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Abstract—Advances in deep learning have enabled a wide
range of promising applications. However, these systems are
vulnerable to Adversarial Machine Learning (AML) attacks;
adversarially crafted perturbations to their inputs could cause
them to misclassify. Several state-of-the-art adversarial attacks
have demonstrated that they can reliably fool classifiers making
these attacks a significant threat. Adversarial attack generation
algorithms focus primarily on creating successful examples while
controlling the noise magnitude and distribution to make detec-
tion more difficult. The underlying assumption of these attacks
is that the adversarial noise is generated offline, making their
execution time a secondary consideration. However, recently, just-
in-time adversarial attacks where an attacker opportunistically
generates adversarial examples on the fly have been shown to
be possible. As an example scenario, an attacker observes the
start of a command provided to Alexa and on the fly predicts
the remainder of the command and generates an adversarial
attack to cause Alexa to execute a different command. This paper
introduces a new problem: how do we generate adversarial noise
under real-time constraints to support such real-time adversarial
attacks? Understanding this problem improves our understand-
ing of the threat these attacks pose to real-time systems and
provides security evaluation benchmarks for future defenses.
Therefore, we first conduct a run-time analysis of adversarial
generation algorithms. Universal attacks produce a general attack
offline, with no online overhead, and can be applied to any input;
however, their success rate is limited because of their generality.
In contrast, online algorithms, which work on a specific input,
are computationally expensive, making them inappropriate for
operation under time constraints. Thus, we propose ROOM, a
novel Real-time Online-Offline attack construction Model where
an offline component serves to warm up the online algorithm,
making it possible to generate highly successful attacks under
time constraints. Our results show that ROOM can achieve high
attack success rates under real-time constraints with up to 90
times faster adversarial attack generation than the state-of-the-
art methods. For example, ROOM achieves 100% adversarial
attack success rate on MNIST data with a throughput of up to
1250 frame per second (FPS), more than 60% success rate with
200 FPS on CIFAR-10 and 60% with 16 FPS on ImageNet.

Index Terms—Adversarial machine learning, adversarial at-
tack, real-time, Security

I. INTRODUCTION

The emergence of deep learning is causing disruptive trans-
formations in a wide range of sectors such as computer vision
[1], [2], natural language processing (NLP) [3], robotics [4],
autonomous driving [5], and healthcare [6]. While these tech-
nologies are already in use in products and systems enabled by

the availability of increasing amounts of data, they suffer from
vulnerabilities to adversarial attacks that threaten their integrity
and their trustworthiness. In particular, Adversarial Machine
Learning (AML) attacks modify an input to a machine learning
classifier with carefully crafted perturbations chosen by a
malicious actor to force the classifier to a wrong output. If
attackers are able to manipulate the decisions of a machine
learning classifier to their advantage, they can jeopardize the
security and integrity of the system, and even threaten the
safety of people that it interacts with. For example, adding
adversarial noise to a stop sign that leads an autonomous
vehicle to wrongly classify it as a speed limit sign [7]–[9]
potentially leading to crashes and loss of life. In addition,
adversarial examples have been shown effective in real-world
conditions [10]: that when printed out, an adversarially crafted
image can remain adversarial to classifiers even under different
lighting conditions and orientations. Therefore, understanding
and mitigating these attacks is essential to developing safe and
trustworthy intelligent systems.

Adversarial attacks have received considerable attention re-
cently in the research community-directed. Several adversarial
generation algorithms have been developed [9], [11]–[14],
often to bypass proposed defenses [15]. The threat model
assumed by these systems is one where the attacker develops
the adversarial example without any time constraint; thus,
the proposed algorithms focus on maximizing the attack’s
success rate while minimizing the noise budget available to the
attacker. Minimizing the noise budget makes the perturbations
injected by the attacker less detectable, both with respect to
human perception as well as automated detection. Specifically,
Lp-norm metrics have been widely utilised to measure noise
magnitude, namely L0, L2, and L∞ [11] (further details in
Section II).

Machine learning classifiers are commonly used in intel-
ligent systems where they receive inputs and react to them
in real-time. For example, several applications such as voice
assistants (Apple Siri and Amazon Alexa), intelligent surveil-
lance cameras [16] and intelligent transportation systems [17]
operate on data in real-time, as they interact with the real-
world. In the context of such systems, pre-generated adver-
sarial attacks are limited to be pre-deployed to try to interfere
with the system opportunistically. Often, these attacks also are
limited to universal attacks that are designed to generalize
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across inputs and are therefore less effective than custom
attacks [18]–[20].

