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In this article, we present a predictive model for the amplitude of impulse waves generated by
the collapse of a granular column into a water layer. The model, which combines the spreading
dynamics of the grains and the wave hydrodynamics in shallow water, is successfully compared to a
large dataset of laboratory experiments, and captures the influence of the initial parameters while
giving an accurate prediction. Furthermore, the role played on the wave generation by two key
dimensionless numbers, i.e., the global Froude number and the relative volume of the immersed
deposit, is rationalized. These results provide a simplified, yet comprehensive, physical description
of the generation of tsunami waves engendered by large-scale subaerial landslides, rockfalls, or cliff
collapses in a shallow water.

Introduction. Tsunamis are among the most destructive natural disasters for human coastal settlements. While
events generated by earthquakes have been extensively studied [1–4], several past or potential occurrences of high
amplitude waves arising from large-scale landslides have also been reported in past decades [5–9], which constitutes a
grand challenge in environmental fluid mechanics [10]. The 1958 Lituya Bay tsunami, featuring the highest recorded
wave runup of 524 m [6], is reminiscent of the importance of understanding the physics underlying such events, for
reliable hazard assessments.
A relevant approach is to experimentally model landslides and pyroclastic flows using a granular material [6, 11–

18]. Although the finding of constitutive laws for granular media remains challenging, and is still attracting many
research activities [19–23], canonical experimental configurations have been developed to study geophysical flows,
such as the granular collapse experiment [24–36]. In this situation, a column of dry grains, suddenly released, falls
vertically while spreading horizontally under the effect of gravity. The resulting final deposit height H∞ and runout
distance ∆L∞ = L∞ − L0 both depend on the aspect ratio a of the column, i.e., the ratio of its initial height H0 to
width L0, through nontrivial scaling laws [26, 27]. The aspect ratio also influences the characteristic timescale of the
horizontal spreading [32, 36]. In the case of an immersed granular collapse, similar scaling laws are obtained for the
final morphology of the deposit [37–39]. An interesting feature of the granular collapse experiment was its ability to
compare successfully with large-scale geophysical events [11].
This experimental configuration has also been used recently to generate impulse waves of geophysical interest, by

releasing the grains into a water layer of depth h0 [40–45]. Several dimensionless parameters have been observed to
be important for the wave generation. The most intuitive is the Froude number, that can be defined in two ways:
globally as Fr0 =

√

H0/h0 [40, 41, 45], which compares the typical vertical free-fall velocity
√
gH0 of the grains to

the velocity
√
gh0 of linear gravity waves in shallow water, or locally as Frf = vm/

√
gh0, with vm the maximum

horizontal velocity of the granular front at the water surface [42, 44]. In particular, the wave amplitude was related
analytically to Frf through weakly nonlinear scalings [44], or with the linear approximation Am/h0 ≃ 1.2 Frf [42, 46].
In addition, the wave amplitude Am was found to be linked to the final immersed volume of grains ∆V∞, which can
be measured in the field, and allows back-calculations of former events [43]. However, so far a unifying model relating
the wave amplitude to the initial geometry of the column and the water depth remains elusive. Such an attempt was
made recently through the study of the collapse of a Newtonian viscous fluid into a water layer [47]. Nevertheless,
this configuration is closer to a dam-break problem and does not account for the granular nature of the landslide. As
a result, the prediction of the wave amplitude following a granular collapse currently relies on empirical fits, without
relevant physical model.
In the present study, a predictive model for the wave amplitude in shallow water conditions is introduced, by

coupling the dynamics of the granular collapse highlighted in Ref. [36] with the wave hydrodynamics elucidated in
Ref. [44]. The influence of the initial parameters is revealed by the model, which therefore captures the role played
by the initial Froude number Fr0 and also explains how the final volume of immersed grains ∆V∞ is related to the
wave generation. The model is successfully compared with an extended dataset of experiments.
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FIG. 1. (a) 3D view of the experimental setup, showing the initial granular column of height Hg and width L0, the initial fluid
depth h0, the channel width W , and the maximum wave amplitude Am. (b) 2D view of the final granular deposit of height
H∞, runout length L∞, immersed volume ∆V∞, and front position ℓ∞ at z = h0. (c)-(d) Impulse waves generated by the
collapse of a column with Hg = 39 cm and L0 = 10 cm: (c) Bore wave for h0 = 3 cm, and (d) solitary wave for h0 = 10 cm
(movies are available in Supplemental Material [48]).

