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Egyed-Zsigmond2, and Laurent-Walter Goix1

1Alteca, 88 Boulevard des Belges, 69006 Lyon, France
2Univ Lyon, INSA Lyon, LIRIS, CNRS UMR5205, 20 Avenue

Einstein, 69621 Villeurbanne, France
{pygenest,lwgoix}@alteca.fr

{pierre-edouard.portier,elod.egyed-zsigmond}@insa-lyon.fr

October 17, 2022

Abstract

Unsupervised Relation Extraction (RE) aims to identify relations be-
tween entities in text, without having access to labeled data during train-
ing. This setting is particularly relevant for domain specific RE where no
annotated dataset is available and for open-domain RE where the types
of relations are a priori unknown. Although recent approaches achieve
promising results, they heavily depend on hyperparameters whose tuning
would most often require labeled data. To mitigate the reliance on hy-
perparameters, we propose PromptORE, a ”Prompt-based Open Relation
Extraction” model. We adapt the novel prompt-tuning paradigm to work
in an unsupervised setting, and use it to embed sentences expressing a
relation. We then cluster these embeddings to discover candidate rela-
tions, and we experiment different strategies to automatically estimate an
adequate number of clusters. To the best of our knowledge, PromptORE
is the first unsupervised RE model that does not need hyperparameter
tuning. Results on three general and specific domain datasets show that
PromptORE consistently outperforms state-of-the-art models with a rel-
ative gain of more than 40% in B3, V-measure and ARI. Qualitative anal-
ysis also indicates PromptORE’s ability to identify semantically coherent
clusters that are very close to true relations.

Keywords— unsupervised relation extraction, open relation extraction, natural
language processing, prompt-tuning
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1 Introduction

Information Extraction models aim to extract the meaningful information from text,
that is, entities and relations between these entities. The resulting network of relations
can then be transformed into knowledge graphs that are used in multiple downstream
tasks such as recommender systems [16], logical reasoning [6] or question answering
[22]. Information Extraction is usually seen as a two-step process: 1. Named Entity
Recognition and 2. Relation Extraction. In this paper, we focus on Relation Extrac-
tion, which consists in identifying the relation between two entities in the context of
a piece of text.

Relation Extraction (RE) is often seen as a supervised task [24], thus relying on
datasets labeled with a predefined set of relations. However, this setting can be re-
strictive for some applications, especially domain-specific RE lacking annotated data
or open-domain RE where we do not know in advance the relations expressed in
the dataset. Therefore, more flexible paradigms have been proposed such as distant-
supervision [38, 43], which tries to automatically annotate data; few-shot learning
[40], which learns from a very small set of labeled instances; or unsupervised learn-
ing. In particular, unsupervised RE (also called OpenRE) does not require a training
dataset with labeled relations and assume no prior knowledge about expected types
of relations.

Several recent OpenRE approaches obtain interesting results on datasets contain-
ing tens or hundreds of relation types [21, 62, 33]. They often try to compute a vector
representation of the relation expressed in the sentence (also called relation embedding)
and then cluster all the embeddings to identify groups of similar relations. Most of
these methods rely on hyperparameters (e.g. number of epochs, regularization, early
stopping, number of relations types, ...) that have a significant impact on their overall
performance. However, tuning these hyperparameters most often requires access to la-
beled data, thus limiting the applicability of such models in a real-world unsupervised
scenario.

We therefore propose PromptORE, a ”Prompt-based Open Relation Extraction”
model, which relies on one hyperparameter at most: the target number k of relation
types to be extracted. Our experiments show that even when no educated guess can be
made about k, an efficient estimate can easily be obtained in an automatic way. Thus,
to the best of our knowledge, PromptORE is the first proposal for an unsupervised
Relation Extraction system that can operate in a fully unsupervised setting.

To achieve this, we first compute, for each instance (a piece of text) of a dataset,
a relation embedding that represents the relation expressed in the instance. Contrary
to previous approaches that fine-tuned BERT [21, 62, 71], we use the novel prompt-
tuning paradigm. Prompt-tuning replaces the usual training by designing a prompt
(i.e., a text that is inputted to BERT), able to elicit as much information as possible
from the Pretrained Language Model. Prompt-tuning is already used in few-shot RE
[35, 5, 15, 56]. We propose to go further and adapt this paradigm to work in a fully
unsupervised way. Prompt-tuning has many benefits: 1. it does not involve training
or fine-tuning BERT, thus removing a significant number of hyperparameters, 2. the
proposed encoder is extremely simple, yet 3. we show that these prompt-based rela-
tion embeddings provide better results than current state-of-the-art methods. Usual
clustering algorithms are then applied to group together the embeddings in order to
discover relation types.

Let us summarize our main contributions:

• We propose PromptORE, a novel OpenRE model that minimizes the number
of hyperparameters and provides clear ways to tune its only hyperparameter k
in a strict unsupervised setting.

• We adapt the prompt-tuning paradigm to an unsupervised setting, which allows
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us to leverage more expressive embeddings than previous entity-pair represen-
tations [21, 62, 34].

• We show that this model outperforms consistently previous state-of-the-art ap-
proaches on three different datasets, covering both general and specific domains.
We also demonstrate that the predicted clusters are semantically coherent and
very close to the true relations.

