the natural weathering state can be performed before the treatment [1]. The selection of
ging method can be critical and has to be selected in function of substrate properties and usual decay
henomena. Generally, salt crystallization is the most used one to mime the real weathering
onditions; however, limitation and possible by-products due to the test have to be evaluated, as well
he kind of single salt and/or salt mixes to use [2].

096 S. Raneri et al. / MethodsX 5 (2018) 1095–1101

http://creativecommons.org/licenses/by-nc-nd/4.0/


Treatment method

In order to possible evaluate merits of techniques and efficacy of products in function of treatment
method (i.e.: immersion, brushing, poultice) [3], laboratory samples can be treated by following one
on more application procedures.

Curing

After treatment with the new product to test, laboratory samples have to be dried at 60 �C until
constant mass, according to UNI 10921 [4]. Appropriate curing of laboratory samples has to be assured,
in function of employed formulate (usually, almost one month at room temperature and humidity).

Quantity of product

Calculate the quantity of product absorbed by laboratory samples as weight percent gain (WPG%):
WPG% = 100 [(Mt– M0)/M0), with M0, the mass of dry sample before the product application, and Mt,
the mass of dry sample after product application.

Fig. 1. Graphical summary of the methodological workflow proposed by this study.
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tandard recommendation

Perform physical and mechanical standard tests (UNI EN 15886 [5], UNI EN 15801 [6], NORMAL 7/
1 [7], NORMAL 29/88 [8], artificial weathering tests [9,10] DRMS [11]) to evaluate water absorption
nd desorption at environmental pressure, color difference, resistance to artificial weathering, and
icrodrilling resistance on reference untreated and treated laboratory samples. Perform mercury

ntrusion porosimetry (MIP) measurements on volumes of �1 cm3 sampled at the surface of treated
amples where coated is created. Collect intrusion curves and compare results with untreated
eference samples. Perform at least three measurements for each case, to verify repeatability of data.
ompare modal pore values and average cumulative volumes before and after the treatment to
valuate where product is located. Limits in inspected range is related to instrumental characteristics;
sually, MIP allows to inspect pores in the range 10 nm 0.1/1 mm [12].

oninvasive advanced testing

-ray imaging

Before applying this method verify that products have a different attenuation coefficient with
espect to stone [13]; otherwise, use a tracer to dope the product and assure its visualization. In some
tudies, 3-bromopropyltrimethoxysilane has been successfully employed to better visualize products
nto the porous structure of the stone [14–16], in the case of both water repellents and silane-based
onsolidants; however, some metals (such as Ag) can be also used as tracer, exhibiting no interaction
ith the properties of the tested products [17].
Use X-ray m-CT [18] to investigate the internal structure of untreated and treated laboratory

amples and characterize their 3D pore structure. To set the better measurement conditions evaluate
he spatial resolution required to quantify the processes to observe. Remember that critical points are
he object source distance and the sample size [19]; for the latter one, keep in mind that voxel size (and
hus your resolution in term of smallest features detectable and quantifiable) is a function of sample
ize.
Images of products inside the pore structure of investigated material can be obtained by collecting

cans before and after the treatments on cylinder (which diameter has been determined in function of
extural features of studied stone).

The quantification of pore structure before and after the treatment can be therefore obtained by
ubtracting images before treatment from images after treatment, after registration of both volumes;
n this way changes in the pore structure due to consolidant penetration can be inspected. In order to
ork with differential images it is crucial to acquire the data by using the same parameters before and
fter the application.
The reconstruction of pore structure can be easily achieved by using different dedicated software

19] allowing to visualize and quantify scanned objects.

eutron imaging

Use neutron radiography [20] to visualize the distribution of organic products inside the pore
tructure and monitor movement of water under dynamic conditions in untreated and treated
aboratory samples.

As it is well known, by using neutrons the good contrast between water (and water containing
roducts, such as organic protectives and consolidants) and stone allows the visualization of products
ontaining hydrogen as well as water into the samples. In the case of dynamic measurements, consider
he possibility to use heavy water [21]. The use of neutrons as investigation probe allows to avoid the
oping of the products.
Collect neutron radiographs by using cold neutron source [21].
SDD (sample-detector distance) and SSD (sample-source distance) can be selected in function of

xperimental set up and resolution required [20].

098 S. Raneri et al. / MethodsX 5 (2018) 1095–1101



Collect images in dry condition to visualize the distribution of product inside the natural stone;
remember that neutrons are sensitive to polymer/organic –based products containing hydrogen.

For the further corrections and quantitative evaluation, collect dark field and open beam images.
Acquire scans at regular time interval during capillary absorption to monitor water behavior of

consolidated stones; manual or automatic filling of water container can be used in function of
experimental set up. It is advisable to collect preliminary scans on test samples, to evaluate the speed
of the observed process and asses the best time intervals to apply.

Ideally, capillary tests might be performed until saturation; however, carefully consider the
possible evaporation processes occurring during the experiments, especially if they are carried out in
environmental conditions (T �C. RH%). After these preliminary evaluations, select fixed time intervals
and a maximum monitoring time for all the stone substrates and all the studied products allowing the
successive comparison evaluation.

A quantification of water content can be obtained by performing calibration measurements at the
beginning of your experiments [22].

Process images firstly by correcting and normalizing by dark field and open beam images. Quantify
water content distribution according to Kim et al. [23] and determine sorptivity parameter (B) [24]
from the radiographs.

Small angle neutron scattering

Use sections of untreated and treated samples (also by using different treatment methods) which
thickness avoids multiple scattering effects (usually, < 1 mm). Select Q ranges as a function of
experimental set up and resolution required in term of scale range to investigate.

