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ABSTRACT
Background: Individual diet components and specific dietary
regimens have been shown to impact the gut microbiome.
Objectives: Here, we explored the contribution of long-term diet by
searching for dietary patterns that would best associate with the gut
microbiome in a population-based cohort.
Methods: Using a priori and a posteriori approaches, we constructed
dietary patterns from an FFQ completed by 1800 adults in the
American Gut Project. Dietary patterns were defined as groups
of participants or combinations of food variables (factors) driven
by criteria ranging from individual nutrients to overall diet. We
associated these patterns with 16S ribosomal RNA–based gut
microbiome data for a subset of 744 participants.
Results: Compared to individual features (e.g., fiber and protein),
or to factors representing a reduced number of dietary features,
5 a posteriori dietary patterns based on food groups were best
associated with gut microbiome beta diversity (P ≤ 0.0002). Two
patterns followed Prudent-like diets—Plant-Based and Flexitarian—
and exhibited the highest Healthy Eating Index 2010 (HEI-2010)
scores. Two other patterns presented Western-like diets with a
gradient in HEI-2010 scores. A fifth pattern consisted mostly of
participants following an Exclusion diet (e.g., low carbohydrate).
Notably, gut microbiome alpha diversity was significantly lower
in the most Western pattern compared to the Flexitarian pattern
(P ≤ 0.009), and the Exclusion diet pattern was associated with low
relative abundance of Bifidobacterium (P ≤ 1.2 × 10–7), which was
better explained by diet than health status.
Conclusions: We demonstrated that global-diet a posteriori patterns
were more associated with gut microbiome variations than individual
dietary features among adults in the United States. These results
confirm that evaluating diet as a whole is important when studying
the gut microbiome. It will also facilitate the design of more

personalized dietary strategies in general populations. Am J Clin
Nutr 2022;115:432–443.

Keywords: dietary patterns, gut microbiome, alpha diversity, beta
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Introduction
Gut microbiota has emerged as a fundamental factor in

human health (1). The spread of a Western lifestyle and
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associated changes in dietary habits (e.g., increased consumption
of ultra-processed foods, decreased dietary fiber, etc.), have been
accompanied by an alteration of gut microbiota, thought to
underlie the emergence of chronic diseases (2). As diet is a potent
modulator of gut microbiota, in which cointeractions are highly
personalized (3), studying the wide variation of dietary habits in
the general populations is key to identifying dietary components
that are best associated with the gut microbiota and human health.
Notably, dietary fibers and vegetal proteins are of great relevance
in regard to current recommendations and interest in plant-
based diets for human health and environmental sustainability
(4). However individual dietary components may not be the
most suited for personalized nutrition, as the current dietary
recommendations have shifted from individual foods/nutrients to
eating patterns as a whole, which should be adapted to current
eating habits to promote greater adherence (5, 6). As of today,
there is no standard method to assess overall diet, and multiple
approaches are currently used to examine dietary patterns. The
2 most common approaches include an a priori analysis, which
relies on existing nutritional knowledge or evidence-based diet-
health relationships (7), and an a posteriori analysis, which is a
purely data-driven, exploratory approach deriving common food
consumption patterns within a given population (8). Numerous
cross-sectional studies have explored the relationship between
diet and gut microbiota, most relying on a priori approaches
using predefined diet quality scores (e.g., Healthy Eating Index,
Mediterranean Diet Score) (9, 10). Recent large, population-
based cohorts, exceeding thousands of subjects, have identified
multiple associations between the gut microbiome and overall
dietary quality (11, 12), specific dietary components (11, 13–
17), and clinical outcomes (11, 18). However, most of these
large studies have also typically relied on a priori–defined indices
to characterize diet. Some studies have combined a posteriori
dietary analysis with the study of the gut microbiome (9, 18–21),
but studies that compare all of these approaches are lacking.

In this study, we explored the long-term dietary intake of adult
participants from the American Gut Project using both a priori
and a posteriori approaches, and identified dietary patterns that
were the most associated with the gut microbiome.

Methods

Participant recruitment

In order to investigate the associations between long-term diet
and the gut microbiome, we performed a retrospective analysis
of the American Gut Project (AGP) cohort (16). This project
provides access to human microbiome data and a variety of
other information, including demographic, lifestyle, and dietary
data (metadata) on a cohort of citizen-scientists. The entire AGP
data set was subsetted using the metadata version accessed on
22 October 2019 for all samples (e.g., stool, hands, mouth) from
adult participants (age ≥18 years) who reside in the United
States (N = 10,085). Given the self-reported nature of the data,
we performed some basic curation steps before analysis (see
Supplemental Methods). Participants’ consent was obtained
and research was conducted under the University of Colorado’s
Institutional Review Board and the University of California
San Diego’s Human Research Protection Program protocols
(numbers 12-0582 and 141853, respectively).

