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Dynamic Light Scattering (DLS) is a well-known technique to study the relaxation times of systems at equilibrium.7

In many soft matter systems, we actually have to consider non-equilibrium or non-stationary situations. We discuss8

here the principles, the signal processing techniques we developed, based on regularized inverse Laplace transform,9

sliding with time, as well as the light scattering signal acquisition, that enable us to use DLS experiments in this10

general situation. In this article we show how to obtain such a Time-Laplace analysis. We claim that this method can11

be adapted to numerous DLS experiments dealing with non-equilibrium systems so as to extract the non-stationary12

distribution of relaxation times. To prove that, we test this Time-Laplace method on three different non-equilibrium13

processes or systems investigated by means of DLS technique: the cooling kinetics of a colloidal particle solution; the14

sol-gel transition; and the internal dynamics of a living cell nucleus.15

I. INTRODUCTION16

Dynamic light scattering (DLS), also known as Quasi-17

Elastic Light Scattering (QELS) or Photon Counting Spec-18

troscopy (PCS), is a non-invasive spectroscopic analysis tech-19

nique. Its fields of applications are diverse and range from20

chemistry, through biophysics, to physics. DLS principle is21

based upon analysis of the temporal fluctuations in the light22

intensity scattered by the sample under investigation, Iscat(t).23

One of the main applications of DLS is likely to be the24

size measurement of nano- and micro-scale particles in so-25

lutions, e.g. colloidal particles, micelles, polymers, proteins;26

all objects with radii smaller than ∼ 300 nm1–3. In this case,27

experiments are carried out with dilute solutions in station-28

ary conditions so as to probe the Brownian motion of these29

objects. Nevertheless, particle sizing is not the only applica-30

tion of DLS. Several phenomena in statistical and soft con-31

densed matter physics can be investigated thanks to DLS32

measurements: dynamics of liquid crystal phases4–8, disper-33

sions of colloids9–11, micelles12–14, polymers15–18. DLS mea-34

surements then are performed with more concentrated solu-35

tions and provide information on the collective relaxation pro-36

cesses, therefore, on the sample thermodynamics.37

For all these reasons, DLS has been extensively used to38

probe the dynamics of “soft matter systems” in thermody-39

namic equilibrium for more than fifty years. To characterize40

the dynamics of the sample, commercial DLS devices return41

the autocorrelation function of the scattered light intensity,42

namely g2(τ) = ⟨Iscat(t)Iscat(t + τ)⟩. The decay of g2(τ) as43

a function of the delay τ is related to the relaxation times ζi44

(possibly several of them, hence the index i) of the sample.45

This technique allows to probe relaxation times of the system46

over a broad range, typically from microsecond to minute. In47

usual DLS applications, the investigated samples are in ther-48

modynamic equilibrium, or at least stationary over the dura-49

tion of the measurement.50

Of course non-equilibrium or non-stationary systems scat-51

ter light as well, and therefore it is tempting to use DLS ex-52

periments to probe their dynamics. This has already been53

done for the study of continuous phase transitions19,20, spin-54

odal decomposition21–23, as well as the dynamics of gels24–28,55

glassy systems29–32, or nucleus of a living cell33–35. How-56

ever, in these cases, usual analyses of Iscat(t) data no longer57

hold; particularly the autocorrelation function g2(τ) of the58

scattered intensity only makes sense if the dynamics of the59

investigated system is stationary over the duration of its mea-60

surement. Theoretical models linking measurements of g2(τ)61

to ζi assume, indeed, that the system is stationary. Here, as62

this is not the case, the computed autocorrelation function63

should depend on the time t at which it is estimated; that is:64

g2(τ, t) instead of g2(τ). The relaxation times of the sample,65

ζi, as well as the mean scattered intensity, evolve through-66

out the measurement. The signal measured in non-stationary67

DLS is thereby complex, and the analysis of its autocorrela-68

tion function is intrinsically complicated. The non-stationarity69

of Iscat(t) may also appear as a long relaxation time (possibly70

longer than the typical duration T0 on which autocorrelation is71

estimated). And mostly, an issue is how to deal with change72

in ζi with time during the acquisition. Consequently, to take73

full advantage of DLS technique to investigate the dynamics74

of non-equilibrium, non-ergodic or non-stationary systems, it75

is necessary to develop new signal processing methods able76

to reliably extract the time-dependent dynamics of these sys-77

tems. The following properties are required:78

• The analysis must be possible under non-stationary79

conditions. This means that the analysis has to be80

made time-dependent so that it evolves with t, the time81

at which it is carried out. Hence, formally, we have82

to work with a non-stationary autocorrelation function,83

g2(τ, t).84

• The duration of the data acquisition ∆T has to be taken85

into account, as well as T0 the duration over which the86

autocorrelation function is estimated. Indeed, if ∆T is87

large compared to the time evolution of the ζi’s, auto-88

correlation function will tend to provide time-average89

values, which poorly reflects the evolution of the system90

(especially for the short ζ ). Conversely, if it is chosen a91

too short ∆T , it will no longer be possible to probe the92
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long relaxation time, even if they are stationary. More-93