2 Related Work

For the sake of clarity, we use relation and relation type interchangeably, and we define
them as a concept linking two entities, for example married to, born in, located in;
but we distinguish relation instance, which represents the realization of a relation, that
is, a piece of text expressing the relation.

Relation Extraction aims to discover the binary relation that links two entities
mentioned in a text. RE allows to extract triples of the form (e1, relation, e2) that
can be used thereafter to build for instance a knowledge graph. Even though Relation
Extraction from documents is the most general paradigm, the majority of models focus
on extraction within a single sentence ignoring inter-sentence relations [18, 17]. Recent
approaches follow a two-step process [17, 28, 34, 53]:

1. Relation Embedding, which computes a vector representation of the relation
instance,

2. Relation Classification.

To compute relation embeddings, word-embedding models are often used, such as
GLoVe [39], ELMO [41], Bi-LSTM embeddings [34], or more recently BERT embed-
dings [59, 9]. In the general case, relation classification is seen as a supervised task
therefore needing labeled datasets, where entities have been extracted and labels de-
scribing the relation are available.

Supervised Relation Extraction Recent models implement a joint entity and
relation extraction scheme [24]. Luan et al. [34] propose a multi-task learning approach
that simultaneously optimizes a BERT-based entity extractor, relation extractor and
coreference resolution model. Wadden et al. [60] add event triggers and roles detection
into the same multi-task framework. Lin et al. [28] improve these models by incor-
porating external constraints on entity types and relations. Zhong et al. [73] show
nevertheless that a simple pipelined approach outperforms complex multi-task mod-
els, thanks to a markup-based encoding of the sentence. However, these supervised
approaches rely on large labeled datasets, available only for generic language corpora
and a few specialized domains. Therefore, other works aim at reducing this reliance
on such annotated data.

Distantly-supervised Relation Extraction Distant-supervision [38, 43] tack-
les this problem by automatically annotating texts based on external knowledge bases.
This annotation process creates large scale datasets that are characterized by a high
level of noise. Zhang et al. [69] identify two types of noise: intra-dictionary bias (spu-
rious entity/relation annotations due to wrong entity linking) and inter-dictionary
bias (non exhaustiveness of knowledge bases, meaning that some entities/relations
cannot be labeled). Most works focus on trying to reduce and mitigate these biases
[68, 70, 69, 72]. However, distant-supervision does not apply to very specific domains
that lack large knowledge bases.
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Few-Shot Relation Extraction This approach aims to learn a relation extrac-
tion model from the least amount of labeled data. Models focus on relation classi-
fication: they suppose the existence of a relation between two entities [40], ignoring
the case of sentences mentioning unrelated entities. Snell et al. [52] propose to use
prototypical networks to determine a prototype for each relation, and predict the re-
lation by measuring the distance between the relation instance embedding and each
prototype. Ren et al. [42] and Zhao et al. [71] propose to improve this method using
transfer-learning with general domain labeled datasets.

Very recent few-shot methods consider the use of prompt-tuning with BERT and
more broadly Pretrained Language Models (PLMs) [13], as it allows for more efficient
learning in low-resource setting [30]. Prompt-tuning replaces fine-tuning by designing
a ”prompt”, that is, a piece of text containing the special [MASK] token, and ask a
PLM such as BERT to predict the embedding of this [MASK] token. This embedding is
then compared with a set of target tokens (that can be seen as relation prototypes) to
determine the relation expressed in this sentence [35, 5, 15, 56]. Efforts are focused in
optimizing the prompt P and selecting a set of target tokens effective at representing
the relations. In particular, Jiang et al. [25] propose text-mining and paraphrasing-
based methods to generate prompts.

The current major limitation with few-shot RE is the closed-world hypothesis,
which stipulates that relations must be known in advance (although recent papers
start to explore none-of-the-above prediction [14, 35]).

Unsupervised Relation Extraction Unsupervised RE (or OpenRE [3]) aims
to extract relations without having access to a labeled dataset during training. Meth-
ods can be divided in two subgroups: (1) triples extraction and (2) relation typing.
Banko et al. [3] extract triple candidates using syntactic rules and refine the candi-
dates with a trained scorer. Saha et al. [48] propose to simplify conjunctive sentences
to improve triples extraction. More recently, neural networks and word-embedding
were applied to solve this task [54, 8], requiring a general domain annotated dataset
to pretrain their model. Finally, Roy et al. [47] propose an ensemble method to ag-
gregate results of multiple OpenRE models. These triples extraction approaches rely
on surface forms, which makes it hard for them to group instances that express the
same relation using very different words and syntax.

To solve this problem, Yao et al. [63] propose instead to learn a relation classifier,
using Latent-Dirichlet Allocation [4], a generative probabilistic model. The majority
of these relation typing methods rely on relation embeddings: first, they compute an
embedding, which encodes the underlying relation, second they use this embedding to
identify groups of relation instances. The earliest methods use syntactic and semantic
features [63, 64, 37]. Elsahar et al. [10] add word-embedding features based on GloVe
[39], apply dimensionality reduction methods, and an agglomerative clustering model
to identify clusters of relation instances. Marcheggiani et al. [37] use a fill-in-the-blank
task: they mask one entity and try to predict it using a Variational Auto-Encoder
(VAE) [26], proving the benefit of generating a supervision signal. This method is
further improved by adding two regularization losses to limit overfitting [51] and by
finding a more effective formulation of the VAE task [65]. Tran et al. [58] however
succeed to outperform VAE approaches only using entity types as their relational
embeddings.