Dietary intake assessment

Informal dietary questions (e.g., “in an average week, how
often do you consume meat/eggs?”) from the AGP general
questionnaire were available. In addition, long-term dietary
intake was evaluated in a subset of 1948 participants who
completed the VioScreen FFQ (version 4; VioCare) between
July 2012 and June 2019. This web-based, graphical, and
self-administered dietary assessment tool has been previously
validated for use in general US adult populations (22) and utilizes
the Nutrition Data System for Research (Nutrition Coordinating
Center, University of Minnesota, Minneapolis, MN) to estimate
nutritional compositions from VioScreen FFQ entries. Several
types of dietary information were derived from raw VioScreen
entries, including: custom food items and food groups (described
in Supplemental Methods and Supplemental Table 1), total
energy intake, micro- and macronutrient intakes, and MyPyramid
Equivalents Database (MPED) values (23). Overall diet quality
was assessed using the Healthy Eating Index 2010 (HEI-2010)
(24), which was available in the database. In addition, to ensure a
high level of quality for the dietary intake data, we applied several
filtering criteria to the VioScreen FFQ reports. We included
reports in analyses if they met the following criteria: 1) a
minimum of 25 food items consumed (22); 2) a total energy
intake between the 5th and 95th gender-specific percentiles from
NHANES, as proposed previously (3, 25); and 3) completion of
the questionnaire in a window of time between 10 and 20,000
minutes (around 2 weeks).

Dietary pattern analysis

The term dietary pattern is often used to describe the set of
dietary behaviors that characterizes a group or subset of study
participants. The same term can also refer to quantitative scores
originating from a combination of several diet variables, called
factors (26). In this study, we use the term dietary patterns to
describe both.

We analyzed long-term diets based on VioScreen FFQ data
using both a priori and a posteriori analyses. First, we defined a
priori patterns based on 3 diet features: 2 individual dietary com-
ponents (total dietary fibers and proteins) and HEI-2010 scores.
We derived diet groups as quartiles based on total dietary fiber or
total protein intake. For fibers, we analyzed the daily total dietary
fiber intake (g/d) and their type (defined as the ratio g/d of soluble
fiber:g/d of insoluble fiber), and created a combined indicator
(dietary fiber quantity:dietary fiber type), which can simply be
interpreted as fiber quantity normalized by fiber type. For protein,
we focused on the total daily intake of protein of both animal and
vegetal origins, as well as their ratio (g/d of animal protein:g/d
of vegetable protein). Moreover, as an a priori factor to evaluate
overall diet quality, we used the HEI-2010 total score, a compos-
ite score based on 12 components that measures adherence to the
2010 US Dietary Guidelines for Americans (DGA) (24).

In addition, we applied factor analysis to identify nonre-
dundant reduced sets of variables (i.e., factors), that are linear
combinations of the original variables and explain most of
the variability in the data set. We identified factors based on
MPED component values, micronutrients, and food items. In the
case of MPED values and micronutrients, we first normalized
variables by total energy intake and filtered those that were
considered redundant (Pearson correlation above 0.95). We then
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used a principal component analysis with varimax rotation [psych
v2.0.9 R package (27)] and chose the number of factors by
parallel analysis of the correlation matrix [nFactors v2.4.1 R
package (28)]. Given the sparsity (69%) of the data, we built
factors for food items using a principal coordinate analysis
(PCoA) on the Jaccard distance between participants (computed
from presence/absence information; Supplemental Table 1). We
selected the number of factors by the Kaiser rule, which, in brief,
retains factors with eigenvalues greater than 1 [nFactors v2.4.1 R
package (28)].

Finally, we built a posteriori diet groups from food group data
expressed in kcal/d (Supplemental Table 1). We used Dirichlet
Multinomial Mixture (DMM) models [DirichletMultinomial
v1.30.0 R package (29)], which apply a compositional approach
for clustering (i.e., based on the relative kcal/d contribution; see
Supplemental Methods). We defined our diet groups based on
a robustness criteria (Supplemental Figure 1) and chose the
largest number of groups that allowed a mean stability above
0.6 in each of them [using 50 bootstrap and Jaccard similarity
with the fpc v2.2–8 R package (30)]. Moreover, to increase
confidence in the group categorization, we defined core diet
groups as participants having a probability above 0.8 of belonging
to a particular group.

Stool sample processing and 16S ribosomal RNA gene
sequencing

In the AGP initiative, stool samples were collected at home and
shipped at room temperature before microbial DNA extraction
and 16S ribosomal RNA (rRNA) amplicon sequencing, which
were performed as previously described (16). We used Redbiom
(31) to fetch Deblur (32) feature tables from the Qiita platform
(33), and extracted 20,454 stool samples on 5 December
2019 from the Deblur-Illumina-16S-V4-100nt-fbc5b2 context.
In cases where a fecal sample was sequenced multiple times,
the sequencing run with the most reads was kept. We used
100 nucleotides in order to be inclusive of AGP sequencing runs
performed at 125 cycles.

We performed the following additional bioinformatic steps
using QIIME 2 (v2019.10) (34). Bloom sequences, as identified
in Amir et al. (35), were removed, and samples with fewer than
1000 reads left after filtering for blooms were excluded. We then
rarefied the obtained amplicon sequence variant (ASV) table to a
depth of 1000 sequences per sample in order to compute several
alpha (within-subjects) and beta (between-subjects) diversity
indices (Supplemental Methods). Subsequently, we performed
taxonomic assignment for ASVs on nonrarefied data using the
sklearn-based taxonomy classifier trained on the Greengenes
reference database 13_8 (36), and we aggregated data at the genus
level for further analyses. We excluded 1580 samples flagged as
outliers (Supplemental Methods). In cases where participants had
submitted multiple fecal samples, we selected a unique sample
based on 16S data availability, metadata completion, and the
shortest time between sample collection and VioScreen FFQ
completion date.