The method allows to obtain information about the size, the number density and the correlation
between components of a sample, especially looking at pore-air interfaces. In this prospective, the
existence of different arrangements inside the porous structure of the solid matrix can be
demonstrated, evaluating how the occurrence of products modify the pore-air interface of the pore
system in the studied substrate. The measured parameter (i.e. Q(I)) has in fact relation with the
formalism associating roughness and fractal dimension of a surface. In this prospective, by using the

following correlation I Qð Þ / Q� 6�Dsð Þ the roughness of the pores surface in terms of surface fractal
dimension Ds [25] can be determined and obtained values on different treated samples can be
compared to evaluate efficacy in penetration of products as well as the assessment of homogenous
product layers onto pore surfaces. To obtain numerical parameters, correct two-dimensional intensity
distributions for the background and normalize by measuring the incident beam intensity,
transmission, and sample thickness from the I(Q) distributions. Then, determine fractal dimension
for each analysed specimen

Incorporation of the results

Changes in pore structure: m-CT vs MIP vs water absorption vs SANS

Evaluate differences in term of porosity and pore radius determined by MIP, m-CT and water
absorption. Compare results taking in consideration discrepancies among the methods [12].

Integrate MIP, m-CT and SANS data to evaluate pore structure characteristics (before and after
conservative treatments) in the range from nanometer to millimeter.

Water behavior: Absorption tests vs neutron imaging

Quantify water absorption changes by gravimetric tests; evaluate sorpivity and quantify water
content at subsequent time step from neutron images. Compare results and describe water behavior,
and possible preferential pathway in water absorption due to distribution of consolidant in pore
network.

S. Raneri et al. / MethodsX 5 (2018) 1095–1101 1099
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enetration depth: DRMS vs neutron imaging vs m-CTvs SANS

Compare obtained results obtained by drilling resistance measurement systemwith images collected
n dry condition by neutron source; take advantage from visualization of product distribution to explain
ossible discrepancies in indirect DRMS values. Use m-CT 3D reconstructions to visualize in 3D the
roduct distribution, improving information obtained by DRMS and neutron imaging.
Finally, evaluate the small scale structural changes and penetration in nano-sized pores on the

asis of fractal dimension determined by Q(I) scattering data. Remember that ideally the presence of
roducts at pore-air interface should determine a smoothing of pore surface, with a consequential
hange in fractal dimension calculated respect to untreated samples.

ethod validation

In order to validate the proposed routine, we present an example applied on high porous limestone.
he complete characterization of the stone, the description of tested products as well the evaluation of
heir suitability and compatibility with substrate is out of the scope of the present paper; details about
tone, consolidants and efficacy of products are reported in [17]. Briefly, the stone used for consolidating
est exhibits a porosity of about �27%, with a total pore volume of 0.14 cm3g�1 and a modal pore radius of
bout8.5 mm.Compositionally, it isconstitutesmainlybycalcite,with lowamountofdolomite; thestone
uffers mainly of granular disintegration, for which it requires consolidation actions. The used products
onsist in new hybrids formulations customized for cultural heritage conservation; they include a
atented consolidant modified by amine to promote interaction with limestone and inorganic
ommercial products which shrinkage process was improved by the addition of organic chains.
In the case study, water absorption, mercury intrusion porosimetry, and mCT methods offered

ogether an overview on the changes in pore structure of the studied stone in the range 0.007–200 mm
fter the application of consolidating products. They provided consistent results, even if some
iscrepancies due to the intrinsic differences among the applied methods were highlighted.
Neutron imaging was demonstrated as a powerful technique for investigating the presence and the

istribution of products into the stone, even if possible limits due to the low interaction between
eutron beam and polymeric consolidants were evidenced; the obtained data were indirectly
onfirmed by microdrilling, indicating a very sharp increase over the first millimeters underneath the
urface. As regards water behavior, neutron imaging provided also measurements of the water
bsorption dynamic, quite in accordance with gravimetric tests; advantages were represented by the
ossibility to visualize the water distribution inside the stone, highlighting possible preferential
ptake paths due to presence/absence of products. SANS data provided information on product
enetration in nano-pores. The technique was also useful to evidence surface roughness changes
elated to treatment method; in the case study, relevant changes were observed for products applied
y immersion, suggesting that this method is preferable because it ensures higher bonding of the
roduct to the pore surface and the complete penetration of consolidants into nano-sized pores.
Overall, stone-product interactionwas investigated from micrometric to nanometric scale (by integrating

-CT - MIP - water absorption - SANS), bonding ability was verified and evaluated (by integrating DRMS vs
eutron imaging vs m-CT vs SANS), water behavior was quantified and visualized (by integrating absorption
ests vs neutron imaging), and preferable application methods was assessed (by SANS).

onclusions

In this work, a laboratory multiscale methodology for assessing consolidant’s efficacy on natural
tones has been presented and described. The routine is highly customizable; in fact, set up of standard
nd non-destructive testing can be established case by case taking in consideration substrate features,
roducts characteristics and potential of different methods to inspect the whole range of textural and
orosimetric properties. The methodology has been demonstrated to be suitable in better
nderstanding interactions between consolidating products and natural stones, supplying quantita-
ive data about pore ranges in which consolidants interact with stone, and adequately supporting the
nterpretation of material behavior especially against water.
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The methodological routine can be easily incorporated into studies about conservative treatments,
claiming the advantages in integrating or even substituting nondestructive testing to classical methods.
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