Hu et al. [21] adopt an other supervision signal: they compute pseudo labels
using a k-means clustering on relation embeddings, and train a classifier to reproduce
these pseudo labels, allowing them to fine-tune a BERT model. As an alternative,
Wu et al. [62] propose to learn a distance metric representative of the relations (using
Siamese neural networks [7]), to compare pairs of instances. This metric is learned on
an annotated dataset, and applied to unlabeled data to identify instances expressing
similar relations. Lou et al. [33] use ranked list loss [61] as an alternative to Siamese
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neural networks. Finally, a tendency of recent unsupervised RE methods is to use
transfer-learning: learning some relation embeddings or metrics on general domain
annotated datasets and try to adapt them to unsupervised data [71, 33, 62]. Compared
to triples extraction, relation typing assumes that there is always a relation between
the two entities, which can be seen as a limitation.

To allow evaluation of such OpenRE models, previous works tend to train them
on labeled datasets and compare their predictions with ground truth relations using
external clustering evaluation metrics such as V-measure [45], Adjusted Rand Index
[23, 55] or B3 [2].

Are current OpenRE models truly unsupervised ? Although Open-RE
models extract relations from unannotated datasets, we argue that they are not truly
unsupervised approaches: the main problem is hyperparameter tuning. All these
approaches rely extensively on hyperparameters that need to be adjusted: number
of epochs/iterations [37, 65, 58, 21, 62, 33], learning rate, regularization [51], entity
types [58], early-stopping [58], etc., and most importantly the number of relations k
the model is supposed to extract [37, 65, 58, 21, 62, 33, 51, 10]. In a real unsupervised
setting these hyperparameters are extremely hard to determine, and cited papers do
not present satisfactory methods to estimate them without labeled data. Therefore, we
conclude that these mentioned approaches are not fully unsupervised when it comes
to hyperparameter tuning, which in our opinion, restricts their use in a real-world
application.

As a result, it motivates us to define more precisely the unsupervised RE setting
as learning a RE model and tuning its hyperparameters using only unlabeled data.

3 Proposed Model

PromptORE aims to extract the binary relation r between two already known entities
e1 and e2 present in the same sentence1. More precisely, as we follow an unsupervised
setting, the first objective of PromptORE is to group instances expressing the same
relation r, without having access to labeled data during training and hyperparameter
tuning. Our second objective is to minimize the number of hyperparameters needed
by PromptORE and to provide clear procedures to adjust them without annotated
data.

To achieve these goals, we suppose we have access to a dataset D (see Figure 1)
containing instances with the following properties:

• An instance is described with a triple (S, e1, e2), where S = [t0, ..., ts−1] is
the instance text composed of tokens2, e1 = [tstart(e1), ..., tend(e1)] and e2 =
[tstart(e2), ..., tend(e2)] are two entities identified by their indexes in S.

• We suppose that e1 and e2 have already been extracted (but not typed).

• In the instance text S, e1 and e2 are linked by a binary relation r. As previous
approaches, we do not consider the case where there is no relation between e1
and e2.

• We do not have access to any relation label during training and hyperparameter
tuning.

R is the set of the k relations contained in D. We consider that we have no information
about the relations in R (e.g. their labels, their linked entity types, etc.). Regarding
k, it can either be given by the user or automatically estimated by methods described
in section 3.2.

1As previous works, we focus on sentence RE, even though we are aware that some relations
may be missed.

2Token as defined by BERT [9]: punctuation, word or part of word.
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Dataset

1) Relation Encoder

2) Relation Clustering

BERT

[CLS] Queen ...

... ... ...

... ... ...

Queen [MASK]Philip Philip .. [SEP]......

...

Prompt generation

Prompt embedding

..
.

..
.

[CLS] Queen Elizabeth II was married to Prince Philip.
Queen Elizabeth II               Prince Philip.[SEP][MASK]

Queen Elizabeth II was married to Prince Philip.
Michelle Obama, Barack Obama's wife, was born in Chicago.
...
Like the Everest, Mount Annapurna is located in the Himalayas.

1.
2.

n.

Cluster c-18Cluster c-49

Cluster c-2

r=[mountain_range, located_in]

r=[platform]

r=[sibling,

father, child,

mother, spouse]

Figure 1: Overview of PromptORE.

As shown in Figure 1, PromptORE is composed of two main modules (similarly
to [21, 71]):

1. Relation Encoder. This module computes a vector representation of the relation
that is expressed in the current instance. To do that, we apply a modified
prompt-tuning method to leverage BERT embeddings.

2. Relation Clustering. It clusters the relation embeddings of the whole dataset, in
order to identify groups of instances that are expected to express the same type
of relation3.

3.1 Relation Encoder

This module aims to compute a vector representation (or relation embedding) of the
relation expressed between e1 and e2 in the current sentence S. We want this relation
embedding to be representative of the underlying relation: if the relation embeddings of
two instances are close (relative to a certain distance metric), these instances convey,
most probably, the same relation. In other words, the Relation Encoder aims to
abstract the notion of relation instance, to provide embeddings that are easier to
compare.