Gut microbiome statistical analysis

We looked for associations between dietary patterns and 16S
rRNA gene-based gut microbiome profiles in a subset of 744 par-
ticipants (Figure 1A) using multiple alpha- and beta-diversity

assessments (Supplemental Methods), as well as taxonomic
composition (genera abundances). Age, sex, and BMI were used
as confounding variables. We linearly adjusted alpha-diversity
indices by these confounding variables and compared them
between diet groups with Kruskal-Wallis tests or associated them
with factors using Spearman correlations. For diet groups, we
performed post hoc comparisons using Mann-Whitney tests. We
also looked for associations between beta-diversity indices and
diet groups or factors using partial distance-based redundancy
analysis (db-RDA), which allowed us to remove the effect of the
selected confounding variables. In addition, for diet groups, we
verified that the observed differences were not due to dispersion
heterogeneity through beta-dispersion tests. All beta-diversity
analyses were performed using the vegan v2.5–6 R package
(37). Finally, we filtered out 409 genera with a low prevalence
(present in less than 10% of samples) or low relative abundance
(mean below 0.01%), and analyzed the 111 remaining genera
for differential abundance. We used DESeq2 (v1.28.1) models
with the poscounts option (38), including confounding variables
and diet groups or factors effects. We estimated the global diet
groups effects by likelihood ratio tests and the factor effects, as
well as diet groups 2 by 2 comparisons, by Wald tests. Log2 fold
change results are expressed as the estimate ± SE. In addition,
we evaluated the robustness of our results using Songbird (39), an
alternative statistical method often used in the microbiome field
to account for data compositionality (Supplemental Methods). As
a complementary analysis, we predicted Bifidobacterium low or
high relative abundance from a subset of metadata using random
forests (Supplemental Methods).

General statistics

Data are expressed as medians (IQRs) for quantitative
variables and as n (%) for qualitative variables. We used
Kruskal-Wallis and chi-squared independence tests to compare
quantitative and qualitative variables, respectively, between
groups with the compareGroups v4.4.5 R package (40).

We handled multiple testing adjustments with the Benjamini-
Hochberg procedure (41) (see details in table legends and figure
captions) and we used a 2-sided 5% alpha error threshold. All
analyses were performed in R v4.0.3 (42) except Songbird, which
was run with Python 2.6.

Results

Description of the study cohort

After applying the FFQ quality filtering criteria, a final sample
set of 1800 US adult participants was included in the dietary
pattern analysis (Figure 1A). Participant characteristics are
detailed in Table 1. Compared to the general US adult population
(NHANES data), this AGP adult cohort was older, with a higher
proportion of women, a higher level of education, and a lower
BMI. Additionally, this cohort had lower prevalences of diabetes
(3.3% compared with 9.5%, respectively) and cardiovascular
diseases (4.5% compared with 11.2%, respectively) compared to
what was reported among US adults in the 2018 National Health
Interview Survey (43). However, the population under study
may be enriched in gastrointestinal (GI) disorders, as a higher
prevalence of inflammatory bowel disease was self-reported
(3.6% compared with 1.3% in the general population) (44). The
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FIGURE 1 Summary of the exploration of dietary patterns and their associations with gut microbiome beta-diversity. (A) Population selection. Populations
used for main analyses (dietary patterns and associations with microbiome) are surrounded by boxes. Some outliers were removed for 16S rRNA-based
microbiome data (Supplemental Methods). No antibiotics were taken in the last year. No cases of diabetes, liver disease, or IBD were diagnosed by a medical
practitioner. There were no declared cases of multiple sclerosis, Hashimoto’s, Graves’, Behcet’s, Lupus, hyperthyroidism, or chronic Lyme disease. Confounding
variables were age, sex, and BMI. (B) Numbers of dietary patterns obtained with a priori or a posteriori approaches counting either diet groups or factors (61 in
total). For dietary fibers, there are quartiles of quantity, type (soluble:insoluble) and combined quantity and type (quantity:type). For dietary proteins, there are
quartiles of animal and vegetable proteins, as well as their ratio. The food groups analysis was based on data in kcal and focused on core diet groups: that is,
participants with a probability ≥80% of belonging to his/her partition, referred to as DP5 patterns. The food items analysis was based on the presence/absence of
data using the Jaccard distance. This image has been designed using resources from Flaticon.com made by Freepik, Good Ware, Eucalyp, DinosoftLabs, iconixar
and surang. (C) The 16S rRNA-based gut microbiome beta-diversity analyses. Partial db-RDA models with diet groups/factors as explanatory variable and
confounding variables (age, sex, and BMI) partialled out. We used permutation tests (9999 permutations). There was multiple testing adjustment by Benjamini-
Hochberg on the global effects obtained with the 4 indices (diet groups) or on the global effects obtained with the 5 indices ∗ k factors (factors). Evidence
[–log10(P value)] cannot be higher than 4 due to the permutation scheme. The Fk factors are from the corresponding data set as described in Supplemental
Tables 4–6. NS: P value ≥ 0.1; trend: 0.05 ≤ P value < 0.1; significance: P value < 0.05. Abbreviations: ait, Aitchison distance; bc, Bray-Curtis dissimilarity;
db-RDA, distance-based redundancy analysis; DP5, 5 dietary patterns; Fk, factor number k; HEI-2010, Healthy Eating Index 2010; IBD, inflammatory bowel
disease; MPED, MyPyramid Equivalents Database; NS, not significant; rRNA, ribosomal RNA; uUni, unweighted UniFrac distance; wUni, weighted UniFrac
distance.