Recently, several just-in-time adversarial attacks have been
proposed [21], [22]. In these scenarios, an attacker predicts
the arrival of an input (perhaps based on partial observation
of a time-series or streaming input) and desires to generate an
adversarial attack in real-time to inject the perturbations as the
input arrives. These attacks are possible on systems operating
on streaming data or data that otherwise arrive progressively
over time. This could be streaming sensor data, audio or video
data, and other time-series data (e.g., stock market data). In
such a setting, the attacker can predict a future input to the
system based on the observed data so far and opportunistically
generate and inject the adversarial perturbations. However, be-
cause existing input-specific attack generation algorithms are
computationally expensive, they are not suitable for generating
adversarial examples just-in-time when the data arrives rapidly
(e.g., video and audio data). In this paper, we formulate a new
problem of generating input-specific (or custom/non-universal)
attacks under time constraints. If such attacks are possible
under tight time budgets, they enable highly dangerous just-
in-time adversarial attacks, substantially expanding the threat
of adversarial attacks to intelligent systems and setting new
goals for effective defenses. Existing adversarial attacks fall
into two categories:

• Universal attacks: They are generated based on an opti-
mization problem that is solved iteratively over a whole
dataset instead of targeting a single input sample such as
in the previous setting. These attacks generate a universal
noise that does not need online exploration but assumes
total access to the dataset of the victim system, and more
importantly, an infinite offline exploration time; and

• Input-specific attacks: These state-of-the-art attacks de-
sign an input-specific perturbation for a given input
under the constraint of a noise magnitude budget. They
typically assume no constraints in the attack generation
time [14] [13]. The perturbation is added to the original
sample, and the resulting adversarial example is fed to the
victim DNN. The most efficient state-of-the-art attacks
are iterative [14] [13] and require a considerable amount
of time to converge. Therefore, this setting is not practical
for our scenarios where the attack must be generated
under real-time constraints.

We observe that these two approaches represent two ends of
the spectrum with respect to adversarial attack algorithms: (a)
the universal attacks are fully offline and not customizable to
the input, and (b) the input-specific algorithms are fully online,
working with the input but not benefiting from any offline opti-
mization opportunities. We first analyze these algorithms from
the perspective of not only the traditional metrics of attack
success and noise budget but also from the perspective of run-
time overhead, showing that they cannot achieve success under
limited time budgets. We then propose a new attack model,
the Real-time Offline-Online Model (ROOM), that unifies the
two adversarial attack classes and results in a fast (real-time)

generation of input-specific attacks. Specifically, ROOM uses
an offline generation step to generate patches that serve as
a warm-up of the online component. On the other hand,
the online component specializes the offline generated patch
to the current input. By starting from this offline state, the
online component can rapidly converge towards a successful
attack, providing an input-specific attack within a limited time
budget, i.e., faster attack generation than state-of-the-art input-
specific attack algorithms. Specifically, our results show that
ROOM substantially outperforms state-of-the-art adversarial
attack algorithms for the same online time budget. For the
same accuracy, it can improve the convergence time of the
conventional Carlini and Wagner (C&W) algorithm and the
Projected Gradient Descent (PGD) by up to 5 times and 12,
respectively. We believe that ROOM is an important step
towards producing adversarial attacks that can be deployed
just-in-time. Furthermore, additional optimization opportuni-
ties are orthogonal to ROOM, including the use of hardware
acceleration.
Contributions. In summary, the contributions of this work are:
• We introduce a new problem of generating efficient

adversarial attacks under time constraints, i.e., a limited
time budget.

• We contribute a time-aware characterization of adver-
sarial attacks considering time in addition to traditional
constraints of attack success and noise budget.

• Based on the time analysis, we propose ROOM, a new
real-time offline-online attack model that enhances ad-
versarial attacks efficiency under real-time constraints.
We show that optimizations of adversarial attacks under
time constraints are possible, and we show that balancing
offline and online generation processes can enhance the
efficiency of adversarial attacks. The proposed model
unifies and generalizes existing algorithms that are either
fully offline, or fully online.

• ROOM achieves real-time adversarial noise generation
with a throughput of 1250 FPS, 200 FPS and 16 FPS
for MNIST, CIFAR10 and ImageNet, respectively.

II. BACKGROUND

In this section, we present a brief background on the threat
model and the generation process of adversarial examples,
with an overview of the most widely used attacks in the
literature.

A. Threat Model

1) Attacker Knowledge: We presume a white-box setting
where the attacker is well aware of the parameters of the victim
classifier and has direct access to the model gradient. This
information is used by the attacker to construct adversarial
examples.

2) Adversarial Goal: The objective of the attacker is to
compromise the integrity of the victim model. The attack
success Rate is defined as (1 - Classification Accuracy) and
represents the proportion of total perturbed images in a dataset
for which the adversarial noise forces the model to output a



wrong label. A lower classification accuracy corresponds to
higher attack success rate. Adversarial goals can be divided
into two categories:
Untargeted adversarial attack: The goal of a non-targeted
attack is to slightly modify the source image so that it is
classified incorrectly by the target model, without special
preference towards any particular output.

f(x) 6= f(x∗) (1)

Targeted adversarial attack: The goal of a targeted attack
is to slightly modify the source image so that it is classified
incorrectly into a specified target class t by the target model.

f(x∗) = t (2)

In this work, we consider the targeted adversarial attack
setting.