over, the measured g2(τ, t) might be very noisy which94

will prevent good estimation even of the short ζi. So, it95

is required to adapt the estimation and choose a suitable96

T0 which may vary and be different from ∆T .97

• In out-of-equilibrium systems, there are often several98

characteristic relaxation times, denoted ζi, for i =99

1, ...,M, which occur at the same moment and that may100

be distributed over a broad time range. M is unknown,101

so is the time range, yet it is needed to find out all these102

times.103

All that calls for developing a new methodology for the104

analysis of DLS data recorded on non-equilibrium, non-105

ergodic or non-stationary systems. This is the first objective106

of the present article. For this purpose, we will revisit107

S.W. Provencher’s regularized Inverse Laplace Transform108

method36,37, and from there develop an original Inverse109

Laplace Transform method that can be used as a multiscale,110

non-stationary method for DLS analysis. Thereby, the nov-111

elty of this work is to develop a comprehensive method for112

estimating a non-stationary inverse (and regularized) Laplace113

Tranform, which can cope the three issues mentioned above.114

Thus, the originality of the present work is to carefully study115

sampling, resolution, duration of the estimation window T0,116

then to validate the method on various systems of soft matter.117

118

Section II recalls in A the basics of DLS experiments, in B119

the classical analysis of DLS signals on systems in thermo-120

dynamic equilibrium, in C the attempts done to analyse DLS121

signals on non-stationary systems, finally in D we explain the122

aim of the present work and how we adapt the current analysis123

of DLS signals to non-stationary signals. Then, Section III de-124

scribes the inverse Laplace transform procedure, based on the125

CONTIN method36,37, which we develop to extract valuable126

information from non-stationary DLS signals. In the second127

part of this section it is discussed a numerical experiment val-128

idating this method. Next, in Section IV, it is first explained129

the proposed Time-Laplace approach that aims at following130

the time evolution of the relaxation times for non-equilibrium131

systems thanks to DLS experiments. Then it is described the132

experimental setting for data acquisition of the scattering sig-133

nal required to allows this approach. Finally, in Section V134

in order to validate this method it is shown its application135

to the investigation of the dynamics of three different non-136

equilibrium processes or systems: the cooling kinetics of a137

colloidal particle solution; the sol-gel transition; and the inter-138

nal dynamics of a living cell nucleus.139

II. PRINCIPLES OF DYNAMIC LIGHT SCATTERING140

EXPERIMENTS AND THEIR ANALYSIS141

Here, it is important to state that although the methods de-142

veloped in this article can most likely be applied to hetero-143

dyne light scattering, cross-correlation light scattering, scat-144

tering wave spectroscopy (DWS) and X-ray photon correla-145

tion spectroscopy (XPCS), since the scattered intensity can be146

recorded continuously and an autocorrelation function (ACF)147

of the scattered intensity can be computed, in this article we148

only focus on the case of a single scattering process in a ho-149

modyne light scattering experiment.150

A. DLS principles151

Light scattering originates in the spatio-temporal fluctua-152

tions of the medium refractive index38. It therefore arises from153

the local optical properties of the sample, which are them-154

selves linked to both the structure and the internal dynamics155

of the investigated sample. Fluctuations of the medium re-156

fractive index imprints information about particle motion in157

the scattering signal. We restrict the present study to light158

scattering in the Rayleigh-Gans-Debye regime (RGD). This159

theory is an approximate solution to light scattering by opti-160

cally “soft” particles dispersed in a medium. Optical softness161

means that the size of particles is smaller or of the order of the162

light wavelength λ , and their refractive index n1 is close to163

that of the surrounding medium n0. The approximation holds164

for particles of arbitrary shape that are relatively small but165

may be larger than Rayleigh scattering limits; the RGD ap-166

proximation implies: a|n0 − n1|2π/λ ≪ 1, a being the size167

of the particles. In this framework, the refractive index of the168

medium can be written as a function of space r⃗ and time t, as:169

n(⃗r, t) = ⟨n⟩ + δn(⃗r, t), where δn(⃗r, t) represents both spa-170

tial and time fluctuations in the refractive index of the sample171

around its mean value ⟨n⟩; in most cases ⟨n⟩ ≈ n0. The scat-172

tered electromagnetic field, Escat, is proportional to the spatial173

Fourier transform of the fluctuations of n(⃗r, t), i.e. δ n̂(⃗q, t),174

where q⃗ is the scattering wave vector. Thereby, the scattered175

light intensity, Iscat(q, t) = |Escat(q, t)|2 = E∗
scat(q, t)Escat(q, t),176

is the “diffraction pattern" of the scattering volume (the sam-177

ple’s volume where the scattered light comes from). The size178

of the scattering volume is defined both by the optics and by179

the size of the hole placed in front of the detector.180

For systems in thermodynamic equilibrium, the measured181

light scattering signal shows random fluctuations around a182

mean value: Iscat(t) = I0 +δ I(t), with ⟨δ I(t)⟩= 0. According183

to the RGD theory, these fluctuations are related to the dy-184

namics of the processes involved in the temporal fluctuations185

of the refractive index n. For dispersions, these fluctuations186

δ I(t) come from the particle motion and reflect the randomly187

changing relative position of the particles as a result of ther-188

mal agitation. Thus analysis of δ I(t) yields information about189

the dynamics of the system. In the case of non-interacting190

particles (i.e. in practice for dilute samples) this provides in-191

formation on the Brownian motion of the particles; henceforth192

DLS measurements give access to the diffusion coefficient of193

the objects: D0 = kBT/6πηRh, where η is the solvent viscos-194

ity and Rh the hydrodynamic radius of the objects. In the case195

of interacting particles, then DLS measurements yield infor-196

mation on the thermodynamics of the system as well as on197

hydrodynamic interactions39.198

The principle of DLS experiment is therefore simple, as199

sketched on Fig. 1. It consists in passing a light beam (usu-200

ally a laser beam of wavelength λ in its fundamental mode)201
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FIG. 1. Schematic representation of DLS set-up.

through the sample, and to study the light intensity scattered202

by the sample in a given direction. The scattered light inten-203

sity, Iscat(⃗q, t) coming from the scattering volume, is detected204

by means of a photodetector placed at an angle θ with re-205

spect to the incident laser beam direction. This angle selects206

the scattering wave vector q⃗, the module of which is given as207

a function of the mean refractive index ⟨n⟩ of the dispersion208

and the incident light wavelength λ :209

q = (4π⟨n⟩sin(θ/2))/λ . (1)

This scattering wave vector sets the length scale l over which210

light scattering probes the fluctuations of the refractive index211

n: l ≈ 2π/q. By varying the scattering angle θ , q is varied,212

thus allowing for probing the sample dynamics over spatial213

scales ranging from hundreds of nanometers (∼ λ/2⟨n⟩) to a214

few micrometers.215

B. Classical methods for analyses of stationary DLS signals216

The starting point for analyzing temporal fluctuations of the217

scattered light intensity is the estimation of its ACF g2(τ). In218

general, the incoming data are processed in real time using219

a digital signal processing device known as a correlator that220

outputs an estimate of the ACF of the scattered intensity as a221

function of the delay time τ . This ACF, g2(q,τ) is written:222

g2(q,τ) = ⟨Iscat(−q, t)Iscat(q, t + τ)⟩ (2)

Note that here, the explicit dependence on q has been taken223

into account in order to relate the measured ACF to Iscat and224

Escat. This latter equation can also be expressed as225

g2(q,τ) = ⟨Iscat(q, t)⟩2 (1+β |g1(q,τ)|2
)

(3)

This equation is known as the Siegert relation38.226

⟨Iscat(q, t)⟩ = Iscat(q), is the static scattering intensity227

at wave vector q⃗; g1(q,τ) is the first-order ACF, de-228

fined as: g1(q,τ) = ⟨E∗
scat(q, t)Escat(q, t + τ)⟩, hence229

g1(q,τ) ∝ ⟨δ n̂(−q, t)δ n̂(q, t +τ)⟩. The factor β is the inverse230

of the number of coherence area on the photodetector surface,231

i.e. the number of speckle spots; 0 ≤ β ≤ 1.232

Note that in the rest of this article, we get rid of the depen-233

dence on q; both for reasons of simplicity, and also because234

in the following it is only considered experiments with fixed235

q; hence we write: g2(τ) = ⟨Iscat(t)⟩2
(
1+β |g1(τ)|2

)
, with236

g1(τ) ∝ ⟨δ n̂(t)δ n̂(t + τ)⟩.237

238

The first step of a DLS experiment is to obtain an ACF239

g2(τ) that can be readily analyzed. To obtain such a function240

care must be taken. If T0 is the duration over which the ACF241

of the scattered intensity is computed, the scattering signal has242

to be stationary over T0, i.e. ⟨Iscat(q,u)⟩ = cste,∀u ∈ [0,T0].243

The largest value of the probed τ has to be larger than the244

slowest relaxation time of the system; and T0 must be, at245

least, 10 times larger than the last value of the probed τ . If246

all that is satisfied, then g2(τ) could be correctly estimated.247

Moreover, noise may be reduced by iterating the computation248

of g2(τ) to average them. In such cases, it provides accurate249

information on the dynamics of systems in thermodynamic250

equilibrium, or at least in a stationary state throughout the251

experiment duration. (Note that using a correlator, T0 and the252

signal duration acquisition ∆T are always identical. However,253

if the ACF is computed from the measurement of Iscat(t),254

T0 can be different from ∆T ). If it is used a correlator that255

typically probes τ between 10−8 s and 1000s, (their optimal256

operating range, in practice, is rather 10−6 s - 10s), this first257

step works well for systems the relaxation times of which are258

included within this latter range that corresponds to most of259

“soft matter” systems in thermodynamic equilibrium.260

261

The second step of a DLS experiment is to extract the re-262

laxation times ζi of the investigated sample from the mea-263

sured ACF g2(τ). The objective is, on the basis of physi-264

cally relevant characteristics of the probed system, to relate265

|g1(τ)|2 to the relaxation times. For example, in the canon-266

ical case of a dilute solution of monodisperse nanospheres,267

there is only a single relaxation time ζ related to the Brow-268

nian diffusion of the particles. Thereby |g1(τ)|2 = e−2τ/ζ ,269

where: 1/ζ = D0q2, D0 being the diffusion coefficient of270

the spheres, i.e. D0 = kBT/6πηRh as recalled above. Us-271

ing a parametric fit
(

g2(τ) = A+Be−2τ/ζ

)
, it is easy to ob-272

tain ζ , and then the hydrodynamic radius of the particles.273

Actually, particles are often polydisperse and then |g1(τ)|2274

is no longer a simple decaying exponential function. For275

slightly polydisperse spheres, the ACF can then be fitted to276

a cumulant expansion around some mean relaxation time ζ :277

|g1(τ)|2 ≃ e−2τ/ζ
(
1+µ2τ

2/2+ ...
)2

, where µ2 is the 2nd or-278

der moment of the particle size distribution; and this paramet-279

ric expansion can be continued to higher orders40–42. How-280

ever, this method is only adapted to systems that exhibit a sin-281

gle polydisperse relaxation time.282

Unfortunately, not all the systems are as simple as slightly283

polydisperse nanospheres in dilute solution. Still, many meth-284

ods have been proposed to fit (either linearly or non-linearly)285

|g1(τ)|2 in terms of the cumulants (or moments) of the re-286

laxation times distribution41–44. However many systems are287

actually much more complex. They can, indeed, exhibit sev-288

eral relaxation times that can be broadly distributed over many289
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decades, with in some cases very long relaxation times, larger290