overall diet quality in this cohort, as assessed by the HEI-2010
total score, appeared to be high, with a median of 72.2 (IQR,
64.4–78.8). Of note, only 4% of the participants had an HEI-2010
score <50 (indicative of poor diet quality). In addition, while
men and women showed expected differences in terms of health
and diet (Supplemental Table 2), they had similar HEI-2010
scores and the total calorie consumptions for both sexes were
low compared to the current DGA recommendations (5). This
suggests that the majority of participants in this cohort reported
a diet of high nutritional quality, as well as high adherence to the
US DGA.

Dietary patterns most associated with gut microbiome

To identify the dietary patterns that were most associated with
the gut microbiome in this cohort, we utilized both a priori and

a posteriori approaches and constructed patterns in the form of
diet groups or factors (Figure 1B). We first derived a priori diet
groups from individual dietary components (fibers and proteins;
Supplemental Table 3), and then looked for a more global
representation of habitual diet through combinations of food
variables. To this end, we used the HEI-2010 total score, which
combines both food groups and individual nutrients. A posteriori
factors identified from MPED components, micronutrients, and
food items led to 3 sets of 8, 15, and 8 factors explaining
54%, 75%, and 22%, respectively, of the variance in their
data set (Supplemental Tables 4–6; Supplemental Figure 2).
Last, our cluster-based global-diet analysis on food groups
data resulted in 5 diet groups, further refined into 5 core diet
groups including only participants with the highest probability
of belonging to their group. These core diet groups are hereon
denoted as DP5 (5 dietary patterns), and were defined for 1466
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TABLE 1 Description of the Study Cohort

Study cohort, n = 1800 Microbiome cohort, n = 744 NHANES, n = 14,584

Demography & lifestyle
Age, years 53.0 [41.0–63.0] 52.0 [41.0–62.0] 45.0 [31.0–59.0]
Sex, female 1166 (64.8%) 462 (62.1%) 7639 (52.4%)
Education, graduate 1076 (60.1%) 456 (61.5%) 4108 (28.2%)
Alcohol frequency, regularly1 547 (30.6%) 235 (31.6%) —

Health
BMI 23.7 [21.5–26.6] 23.4 [21.2–25.8] 27.5 [24.0–32.0]
Diabetes 59 (3.31%) 0 (0%) —
CVD 80 (4.50%) 23 (3.10%) —
Autoimmune disease 256 (14.4%) 53 (7.15%) —
IBD 63 (3.58%) 0 (0%) —
IBS 250 (14.2%) 70 (9.46%) —
Gluten intolerance 435 (24.8%) 166 (22.6%) —
Lactose intolerance 342 (19.5%) 137 (18.7%) —
Bowel movement, normal1 1288 (74.4%) 582 (80.3%) —

Diet–AGP Questionnaire
Diet type, vegetarian1 136 (7.67%) 73 (9.92%) —
Plant diversity, more than 201 455 (35.6%) 213 (41.8%) —
Vegetable frequency, regularly1 1603 (89.9%) 683 (92.2%) —
Fruit frequency, regularly1 1130 (63.5%) 477 (64.5%) —
Whole-grain frequency, regularly1 836 (47.1%) 368 (50.0%) —
Red meat frequency, regularly1 384 (21.5%) 171 (23.0%) —
Milk & cheese frequency, regularly1 835 (46.7%) 339 (45.8%) —
SSB, regularly1 54 (3.03%) 220 (29.7%) —

Diet–FFQ
Total energy intake, kcal/d 1772 [1399–2275] 1766 [1423–2271] —
Carbohydrates, % of calories 41.2 [33.3–48.0] 41.0 [33.2–47.8] —
Fats, % of calories 38.0 [31.8–45.4] 38.4 [31.5–46.1] —
Protein, % of calories 15.6 [13.4–18.0] 15.4 [13.3–17.8] —
HEI-2010 72.2 [64.4–78.8] 72.9 [65.7–79.3] —

Descriptions of the US adult participants who were analyzed for dietary patterns (study cohort) and who were analyzed for gut microbiome associations
(microbiome cohort). Data are presented as medians [IQRs] for quantitative variables and as n (%) for qualitative variables. Missing values were excluded for
the percentage calculation. Data from NHANES adults are given as a proxy for the general US population (Supplemental Methods). Participants with
antibiotic intake in the last year, declared IBD, liver diseases, diabetes, or specific autoimmune diseases were excluded from the microbiome cohort to
minimize confounding effects. No statistical test was performed. Abbreviations: AGP, American Gut Project; CVD, cardiovascular disease; HEI-2010,
Healthy Eating Index 2010; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; SSB, sugar-sweetened beverages.