3) Noise Budget: The adversarial examples should be im-
perceptible by humans, and hence are constrained in ampli-
tude. The noise budget is generally expressed in terms Lp-
norm distance, mainly L0, L2, and L∞:

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

(3)

B. Generating Adversarial Examples

Problem definition An adversary, using information learnt
about the structure of the classifier, tries to craft perturbations
added to the input to cause incorrect classification. For illustra-
tion purposes, consider a CNN used for image classification.
Given an original input image x and a target classification
model f(.), the problem of generating an adversarial example
x∗ can be formulated as a constrained optimization [23]:

x∗ = argmin
x∗

D(x, x∗),

s.t. f(x∗) = l∗, l 6= l∗
(4)

Where D is a distance metric used to quantify similarity
between two images and the goal of the optimization is to
minimize the added noise, typically to avoid detection of the
adversarial perturbations. l and l∗ are the two labels of x and
x∗, respectively: x∗ is considered as an adversarial example if
and only if the label of the two images are different (f(x) 6=
f(x∗)) and the added noise is bounded (D(x, x∗) < ε where
ε > 0).

To solve this optimization problem, several approaches have
been proposed in the literature from which present the most
widely used attacks:
Fast Gradient Sign Method (FGSM). FGSM [9] is a single-
step, gradient-based, attack. An adversarial example is gen-
erated by performing a one step gradient update along the
direction of the sign of gradient at each pixel as follows:

x∗ = x+ εsign(∇xJθ(x, y)) (5)

Where ∇J() computes the gradient of the loss function J and
θ is the set of model parameters. The sign() denotes the sign
function and ε is the perturbation magnitude.

Projected gradient descent (PGD). PGD [13] is a stronger
iterative variant of the FGSM where the adversarial example
is generated as follows:

xt+1 = PSx(xt + α · sign(∇xLθ(xt, y))) (6)

Where PSx() is a projection operator projecting the input
into the feasible region Sx and α is the added noise at each
iteration. The PGD attack tries to find the perturbation that
maximizes the loss of a model on a particular input while
keeping the size of the perturbation smaller than a specified
amount.
Carlini & Wagner (C&W). This attack [11] is one of
the state-of-the-art attacks. This latter has 3 forms based on
different distortion measures (l0, l2, l∞). In this work we only
consider the l2 form as it has the best performance. It generates
adversarial examples by solving the following optimization
problem:

minimize
δ

‖δ‖2 + c · l(x+ δ)

s.t. x+ δ ∈ [0, 1]n
(7)

Where ‖δ‖2 is the smallest perturbation measured by the l2
norm that makes the model misclassify into another/target
class. l(·) is the loss function reflecting the distance between
the current situation and the objective of the attack defined as:

l(x) = max(maxi 6=t{Z(x)i} − Z(x)t − κ) (8)

Where Z(x) is the output of the layer before the softmax
called logits. t is the target label, and κ is called the confidence,
a hyper-parameter used to enhance the transferability of the
output. An adversarial example is considered as successful if
maxi 6=t{Z(x)i} − Z(x)t ≤ 0. In the C& W attack, the box
constrained optimization problem x+δ ∈ [0, 1]n is turned to an
unconstrained problem by replacing δ with 1

2 (tanh(w)+1)−x,
where w is a new optimizer ranging in (−∞,+∞).

III. TIME-AWARE ANALYSIS OF ADVERSARIAL NOISE

A. Proposed Approach: Offline-Online Attack Model

In contrast with the existing work on adversarial machine
learning, this paper suggests including time as an analysis
perspective of adversarial noise generation. More specifically,
in addition to the noise budget used in the state-of-the-art,
we consider time budget as an orthogonal constraint taken
into account in the adversarial noise generation towards more
practical threat models and defenses.

To include time as a constraint in the adversarial noise
generation process, we first distinguish the time budget from
the two design spaces, i.e., online and offline, as follows:
• Online time budget: which we note Ton, is defined as

the time required for the online exploration, i.e., after the
acquisition of the victim sample to target.

• Offline time budget: which we note Toff , is defined as
the time required for the offline exploration to generate
the adversarial perturbation. During this time, we assume
that the attacker has no access to the victim data sample
to target.
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Fig. 1. Architecture of the proposed approach: Offline and Online exploration.

Hence, we consider the adversarial noise generation as a
continuous process combining offline and online processing.

We distinguish the two corner cases mentioned earlier in
Section I, where: (i) (Toff = 0, Ton = ∞) corresponds to
the conventional digital attack where all the computations
are performed online without time limit, and (ii) (Toff =
∞, Ton = 0) corresponds to the universal adversarial pertur-
bation referred to as Offline attack where all the computations
are performed offline without time limit.

In this section, we propose real-time Offline-Online Model
(ROOM), a new methodology for adversarial noise generation
by combining both offline and online exploration under a time
constraint. The proposed offline exploration is based on an
analysis detailed later in Section V, where we explore the
opportunities provided by patterns in adversarial examples
that we exploit to warm-up the online exploration instead
of starting from random initialization. Figure 1 shows an
overview on the proposed methodology and the two phases
(offline and online) are detailed in Sections III-B and III-C.