Experimental setup. The two-dimensional experimental setup, sketched in figure 1(a), consists in a 2 m×0.30 m×
0.15 m reservoir, filled up to a height h0 with water [42, 44]. A rectangular dry granular column of initial height
Hg and width L0 rests on a solid step of height h0, and is retained by a sliding gate. The following ranges of initial
parameters were investigated: 9 cm 6 Hg 6 50 cm, 2.5 cm 6 L0 6 20 cm, and 2 cm 6 h0 6 25 cm. The total height
H0 = Hg + h0 from the bottom plane and the aspect ratio a = H0/L0 of the initial column were thus varied in the
ranges 11 cm 6 H0 6 59 cm and 1 . a . 21, respectively. This allowed to explore a larger range of initial parameters,
especially for the aspect ratio, than in previous studies [41, 42, 44]. The grains are monodisperse glass beads of mean
diameter d = 5 mm, density ρ = 2.5 g.cm−3 with a dense packing fraction φ ≃ 0.64. Using the same grains for all
experiments is motivated by a previous study [42], which showed that the maximum amplitude of the generated wave
does not significantly depend on the grains’ size and density, at least for millimeter-scale grains denser than water.
At the beginning of the experiment, the gate is quickly lifted at V = 1 m.s−1 to ensure no significant influence of the
release process on the collapse dynamics [36]. The solid step restricts fluid perturbations induced by the withdrawal
of the gate [41]. The grains fall under the effect of gravity into water, leading to the formation of an impulse wave, as
illustrated in figures 1(c)-(d). The video recordings are then processed to extract the maximum amplitude Am reached
by the wave, and the maximum horizontal velocity vm = dℓ/dt of the advancing granular front at the water surface
z = h0 [44]. In addition, the final morphology of the deposit is characterized by measuring the final runout distance
L∞, height H∞, volume ∆V∞ of immersed grains, and position ℓ∞ of the granular front at z = h0, as illustrated in
figure 1(b).

Influence of the initial parameters on the generated wave and final deposit. The evolution of the maximum
wave amplitude Am with the water depth h0 is presented in figure 2 for three initial geometries of the column. For a
given column geometry, Am first increases with h0 at the shallowest depths, then decreases for intermediate depths,
before saturating at a constant asymptotic value. When the initial fluid depth h0 is small compared to the column
height Hg, the collective motion of the spreading grains is mainly horizontal, and the advancing front is similar to a
piston pushing the water, as illustrated in figures 1(c)-(d) (see also Supplemental Material [48]). This situation leads
to the formation of either transient bore (Am & 0.96 h0) or solitary (0.45 h0 . Am . 0.96 h0) waves [44]. In that
case, the generation mechanism, i.e., the advancing granular front pushing water like a moving piston, is in agreement
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FIG. 2. Evolution of the maximum wave amplitude Am with the fluid depth h0, for three different initial granular columns of
same width L0 but different height Hg. The horizontal dashed lines indicate the saturation of Am at large h0. Full symbols
refer to shallow water waves, while empty symbols correspond to deep water waves. The shaded area corresponds to deep water
waves, where Am . 0.45 h0, and the black dashed line ( ) represents the observed limit between bore and solitary waves
(Am ≃ 0.96 h0).

FIG. 3. (a) Relative final height H∞/L0 and (b) runout distance ∆L∞/L0 reached by the final deposit as a function of the
aspect ratio of the initial column a = H0/L0. ( ) Power laws H∞/L0 = αan [with α = 1 and n = 1 when a . 0.93, and
α = 0.95 and n = 1/3 when a & 0.93], and ∆L∞/L0 = βam [with β = 1.65 and m = 1 when a . 3, and β = 2.38 and m = 2/3
when a & 3]. (◦) Experiments of bore and solitary waves which are not significantly affected by the presence of the solid step.
(×) Bore and solitary waves with a noticeable influence of the solid step, and nonlinear transition waves.