1Only 1 representative modality is shown for compactness reasons.

participants out of 1800. In total, we obtained 61 dietary patterns
(Figure 1B), ranging from individual components to a global
diet, that we associated with 16S rRNA-based gut microbiome
data for a subset of 744 participants (620 for DP5; Figure 1A;
Table 1).

Diet groups explained higher amounts of gut microbiome beta-
diversity variation than factors using 4 different metrics, with a
maximum value of 1.3% (Figure 1C), while factors were prone to
more significant associations with gut microbiome beta diversity,
likely due to the statistical power of quantitative analyses. Among
the diet groups identified based on individual dietary components
and factors representing a reduced number of nonredundant food
variables, the most significant associations were obtained for 1)
the second (P ≤ 0.0008) and third (P ≤ 0.0043) factors of food
items, both driven positively by vegan foods and negatively by
meat and fats; 2) the HEI-2010 total score (P ≤ 0.0014); and
3) the second factor of micronutrients (P ≤ 0.0016), mostly
driven by artificial sweeteners, fruits, vegetables, and other
foods rich in fibers (Supplemental Tables 5 and 6; Supplemental
Figure 2). Amongst all the tested dietary patterns, the gut
microbiome composition was best associated with the DP5

diet groups obtained from the global-diet food group analysis.
Indeed, they exhibited the highest significance (P ≤ 0.0002) and
the highest percentage of variance explained for beta-diversity
metrics (Figure 1C), even after extending the analysis to noncore
DP5 diet groups (Supplemental Figure 3A). In addition, the DP5
diet groups were the only patterns significantly associated with
alpha diversity, and they showed the highest statistical evidence
and effect size among diet groups (Supplemental Figure 3B and
C). Overall, our results show that the global composition of the
gut microbiome was best explained by the DP5, which were
retained for deeper characterization.

Characterization of the DP5

We identified 5 dietary patterns based on energy-adjusted
food groups. Two of the patterns were most similar to a
previously described Prudent diet (45), a second set of 2
patterns were most similar to Western-style diets, and the last
to an Exclusion diet. An additional analysis of the data via
PCoA confirmed that the Prudent patterns were similar to each
other, while the 2 Western-style patterns exhibited the greatest
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FIGURE 2 Contribution of food groups to DP5 patterns. Pie charts represent Dirichlet scaled contributions of food groups for each dietary pattern. Food
groups are ordered by their contribution to the clustering. Patterns are grouped together using a hierarchical ascending clustering on standardized data. Food
groups were mentioned in each branch if their Dirichlet contribution was higher in all left/right patterns compared with right/left patterns and if their Cliff’s
Delta effect size was medium (≥0.33; bold) or large (≥0.47; bold underlined). Cliff’s Delta effect sizes were computed based on individual relative kcal intakes.
n is the size of the pattern. Abbreviations: DP5, 5 dietary patterns.

amount of overlap in dietary intake (Supplemental Figure 4).
In addition, the Exclusion diet pattern appears to contain the
most distinct and the most variable dietary habits of the 5 eating
patterns.

Participants categorized in the Prudent-like dietary patterns
presented lower consumption of animal products and higher
consumption of fruits, whole-grain cereals, legumes, and nuts
(Figure 2). One of them, referred to as the Plant-Based diet (PB),
consisted of almost no meat, very few animal products, few cakes
and desserts, and a high quantity of fruits, vegetables, and whole-
grain cereals. Predictably, more participants in this diet group
declared themselves as vegetarian or vegan compared to those
in other groups. Consistently, they reported consuming a higher
variety of plants and were associated with the highest dietary fiber
intake (Table 2). Moreover, for the 12 HEI-2010 subcomponents,
the PB dietary pattern presented the best fit to the DGA for
total fruit, whole fruit, total vegetables, greens and beans, whole
grains, fatty acids, and empty calories compared to the other
groups (Supplemental Figure 5A). Similar to the PB group,
the second pattern, denoted as a Flexitarian diet (FL), consisted
of high amounts of fruits, whole-grain cereals, and nuts, but,
conversely, low but not null amounts of meat and high amounts of
dairy products. Interestingly, participants categorized in this FL
pattern were slightly older compared to individuals with more
meat-based diets and presented the best overall diet quality as

measured by total HEI-2010 score (Table 2; Supplemental Figure
5B).