B. Offline Exploration

The main objective of the offline exploration is to identify
the most efficient adversarial noise pattern that corresponds to
a static adversarial component on which we can later (during
the online exploration) build upon to quickly converge to an
adversarial example. Algorithm 1 gives a detailed description
of the offline exploration mechanism. To efficiently identify
a potential noise pattern, the exploration process implements
the following steps: First, we select a set of images for which
we generate the corresponding adversarial examples (AEs) and
collect adversarial perturbations Pi (Line 4 – 7 in Algorithm
1). Next, we calculate the correlation between the resulting
noise distributions (Line 9 – 13). Subsequently, the aim is to

identify the perturbation that has the highest correlation with
the other samples, which correspond to the highest intra-class
similarity (detailed analysis in Section V). For this reason, we
define the similarity score of a given noise as the sum of its
PCCs with the remaining noise candidates:

Siscore =
∑
k 6=i

PCCi,k

Notice that the higher the similarity score, the closer the
noise sample is to the potential static component (adversarial
pattern) of the given intra-class setting. In fact, the noise
candidate with the maximum Sscore represents the highest
static component that is redundant within most of the set’s
noise samples. Therefore, we finally identify the noise pattern
as the noise candidate with the highest similarity score (Line
19–20).

C. Online Exploration

After the offline exploration, an adversarial noise pattern
is identified as a potential static component that better char-
acterizes the path ”Source–Target” given a decision boundary
defined by the trained victim classifier. Our goal is to propose a
novel approach for attacking trained models while considering
a time budget. Hence, in the quest for a rapid adversarial
example generation, the idea is to take advantage of the offline
exploration to enhance the online generation efficiency. More
specifically, we accelerate the conventional adversarial noise
generation approaches with the offline-identified adversar-
ial pattern. Essentially, the perturbation identified from the
previous analysis is used as the initial starting point for a
new adversarial attack targeting the same class. In fact, the
noise pattern is identified such that it represents a static noise
component that brings a given input from a source class



Algorithm 1 Offline Exploration (Optimal noise pattern iden-
tification)

1: Input: a classifier f , x input image, y true class, ytarget
target class, noise budget ε, m size of the used Set

2: Output: patternadv
3: // Generate AEs and collect Pi
4: for i = 0 . . . m-1 do
5: x∗i = Attack(f, xi, yi, ytarget, ε)
6: Pi = x∗i − xi
7: end for
8: // Calculate the correlation between patterns Pi
9: for s = 0 . . . m-1 do

10: for k = 0 . . . m-1 do
11: PCCs,k = corr(Ps, Pk)
12: end for
13: end for
14: // Set a similarity score for each candidate pattern Pi as

the sum of PCCs
15: for i = 0 . . . m-1 do
16: Siscore =

∑
k 6=i PCCi,k

17: end for
18: // Identify the Pi with the highest correlation score
19: j = argmax(Sscore)
20: patternadv = Pj

l closer to a target class k. Therefore, instead of starting
the exploration of the adversarial noise from a zero or a
random matrix, we start the online space exploration from
an intermediate point that has a higher chance to be close
to the decision boundary, and hence easier to flip the data
sample classification to the target label. More importantly,
the online exploration becomes faster in producing adversarial
examples, allowing it to meet real-time constraints. Algorithm
2 details an illustration of the online exploration where we
use the proposed technique to build a Projected Gradient
Descent (PGD) based attack where the adversarial example
is initialized using the previously generated pattern.

Algorithm 2 Proposed PGD-ROOM attack
1: Input: a classifier f with loss J , noise budget ε,step size
α, x input image, ytarget targeted class, patternadv adver-
sarial pattern (identified offline), m number of iterations,
Ton online time budget

2: Output: xadv
3: begin time = time.time()
4: Initialize xadv = patternadv
5: for i= 0...m-1 do
6: if time.time()− begin time > Ton then
7: break
8: end if
9: prediction = argmax(f(xadv))

10: xadv = Clip{x− εsign(∇xadv
Jθ(f(xadv), ytarget))}

11: end for

IV. EXPERIMENTS

In this section, we evaluate the proposed methodology from
different perspectives. Precisely, we first assess the offline
exploration mechanism to verify the efficiency of the noise
pattern identification, especially in terms of adversarial impact.
Second, we investigate the behavior of ROOM under both
time and noise constraints comparatively with conventional
techniques. For thorough investigation, we compare ROOM
with both zero and random initialization. Finally, we compare
ROOM with a state-of-the-art adversarial training acceleration
technique, i.e., YOPO, and show that combining ROOM and
YOPO results in even further time efficiency, which offers an
interesting property for low-cost adversarial training.

A. Setup

Our experiments include implementations of a CNN archi-
tecture (Four convolutional layers and three fully connected
layers) trained with MNIST [24] for handwritten digit recog-
nition. MNIST is composed of 60, 000 images, with 10 classes
and is composed of grey-scaled images of size 28×28 pixels.
We also use Wide ResNet-34 CNN trained on CIFAR-10
database [25] for object recognition in the evaluation. This
database consists of 60,000 32×32 RGB images in 10 classes,
with 6, 000 images per class. Finally, we consider VGG-
19 CNN trained on ImageNet [26], which contains over 14
labeled million images of 224× 224 pixels each.

To evaluate the attacks, we used two commonly used ad-
versarial attack generation algorithms, namely: PGD [13] and
C&W [11]. The PGD attack is currently the strongest known
attack for the l∞ metric. The C&W attack is considered to be
one of the strongest l2 attacks. Our implementations are built
using the open source machine learning framework PyTorch
[27]. We modified the FoolBox Library [28] to support our
approach and to evaluate the attacks. Experiments were taken
on NVIDIA Tesla K80 GPU.