with recent numerical simulations which reproduced finely a specific geophysical case with a complex topography [9],
although the initial conditions are quite different than from our model laboratory configuration. On the contrary,
when h0 is of the order or greater than Hg, the grains have essentially a vertical motion, closer to a “granular spillway”
situation, in which a finite volume of grains discharges into deep water (see Supplemental Material [48]). This regime
departs from shallow water conditions and leads to the formation of the so-called nonlinear transition waves for
which Am . 0.45 h0 [44]. Increasing the initial height Hg of the column, while keeping the other initial parameters
constant, systematically leads to higher values for the wave amplitude. In the following, the study focuses on shallow
water waves (Am & 0.45 h0), whose understanding is of significant importance for risk assessments as bore waves are
potentially very destructive in enclosed fjords scenarios [8], while at the same time solitary waves can propagate and
distribute part of the collapse energy far from the source.
In the present configuration, the generated wave is a direct consequence of the granular collapse. Therefore, it is
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FIG. 4. (a) Relative maximum amplitude Am/h0 of the wave as a function of the relative final extension of the granular front

∆ℓ∞/h0, with ( ) Am/h0 = 0.50
√

∆ℓ∞/h0. (b) Comparison between the measurement of ∆ℓ∞ and the model prediction

∆ℓ∞,th. ( ) ∆ℓ∞ = 0.82∆ℓ∞,th. (c) Am as a function of
√

∆ℓ∞,thh0, with ( ) Eq. (4). Symbols designate (⊲) bore and
(�) solitary waves. The shaded area in (a) correspond to the deep water waves region where Am . 0.45 h0.

interesting to focus also on the main features of the final granular deposit, characterized by its final height H∞ and
runout distance ∆L∞ = L∞ − L0. In the dry case, these two final parameters, rescaled by the initial width of the
column, H∞/L0 and ∆L∞/L0, are known to be governed mainly by the initial aspect ratio a of the column, and
slightly influenced by the material and frictional properties of the grains and the substrate [26, 27, 29, 31]. Figures
3(a) and 3(b) show the evolution of H∞/L0 and ∆L∞/L0, respectively, as a function of a. In the present experiments,
the initial granular column stands on a solid step of height h0, and one may expect that the final deposit may be
different from the one that would occur without a solid step. The initial dataset is thus subdivided into two parts:
(◦) the experiments for which the solid step has no significant influence on the final deposit, i.e., where H0/h0 > 4
and h0 6 L0 according to [49], and (×) those impacted by the presence of the step. For the first set (◦), the relative
final height H∞/L0 [figure 3(a)], and runout distance ∆L∞/L0 [figure 3(b)] are then fitted by piecewise power laws
of the initial aspect ratio, following Lajeunesse et al. (2005) [26]:

H∞

L0

= αan =

{

a

0.95 a1/3

for a . 0.93,

for a & 0.93,

∆L∞

L0

= βam =

{

1.65 a

2.38 a2/3

for a . 3,

for a & 3,

(1)

where the prefactors α and β are slightly dependent on the material and frictional properties (except the trivial value
α = 1 for low enough aspect ratios) [28, 31, 35], and would also be impacted by the presence of cohesion [14, 50].
Therefore, using different grain or substrate properties would require one to adjust these coefficients accordingly. The
exponents of Eqs. (1) differ from 2D to 3D configurations [26, 27], and are a signature of the gravity-driven dynamics
of the collapse [30]. It should be mentioned that although no experimental data are available here at low aspect
ratio (a . 0.93), the scaling H∞/L0 = a is represented, as this case corresponds to the trapezoidal final shape of the
deposit already described by previous work [26, 27, 30, 34, 36], where only a fraction of the initial granular column
collapses, so that H∞ = H0. The second set (×) of experiments deviates significantly from the scalings of Eqs. (1)
for the final height as well as for the run-out distance. These data are either impacted by the presence of the solid
step or depart from shallow water conditions (deep water waves), and are therefore not considered in the following.