Participants in the 2 patterns identified with a Western-like
diet reported higher consumption of mixed dishes and sugar-
sweetened products, including beverages and refined cereals, and
lower consumption of vegetables (Figure 2). They also declared
higher ready-to-eat meal frequency (e.g., boxed macaroni and
cheese, ramen noodles, frozen meals) and had higher BMIs
(Table 2). One of these patterns comprised individuals with
higher nut and whole-grain cereal consumption, who also
appeared to have a more diverse diet compared to the other
Western-like pattern [27 (IQR, 26–28) compared with 23 (IQR,
20–24) food groups and 81 (IQR, 72–93) compared with 58
(IQR, 48–68) food items]. We denoted this particular pattern as a
Health-Conscious Western diet (HW), which included the highest
consumption of sweets, red wine, and dairy products compared
to all other groups. The second Western-like pattern, referred
to as a Standard Western diet (SW), showed the poorest diet
quality, having the lowest HEI-2010 score (Table 2; Supplemental
Figure 5B). The SW group presented the lowest fiber intake and
variety of plants consumed, as well as the highest consumption
of sugar-sweetened beverages. While the HW pattern presented
the highest energy intake, it was not associated with a higher
BMI value compared to the SW diet group. This may be partly
explained by a higher reported exercise frequency (Table 2).
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The last pattern consisted of participants who appeared to
follow low-carbohydrate diets with nearly no consumption of
starchy foods or sweet products. As such, this pattern was named
the Exclusion diet (ED). These participants had a diet enriched
in fats and animal products, as well as nonstarchy vegetables
(Figure 2). In the main AGP questionnaire, 40% (based on
139 subjects) declared following a modified paleo diet (Table
2). This pattern also presented the highest total water intake,
the lowest vegetable protein intake, and, as expected, the lowest
percentage of carbohydrates consumed compared to all other
dietary patterns. Moreover, this pattern included a higher number
of individuals with self-reported health conditions compared to
some or all other patterns, including GI disorders like irritable
bowel syndrome (IBS), small intestinal bacterial overgrowth, and
specifically gluten intolerance, which was reported by more than
half of this group. Of note, most of these observations were
unrelated to age, sex, or BMI differences among the diet patterns
(Supplemental Table 7).

Characterization of gut microbiome based on dietary
patterns

We then investigated how the gut microbiome composition
differed among the DP5 patterns. Variations in alpha-diversity
indices were small among diet patterns, but the SW pattern
exhibited a lower alpha diversity compared to both the FL
[Faith’s phylogenetic diversity (PD): P = 0.009; observed ASVs:
P = 0.007] and the HW (Faith’s PD: P = 0.048) patterns
(Figure 3A). Taking a deeper look at the composition of
the microbiota, we found that 25 genera were significantly
differentially abundant among the DP5 patterns using DESeq2
(Figure 3B). While differences between the Prudent diets (FL
compared with PB) were modest, differences between the
Western diets (HW compared with SW) were more pronounced
(Figure 3B). In addition, when comparing the most typical
Western-style diet (i.e., SW) to the Prudent-like diets, 16 genera
were differentially abundant compared to the PB pattern and
11 genera were differentially abundant compared to the FL
pattern (Figure 3B).

The following results describe the genera that were found
to be significantly differentially abundant between the Prudent
and Western diets with DESeq2, and are focused on those with
higher relative abundances (≥0.5%). In order to increase the
robustness of our findings, only those that were confirmed using
the Songbird method are highlighted (Figure 3B; Supplemental
Figure 6). Parabacteroides’ relative abundance was significantly
higher in the HW and SW patterns compared with PB (Figure
3C). In contrast, the relative abundance of Oribacterium was
significantly higher in both Prudent-like diets compared to both
Western-style diets, and was negatively associated with the ani-
mal:vegetable protein ratio (Supplemental Figure 7A). Lastly,
an unidentified genus from the RF39 order showed significantly
lower relative abundance in the SW pattern compared to all the
other diet patterns, highlighting that its depletion may be specific
to the most “typical” Western-style diet (Figure 3C). To note,
Lactococcus’ relative abundance was also significantly lower in
the Western patterns compared with the Prudent patterns, but both
its relative abundance and prevalence were low (0.2% and 21%,
respectively).

The ED pattern is associated with a depletion in
Bifidobacterium

The most striking difference in microbial genera abundances
among the DP5 was a significantly lower relative abundance of
Bifidobacterium in the ED pattern compared to all other patterns,
with 1.7 ± 0.3 to 2.7 ± 0.4 log2 fold changes (i.e., relative
abundance divided approximately by 3 to 6; Figure 3C). This
observation was confirmed by Songbird analyses (Supplemental
Figure 6). To identify the drivers of these differences, we used
a prediction model (random forest) to test which variables
(diet, demography, health status) contributed the most to
Bifidobacterium’s relative abundance. The classification error of
the obtained model was 37.4%, with an area under the receiver
operating characteristic of 0.68, indicating moderate predictive
power. Amongst the 20 tested variables, the DP5 was the top
predictor based on variable importance, closely followed by age
(Figure 3D). This result highlights the probable contribution
of the diet itself, and not only preexisting health conditions,
to the observed low Bifidobacterium relative abundance in the
ED pattern. Of note, Bifidobacterium’s relative abundance was
also positively associated with HEI-2010 scores (log2 fold
change = 0.4 ± 0.1, P = 0.001; Supplemental Figure 7B). As
a follow-up, we tried to identify dietary components that may
contribute the most to the observed differential abundance of
Bifidobacterium. We found that Bifidobacterium was positively
associated with vegetable proteins and negatively associated with
the ratio between animal and vegetable proteins (Supplemental
Figure 7A). These observations are in line with the lower
consumption of vegetable protein and the higher protein ratio in
the ED pattern (Table 2; Supplemental Table 8). In addition,
we added other confounding factors to the DESeq2 model to
identify additional contributors to this association. The significant
negative association of Bifidobacterium with the ED pattern
decreased the most after adjusting for percentages of carbohy-
drates (fibers and both complex and simple polysaccharides)
and fats from total calories consumed (Supplemental Figure
8). Nevertheless, this association was maintained, suggesting
that other dietary components may also influence the abundance
of Bifidobacterium, which further highlights the importance of
considering diet as a whole when trying to understand diet-
microbiome associations.