B. Evaluation of the offline adversarial pattern exploration

In this section, we evaluate the efficiency of the adversarial
noise pattern extraction proposed in Section III-B. For this
reason, we use different patterns with different similarity score
levels as the exploration initial starting point and monitor the
classification accuracy of the model under attack. Specifically,
we chose patterns with three similarity score levels: the min-
imum, the median, and the maximum among the exploration
set. Recall that this latter corresponds to our choice of noise
pattern when using the offline exploration.

Figures 2 and 3 show that using patterns with higher
similarity scores leads to more powerful attacks. In fact, with a
perturbation magnitude of 0.2, we report a model classification
accuracy degraded to less than 20% when using the pattern
with the highest score, while it remains up to 90% when
using the pattern with the lowest score. Changing the size
of the exploration set (m) used to produce distinct adversarial
patterns also reveals that the larger the employed set, the more
likely it is to uncover a pattern with a higher similarity score



and thereby a higher attack success rate. Notice that the m
samples of the considered sets are randomly chosen.

Fig. 2. Model classification accuracy under PGD attack when using patterns
generated with max, median and min similarity scores for MNIST (m is the
exploration Set size)

Fig. 3. Model classification accuracy under PGD attack when using patterns
generated with max, median and min similarity scores for CIFAR-10 (m is
the exploration Set size)

C. Evaluation under noise and time constraint

In these experiments, we set a time budget for the online
processing while varying the noise budget and comparing the
performance of the state-of-the-art attacks to ROOM-enhanced
version of the attacks.
Attacks on MNIST. To assess the effectiveness of ROOM, we
randomly choose four different pairs of (source, target) classes
from MNIST test set and generate the optimal adversarial
pattern for each to be used as initialization when generating the
AE. In Figure 4, we show the model accuracy under ROOM
and conventional PGD attack comparatively for different noise
budgets ε, and for different time budgets.

We can observe that PGD-ROOM efficiently generates
adversarial examples at a maximum throughput of 1250 FPS
under a noise budget of 0.25. More specifically, ROOM can
totally jeopardize the classification accuracy of the victim
model processing data streaming in real-time with a speed of
1250 FPS. However, at the same pace, the conventional online
PGD attack was unable to have any impact on model accuracy
even for a higher noise budget of 0.4.

Moreover, for a throughput of 28 FPS, the victim model
misclassifies the totality of samples under ROOM attack, while
the baseline attack’s maximum success rate is 75% even for a
higher noise budget.

In Figure 5, we evaluate the performance of the conventional
C&W comparatively to ROOM-C&W. We measure the model
accuracy under both attacks while varying the time budget for
different confidence levels. Notice that confidence parameter
for C&W is the target confidence of the misclassification for
an adversarial example. Thus, unlike the PGD attack that crafts
adversarial examples within a given perturbation level, C&W
finds the smallest perturbation needed to cause misclassifica-
tion with a given target confidence level. Furthermore, higher
confidence requires more time to be reached since it controls
the gap between the generated AE and the decision boundary.

For zero-confidence, and with a throughput of 2 FPS,
C&W-ROOM reaches 67% success rate, while the model
accuracy remains intact with the conventional attack. The
conventional C&W attack requires 5× more time to reach the
same performance, which illustrates the effectiveness of our
approach.
Attacks on CIFAR-10. We generate adversarial examples for
images from the CIFAR-10 dataset. Attacking deeper models
and larger size and more complex images (RGB) requires a
higher time budget. As shown in Figure 6, ROOM outperforms
the conventional PGD attack.

For the same target attack success rate of 60% under a noise
budget ε = 0.03, PGD-ROOM offers a throughput of 200
FPS, while the maximum throughput of the conventional PGD
is only 1.4 FPS. The same trend was observed for C&W-
based attacks: Figure 7 shows clearly that ROOM outperforms
the conventional attack. For instance, for a time budget of 10
seconds, ROOM is 30% more efficient than the conventional
C&W. For a confidence equal to 5, the conventional attack
takes 2× more time to reach the same success rate.
Attacks on ImageNet. In this section, we evaluate our ap-
proach on the ImageNet dataset. As shown in Figure 8, our
proposed PGD-ROOM attack is found to be more effective.
PGD-ROOM delivers the same attack success rate of 60% for
a throughput of 16 FPS when the noise budget ε = 0.025.
However, the conventional attack achieves the same attack
effectiveness for a throughput of 0.625 FPS.

The same trend has been observed for C&W-based attacks,
as shown in Figure 9. C&W-ROOM is 15% more effective than
the conventional C&W attack for the same allocated time.

D. Does ROOM have inherent impact on attack generation?

In this section, our objective is to investigate the impact
of the offline exploration from a pure attack efficiency per-
spective for a given noise budget. We want to answer whether
ROOM’s impact is inherent or can be achieved by any random
initialization?

For a conclusive evaluation, we explore ROOM
comparatively with both zero and random initialization
of the adversarial noise. We use PGD with different numbers



Fig. 4. Model classification accuracy under the PGD (blue) and the PGD-ROOM (red) attacks for different time budgets (MNIST).