than a few seconds4–18. Under these conditions, one approach291

is to fit |g1(τ)|2 to a model that is the square of a sum of ex-292

ponential decays. Thus:293

|g1(τ)|2 =

∣∣∣∣∣ M

∑
i=1

ai e−τ/ζi

∣∣∣∣∣
2

(4)

with M > 2 the number of modes, and ζi the mean relaxation294

time of the ith process. It can even be used a more compli-295

cated model, where it is assumed a time relaxation polydis-296

persity around each ζi (as in the previous model). Nonethe-297

less, these approaches fail quickly due to the large number of298

fitting parameters required. Often, in complex cases, to take299

into account several relaxation times, |g1(τ)|2 is modeled by300

the empirical Kohlrausch-William-Watts (KWW) form6,43,45:301

|g1(τ)|2 = e−2(τ/ζ )α

, where α is a parameter, which in the302

case of systems in equilibrium is in the range [0,1]. Then303

g1(τ) is a stretched exponential function, which means that304

it decays slower than a single exponential relaxation. This is305

assumed to reflect the existence of a broad distribution of re-306

laxation times. However, even if this kind of functions fits to307

|g1(τ)|2 properly, physical interpretation of both ζ and α may308

be difficult. Moreover, as it was stated by Madsen et al.46 and309

Andrews et al.43,44, KWW models do not always capture the310

whole relaxation processes present in the ACF.311

Henceforth, in the general setting, and especially for sys-312

tems with a broad distribution of relaxation times, a good ap-313

proach to interpret DLS measurements is to move to a non-314

parametric method and to consider that g1(τ) provides the315

Laplace transform (LT) of a density distribution of relaxation316

times, G(s):317

g1(τ) =
∫ +∞

0
G(s)e−τ/s ds (5)

Eq. (5) is the Laplace transform of G, except that here the318

Laplace variable s has the same dimension as τ . Note that319

in this article, we use s for the Laplace variable and keep a320

distinct notation ζ for the relaxation times.321

Hence, as already advocated by S. Provencher36,37, and also322

more recently by Andrews et al.43,44, rather than a parametric323

fit, to get all the relaxation times ζi, it is more powerful to esti-324

mate the inverse Laplace transform (ILT) of g1(τ). Therefore,325

to obtain a non-parametric estimation of G(s), one has simply326

to invert eq. (5). The difficulty is that the ILT process is nu-327

merically an ill-conditioned problem, prone to be very sensi-328

tive to any experimental or numerical noise. In references36,37,329

it is developed a method for regularized inverse Laplace trans-330

form, called CONTIN that is particularly used in the analysis331

of DLS and X-ray photon correlation spectroscopy (XPCS)332

autocorrelation functions (its applications, however, are much333

broader than just these fields). The major contribution of334

S. Provencher36,37 was to develop and validate, both mathe-335

matically and numerically, an algorithm to compute the ILT336

of the ACF in a stable manner thanks to a regularization of337

this ill-conditioned problem. Many different solutions for338

ILT have been developed with other approaches including339

maximum entropy47, maximum likelihood48 or non-negative340

SVD49. Compared to parametric fits or other methods, the341

CONTIN method requires little prior knowledge about the342

relaxation times of the investigated system. Note that this343

approach works for both ACFs built using a correlator and344

ACFs computed from Iscat(t). (For particle sizing, the CON-345

TIN method is now a routine analysis used in commercial DLS346

softwares.)347

348

C. Current approaches for non-stationary DLS signals.349

In principle, for experiments on non-equilibrium or non-350

stationary systems, the approaches described in the former351

section should not be employed. Nonetheless, because of352

the interest of DLS or XPCS techniques to probe the dy-353

namics of Soft Matter, works have used these techniques to354

investigate non-equilibrium systems. Therefore, many at-355

tempts were made to follow the temporal evolution of non-356

stationary scattered signals. Time-resolved-correlation mea-357

surements were proposed to quantify statistically dynami-358

cal heterogeneities50,51. Two-time correlation functions were359

used to represent the temporal evolution of ACFs in two360

dimensions46,52–54. All these works are very interesting and361

in these cases, the authors overcame to extract relevant infor-362

mation on the dynamics of the investigated systems.363

Fluerasu et al.52, Madsen et al.46,55 and Cipilletti et al.56
364

investigated dynamics of gels or glassy-like systems by365

analysing the ACFs of the scattered intensity using KWW366

models. Mostly, they followed the temporal evolution of the367

coefficient α of the KWW model. In these cases, and con-368

trary to what is observed for systems at thermodynamic equi-369

librium, it can be found α < 1, or α > 1. Sometimes, as for370

equilibrium systems, the ACF is a stretched exponential, and371

then α is likely the signature of a broad distribution of relax-372

ation times. But at other times, it is found 1 < α; when 1 < α ,373

g1(τ) is a compressed exponential function, which means the374

ACF decays faster than a single exponential relaxation. The375

physical meaning of such a relaxation is not yet well under-376

stood. Nevertheless, such approaches allow to characterise377

the investigated dynamics through the degree of stretching or378

compression of its exponential relaxation. For aging systems379

slow dynamics can be investigated thanks to such methods,380

yet assumptions on the dynamics are required and faster relax-381

ations are overlooked, or not investigated, as mentioned43,46.382

All these analyses manage to provide temporal evolution of383

an average behavior of the dynamics as well as of its hetero-384

geneities. These analyses, however, do not attempt to measure385

the relaxation spectrum, i.e. the different characteristic times386

that compose the dynamics of the investigated systems, nor387

their evolution as a function of time.388

It is still lacking an accurate signal processing tool able to389

quantify, from DLS measurements (or XPCS), the whole dy-390

namics of a non-stationary system as a function of time (at391

least over a broad range of relaxation times). Indeed, from392

our knowledge, there is no systematic, multiscale and free-393

of-a-priori method available yet to analyse non-stationary sig-394

nals of DLS in order to obtain the full spectrum of relaxation395
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times of an out-of-equilibrium system and follows its evolu-396