In recent papers [21, 71, 29, 33, 65, 73, 60], relation embeddings are computed
using Pretrained Language Models such as BERT [9, 59] or RoBERTa [31]. BERT
(and RoBERTa) takes as input some tokenized text, and computes for each input
token an embedding, which is representative of the token itself and its context of
use. BERT also contains a Masked Language-Model (MLM) head, which allows it to
predict the most probable tokens associated with an embedding. In addition to ”real
word” tokens, BERT uses some special tokens:

3In practice, clusters may not be perfectly pure: they may contain instances expressing
different relations, e.g. clusters c-18 or c-49 in Figure 1 or Table 4.
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• [CLS] and [SEP]. By convention, [CLS] needs to be inserted at the start of the
text, and [SEP] indicates the end of the text.

• [MASK]. It represents a token that is hidden/unknown, and BERT will try to
compute a satisfactory embedding. Then, using the MLM head, BERT can
predict the most probable tokens. Thanks to this [MASK] token, BERT can
auto-complete sentences or generate text.

We define h = BERT(S, [MASK]) as the BERT-embedding of the token [MASK], in the
context of S (a piece of text that must contain exactly one [MASK] token). Finally, for
the sake of simplicity, variables/parameters (written with a bold name), are automat-
ically replaced by their value in a quoted string. For example, if a = One, "a, Two"

corresponds to One, Two.
Previous works [21, 71, 29, 33, 65, 73, 60] use an entity-pair representation para-

digm to compute relation embeddings. We however opt for another technique: prompt-
based encoding.

Prompt-Tuning The idea behind prompt-tuning is to benefit from BERT’s ability
to predict masked tokens ([MASK] tokens). It is already used in few-shot RE by
[15, 5, 35, 56]. It can be summarized as follows:

1. Design a prompt P, which is a sequence of tokens that includes one [MASK]

token. For instance, Lv et al. [35] use the template P(S, e1, e2) = "[CLS] S
In this sentence, e1 is the [MASK] of e2.[SEP]".

2. Identify a set of label tokens L that represents each relation.

3. Predict the [MASK] embedding in the context of P using BERT: h =
BERT(P, [MASK]).

4. With this embedding, compute the probability to predict each label token l ∈ L
thanks to the MLM head of BERT.

5. Select the relation represented by the label token l with the highest probability.

Prompt-tuning does not require to fine-tune BERT, but necessitate to design an opti-
mal prompt P and a set of label tokens L. They are usually adjusted using a labeled
dataset and therefore cannot be applied directly to our unsupervised Relation Encoder.

Unsupervised Prompt-based Relation Encoder To adapt prompt-tuning
for unsupervised RE, we propose to remove the set of label tokens L, and use the
simplest prompt P possible. Our proposed prompt template is:

P(S, e1, e2) = "[CLS] S e1 [MASK] e2.[SEP]" (1)

with S the instance text, e1 (resp. e2) the text of the first (resp. second) entity. For
example, given the sentence S =Queen Elizabeth II was married to Prince Philip., and
entities e1 =Queen Elizabeth II and e2 =Prince Philip, the prompt is:

P = [CLS] Queen Elizabeth II was married to Prince Philip. Queen Elizabeth II
[MASK] Prince Philip.[SEP]

As we remove L, we decide to use the [MASK] BERT embedding as our relation
embedding. Thus, the Relation Encoder process is the following (as shown in Figure
1):

1. Apply the template defined in eq. (1) to generate a prompt for the current
instance.

2. Predict the embedding of the [MASK] token with BERT, and use it as our relation
embedding: h = BERT(P, [MASK]).
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Alternative Prompts If we analyze P, we can see that BERT will likely fill the
[MASK] token with a verb, as it is trained to produce grammatically correct sentences.
It raises questions: can all relations be expressed with a verb, and with a single word?
We did an analysis on the 9 892 Wikidata relations with surface forms:

• More than 75% of relations need 2 words or more to be expressed (e.g. acceptable
surface forms for birth place are born in or the birth place of ).

• Surface forms usually contain a root word (noun, verb) accompanied by tool
words. 92% of the root words are nouns, and only 6.7% verbs. The most
common tool words are: of, in, by, the, a, to.

It can be therefore interesting to consider alternative prompts that encourage
BERT to predict a noun ([35] also focus on noun prediction). In addition, Lv et
al. [35] introduce a prefix to their prompt: "In this sentence". Therefore, we define
alternative prompt templates aiming at predicting noun, and with various prefixes:

P ′
1(S, e1, e2) = "[CLS] S e1 is the [MASK] of e2.[SEP]"

P ′
2(S, e1, e2) = "[CLS] S In this sentence, e1 is the [MASK] of e2.[SEP]"

P ′
3(S, e1, e2) = "[CLS] S We deduce that e1 is the [MASK] of e2.[SEP]"

P ′
2 is the same as [35]. However, we cannot choose the optimal prompt from the

previous ones nor use automatic methods to generate prompts (such as [25]) as they
require access to labeled data. Therefore, the main results of PromptORE are
computed using P, the simplest prompt of all. In a second phase, we will analyze
PromptORE’s performances with these alternative prompts.