Fig. 5. Model classification accuracy under the C&W (blue) and the C&W-ROOM (red) attacks for different time budgets at various confidence levels
(MNIST).

Fig. 6. Model classification accuracy under the PGD (blue) and PGD-ROOM (red) attacks for different time budgets (CIFAR-10).

Fig. 7. Model classification accuracy under the C&W (blue) and the C&W-ROOM (red) attacks for different time budgets at various confidence levels
(CIFAR-10).



Fig. 8. Model classification accuracy under the PGD (blue) and PGD-ROOM (red) attacks for different time budgets (ImageNet).

Fig. 9. Model classification accuracy under the C&W (blue) and C&W-ROOM (red) attacks for different time budgets at various confidence levels (ImageNet).

of steps.

MNIST. We set the size of perturbation as ε = 0.3 with a step
size of 8

255 . We use PGD with different numbers of iterations
and we report the classification accuracy in Table I. We notice
that ROOM outperforms all other approaches. For instance,
with PGD-10 (PGD with 10 iterations), ROOM is 3× more
powerful than random noise-based attack and more than 6×
more powerful than zero noise-based attack.

TABLE I
MODEL CLASSIFICATION ACCURACY UNDER PGD ATTACK WITH

DIFFERENT INITIALIZATION METHODS ON MNIST.

Initialization PGD-40 PGD-10 PGD-5 PGD-3 PGD-2

Zero 1.6% 84.9% 96.8% 98.5% 99.5%
Random 0.2% 47% 89.5% 95.8% 97.1%
ROOM 0% 13.7% 47.7% 69.4% 76.3%

CIFAR-10. We set the size of perturbation as ε = 0.03 with
a step size of 2

255 . As shown in Table II, using ROOM made
the attack more powerful, 1.5× and 1.3× more effective than
zero and random noise-based attacks, respectively.

TABLE II
MODEL CLASSIFICATION ACCURACY UNDER PGD ATTACK WITH

DIFFERENT INITIALIZATION METHODS ON CIFAR-10.

Initialization PGD-20 PGD-4 PGD-3 PGD-2 PGD-1

Zero 0% 9.56% 19% 40.87% 71.66%
Random 0% 8.8% 15.2% 32.28% 62.1%
ROOM 0% 6.74% 13.1% 26.53% 48.81%

ImageNet. We use VGG-19 as the classifier for testing Ima-
geNet. The noise magnitude is set to ε = 0.03 with step size

2
255 . As illustrated in Table III, using ROOM with PGD attack
made the attack more powerful, 1.6× and 1.3× more effective
than zero and random noise-based attacks, respectively for
PGD-3.

Those results confirm that our offline exploration signifi-
cantly impacts an attack generation perspective even without
considering time constraints. ROOM helps generate more
effective adversarial attacks when compared to other initial-
ization methods and for a limited number of attack iterations.

TABLE III
MODEL CLASSIFICATION ACCURACY UNDER PGD ATTACK WITH

DIFFERENT INITIALIZATION METHODS ON IMAGENET.

Initialization PGD-20 PGD-5 PGD-3 PGD-1

Zero 0% 15.62% 34.37% 75%
Random 0% 12.5% 28.12% 71.87%
ROOM 0% 8.37% 20.87% 55.62%

E. ROOM vs YOPO

In the quest of accelerating the adversarial training process,
You Only Propagate Once (YOPO) [29] has been recently
proposed. YOPO is based on reducing the total number of full
forward and backward propagation to only one for each group
of adversary updates by restricting most of the forward and
back propagation within the first layer of the network, taking
advantage of the baseline training gradient backpropagation.
To evaluate our approach comparatively with YOPO, we run
experiments where we set a time budget to 0.04s and 0.08s for
adversarial example generation (corresponding respectively to
25 and 12 FPS) and we compare the effectiveness of each
attack. Since ROOM is orthogonal to YOPO (YOPO focus
on accelerating gradient-based noise generation, while ROOM



focuses on noise patch initialization), we also explore the
results of combining both techniques.
MNIST. As illustrated in Table IV, PGD-ROOM is more effi-
cient in generating adversarial examples than YOPO initialized
with zero and random noise for a throughput of 25 FPS. PGD-
ROOM is nearly 6.5× and 2.5× more efficient than YOPO-
Zero and YOPO-Random, respectively. Interestingly, we also
noticed that combining YOPO with ROOM resulted in more
gain in attack success rate.

TABLE IV
MODEL CLASSIFICATION ACCURACY UNDER ROOM VS YOPO ON

MNIST FOR A THROUGHPUT OF 25 FPS.

Attacks Eps = 0.2 Eps = 0.3

PGD-Zero 52.5% 51.2%
PGD-Random 41.9% 17.6%
PGD-ROOM 23.2% 6.8%
YOPO-Zero 44.8% 44.6%

YOPO-Random 43% 16%
YOPO-ROOM 20.2% 3.7%

CIFAR-10. For a larger model, and a throughput of 12 FPS,
we noticed the same trend; ROOM with PGD outperforms
YOPO, and combining ROOM and YOPO yields to even better
performance. For instance, YOPO-ROOM is more than 2×
more powerful than YOPO-random, and PGD-ROOM is 1.4×
more successful than YOPO-random.