A predictive model for the wave amplitude. To understand the bell-shaped curves for Am(h0) in shallow water,
as illustrated in figure 2, the local Froude number Frf = vm/

√
gh0 needs to be related to the initial parameters of

the granular column as it is known that, at first order, Am/h0 ≃ 1.2 Frf [42, 46]. The granular front velocity vm
is expected to scale as ∆ℓ∞/τx, where ∆ℓ∞ = ℓ∞ − L0 is the front position of the final deposit and τx the typical
spreading time of the granular mass, both taken at z = h0. In a recent study, τx was shown to be proportional to
√

∆ℓ∞/g [36]. Using this result, Frf may be estimated as
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Frf =
vm

√
gh0

∝
∆ℓ∞

τx
√
gh0

∝

√

∆ℓ∞
h0

, (2)

and therefore Am/h0 is also expected to scale as
√

∆ℓ∞/h0, due to the aforementioned approximate linear relation
between Am/h0 and Frf . Figure 4(a) presents the rescaled wave amplitude Am/h0 as a function of ∆ℓ∞/h0 for (⊲)
bore and (�) solitary waves. All experimental data corresponding to shallow water waves collapse onto a master curve

of equation Am/h0 ≃ 0.5
√

∆ℓ∞/h0. Therefore, in this case the moving granular front acts like a piston pushing the
water, whose velocity would be coupled to its stroke [as highlighted by Eq. (2)].
An estimate of the typical horizontal extension ∆ℓ∞,th can be obtained by assuming a triangular shape for the final

deposit: ∆ℓ∞,th = ∆L∞ − h0L∞/H∞. Using Eqs. (1) the final runout distance at z = h0 is thus expected to be
given by the relation

∆ℓ∞,th = βam−1H0 −
1 + βam

αan
h0. (3)

In figure 4(b), the measured front position ∆ℓ∞ of the final deposit is compared with the prediction of Eq. (3). The
relation ∆ℓ∞ = 0.82 ∆ℓ∞,th captures all the experiments, with a prefactor revealing a systematic overestimate of
∆ℓ∞ by the model, as the final deposit is not perfectly triangular, but presents some curvature instead [26, 27, 30, 36].
From the two fits of figures 4(a) and 4(b), the wave amplitude should be given by

Am = 0.45
√

∆ℓ∞,thh0. (4)

The prediction given by Eq. (4) fits well the data, as presented in figure 4(c), which reveals that the model captures
the physics behind the wave generation in shallow water. By inserting Eq. (3) in Eq. (4), the wave amplitude can be
expressed as a function of the initial parameters H0, L0, and h0 to obtain

Am = 0.45 h0

√

β

(

H0

L0

)m−1
H0

h0

−
1 + β(H0/L0)m

α(H0/L0)n
, (5)

where the coefficients α, β, n and m are given in Eqs. (1).
To highlight the influence of the initial parameters on the wave amplitude, figures 5(a)-(b) report the prediction

of Am given by Eq. (5) as a function of h0 for a = 3 and different values of H0 from 20 to 60 cm [figure 5(a)], and

for H0 = 40 cm and different values of a from 1 to 10 [figure 5(b)]. In all cases, we observe that Am ∼ h0
1/2 for the

shallowest depths, then reaches a maximum value before decreasing. Note that this maximum, as well as the critical
depth at which it occurs, both increase linearly with H0 when a is constant [see Appendix for more details]. The
present model reproduces thus well the bell-shaped part of the curves obtained in figure 2 which were also observed
in previous experimental studies [16, 42].
Let us now explore the prediction of the model for the wave generation as a function of two dimensionless numbers,

reflecting either the initial state or the final deposit of the collapse: the global Froude number Fr0 =
√

H0/h0 [40–

42, 45] and the relative volume ∆V∞/(Wh0
2) of the immersed deposit [43]. Using Eq. (5) straightforwardly leads

to

Am

h0

= 0.45

√

βam−1Fr0
2 −

1 + βam

αan
. (6)

In addition, within the present model the final immersed deposit would have a trapezoidal shape, of volume ∆V∞,th =
(∆L∞ +∆ℓ∞,th)Wh0/2. As a result, Eq. (4) leads to

Am

h0

= 0.45

√

2
∆V∞,th

Wh0
2

−
∆L∞

h0

. (7)