3.2 Relation Clustering

We can measure the similarity between two BERT embeddings using an euclidian
distance as these embeddings are normalized [9]. Similarly to previous works [10,
21, 71], we cluster the relation embeddings computed on the entire dataset D to find
groups of instances, and we expect these clusters to be good candidate relations.

K-Means Clustering If we know in advance the number of relations k, we propose
to use a simple k-means clustering [32, 36].

Clustering without k The most general case is however that we do not know k.
To tackle this problem, we can take two points of view: use clustering models that
do not require a predefined number of clusters, or estimate k automatically and use it
with a regular clustering method.

For the first point of view, multiple models are available, the main ones being
Agglomerative Clustering (HAC) [50], DBSCAN [11], OPTICS [1] or Affinity Prop-
agation [12]. Nevertheless, most cannot be applied in our case: DBSCAN and HAC
need other hyperpameters (such as density) and Affinity Propagation does not scale
well to big datasets. Therefore, we propose to use OPTICS.

To estimate the number of clusters, we propose to implement the Elbow Rule
[57]. We select the silhouette coefficient [46] as our internal metric4 to measure the
quality of the clustering. Intuitively, we expect that increasing the number of clusters
will improve the value of the silhouette coefficient since there are more parameters to
explain the data. However when we have more clusters than the actual number of
relations, the silhouette will most likely grow more slowly as we can only subdivide
actual relations. The Elbow Rule tries to find the ”elbow”, which is the optimal trade-
off between a reasonable number of clusters and a high silhouette coefficient. It can
be done visually, but automatic methods are also available [27]. With this estimation,
we can use any clustering algorithm, in particular k-means.

4A metric that does not rely on external data such as labels.
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4 Experiments

4.1 Datasets & Evaluation Metrics

To evaluate PromptORE we exploit labeled datasets, the labels being only used dur-
ing evaluation. The first dataset we choose is FewRel [19]5. This dataset is composed
of text taken from Wikipedia pages that has been automatically annotated by aligning
the text with Wikidata triples (distant-supervision setting), then manually checked for
each instance. FewRel contains 80 relations, with 700 instances each (20 others re-
lations are available in the test set, which is kept private). Therefore the dataset is
composed of 56 000 instances. One important fact is that the dataset contains at most
one instance for each pair of entities.

FewRel is a general domain dataset, but we also want to evaluate PromptORE
on more specific domains. Our second dataset is FewRel NYT [14]5. This time, the
text is taken from newspapers articles of the New-York Times. It is also automatically
annotated using Wikidata, and manually checked. FewRel NYT contains 25 different
relations, with 100 instances each.

Our third dataset is FewRel PubMed [14]5. The text comes from PubMed, a
database of biomedical literature. It is also automatically annotated (this time with
the UMLS knowledge base) and manually checked. It is composed of 10 relations, with
100 instances each.

Traditional classification metrics such as accuracy, precision, recall or f1-score can-
not be used to evaluate and compare PromptORE’s performances as there is no
direct link between our cluster ids and the true relation ids. Therefore, similarly to
previous works [63, 51], we use three external clustering metrics: B3 [2], V-measure
(V) [45] and Adjusted Rand Index (ARI) [23, 55]. They each take a different point of
view: ARI is based on pairwise similarity (enumerating all pair of instances), B3 on
one instance versus the dataset and the V-measure on clusters.

ARI is adjusted for chance, meaning that a random clustering will reliably lead to
a score close to 0.

V-measure defines the notions of homogeneity and completeness of clusters. A
cluster is homogeneous if it contains only instances of the same relation, and a cluster
is complete if it contains every instances of a relation. The V-measure corresponds to
the harmonic mean of homogeneity and completeness.

Finally, B3 provides definitions for recall and precision, allowing to compute a
f1-score. V-measure tends to penalize more small impurities in a pure cluster than
impurities in a less pure cluster where B3 has a more linear behavior [51].

4.2 Baselines

We compare PromptORE with the state-of-the-art (SOTA) approach SelfORE [21],
and two previous approaches based on Variational Auto-Encoders (Etype+ [58] and
UIE-PCNN [51]).

SelfORE encodes instances with BERT, clusters these embeddings with an adap-
tive clustering method to generate pseudo labels that are finally used to train a clas-
sifier.

UIE-PCNN encodes instances with a Piecewise Convolutional Neural Network
(PCNN) [66], and uses a Variational Auto-Encoder (VAE) to classify instances in an
unsupervised way. Additionally they propose two regularization losses (skewness and
dispersion) to fight against the VAE’s tendency to predict a single relation or a uniform
distribution. Since UIE-PCNN relies on PCNN, an older embedding method, we
propose to replace it with a BERT model (similarly to [58]), and we call this method
UIE-BERT.

5Data can be downloaded from: https://github.com/thunlp/FewRel.
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Etype+ shows that using only entity types to encode instances provides better
results than UIE-PCNN. They propose a simple typing schema for the entities:
Organization, Person, Location, Miscellaneous. We expect the performances to be
lower on domain-specific datasets (FewRel NYT and PubMed).

Finally, let us recall some metrics properties to interpret the experimental results:
if a model always predicts the most frequent class V-measure and ARI will be equal
to 0. If a model predicts a random distribution, ARI will be close to 0 (as ARI is
adjusted for chance).