tion. This is the goal of our article.397

398

D. Adaptation of “CONTIN" based methods to399

non-stationary signals.400

In this article, we intend to bring about a general, system-401

atic and accurate method allowing to extract temporal evo-402

lution of the relaxation times of non-stationary signals. As403

we aim to investigate samples having, a priori, a dynamic404

with many relaxation times, polydispersed and spread over405

a broad time range, we believe that the best approach is to406

assume that the ACF of the scattered intensity is the Laplace407

transform of a density distribution of relaxation times. In this408

case, however, the ACF is a non-stationary function of the409

time t and, consequently, one should deal with a more general410

non-stationary ACF, which is g2(τ, t,T0), and the correspond-411

ing |g1(τ, t,T0)|2. There, indeed, the ensemble average is re-412

placed by a local temporal average computed between t and413

t +T0, where T0 is the duration over which the ACF is built.414

In this notation, we highlight the dependence of g2(τ) with t,415

which is the starting time of the ACF measurement. Further-416

more, we make explicit that the estimation of g2(τ, t,T0) (i.e.417

g1(τ, t,T0)), also depends on the duration over which g2(τ, t)418

(g1(τ, t)) is computed. Therefore, g1(τ, t,T0) can be written419

as the Laplace transform of a density distribution of relaxation420

times, G(s, t,T0):421

g1(τ, t,T0) =
∫ +∞

0
G(s, t,T0)e−τ/s ds (6)

422

Let us explain the ideas behind our approach. First of all, it423

is chosen a first starting time t1, and g1(τ, t1,T0) is computed424

between t1 and t1 + T0. Then, it is chosen a second starting425

time t2, and a new ACF g1(τ, t2,T0) is computed between426

t2 and t2 + T0. This process is iterated in order to achieve a427

series of ACFs whose starting times are all different. Thanks428

to eq (6), each of these g1(τ, ti,T0) is related to a density429

distribution of relaxation times G(s, ti,T0). As in the classical430

CONTIN used on systems in equilibrium, here also one has431

to invert eq. (6) to obtain a non-parametric estimation of the432

distribution of relaxation times G(s, ti,T0). Such a procedure433

should provide the relaxation times of the studied system as434

a function of time; i.e. ζ j(ti). This use of a sliding window435

connects the method to a non-stationary setting. T0 reminds436

us that G(s, ti,T0) (and thus the relaxation times ζ j), cannot437

be well estimated when they are not small enough compared438

to T0. Hence, by playing with T0, it is possible to change the439

investigated s range, allowing thus a multiscale approach of440

the scattering signal analysis.441

442

In order to follow such a strategy to investigate the dy-443

namics, as well as its time evolution, for non-equilibrium and444

non-stationary systems, care has to be taken when measuring445

g2(τ, t,T0). It is obvious that building the ACF of the scattered446

intensity thanks to a correlator will not bring about worthwhile447

results, since the correlator returns g2(τ, t,∆T ), where t can-448

not be tuned. A direct measurement of the scattered intensity,449

Iscat(t), with a high acquisition rate and over a long period of450

time ∆t, is indeed necessary to apply our signal processing.451

Once Iscat(t) recorded, the different g2(τ, ti,T0) (g1(τ, t,T0))452

can be computed, where it will be possible to play with both453

parameters ti and T0 in order to be able to finely follow the454

time evolution of the dynamics (multi scale approach). As455

written previously, to analyze these functions properly, the456

first step of this work is, therefore, to rewrite a new version457

of CONTIN that takes into account a logarithmic distribution458

of the delay times τ , over at least 6−7 decades, with appropri-459

ate regularization that makes it resilient to experimental noise460

and statistical limits in the estimates of ACFs over these broad461

time ranges. We will then demonstrate that this modified ver-462

sion of CONTIN is still a suitable non-parametric method to463

allow, from DLS measurements, the extraction of characteris-464

tic relaxation times of systems with multiple relaxation pro-465

cesses and high polydispersity. This modified algorithm, in-466

deed, is a new ILT algorithm.467

That is by combining computation of g1(τ, t,T0) functions,468

from Iscat(t) measurements, with the new ILT algorithm, that469

the time evolution of the dynamics of non-equilibrium and470

non-stationary systems can be accessed. This will be proved471

on experimental situations.472

473

The objectives and novel contributions of the present article474

are the following:475

• Revisit the classical CONTIN method in a modern and476

practical way, so as to put forward its advantages when477

processing non-stationary DLS experiments.478

• Provide a “Time-Laplace method" that brings a system-479

atic way to analyze the temporal evolution of relaxation480

times for systems exhibiting multiple relaxations and481

strong polydispersities.482

• Provide a multiscale approach allowing to monitor the483

resolution of the relaxation times and of their evolution.484

III. NON-STATIONARY DLS SIGNAL PROCESSING485

BASED ON INVERSE LAPLACE TRANSFORM486

A. Log spaced and weighted Inverse Laplace Transform487

algorithm.488

Let’s assume that we have a measure of the scattered light489

intensity as a function of time, Iscat(t) (we will describe the490

procedure for acquiring Iscat(t) in section IV B). The starting491

point of the procedure we develop here is the estimation of the492

ACFs of the scattering intensity (ACF) from Iscat(t). Here-493

after these estimated ACF are noted ĝ2(τ, t,T0). As discussed,494

these ACF are computed over a time window of length T0, be-495

tween time t and t + T0. In practice, to probe a broad range496

of relaxation times, ĝ2(τ, t,T0) is calculated as a logarithmic497

downsampled version of the standard, biased and normalized,498

autocorrelation estimator, expressed with the centered inten-499

sity Ic(u) = Iscat(u)−∑
t+T0
v=t I(v). Therefore ĝ2(τ, t,T0) writes500
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as:501

ĝ2(τ, t,T0) =
∑

t+T0−τ

u=t Ic(u)Ic(u+ τ)

∑
t+T0
u=t Ic(u)2

. (7)

Here ĝ2 is normalized (on contrary to g2 in eq. (3)). One can502

notice that this expression of ĝ2(τ, t,T0) is as writing that:503

ĝ2(τ, t,T0) =
⟨Iscat(t)Iscat(t + τ)⟩T0 −⟨Iscat(t)⟩2

T0

⟨Iscat(t)⟩2
T0

(8)

Which according to Siegert’s equation (eq. (3)) is equivalent
to

ĝ2(τ, t,T0) =
1
β

(
⟨Iscat(t)Iscat(t + τ)⟩T0

⟨Iscat(t)⟩2
T0

−1

)
= |g1((τ, t,T0)|2 (9)

The estimated ACF, ĝ2, is thus equal to |g1|2. Hence, by nor-
malizing and centering the ACF, the experimental aspects of
the measurement are eliminated (the baseline and β ) to give
rise to a quantity directly related to g1. Moreover, if one would
assume a model as in eq. 4:

|g1(τ)|2 =

∣∣∣∣∣ M

∑
i

aie−τ/ζi

∣∣∣∣∣
2

= ∑
i
|ai|2e−2τ/ζi +∑

i ̸= j
aia∗je

−τ/ζi−τ/ζ j , (10)

then the cross terms are in fact negligible, or more precisely,504

incorporated in the broadening of the distributions as if there505

were some polydispersity. For example, if ζi and ζ j are very506

different, then the cross term is dominated by the smaller one507

and it is inside the peak associated to it. On the other hand, if508

they are close to each other, 1/ζi +1/ζ j ≃ 2/ζi, and thus they509

are not distinguishable from polydispersity. Therefore510

|g1(τ)|2 ≃ ∑
i
|bi|2e−2τ/ζi (11)

where the amplitudes bi reflect the influence of the cross511

terms. Thereby512

ĝ2(τ, t,T0)≃ ∑
i
|bi(t,T0)|2e−2τ/ζi(t,T0) (12)

Hence one expect the characteristic (local) relaxation times of513

ĝ2(τ) to be equal to the half of the ζi, and therefore the ILT of514

ĝ2(τ), should provide relaxation times that are the half of the515

real relaxation times.516

ILT algorithms, such as CONTIN, aim at performing the
inverse Laplace transform of ĝ2(τ), by numerically solving an
inverse problem to provide an estimate Ĝ written as follows:

Ĝ(s, t,T0) = arg min
G∈G

(
∥LT (G)− ĝ2(τ, t,T0)∥2

w

+ γ
2R(G)

)
(13)

where R(G) is the regularization term, γ a parameter, G is the517

set of constraints defining the admissible G, and w(τ) leaves518

the possibility to have a weight in the norm with respect to the519

delay τ . The discretization of the Laplace transform has to520

be specified, as well as the choice for the regularizations and521

weights. To take advantage of the acquisition of the scattered522

light intensity over a long duration, we use a logarithmic sam-523

pling both in the delays τ j and in the Laplace variable sk. This524

sampling goes from the smallest measured delay τ1 (equal to525

the sampling interval) up to τN = T0, as it is the maximum526

value that makes sense. A similar sampling is done for the sk,527

using Ns points. LT (G) is computed as the discretized expres-528

sion of the integral in eq. (6):529

LT (G)(τ j) =
Ns

∑
k=1

G(sk)e−τ j/sk (14)

The set of constraints G is that ∀s, G(s) ≥ 0. The regular-530

ization term R(G) is taken to promote regularity and smooth-531

ness, with a minimum number of peaks; an adequate choice is532

R(G) =
∥∥∥D(2)(G)

∥∥∥2
, where D(2) is the second order discrete533

difference operator, which writes:534

D(2) (G(sk)) = G(sk+1)−2G(sk)+G(sk−1) (15)

The weight function w(τ) is introduced in the first term of535

eq. (13) because it is expected, by letting the τ j’s increase up536

to T0, to have higher statistical fluctuations at large delays than537

at small delays. This constrains LT (Ĝ) to follow more closely538

Ĝ2 at short delays than for the large delays. This weight is:539

w j = w(τ j) =

√
T0

τ j
(16)