The relative wave amplitude predicted by Eqs. (6) and (7) is presented in figures 5(c) and 5(d), respectively, for
different initial aspect ratios from 1 to 10 and H0 = 40 cm. In both cases, Am/h0 increases monotonically with a
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FIG. 5. (a)-(b) Maximum wave amplitude Am, given by Eq. (5), as a function of the water depth h0, for (a) different initial
height H0 with the same aspect ratio a = 3, and (b) different a with H0 = 40 cm. (c)-(d) Am/h0 as a function of (c) Fr0 as
given by Eq. (6), and (d) ∆V∞,th/(Wh0

2) as given by Eq. (7), for H0 = 40 cm and different a. Shaded areas are the same as
in figure 2.

sublinear shape. Note that the influence of the aspect ratio on the relative wave amplitude is almost imperceptible
when varying the rescaled volume of the immersed deposit in figure 5(d), but is non-negligible when the global Froude
number is varied, as in figure 5(c).

Comparison with the experiments. In figure 6(a), the prediction of the wave amplitude Am using Eq. (5) is
compared to the experiments from figure 2. The numerical prefactors found by the best fit for each initial geometry
are in the range [0.42–0.49], i.e., very close to the value 0.45 of Eq. (5). A good agreement is observed in shallow water
conditions, as the bell-shaped curves are correctly reproduced. As expected, the present model fails in predicting the
plateau values observed for deep water waves (Am . 0.45 h0) since the model is not valid under these conditions. The
relative wave amplitude Am/h0 is also reported as a function of Fr0 in figure 6(b), alongside the model curves obtained
for identical initial granular columns. All experimental data are within the collection of model curves from Eq. (6),
with a sublinear increase of Am/h0 with Fr0 for a given a. The influence of the aspect ratio is also well captured in
the investigated range, as shown by the experiments (H) with the most slender initial columns, that are significantly
below the other data (corresponding to lower values of a). Therefore, at first order, the global Froude number Fr0
governs the relative wave amplitude, but with a noticeable effect of the initial aspect ratio. It is also interesting to
consider the correlation between the relative wave amplitude and the relative volume of immersed deposit. To do
so, we first compare the model prediction for the volume of the immersed deposit ∆V∞,th with the experimental
measurements of ∆V∞. Figure 6(c) shows that there is a good correlation between them. A linear trend of slope
0.65 fits well the data, showing that the predicted volume overestimates the measurements in a systematic way, here
again because the final immersed deposit is not perfectly trapezoidal. Using this result, it is possible to compare
Am/h0 to ∆V∞/(Wh0

2) for all experiments and to draw the corresponding model curves, as shown in figure 6(d).
The agreement between the experiments and the predictions allows one to explain the strong link existing between
∆V∞/(Wh0

2) and the generated wave, which was previously reported [43]. This correlation is a striking result, that
may appear surprising, but one needs to keep in mind that the final deposit is the result of the gravity-driven collapse
and is thus reminiscent of its dynamics. The empirical equation for the wave amplitude given in [43] is also reported
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FIG. 6. (a) Am as a function of h0, for the experiments of figure 2. (b) Am/h0 as a function of the global Froude number Fr0. (c)
Comparison between the experimental and predicted immersed volumes, with ( ) ∆V∞ = 0.65∆V∞,th. (d) Am/h0 as a func-

tion of the relative volume ∆V∞/(Wh0
2) of the immersed deposit, with ( ) the empirical law Am/h0 = 0.25

[

∆V∞/(Wh0
2)
]0.8

from [43]. The colored solid lines in (a), (b), and (d) correspond to the model predictions for the same initial granular columns
as in the experiments, and the shaded areas are the same as in figure 2.

in figure 6(d), to highlight that the present model better captures the experimental data in the whole range of shallow
water conditions.