4.3 Implementation Details

All baselines are trained with the hyperparameter values determined by their authors.
For SelfORE, we use their publicly available implementation, and for Etype+ and
UIE-PCNN we use the implementation of Tran et al. [58]. The baselines are trained
knowing the correct number of relations k (i.e., 80 for FewRel, 25 for FewRel NYT
and 10 for FewRel PubMed).

For PromptORE, we suppose we do not know k, except in section 5.1. Besides, we
use the bert-base-uncased model to initialize BERT’s weights. We also use a model
with RoBERTa embeddings (using the roberta-base pretrained model). There are
no hyperparameters to adjust.

We use the scikit-learn implementation of V-measure and Adjusted Rand Index,
and the Hu et al. [21] implementation of B3.

5 Results

5.1 Comparison with Previous SOTA Models

In this section only, to allow a fairer comparison with previous approaches, Prompt-
ORE knows k, the number of different relations, and a k-means clustering is used. Ta-
ble 1 shows the results of the models on our three datasets. PromptORE consistently
outperforms SelfORE, the previous state-of-the-art method, with approximately 19%
more in B3, 18% in V-measure and 19% in ARI on FewRel. It represents a relative
gain in performance of more than 40%. The performance gap is even more important
with UIE-BERT, UIE-PCNN and EType+. We observe similar conclusions with
the two other datasets.

When we look more closely, we notice that UIE-BERT [51] obtains very poor
results on all three datasets: it always predicts the same relation. Strangely, the
authors of [51] proposed two regularization losses to avoid precisely this situation,
but this problem with UIE-PCNN/BERT is also observed by [58, 65]. We believe
this is due to the hyperparameter that controls the balance between classification and
regularization losses, which needs to be fine-tuned specifically for each dataset.

SelfORE has been evaluated on the FewRel dataset multiple times [71, 67, 33],
and it seems at first glance that the results obtained by these papers are better than
ours (with an F1 B3 between 45-55% instead of 25-30%). However, in these cases
SelfORE was evaluated on a test set of FewRel with only 16 relations and 11 200
instances [33]; or a subset of 1 600 instances with 16 relations [71, 67]. Using the same
sampling procedure, we were able to reproduce their results; but we do not use this
setting in our evaluation, as it is a simpler task than FewRel with its 80 different
relations.

Finally, we notice a very small difference in performance between BERT and
RoBERTa embeddings with PromptORE. In practice both PLMs are well suited
to provide precise results, and we decide to use BERT embeddings for the next parts
of this paper.
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Table 2: Results of PromptORE with different prompts. PromptORE is trained
with the exact number of relations k.

Dataset Prompt B3 (F1) V (F1) ARI

FewRel

PromptORE (P) 48.8 71.8 43.4
P∅ 33.8 57.4 28.8
P ′
1 48.9 71.7 44.5

P ′
2 49.4 72.4 46.3

P ′
3 50.5 73.0 47.7

FewRel NYT

PromptORE (P) 65.1 78.0 56.9
P∅ 51.3 65.7 41.6
P ′
1 65.8 77.8 62.0

P ′
2 61.0 74.8 56.9

P ′
3 65.6 77.7 61.7

FewRel PubMed

PromptORE (P) 77.4 81.1 73.8
P∅ 62.0 66.2 53.1
P ′
1 76.4 80.0 72.3

P ′
2 76.0 80.0 72.9

P ′
3 77.4 81.1 73.1

Performance on domain specific datasets BERT and more broadly PLMs
are usually pretrained on general domain data (e.g. Wikipedia), and we can ask
ourselves if that impacts performances on ”out of domain” datasets such as FewRel
NYT and FewRel PubMed. We can see in Table 1 that PromptORE does not see
its results plummet. On the contrary, it still outperforms previous SOTA models by
a large margin. SelfORE, which also relies on BERT embeddings, does not see its
performance deteriorate as well, which seems to indicate BERT’s ability to encode
tokens not seen before.

In general, the results are higher than with FewRel, but that is explained by the
fact that the two datasets contain less relations and instances.

Finally, we notice that Etype+ predicts a single class on FewRel PubMed (as V-
measure and ARI touch zero). As we have stated earlier, it is explained by the entity
type schema, which is very limited as there are no Person, Organization or Location
entities in this dataset.

Does PromptORE really extract relations? The core of PromptORE is
its prompt P that is used by the Relation Encoder to embed each instance. However,
one can ask if BERT really uses the text of the current instance to predict the missing
token (and thus extracts information from the sentence), or if it is only using its
internal knowledge, ignoring the current instance context. To answer this question,
we propose to create an empty prompt P∅ where we do not input the current instance
text. Its template is defined as:

P∅(S, e1, e2) = "[CLS] e1 [MASK] e2.[SEP]" (2)

It is equivalent to P defined in eq. (1), except that we have removed S.
The results are shown in Table 2. We can see that the performance for all three

metrics and three datasets are much lower with P∅ compared to P, with an average
gap of 15% in B3, 14% in V-measure and 15% in ARI. Therefore, it shows that BERT
really benefits from the instance context to extract more precisely the relation between
the two entities. It is interesting to remark that even without the instance text,
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PromptORE still surpasses SelfORE, which clearly indicates that SelfORE fails
to take full advantage of BERT embeddings.