Indeed, it can be expected that the variance of the fluctuations540

of the autocorrelation estimators57 roughly evolves as τ/T0.541

In other words, the number of decorrelated measures at de-542

lay τ over a duration T0 evolves as T0/τ and this leads to the543

following choice of weighting.544

Altogether, and introducing both the logarithmic incre-545

ments ∆sk and ∆τ j, as well as the matrix notation (A) jk =546

exp(−τ j/sk) for the exponential term in the LT, it is obtained547

the discrete form of the eq. (13):548

Ĝ(s, t,T0) = argmin
G≥0

N

∑
j=1

w j [(AG) j − ĝ2(τ j, t,T0)]
2

∆τ j

+ γ2
∑

Ns
k=1

[
D(2) (G(sk))

]2
∆sk (17)

where N is the size of the downsampled vector ĝ2.549

The minimization of eq. (17) is implemented in Matlab,550

based on the CONTIN algorithm36,37 and adapted from the551

implementation of Marino58. It alternates between finding the552

minimum of the unconstrained problem with the simplex al-553

gorithm (using fminsearch in Matlab), and projecting over554

the constraint.555

In the next section, we verify that the choices of ACF nor-556

malization, discretization, and weighting work properly in our557

implementation.558
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B. Numerical validation in stationary condition.559

The first step is to prove that this method of analyzing ACFs560

works. There are several requirements to check its proper561

functioning. Obviously, this strategy has to be able to mea-562

sure reasonable values for each of the relaxation times present563

in the ACF. Secondly, the ratio between two densities of re-564

laxation times needs to be approximately preserved through565

the analysis. Thirdly, the regularization must work uniformly566

for the all ranges of relaxation times.567

To test these three points, this method is first applied to568

modeled ACFs. For this purpose, ACFs described by a sum569

of decreasing exponential functions were modelled in which570

some polydispersity was incorporated as in the cumulant ex-571

pansion model (here with order 2 in the cumulants only).572

These ACFs follow the model:573

g2,mod(τ) =
∑

M
i=1 Aie−τ/ζi

(
1+ 1

2 (σiτ/ζi)
2
)

∑
M
i=1 Ai

(18)

where M is the number of relaxation modes; Ai is the ampli-574

tude of mode i, ζi its mean relaxation time, and σi the relative575

standard deviation associated to ζi (so that σ2
i = µ2iζ

2
i ). Fi-576

nally, it is added noise to these ACFs. As in the experiments,577

the noise is higher at long times than short ones. Then, the ILT578

algorithm we developed is applied to these ACFs to compute579

the density function of the relaxation times Ĝ(s). It is always580

observed a very good agreement between the modelled ACFs581

and Ĝ(s) calculated by means of the ILT algorithm that has582

been developed.583

This numerical validation is illustrated with the follow-584

ing example. An ACF is modelled with 5 different relax-585

ation times (i.e. M = 5), distributed over 8 decades in time,586

with for each relaxation time a polydispersity of 20% (∀ i,587

σi = 0.2). The five relaxation times ζi are: 10−5 s, 10−4 s,588

10−3 s, 10−2 s, 10−1 s, respectively, with the following mode589

amplitudes: Ai = 1, 0.2, 0.5, 1, 0.2. This ACF is displayed in590

Fig. 2 (a); it is the orange dashed curve. Then, a random noise591

increasing with τ is added to this ACF to form a noisy ACF,592

which is also shown in Fig. 2 (a); that is the blue curve.593

Then Ĝ(s) are calculated for both the noisy and the noise-594

free ACFs thanks to the ITL algorithm that was developed.595

The parameters that control the ILT algorithm are N, the num-596

ber of points in τ used to sample the ACF, and Ns, the num-597

ber of points in s used to sample Ĝ. For this test, it is set598

N =Ns = 100, so as to cover well the time range from 3.10−8 s599

to 3s, with logarithmic spacing; there are about 12 points per600

decade. The parameter γ of eq. (13) is the last parameter to601

be fixed, it is however the most delicate to choose. We will602

discuss it at the end of the subsection. Here, it is fixed at603

γ = 0.1. For comparison, the relaxation time distributions of604

these modelled ACFs are also estimated using the classical605

CONTIN algorithm (with the same parameters)), Ĝdirect(s).606

The calculated Ĝ(s) are displayed in Fig. 2 (b) and Fig. 2607

(c), for the noisy and the noise-free ACFs, respectively (both608

gray solid lines). In both cases, five distinct peaks, well de-609

fined, are observed. The analysis of the noise-free ACF almost610

exactly returns the properties of this ACF. Let’s now focus on611

the analysis of the noisy ACF. The peaks of relaxation times612

are obtained for: ζi ≃ 10−5 s, 9.410−5 s, 1.110−3 s, 9.910−3 s,613

1.110−1 s, respectively. These values correspond to the inputs614

ζi’s nearly perfectly. It is likely that this small difference lies615

in the grid discretization; checking closely, when the input616

value is comprised between two points of the logscale sam-617

pling, the measured value is always one of these two points.618

The measured amplitudes for the different modes are: Ai ≃619

0.15, 0.034 ,0.072, 0.13, 0.030, respectively. One can note620

that ratios between amplitudes are almost preserved, even if621

the amplitudes are not. It can be noted, qualitatively, that the622

relative widths of the peaks are similar (i.e., with respect to623

the relaxation times). For each peak, the standard deviation624

to relaxation time ratio is computed and it is found: σ̂i = 17,625

14, 17, 18, 15 %. It remains some discrepancies with the set626

value, likely due to noise and numerical resolution, yet the627

result is satisfactory, demonstrating the uniformity of the reg-628

ularization across s. Therefore, the used ILT algorithm per-629

fectly captures the ACF features for the noisy ACF as for the630

noise-free ACF; this result demonstrates the robustness of our631

algorithm to noise.632

In Fig. 2 (b) and Fig. 2 (c), it is also displayed Ĝdirect(s)(s)633

estimated using a classical CONTIN algorithm, for the noisy634

and the noise-free ACFs, respectively (green dotted lines).635

This algorithm does not take into account the logarithmic636

scale specifically, nor the weight w. CONTIN algorithm al-637

lows to recover, roughly, the characteristics of the ACF. The638

result, however, is obviously not as good as that obtained by639

means of the ILT algorithm developed in this work. It is640

clearly seen that using CONTIN algorithm, the regularization641

is not uniform along the s-axis: one observes several peaks642

for long relaxation times whereas broad peaks are observed at643

short relaxation times. It is also noticed that the CONTIN al-644

gorithm does not correctly preserve homogeneity of the peaks645

width; in this case, it depends on the considered time range.646

These observations emphasize the necessity to take into ac-647

count the logscale, as well as used a weight function to reduce648

the effect of noise on ILT process.649

It is worth noticed that if one wishes to analyze this ACF us-650

ing a parametric fit, then this would require a very large num-651

ber of parameters. Indeed, if trying to fit a cumulant model652

to such an ACF, 15 different parameters are necessary. More-653

over, this would require having prior knowledge on the num-654

ber M of relaxation times. It is, therefore, unrealistic to expect655

that such a fit can correctly evaluate such ACFs.656

As mentioned before, for the implementation of the ITL657

algorithm developed in this work, it remains the question of658

the choice of the parameter γ . In fact, as for the classical659

CONTIN algorithm. The precise estimation of this parameter660

is a challenge. A too low value of γ can lead to artifacts,661

as a single relaxation time with a slight polydispersity can662

be detected as multiple relaxation times. On the other hand,663

a high value of γ may excessively smooth the solution,664

resulting in non-discrimination between two close relaxation665

times, or overestimation of the polydispersity of the sample.666

To determine γ in a heuristic way, multimodal ACFs are667

simulated from eq. (18) in order to estimate the resolution668

of the method. Here we do not detail the protocol used, but669
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FIG. 2. Left panel (a): modeled ACF from eq. 18; M = 5, with ζi = 10−5 s, 10−4 s, 10−3 s, 10−2 s, 10−1 s, respectively, and Ai = 1, 0.2, 0.5,
1, 0.2. The polydispersity around each relaxation time is the same: (∀ i, σi = 0.2). The orange dashed line is the noise-free ACF; the blue solid
line is the noisy ACF (a random noise increasing with τ was added to this ACF). Middle panel (b): density distributions of the relaxation times
computed for the noisy ACF; using the ILT algorithm we developed (Ĝ(s); gray solid line), and a classical implementation of CONTIN58