TABLE V
MODEL CLASSIFICATION ACCURACY UNDER ROOM VS YOPO ON

CIFAR-10 FOR A THROUGHPUT OF 12 FPS.

Attacks Eps = 0.02 Eps = 0.03

PGD-Zero 37% 30%
PGD-Random 28% 21%
PGD-ROOM 15% 12%
YOPO-Zero 23% 19%

YOPO-Random 20% 17%
YOPO-ROOM 16% 8%

In conclusion, we notice that ROOM generates more ef-
fective adversarial attacks than YOPO under the same time
constraint, which is a critical metric in scenarios like adver-
sarial training when adversarial examples need to be generated
for the whole training set. Moreover, YOPO can be applied
only to gradient-based attacks, while ROOM can be integrated
into any attack generation method. Interestingly, since ROOM
is orthogonal to YOPO, we noticed that combining both tech-
niques results in an even more efficient adversarial example
generation. We believe this is a promising property of ROOM
to help provide more optimized AML protection.

V. HOW DOES THE OFFLINE EXPLORATION ACCELERATE
ADVERSARIAL NOISE GENERATION?

In this section, we investigate the spatial patterns of adver-
sarial noise in image recognition applications. Conceptually,
we explore if the noise resulting from pushing a given example
towards the decision boundary contains a specific spatial

Fig. 10. Perturbation distributions samples under different targeted adversarial
attacks on MNIST.

Fig. 11. Perturbation distributions samples under different targeted adversarial
attacks on CIFAR-10.

pattern. This study provides the basis for the idea of splitting
noise generation between offline and online phases towards a
generic perspective of adversarial noise generation under noise
and time constraints.

First, we consider samples belonging to the same initial
class on which we generate targeted adversarial noise towards
a fixed target class. The objective is to explore the existence of
potential spatial patterns in the noise distributions generated
by adversarial attacks. An illustration of noise examples for
different targeted attacks on MNIST and CIFAR-10 datasets
are shown in Figures 10 and 11, respectively. The illustrations
show that a general pattern between pairs of classes could
be extracted from the resulting adversarial noise. For MNIST
dataset, since the data is relatively simple, we could see clear
patterns for targeted adversarial attacks with plausible seman-
tics; Attacking these pixels will alter the original handwriting
shape towards the target class’s shape. For the CIFAR-10
dataset, since the images have three channels (RGB), the noise
is not easily interpretable, yet, patterns can be identified for
the same targeted attacks.

To further assess the generalizability of this observation,
we perform a statistical study on the similarity of generated
noise within the same target and compare its distribution to
adversarial noise for different targets. To assess this noise
matrix similarity, we use the Pearson correlation coefficient



Fig. 12. Gaussian distribution of Pearson correlation coefficients PGD MNIST
intra-class vs inter-class.

(PCC) [30], which is a widely adopted metric to measure the
linear correlation between two variables.

PCC coefficient is defined as follows:

PCCX,Y =
cov(X,Y )

σXσY
(9)

where cov indicates the covariance and σX and σY are the
standard deviations of matrices X and Y , respectively, and the
PCC values range from −1 to 1. The absolute value indicates
the extent to which the two variables are linearly correlated,
with 1 indicating perfect linear correlation, 0 indicating zero
linear correlation, and the sign indicates whether they are
positively or negatively correlated.

The targeted adversarial noise is iteratively constructed
to transform a sample from a source class (correct label)
towards an adversarial sample x∗i with a target class (target
misclassification label). This transformation path has naturally
higher similarity for noise generated on samples from the same
source targeting the same class, compared to noise generated
on samples belonging to different pair (source,target) classes.
Therefore, our intuition is that a static noise component could
be present in high-dimensional space among the samples from
a given class in the path towards a specific target class given
a decision boundary.

We analyze the similarities between noise distributions
within a given setting (source,target), which we call intra-class
similarity, comparatively with the distribution of noise similar-
ities between two different settings (source,target), which we
call inter-class similarity.

Let xi be an input sample and f a given classifier such that
f(xi) = l. Let be a targeted adversarial attack that generates
an adversarial noise defined as:

εlki .s.t. f(xi + εlki ) = k 6= l (10)

Let Sij be the similarity between two noises εlki and εpqj
for two samples xi and xj , respectively, defined as follows:

Sij = PCC(εlki , ε
pq
j ) (11)

Where PCC is the Pearson correlation coefficient [30], used
as a similarity metric. We call Sij an inter-class similarity
when (p, q) 6= (l, k), and we call Sij an intra-class similarity
when (p, q) = (l, k).

In Figures 12, 13 and 14, we represent the distribution of
different measured similarity Sij values for MNIST, CIFAR-10
and ImageNet datasets, respectively. We notice that the intra-
class similarity distribution is clearly higher than the inter-class
similarity distribution for the three datasets. This observation
supports our intuition of the presence of patterns for the
same (source, target) setting of adversarial noise. It, therefore,
explains the mechanism by which an offline exploration allows
to converge more quickly to an adversarial example.

Fig. 13. Gaussian distribution of Pearson correlation coefficients PGD cifar-
10 intra-class vs inter-class.