Discussion
In this study, we explored the association between habitual

diets and gut microbiomes in a large, population-based adult
cohort using multiple approaches to examine dietary patterns.
Our results showed that the overall diet exhibited more significant
associations with the gut microbiome than individual dietary
components.

The association between a habitual diet and the gut microbiota
is gaining major interest, and an increasing number of cross-
sectional studies have recently investigated this topic within
human health (10, 11, 13, 18). When evaluating the impact of
diet on gut microbiota, dietary patterns can be studied using
either a priori (i.e., knowledge driven) or a posteriori (i.e., data-
driven) analyses (7, 8). Yet, to the best of our knowledge, no
study has compared both approaches to identify those providing
the best associations with the gut microbiome. In this study, we
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FIGURE 3 Associations of DP5 patterns with gut microbiome. (A) Box plots for significant alpha-diversity indices. Plotted values are adjusted for age,
sex, and BMI with a linear model. We performed Kruskal-Wallis tests with multiple testing adjustment by Benjamini-Hochberg on the global effects obtained
with the 5 alpha diversity indices. If the global effect was significant (P value < 0.05), post hoc comparisons were performed using Mann-Whitney tests with a
Benjamini-Hochberg adjustment for each alpha diversity index separately. Groups with the same letter are not significantly different (P value ≥ 0.05). Boxes are
colored by median HEI-2010 total score. (B) Heat map of 2 x 2 comparison results for significant genera. Genera are ordered from bottom to top by increasing
abundance. Genera below the dotted grey line have mean relative abundances below 0.5% in the analyzed data set. Results for the Bifidobacterium genus
and the Prudent/Western framework are highlighted in black boxes. Unknown genera are annotated at the lower available taxonomic level. DESeq2 (v1.28.1)
models include pattern, age, sex, and BMI effects. The global pattern effect (likelihood ratio tests) was adjusted with the Benjamini-Hochberg procedure for
multiple testing. If the global effect was significant (P value < 0.05), all 2 x 2 comparisons (Wald tests) were reported using a Benjamini-Hochberg adjustment
for each genus separately. For example, for PB vs. ED, if the Log2FC is positive, then the genus’ relative abundance is higher in the PB pattern. Genera in
bold with a star were found in Songbird Top10 differentials for at least 50% of DESeq2 significant results (Supplemental Figure 6). NS: P value ≥ 0.1; trend:
0.05 ≤ P value < 0.1; and significance: P value < 0.05. (C) Bar plots for selected DESeq2 genera results. Log2FC ± SE values were estimated by a DESeq2
model with no intercept. Groups with the same letter are not significantly different (P value ≥ 0.05). Bars are colored by the median HEI-2010 total score.
(D) Variable importance in a random forest model for prediction of “low” or “high” Bifidobacterium status (see Supplemental Methods). Abbreviations: ADD,
attention deficit disorder; ADHD, attention deficit hyperactivity disorder; ASV, amplicon sequence variant; DP5, 5 dietary patterns; ED, Exclusion diet; FL,
Flexitarian diet; HEI-2010, Healthy Eating Index 2010; HW, Health-Conscious Western diet; IBS, irritable bowel syndrome; Log2FC, log2 fold change; NS,
not significant; PB, Plant-Based diet; PD, phylogenetic diversity; SIBO, small intestinal bacterial overgrowth; SW, Standard Western diet; unk., unknown.

defined 61 dietary patterns as being further associated with the
gut microbiome. These patterns included conventional nutrient
analysis (e.g., fiber and protein quartiles); an a priori–defined
diet quality index (i.e., HEI-2010), previously reported to better
associate with gut microbiota than other diet indices (12); and a
posteriori data-driven approaches. In contrast to recent findings

(12, 46, 47), we did not find an association between HEI-
2010 scores or dietary fiber and microbiome alpha diversity.
This could be due to the high HEI-2010 scores and fiber
intake values in this study cohort, a lower variation in gut
microbiota/HEI-2010 scores/fiber intake, or a confounding factor
that we did not control for. The data-driven approach used in
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this study was based on several types of diet components using
both factor and clustering analyses. We performed clustering
of dietary data on the percentage of total energy intake from
foods consumed, which can account for differences in energy
needs (e.g., age, sex, physical activity level) (48) and provide
more interpretable results (49). In addition, while compositional
analysis has recently arisen in the nutrition field (50), our work
employed a similar approach (DMM models), which is used in
the microbiome field (51). This resulted in 5 a posteriori dietary
patterns (the DP5) which take into consideration global diet and
were best associated with the gut microbiome. The DP5 patterns
correspond to the typical Western and Prudent diets (45), as
well as a specific Exclusion (low-carbohydrate) diet. The Prudent
and Western diets have more often been studied in the form of
2 independent factors (45, 52, 53) than in the form of clusters
(54). Here, we identified a gradient in dietary intake with 2
different Western (HW and SW) and 2 different Prudent (PB
and FL) dietary patterns. To our knowledge, a similar range of
Western to Prudent diets has only been addressed in 1 previous
study, which identified 3 diet clusters in women only (55). This
dietary gradient was made evident through the evaluation of
dietary quality. The SW pattern, exhibiting the poorest overall
diet quality, was characterized by high consumption of sugar-
sweetened beverages, animal products, and processed foods,
and the lowest intakes of vegetables and dietary fiber. Larger
amounts of plant foods and fewer amounts of animal foods,
particularly meat, were associated with better overall diet quality
and thus healthier dietary patterns (e.g., HW, FL, and PB). Such
a gradient may be used as a basis for personalized nutrition
recommendations, as shifting to a similar but healthier dietary
pattern (e.g., from the HW pattern to the SW pattern) may be
more sustainable and easily achieved than shifting to a less similar
dietary pattern (e.g., from the HW pattern to the FL pattern).