(Ĝdirect(s)(s); green dashed line), this latter algorithm does not take into account weighting w nor a logarithmic scale, γ = 0.1 in both cases.
Right panels (c): density distributions of the relaxation times computed for the noise-free ACF; using the ILT algorithm we developed (Ĝ(s);
gray solid line), and a classical implementation of CONTIN58 (Ĝdirect(s)(s); green dashed line)

the idea behind this study is to set γ so that relaxation times670

separated by at least one decade are always discriminated,671

and that each peak with a polydispersity of the order of 25%672

is not split into several peaks. With such an idea, it found673

out that a good compromise is obtained when γ belongs674

the interval [0.1− 10]. Usually, under these conditions, the675

relaxation times can be separated if there is at least a ratio of676

3 between these times. These values of γ also imply that one677

cannot estimate a polydispersity lower than 10%; below this678

value, such a polydispersity will lead to a broadening of the679

peaks similar to the smoothing imposed by the regularization.680

681

IV. TIME-LAPLACE APPROACH FOR682

OUT-OF-EQUILIBRIUM SYSTEMS683

There is now a ILT algorithm for extracting a large number684

of relaxation times, spread over a broad time range, from any685

measured g2(τ, t,T0) (g1(τ, t,T0)). In Sections II and III we686

have thought of an approach, based on this algorithm where687

the evolution of the Laplace variables s is studied as a function688

of time. By analogy with time-frequency analysis, hereafter,689

this approach will be call Time- Laplace analysis. However,690

at this point there is still a problem: in practice, how can this691

method be applied to analyze DLS experiments carried out on692

non-equilibrium, non-ergodic or non-stationary systems? In693

this section, we summarize what has already been written in694

this article and explain how this method is implemented.695

A. Concepts of Time-Laplace analysis.696

To illustrate our approach and demonstrate that usual DLS697

approaches cannot work properly for non-stationary systems,698

we will use a toy example. Let us consider a non-stationary699

signal measured over 100s, with an instantaneous relaxation700

time, ζ (t), evolving linearly as a function of time from 0.35s701

to 1s throughout its measurement (Fig. 3, left panel). First of702

all, let us carry out a classical DLS experiment where the ACF703

is built thanks to a correlator upon an estimation window T0704

(which, in this case, is also the measurement duration ∆T ). If705

T0 = 100s, then the ACF appeared to be a single decaying ex-706

ponential function (there is barely a factor 3 in ζ between the707

starting and ending times), and it returns an average relaxation708

time (Figure 3, central panel). If T0 = 10s, it is computed 10709

ACFs over 100s and each ACF returns a relaxation time that710

depends on t (see right panel of Figure 3); this provides a more711

realistic view of the real instantaneous relaxation time as this712

one evolves less on a small window. This simple example713

clearly shows the importance of T0 choice to properly analyze714

a signal, the relaxation times of which evolve as a function of715

time. However, if nothing is known about the temporal evolu-716

tion of the relaxation times, which is often the case when per-717

forming an experiment, it is very difficult to choose the right718

estimation window for the correlator. Moreover, additional719

difficulties arise when several relaxation times are involved.720

In this example, if a second relaxation time ζ2 = 10s is added,721

it is not possible to measure it using 10 windows. Two issues,722

indeed, raise from the non-stationarity of the scattering signal:723

• Using a correlator, the signal acquisition and its process724

only allow to take “snapshots" of the dynamics of the725

system which average the relaxation times. For systems726

undergoing temporal evolution, it may lead to inaccu-727

rate information.728

• Furthermore, it is no longer possible to iterate the com-729

putation of the ACFs to average them in order to reduce730

the experimental noise; in other words it is not possi-731

ble to increase the signal/noise ratio using several data732

acquisitions.733
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FIG. 3. Scheme illustrating our method: We compare the relaxation time(s) extracted when they are computed i) from only one large temporal
window (middle panel) ii) from several shorter windows (right panel).

Therefore, in order to obtain a correct measurement of the734

temporal evolution of all the relaxation times existing in the735

system using a correlator, it would be necessary to measure736

several ACFs with different delays and acquisition durations.737

Each g2(τ, t,T0) would have to be measured on a different738

sample which must have the same evolution as the others.739

This is experimentally complicated and time consuming. It740

is therefore necessary to find out an alternative.741

Consequently, the Time-Laplace method we propose con-742

sists in decoupling the data acquisition and their analyzes. In-743

stead of building the scattered intensity ACF using a correla-744

tor, we simply record the raw scattered intensity as a function745

of time, i.e. Iscat(t), over a duration ∆T , by means of an ac-746

quisition card. In other words, Iscat is sampled at a frequency747

f0 = 1/δ t Hz over ∆T seconds. Thanks to this, non-stationary748

ACFs, ĝ2(τ, t,T0), can be estimated according to eq (7); there,749

T0 and the starting times t at which the ACFs are computed are750

taken as tunable parameters in post-processing. This avoids751

preliminary experiments to figure out the relevant relaxation752

time range to probe. More importantly, it gives the possibility753

to zoom in or out to focus on specific relaxation time ranges,754

providing thus a more dynamic view of the time evolution of755

processes under investigation. This is achieved simply by us-756

ing short or long T0; small T0 to better follow the time evo-757

lution of short relaxation times, larger T0 if the focus is on758

studying slower relaxation times (note that for a chosen T0,759

only the relaxation times s less than about T0/10 are physi-760

cally relevant, as the larger relaxation times are dominated by761

estimation problems). The measurement of Iscat is performed762

over a long ∆T , that takes into account the complete dynam-763

ics of the studied system. In this way, on a sole experiment,764

and even for out-of-equilibrium systems, it is possible to pro-765

cess the scattering data at different scales of resolution T0, for766

all relevant τ and s. The starting times t of ACF computing767

can be sampled every T0, yet there is advantage to use over-768

sampling. This later point allows partial overlap between two769

consecutive windows. If we return to the example, we can770

sketch 19 windows of T0 = 10s, where the starting time of the771

n-th window is tn = 5(n−1)s as sketched on the left panel of772

Figure 3 (hence overlap between two consecutive windows of773

5s). This provides a more continuous estimation of Ĝ(s, t,T0)774

as a function of t, leading to obtain a “smoother" evolution of775

the dynamics, without decreasing T0 (i.e. the size of the win-776

dow over which the ACF is computed). It will even allow us777

to track abrupt time variations.778

Let us summarize the method for the proposed Time-779

Laplace approach:780

• Time-Laplace parameters:781

– Signal acquisition: Sampling rate of Iscat(t): δ t,782

it is the inverse of the acquisition frequency ( f0 =783

1/δ t). Measurement duration: ∆T .784

– ACF computing: Window duration: T0. Number785

of windows: Nw. Starting times of n-th window:786

tn with n between 1 and Nw. Number of points in787

delays τ j: N.788

– ACF analysis: Number of points in Laplace vari-789

able sk: Ns. Parameter of regularization γ .790

• Input: Iscat(t) recorded over the duration ∆T .791

• Signal processing:792

– Split Iscat(t) into Nw sub-signals covering window793

[tn, tn +T0].794

– For each sub-signal:795

* Compute the ACF of the centered and nor-796

malized intensity, eq. (7), and keep the down-797

sampled version at the N points τ j.798

* Apply ILT algorithm, minimizing eq. (17); it799

returns: Ĝ(sk, tn,T0).800

• Output: 2D-map Ĝ(s, t,T0), characterizing temporal801

evolution of the dynamics of the system.802

In the following, Ĝ(s j, tn,T0) is displayed as a 2D-map803

in the time-Laplace domain (tn,sk) (like in well-known804

Time-Frequency methods). The y-axis is the relaxation805

times s (Laplace domain) and the x-axis the window806

starting time t at which the ACF is computed; Ĝ is dis-807

played color-coded with a suitable colormap.808

We use the method as described above, with a logarithmic809

spacing in τ j and sk, with overlapping windows of duration810

T0 at times tn so as to follow in a smoother way the temporal811

evolution of the relaxation times.812
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B. Light scattering signal acquisition813