Fig. 14. Gaussian distribution of Pearson correlation coefficients PGD
ImageNet intra-class vs inter-class.

VI. DISCUSSION

For the first time, this paper introduces a new problem
of crafting effective AML attacks under time constraints.
From a run-time perspective, existing state-of-the-art methods
represent two ends of the spectrum: fully offline universal
attacks and fully online input-specific attacks. To show the



continuum over time of adversarial attack generation prob-
lem, we propose a new adversarial noise generation method,
ROOM, that bridges the two AML approaches in the quest
of fast generation of input-specific adversarial perturbations.
Specifically, ROOM uses an offline-generated noise pattern,
specialized for the current input, to warm up the online
component of the attack. As a result, the online exploration
can rapidly converge towards a successful attack by starting
from this offline-generated specialized static noise, making
input-specific attacks much faster. We show that for the same
time budget, ROOM substantially outperforms state-of-the-art
adversarial attack methods. In fact, for the same attack success
rate, ROOM converges to an adversarial example up to 5 times
and 12 times faster on average than C&W [11] and PGD [13]
attacks, respectively. Importantly, ROOM can meet real-time
constraints for a camera streaming with 25 frames per second,
generating adversarial examples at a matching rate. In fact, for
a noise budget of 0.035 and a time budget of 0.03 seconds,
ROOM achieves up to 85% attack success rate, at 25 fps
throughput.

We believe that ROOM is an important step towards pro-
ducing adversarial attacks that can be deployed just-in-time.
Just-in-time attacks can be a game-changer in the adversarial
attacks threat model since it makes it possible for malicious
actors to deploy adversarial attacks opportunistically based on
the state of the environment. Additionally, these attacks are
highly challenging to protect from, especially for real-time
applications and Cyber-Physical Systems. Therefore, the com-
munity needs to understand the attacker’s capability, which we
advance using ROOM attacks.

From another perspective, we showed that ROOM can be
combined with YOPO, which is dedicated to accelerating ad-
versarial training. This is due to ROOM’s orthogonal property
to gradient-based methods, and hence could be used for a more
time-efficient adversarial training.

ROOM is a general pattern of attack relying on the offline
component to create a more favorable initial state for the online
exploration. We presented example implementations of the
offline component that we believe can still be substantially
improved. Moreover, we believe that additional optimization
opportunities remain, including the use of hardware accel-
eration. Finally, we would also like to explore whether the
ROOM strategy results in different opportunities for defenders
because of the resulting noise distribution, which is likely
to be different from online only attacks. Our future work
will also explore ROOM on different learning structures and
applications such as audio/NLP processing.

VII. RELATED WORK

State-of-the-art adversarial attacks such as PGD [13], and
C&W [11] are found to be effective in fooling DNNs. How-
ever, these attacks rely on time-consuming iterative optimiza-
tion approaches, making them too slow to be launched against
real-time systems. These methods are based on the assumption
of an infinite online time budget. The attacker has access to

the entire data sample with a single constraint on the noise
magnitude, which is not suitable for real-life situations.

Universal adversarial perturbations [31] are based on gen-
erating an adversarial perturbation patch that works for a
variety of samples. The universal adversarial perturbation is
fully created offline and does not use real-time observations to
improve efficiency for a target data sample. This substantially
limits their efficiency.

One of the preliminary works that studied dynamic real-
time adversarial attacks was [22], where a real-time adversarial
attack for models with streaming inputs is proposed. In this
scenario, an attacker can only view previous portions of the
data sample and only introduce perturbations to future portions
of the data sample, whereas the target model’s decision will
be predicated based on the entire data sample. The generated
noise uses imitation learning and behavioral cloning algorithm
to train real-time adversarial perturbation generator through
non-real-time adversarial perturbation generator.

Li et al. [21] use deep reinforcement learning to generate
periodic adversarial perturbations to attack a recurrent neural
network processing sequential data. The attack is used to gen-
erate adversarial perturbations to fool the DeepSpeech Speech
Recognition system. Z. Li et al. [32] proposed AdvPulse: a
penalty-based universal adversarial perturbation generation ap-
proach that incorporates the varying time into the optimization
process to get around the constraints on speech content and
time. Another work [33] proposed a fast audio adversarial
perturbation generator (FAPG), which uses a generative model
to generate adversarial perturbations for the audio input in a
single forward pass. However, this method is unpractical since
the propagation time would be lower than the generative model
delay added to the generated adversarial noise propagation
delay.

VIII. CONCLUSIONS

This paper contributes a new perspective of generating
and analyzing adversarial attacks by introducing a real-time
constraint. We present a novel real-time online-offline attack
model (ROOM) to rapidly generate adversarial attacks suitable
for use in just-in-time attack settings. ROOM leverages an
offline component to support the online algorithm, allowing
for rapid convergence to highly successful attacks. Our results
show that using an offline adversarial pattern as a starting point
for the online exploration accelerated conventional adversarial
attacks. For instance, our proposed PGD-based attack achieves
a 100% attack success rate for a noise budget of 0.25 under
0.0008 seconds time constraint, whereas, for the same allo-
cated runtime, the conventional attack is unable to generate
any successful adversarial example, even for a higher noise
(0.4) for MNIST database.
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