Conclusion. The amplitude Am of the impulse wave generated by the collapse of a granular column in a shallow water
of depth h0 can be predicted by combining the spreading dynamics of the grains [36], relating the initial parameters
of the column to the local Froude number Frf based on the advancing granular front at the water surface, and the
wave hydrodynamics linking Frf to Am [44]. In this situation, the spreading motion of the grains indeed behaves as
a peculiar piston, whose velocity is coupled with its stroke. The present model explicits the evolution of Am as a
function of the initial parameters H0, L0, and h0. In addition, it highlights the important role played by the global
Froude number Fr0 =

√

H0/h0 and the relative volume ∆V∞/(Wh0
2) of the immersed deposit. It explains why these

different dimensionless numbers have been observed to play a key role in previous studies [40, 42, 43, 45].
It is worth noting that the numerical prefactors obtained in the model slightly depend on the considered granular

matter. Therefore, one would need to adjust their values to apply the present model to other materials. Within these
minor adjustments, this predictive model should work in similar configurations, for instance for the ones explored
experimentally [40, 41] or numerically [45] in previous studies, provided that the shallow water condition is fulfilled.
For deep water conditions, a predictive model remains to be developed. The present model should be adapted
accordingly for the topographies and bathymetries that are specific in the field, by expressing the maximum velocity
of the granular front in the impact region, to derive the relevant Froude number in that case. For post-mortem
analysis in the field based on the measurements of the final immersed deposits, the present model could be used
without significant adjustments. Indeed, there is a trace of the gravity-driven dynamics in the final deposit, as shown
by the good correlation of Eq. (7) with all the data for very different columns with a large range of investigated
aspect ratios. In order to investigate 3D effects that may be important in real cases, in particular in the collapse
of volcanic islands such as the 2018 Krakatau event [7], the study of waves generated by the collapse of cylindrical
columns instead of rectangular ones would be of great interest. Indeed, the scaling laws for the final deposit are known
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FIG. 7. Critical Froude number Frc0 =
√

H0/hc

0
at which the maximum wave amplitude is reached for the collapse of granular

column, as a function of the initial aspect ratio a. The line corresponds to Eqs. (8) for the three domains separated by the two
vertical dotted lines at a = 0.93 and a = 3.

to be different in this case [24, 25]. In addition, a 3D context would make the wave hydrodynamics more complex.

APPENDIX : CRITICAL DEPTH FOR A MAXIMUM WAVE AMPLITUDE

It is interesting here to provide a discussion on the critical water depth at which the maximum wave amplitude is
reached, for the collapse of a granular column of a given aspect ratio, as observed in the bell-shaped curves of Figs.
5(a)-(b). From Eqs (3)-(4), one can obtain that the critical depth is given by hc

0 = ∆L∞H∞/(2L∞), which leads to

the corresponding amplitude Ac
m ≃ 0.45

√

∆L∞
2H∞/(4L∞). For a column with a given aspect ratio a, leading to a

given deposit, we can infer from these expressions that both hc
0 and Ac

m increase linearly with the initial height H0

of the column, as can be observed in Fig. 5(a). To illustrate this point, fom Eqs. (1) we can write hc
0/H0 in terms of

the initial aspect ratio a of the granular column in the following manner:

hc
0

H0

≃































0.83a

1 + 1.65a
for a . 0.93,

0.78a1/3

1 + 1.65a
for 0.93 . a . 3,

1.13

1 + 2.38a2/3
for a & 3.

(8)

These expressions thus show that hc
0 is proportional to H0 when the aspect ratio of the column is kept constant.

The associated critical Froude number Frc0 =
√

H0/hc
0 is presented in figure 7 as a function of the aspect ratio of

the column. It shows a nontrivial evolution with a, with a sharp decrease for low aspect ratio (a . 0.93), and an
increasing region for higher values of a. It means that, for aspect ratios below 0.93, the maximum value for the
amplitude of the wave is reached for hc

0 small when compared to the initial column height H0. Around a ≃ 0.93, the
curve reaches a global minimum where Frc0 ≃ 1.8, so that hc

0 ≃ H0/3.24: It is the highest possible value of hc
0 when

varying the initial aspect ratio of the column. Then, increasing a beyond this point again implies that the critical
wave amplitude occurs with hc

0 increasingly small when compared to H0.
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[9] M. Rauter, S. Viroulet, S. S. Gylfadóttir, W. Fellin, and F. Løvholt, Granular porous landslide tsunami modelling – the
2014 Lake Askja flank collapse, Nat. Commun. 13, 678 (2022).

[10] T. Dauxois, T. Peacock, P. Bauer, C. P. Caulfield, C. Cenedese, C. Gorlé, G. Haller, G. N. Ivey, P. F. Linden,
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