Let us now describe what is the second key to our approach:814

the acquisition of the light scattering signal. In practice, the815

scattered photons are detected by means of an avalanche pho-816

todiode (Perkin Elmer) that is a photon counting system ca-817

pable of detecting single photons of light over visible to near818

infrared wavelength range (400 nm to 1060 nm). This mod-819

ule is supplied by a triple output stabilized DC Power Supply820

(BK Precision-BK9130). The maximum number of photons821

that can be detected is of the order of 107 photons/s. Over822

the visible range the APD module detects about 60 − 70%823

of the received photons and its “dark noise" is in the range of824

150−200 counts/s, so much lower than the number of photons825

detected in our experiments (typically of the order of, or larger826

than 105 photons/s). Each photon detected by the photodiodes827

gives rise to a transistor-transistor logic pulse (TTL). These828

pulses are sent to a “counting" channel of a data-acquisition829

card, which allows for counting each detected photon (DAQ830

NI USB-6361 - National Instrument; resolution 32-bits and831

maximum acquisition rate 10 MHz). To measure the scattered832

intensity as a function of time, Iscat(t), the number of photons833

detected by the APD, Np, is counted during time intervals δ t834

over a duration ∆T that is much larger than δ t (δ t is the sam-835

ple time; ∆ = νδ t, where ν is the number of times the photon836

counting process is repeated). Thus, Iscat(ti)=Np([ti, ti+δ ti]).837

The acquisition card is computer-controlled by means of a838

LabVIEW program we developed that provides the number of839

detected photons as a function of time, Np(t). Both values of840

parameters δ t and ∆T can be monitored. The choice of both841

parameters is essential to ensure that the measurements of the842

scattering intensity upon time provide reliable information on843

the dynamic properties of the considered sample. Basically,844

δ t has to be short enough to allow access to the entire “fast"845

dynamics of the system, while ∆T has to be long enough so it846

can provide access to the full “slow" dynamics of the system.847

Moreover, to ensure good photon statistics, the incident laser848

power as to be set so there are at least ten photons in each δ t849

interval are required, with the constraint that the number of850

photons detected per second is less than 107 photons.851

V. DLS EXPERIMENTS WITH OUT-OF-EQUILIBRIUM852

SYSTEMS: EXPERIMENTAL VALIDATION853

To experimentally validate the proposed Time-Laplace854

method, we investigate the time-evolution of the dynamics855

of three different non-equilibrium processes or systems: the856

cooling kinetics of a colloidal particle solution; the sol-gel857

transition; and the internal dynamics of a living cell nucleus.858

A. Temporal evolution of particle Brownian motion upon859

cooling860

First of all, we apply the Time-Laplace method to the in-861

vestigation of the Brownian relaxation of colloidal latex par-862

ticles in a solution whose temperature evolves spontaneously863
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FIG. 4. Density map of the extracted relaxation times from a col-
loidal solution at constant temperature (paragraph V A 0 a). The x-
axis corresponds to the beginning time when the ACF was computed.
The y-axis corresponds to the measured relaxation times. The color-
bar displays the density of the relaxation times distribution. T0 = 1
min, overlap = 0%, γ = 1, signal was recorded for 10 minutes.

from ∼ 59oC to ∼ 19oC. The temperature relaxation as a func-864

tion of time induces changes in the particle diffusion coeffi-865

cient D0 through the evolution of temperature and viscosity866

(D0 = kBT/6πηRh). This therefore creates a simple out-of-867

equilibrium process based on a solution of latex particles and868

we try to measure D0(t) throughout the cooling process.869

The investigated system is made up of 9g of glycerol, 1g of870

water, and 0.1g of an aqueous solution of spherical latex par-871

ticles with 1 wt% of solid. This colloidal solution is provided872

by the Duke Scientific Corporation and used without further873

purification (indicated particle radius: 100 ± 3 nm). The 0.1g874

of this solution is mixed with 1g of milliQ ultrapure water875

(ρ = 18±0.1 MΩ cm; from an in house ELGA system). The876

obtained mixture is filtered through a porous Nylon membrane877

with pores of 0.45 µm diameter (Millex-HA syringe filter), to878

remove dusts and aggregates. It is then mixed with 9g of glyc-879

erol. The obtained solution is allowed to equilibrate at room880

temperature over ∼ 24 hours. About 1.5g of this final solu-881

tion is placed in a cylindrical glass tube of 8mm diameter that882

is set at the center of a vat containing an index-matching liq-883

uid (decahydronaphthalene). A thermocouple is inserted into884

the tube to allow in situ measurement of the sample tempera-885

ture (accuracy ±0.1o C). The internal temperature of the vat is886

monitored thanks to a thermal bath (Lauda); this sets the sam-887

ple temperature. The sample is irradiated with a laser (Laser888

Quantum GEM, vertically polarized; λ = 532 nm), the detec-889

tor is placed at an angle θ with respect to the direction of the890

incident beam. For λ = 532 nm, the refractive index of the891

sample is ∼ 1.45 and its temperature variation is assumed to892

be negligible. The sample viscosity as a function of temper-893

ature is measured using a Kinexus Ultra+ rheometer, with a894

cone-plane geometry (cone characteristics: 2o - 60 mm).895

a. Colloidal system at constant temperature. DLS ex-896

periments are used to measure the latex particle radius at dif-897
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FIG. 5. ACFs computed along the experiment of the relaxation in
temperature (paragraph V A 0 b) with T0 = 60 s, each color corre-
sponds to a computed time indicated by the colorbar.
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FIG. 6. Visualization of the relaxation times for the temperature re-
laxation experiment (paragraph V A 0 b). (a) Top panel: Density map
of the extracted relaxation times from a colloidal solution when tem-
perature is relaxing. T0 = 120 s, γ = 1, overlap = 50%. (b) Bot-
tom panel: Main relaxation time extracted ζ0(t) (see eq.20) for each
time t (orange curve), expected relaxation time if Rmean = 91 nm
(gray curve), expected relaxation times if Rmean = 91 ± 9 nm (dot-
ted lines).

ferent temperatures between 19oC and 59oC (i.e. 19.6oC,898

32.0oC, 41.3oC, 51.2oC, and 58.3oC, respectively). Measure-899

ments are performed both by direct estimation of the ACF900

of the light scattering signal thanks to a TurboCorr Digital901

Correlator (Brookhaven Instruments), as well as acquiring902

the scattering intensity Iscat as a function of time according903

to the Time-Laplace procedure described in Sec. IV B (here:904

δ t = 10−4 s and ∆T = 600s). Fig. 4 shows the output of a905

scattering signal recorded over 10 minutes at T=41.3oC and906

analyzed with our Time-Laplace approach. Here, ACFs are907

computed over 1 minute sliding windows with no overlap be-908

tween two consecutive slots. One notices that for most of the909

windows the analysis does not return a single relaxation time;910

very likely, because despite our efforts the sample is not sim-911

ply a dispersion of monodisperse latex beads. However, one912

of the observed relaxation processes is always seen, its char-913

acteristic time does not evolve, and its amplitude is always914

much higher than that of the others. Moreover, this relaxation915

time corresponds to that obtained by fitting the ACF with the916

cumulant model. It is thus assumed that it corresponds to ζ0917

the relaxation time of the Brownian motion of the particles:918

ζ0 =
1

2D0q2 =
3πηRh

kBT q2 (19)

Both methods lead to the same result: it is found a particle919

radius Rh = 91± 9nm, which seems to be rather constant as920

a function of temperature in the studied range. We use this921

measured size in the following. These experiments prove that922

the Time-Laplace method works well when the system under923

investigation is in thermodynamic equilibrium and so the scat-924

tering signal is stationary.925

b. Cooling kinetics of a colloidal system. The initial926

temperature of the sample, Ti, is set to 58.6±0.1oC. We wait927

for half an hour to make sure that the sample has reached928

its thermodynamic equilibrium prior to starting the measure-929

ment.930

• To start with, light scattered by the sample at Ti is931

recorded for 2 minutes (acquisition with a sample time932

δ t = 10−4 s).933

• Then the thermal bath is turned off. This sets the be-934

ginning of the experiment, t = 0 s; the system (vat935

+ sample) is let to cool down to room temperature;936

Tf = 19± 1oC. Iscat(t) is recorded during the cooling937

process until 23.2oC. Parameters of the signal acqui-938

sition are: δ t = 10−4 s and ∆T = 13200s (220 min-939

utes). During the whole experiment, temperature inside940

the sample is read every 30s.941

For this experiment, ACFs are computed from Iscat(t) over942

2 minutes sliding windows with an overlap between two con-943

secutive slots of 50% (i.e. one minute). Figure 5 shows the944

evolution of the ACFs with time. It is noticed that the decay945

rate of these ACFs shifts towards large relaxation times as the946

system cools. The Ĝ(s, t) distribution is extracted for each947

ACF; an example of fit is displayed in Fig. 7. The agreement948

between the experimental ACF and that which can be calcu-949

lated from the found Ĝ(s, t) distribution is always very good.950
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FIG. 7. Visualization of the data adjustment with the proposed ILT
algorithm for the temperature cooling experiment. The yellow curve
(stars) shows the ACF computed from the data. The ACF was com-
puted 181 min after the beginning of the experiment with T0 = 60
s. The green curve (diamonds) exhibits the distribution of relaxation
times Ĝ(s) computed with the proposed method with γ = 1. The gray
curve (crosses) is the ACF fit calculated from the result Ĝ(s) using
eq. (14).