While many studies have reported Western and/or Prudent
dietary patterns in relation to metabolic health, only recently
have food group–based a posteriori analyses been associated
with gut microbiota (19, 56). We found that the FL pattern,
which is enriched in plant-based foods but not depleted in animal
products, was associated with the best HEI-2010 score and
exhibited higher gut microbiota alpha diversity compared to the
most typical Western-like diet (SW). This is partially in line with
other cross-sectional studies in which the intake and diversity
of fruits and vegetables have been reported as main factors
associated with variation of the gut microbiota (14–16, 46). This
particular association is primarily attributed to the role of dietary
fiber and resistant starch in promoting microbial diversity (57).
Surprisingly, we observed that gut microbiota alpha diversity in
the PB pattern was not significantly different from that in the
SW pattern. This may be due to the depletion of some animal
products, such as meat and dairy products, as animal protein
has been shown to increase microbial diversity [reviewed by
Singh et al. (58)]. At the microbial genus level, adherence to the
2 Prudent-like diets, especially the PB pattern, was associated
with a higher abundance of Oribacterium and lower abundance
of Parabacteroides. Parabacteroides has been shown to be low
or absent in vegetarian diets compared to nonvegetarian diets
(59) and increased after resistant starch intake (60) and with
high adherence to a Mediterranean diet (61), but also decreased
after a short-term (8-week) Mediterranean diet intervention in
overweight and obese subjects (62). These conflicting results

highlight the variability between studies, and possibly the
contribution of different Parabacteroides species. In addition,
the most typical Western diet (SW) was associated with a lower
abundance of an unassigned genus in the RF39 order (affiliated
to Mollicutes), even when compared to the other Western pattern
(HW). RF39 has been found to be higher in a Prudent diet
(19), as well as following almond consumption (63), and is
associated with a lean BMI (64). Since the SW pattern exhibited
a lower consumption of nuts, almonds may be a contributor
to this association. Together with the higher alpha diversity
(Faith’s PD) observed in the HW compared to the SW pattern,
these results highlight the importance of identifying variations
in dietary behavior within Western diets. The most pronounced
difference among the 5 dietary patterns was the depletion of
Bifidobacterium in subjects adopting the ED, who also self-
reported more GI disorders (e.g., IBS, gluten intolerance) and
appeared to follow a lower-carbohydrate diet with less grains
and, as such, gluten. Exclusion of gluten and carbohydrates, such
as fermentable oligo-, di-, and mono-saccharides and polyols, in
order to alleviate GI symptoms, has been previously associated
with a lower abundance of Bifidobacterium (65). Notably, these
5 dietary patterns (i.e., the DP5) had higher contributions than
age and GI disorders to explain Bifidobacterium abundances in
this study cohort. This reinforces that overall diet is a main factor
affecting the Bifidobacterium relative abundance in US adults.
This finding is further supported by our confounder analysis,
which indicated that the lower percentage of carbohydrates
and the higher percentage of fats in the ED pattern were
both contributors to this association, but not exclusive ones.
In addition, we observed that a higher intake of plant proteins
compared with animal proteins was positively associated with
Bifidobacterium, which is consistent with previous reports (18,
66, 67). This supports the hypothesis that plant protein might be a
potential but currently underexplored contributor of the beneficial
effects of plant-based products on gut microbiota and specifically
on Bifidobacterium.

The present study has several limitations. First, a causal
relationship between diet and the gut microbiota cannot be
determined due to the cross-sectional nature of this study.
Second, dietary intake was self-reported and solely assessed
by an FFQ. Even though FFQs are traditionally used in
observational studies, they have inherent measurement error and
bias (68, 69). Third, the study cohort is not representative of
the general US adult population and appears to adopt good
overall dietary habits. Due to country-specific dietary guidelines
(e.g., MPED components) and the specific food groupings of the
FFQ, our dietary pattern findings are not generalizable across
countries/populations. In addition, this work was based on 16S
rRNA gene sequencing, which allows for exploration of the
overall microbiota composition, but limits taxonomy resolution
and functional characterization.

In conclusion, we showed that a global approach better
explains gut microbiota variations than single nutrient/food data
in a large, population-based cohort. This suggests that future
studies should consider diet patterns, such as the DP5, as a
covariate in analyses on gut microbiota to disentangle the effects
of single nutrients/foods from the overall dietary pattern. In
addition, further longitudinal and intervention studies including
better characterizations of diet and gut microbiota (e.g., shotgun
or metabolomic analyses) in larger and diverse populations
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are still needed to better understand diet and microbiome
interactions.
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