Alternative Prompts As we have discussed in section 3.1, P is not necessarily
the best prompt, as more relations can be expressed with a noun than with a verb.
We computed PromptORE performances with three alternative prompts: P ′

1, which
encourages BERT to predict a noun, P ′

2 with the prefix proposed by [35], and P ′
3

containing a prefix variant of P ′
2. Results are shown in Table 2.

First, we notice that P ′
1 provides better results than P in ARI, but similar per-

formances in V-measure and B3 for FewRel and FewRel NYT. No improvement is
observed with FewRel PubMed. This result is interesting because we showed that
fewer relations can be expressed with a verb than with a noun, so we expected a
gap in favor of P ′

1. For example FewRel relations instance of, competition class,
constellation or operating system cannot be expressed with a verb but are nonethe-
less correctly identified with P. It seems that BERT is weakly impacted by the ap-
parent impossibility to predict a meaningful word.

In Table 2, P ′
2 and P ′

3 achieve higher performances than P ′
1 in the majority of

the cases, while their only difference with P ′
1 is the prefix (In this sentence or We

deduce that). We can also see the impact of prompt’s wording: at a first glance both
prefixes seem to convey the same idea, but their performances are different. In fact
if we replace deduce by conclude in P ′

3 we obtain lower performances (not shown in
Table 2).

Finally, we notice that there is no consensus on the best prompt from the four
proposed ones: P ′

3 is the best for FewRel, P ′
2 for FewRel NYT and P for FewRel

PubMed. This highlights the importance to select and fine-tune prompts to maximize
BERT’s performances, which is indeed a major research area for prompt-based meth-
ods [35, 49, 20, 25]. Under our fully unsupervised setting’s goal, it is unfeasible to
fine-tune the prompt due to the lack of labeled data, therefore we decide to keep our
original P for the sake of fair results.

5.2 Clustering without knowing k

Up to now, PromptORE has access to k, the number of different relations. However,
as said in section 3.2, the most general setting is when we do not know k. We identified
two methods to cluster our data without k: 1. OPTICS, a clustering algorithm based
on density, and 2. the Elbow Rule (to compute k̂ an estimation of k) with k-means
clustering. The results are shown in Table 3.

To give technical details, we use the scikit-learn implementation of OPTICS
and k-means. To apply the Elbow Rule, we first calculate multiple clusterings by
varying the number of clusters. For each of these clusterings we compute the silhouette
coefficient. We obtain the blue scatter plot of the Figure 2 for FewRel. As this plot is
rough, we approximate it thanks to a ridge regression with a gaussian kernel (orange
curve in Figure 2). In our case, this curve has a maximum, it is therefore easy to
locate the elbow. We noticed the same curve shape with a maximum for FewRel NYT
and FewRel PubMed. Sometimes however, it is possible to observe a growing curve, in
which case automatic approaches [27] can be applied to locate the elbow. We detect
the elbow at k̂ = 65 clusters for FewRel. We obtain k̂ = 26 for FewRel NYT and
k̂ = 10 for FewRel PubMed, that is, values of k̂ nearly identical to the real number of
relations.

Quantitative Results OPTICS sets k̂ at 571 (see Table 3), far from the optimal
k = 80 for FewRel. It translates into very poor performances compared to Prompt-
ORE when we know k. We also note that OPTICS is very slow during training (∼ 6h
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Table 3: Results of PromptORE using different methods to estimate k. ”Ideal”
represents results when k is provided.

Dataset Method k̂ B3 (F1) V (F1) ARI

FewRel
Ideal 80 48.8 71.8 43.4
OPTICS 571 10.8 8.5 0
Elbow 65 49.5 71.2 42.2

FewRel NYT
Ideal 25 65.1 78.0 56.9
OPTICS 35 33.2 29.3 1.7
Elbow 26 64.1 77.4 56.2

FewRel PubMed
Ideal 10 77.4 81.1 73.8
OPTICS 12 26.8 11.2 0.3
Elbow 10 77.4 81.1 73.8
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Figure 2: Results of the Elbow Rule on FewRel. Estimated number of relations
k̂ is equal to 65.

compared to 5min with k-means). On the other side, results are much more satisfac-
tory with the Elbow Rule with a slight decrease in ARI but equivalent performances
in B3 and V-measure. Training time is also much more reasonable with ∼ 1h. We
make the same conclusion when we look at FewRel NYT and FewRel PubMed.

We can conclude that, at least on our three datasets, the Elbow Rule is effective
to find a correct estimation of k.

Finally, it is interesting to see that PromptORE with the Elbow Rule widely
surpasses previous SOTA approaches (Table 1), with a gap of 15-25% in B3 and V-
measure and 17-30% in ARI. In our opinion, we demonstrate that it is possible to
remove the dependency on all hyperparameters (including k) and still achieve state-
of-the-art results.

Qualitative Analysis of the Clustering From Table 3, we know that the
Elbow Rule finds k̂ = 65 instead of 80 for FewRel. It means that the clustering cannot
be ideal: some clusters must contain multiple relations. The confusion matrix between
the true relations and the ones predicted by PromptORE is shown in Figure 3. It is
obviously not square as the number of clusters k̂ is not equal to the number of relations
k. We reorganize the axes to find a logical representation of the confusion matrix (as
initially there is no link between the relation ids and the cluster ids).

On this confusion matrix, we notice indeed that some clusters are not pure: they
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Figure 3: Confusion matrix between the true relations and the clusters found
by PromptORE with the Elbow Rule on FewRel. The main relations of some
clusters are highlighted.

contain multiple relations (e.g. clusters c-10, c-18, c-28, c-29, c-30, c-31, c-49, or c-
54). The main observation is nevertheless that the matrix possesses a clear diagonal,
meaning that PromptORE is able to effectively distinguish the vast majority of the
relations, while training in a fully unsupervised setting.

We also see that clusters seems to be relatively complete: there are seldom clusters
sharing the same relations except for clusters c-31 and c-40; c-39, c-49 and c-54.

As some clusters contain multiple relations, we find it interesting to check whether
the relations that compose each of these clusters are semantically linked. We randomly
sample four clusters that contain multiple relations. Results are shown in Table 4. For
these four clusters, we can see that the relations are indeed semantically close within
a cluster:

• for cluster c-10 they are linked to language,

• for cluster c-18 to geographical location,

• for cluster c-31 to artistic creation,

• for cluster c-49 to family relationship.

Even though these clusters are not optimal from the FewRel annotation point of view,
they are semantically coherent. In fact, we could even argue that cluster c-10 makes
more sense than the initial labeling which divided this cluster in two relations.

In conclusion, this qualitative analysis shows that the combination of Prompt-
ORE with the Elbow Rule efficiently discovers semantically consistent clusters, which
are very close to true relations.

5.3 Analysis of P Prompt Predictions

In section 5.1, we found a very little performance difference between P and P ′
1, while

the majority of relations cannot be written using a verb. To go further, it would be
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Table 4: Relation distributions that compose four randomly sampled impure
clusters.

Cluster True Relations

c-10 language of film or TV show,
language of work or name

c-18 mountain range, located in physical feature,
located in or next to body of water

c-31 screenwriter, director, after a work by,
characters, composer

c-49 sibling, father, child, mother,
spouse

interesting to check which tokens/verbs seem to describe best the clusters identified
by PromptORE with P. To do that, we use the relation embeddings (computed by
our Relation Encoder) and predict the masked tokens (represented by [MASK]) with
the MLM head of BERT. By iterating for every instance located in one cluster, we
can find the most frequent tokens that seem to describe it. We apply this method on
the clusters identified by PromptORE and Elbow Rule (see Figure 3). The results
on three selected clusters are displayed in Table 5.

We observe that in most cases, the predicted names are not clear enough to qualify
the relation corresponding to the cluster. Nevertheless, the names give clues to identify
the general theme of the relation (married indicates a family centered relation, borders
and surrounds a geographic topic).

Table 5 shows however the major limitation of P: when we look at cluster c-49,
spouse is represented by married, but sibling, father, child and mother relations
are not brought to light with the predicted names. Indeed, these four relations cannot
be written using a single verb; by not finding satisfactory names, BERT defaulted into
predicting punctuation tokens. We reach the same conclusion for cluster c-14, where
BERT also predicted punctuation tokens.

Finally, this observation gives us interesting insights on the behavior of our Relation
Encoder. Intuitively, we could think that PromptORE would have poor results
with relations that cannot be written using a verb. On the contrary, we found that
results were close between P and P ′

1 (Table 2). At the same time, we notice that
cluster c-2 (Table 5) is very pure, yet its most predicted name is ”,” (a token that
is furthermore shared among the two other clusters of Table 5). In our opinion, it
indicates that BERT is able to encode a very expressive embedding of the current
relation instance that allows a precise clustering, but that cannot be translated into
real words. This is supported by the fact that PromptORE identified three different
clusters with punctuation as their most frequent tokens (Table 5). It comforts us in
the idea that complex prompts are not required to effectively represent a significant
number of relations. It does not undermine however the importance of prompt-tuning:
as showed in Table 2, prompts have an impact on model performances.

6 Conclusion and Future Work

In this work, we introduce PromptORE, an unsupervised RE model. Our proposed
approach leverages and adapts the novel prompt-tuning paradigm. Experiments on one
general and two domain specific datasets show that PromptORE surpasses previous
state-of-the-art methods, while being simpler and not needing hyperparameter tuning.
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Table 5: Most frequent predicted tokens for three different clusters identified
by PromptORE for FewRel. True relations composing these clusters are also
displayed.

Cluster Predicted to-
kens

True relations

c-2 ,
for
supports

99%: platform
other

c-14 :
borders
,
surrounds

79%: contains administrative territory
5%: located in administrative entity
3%: located in physical feature
other

c-49 ,
.
married

25%: sibling
21%: father
19%: child
18%: mother
17%: spouse

On a secondary note, finding descriptive names for the clusters is still an open question.
In the future, we plan to explore other clustering approaches with a focus on Deep

Clustering methods (e.g. [44]), and Hierarchical Clustering models that leverage the
hierarchical nature of relations. We further envision to close the loop of knowledge
extraction, that is, benefiting from PromptORE’s ability to extract relations in order
to build a knowledge graph that can be used to further improve PromptORE’s
predictions.
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