As expected, it is clearly seen that the sample dynamics slows951

down with time (see Fig 6 (a)). One notices that in almost952

all cases, the relaxation is not a single exponential; several re-953

laxation times can be observed. Nevertheless, one relaxation954

always dominates strongly; its amplitude being much higher955

than that of the others. The temporal evolution of this relax-956

ation time is assumed to be the evolution of the relaxation time957

of the Brownian motion of the particles ζ0(t) as the system958

cools down.959

The radius of the latex particles is known, as well as T (t)960

the temperature in the sample as a function time from t = 0s961

The sample viscosity as a function of T has been measured.962

The temporal evolution of the particle diffusion coefficient963

D0(t) can therefore be calculated during the cooling process,964

allowing modeling of ζ0(t).965

ζ0(t) =
1

2D0(t)q2 =
3πη(T (t))Rh

kBT (t)q2 (20)

Fig. 6 (b) displays both measured and calculated values of966

s0(t) throughout the sample cooling (with scattering angle967

θ = 45o). The agreement between the model and the exper-968

iment is good. We conclude that these experiments demon-969

strate that the Time-Laplace method is suitable to probe the970

dynamics of systems that are not in thermodynamic equilib-971

rium and when the scattering signal is non-stationary.972973

Our goal here is to validate the Time-Laplace method and974

not to investigate what happens in the sample as it cools.975

Therefore, we will not discuss these results further. How-976

ever, it is worth noticed that the Ĝ(s, t) distributions exhibit977

more relaxation times than those obtained when the sample978

is in thermodynamic equilibrium. Fluctuations in the mea-979

sured values of ζ0(t) are also observed. We believe these ob-980

servations come from the non-equilibrium aspect of the phe-981

nomenon; cooling induces convection in the sample and as982
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FIG. 8. ACFs computed along the experiment of the transition sol-
gel with T0 = 300 s (paragraph V B).

a consequence temperature within the scattering volume may983

fluctuate significantly in time and space; because of convec-984

tion, dust or objects larger than the latex beads may pass inside985

the scattering volume. Therefore, the analysis of the temporal986

behavior of Ĝ(s, t) can also provide valuable information on987

the evolution of the studied system.988

B. Sol-gel transition989

The second process investigated to test the Time-Laplace990

method is the sol-gel transition in colloidal solutions. This991

transition occurs when the repulsive interactions between col-992

loids, which prevent their aggregation, are screened. As a re-993

sult, colloidal particles can approach close to each other and994

stick together due to van der Waals forces. It is then observed995

growth of fractal objects formed by their aggregation59,60.996

Once these structures percolate the gel phase is formed.997

Here, the used system is an aqueous solution of silica998

nanobeads of ∼ 12 nm diameter. This colloidal suspension999

is stabilised due to electrostatic interactions between the par-1000

ticles. In that case, addition of ions to the solution changes1001

the ionic strength and leads to screening of these interactions1002

and induces the transition. Concentration in silica particles, as1003

well as the kind of ions added to the solution and their con-1004

centration monitor this transition and its kinetic61.1005

For these experiments, we used two different DLS setups;1006

the setup used for the colloid solution cooling experiment1007

as in Sec. V A, and a setup we developed to investigate1008

the dynamics of a living cell nucleus. Here, it is only dis-1009

played experiments performed with the latter device. 0.3g1010

of the final mixture is introduced into a special chamber of1011

10 × 10 × 3 mm3, that is made by sandwiching a stainless1012

frame (65× 35× 3 mm3) between 2 microscope slides. This1013

provides a container of low thickness and small volume whose1014

both sides of entry and exit of light are transparent. The so-1015

lution is introduced into this chamber thanks to two channels1016

of 1 mm diameter drilled in the section. The chamber is set in1017

a vice, the glass surfaces perpendicular to a laser beam (He-1018

Ne laser, vertically polarized; λ = 632,8 nm). Temperature1019
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is ∼ 20o ± 0.5oC. Once the sample is placed, recording of1020

the scattering signal is started with the following parameters:1021

δ t = 10−5 s and ∆T = 2400 s (40 minutes). These measure-1022

ments were made at θ = 12o;25o and 30o.1023

Here, it is shown the result of an experiment performed us-1024

ing the second DLS setup, with θ = 25o. The recording of the1025

scattering signal starts 6 minutes after the mixing of the so-1026

lutions. The colloidal solution is prepared by simply mixing1027

4.54g of LUDOX® HS-40 (suspension of colloidal silica in1028

H2O with 40wt% of solid; from Sigma Aldrich) with 13.39g,1029

of milliQ ultrapure water (ρ = 18± 0.1 MΩ cm; from an in1030

house ELGA system). In order to remove dusts and big ag-1031

gregates, the obtained solution is first filtered through a glass1032

fiber membrane (GF/A) with pores of 1.6 µm diameter (What-1033

man® Puradisc 13 syringe filters). At the same time, 3.93g1034

of a NaCl solution with a NaCl concentration of 17.55wt%1035

are prepared. At t = 0 s, 0.33g of the NaCl solution are1036

added to 1.5g of the colloidal mixture. This gives rise to a1037

final solution with a colloidal silica concentration of 8.3wt%1038

and a NaCl concentration of 3.15wt%. Dissociation of NaCl1039

molecules into Na+ and Cl− ions make the electrostatic inter-1040

actions between particles vanish (the negative charges of the1041

silica nanobeads are screened by Na+ ions) and the gelation1042

process starts. According to rheology studies62, in these ex-1043

perimental conditions, it takes about 27 minutes after mixing1044

the two solutions to form the gel phase.1045

Figure 8 shows the evolution of the computed ACFs as a1046

function of time throughout the gelation process (in this case,1047

ACFs are computed from Iscat(t) over T0 = 300s with an over-1048

lap between two consecutive slots of 70%). The observations1049

are coherent with previous works59: First, the value of the1050

ACFs plateau that is seen at short delay times increases (this is1051

related to the increase in scattered intensity), then, in a second1052

part, the plateau position starts to decrease with time (due to1053

the decrease of the scattered intensity). This change of behav-1054

ior in the scattering intensity is assumed to indicate the full1055

gelation of the sample; the drop of the plateau of the ACFs1056

indicating a reduced mobility due to the formation of a long-1057

range network. According to this result, the full gelation pro-1058

cess takes about 26-27 minutes after the mixing, in agreement1059

with rheology measurements. It is also noticed that the shape1060

of these ACFs evolves strongly as gelation process progresses.1061

At the beginning of the process, the ACFs are close to a single1062

exponential decay with a short relaxation time, then the ACFs1063

take on a more and more pronounced stretched exponential1064

shape, with an increasing relaxation time.1065

Figure 9 shows an instance of the ACF fitted by the pro-1066

posed method. One sees that (here before full gelation) the1067

distribution of relaxation times is largely spread over two1068

decades. Figure 10 displays four different Time-Laplace anal-1069

yses of the recorded signal along the full experiment.1070

• ACFs are computed from Iscat(t) over T0 =5s sliding1071

windows with no overlap between two consecutive slots1072

• ACFs are computed from Iscat(t) over T0 =60s sliding1073

windows with an overlap between two consecutive slots1074

of 70%.1075

• ACFs are computed from Iscat(t) over T0 =120s sliding1076

windows with an overlap of 70%.1077

• ACFs are computed from Iscat(t) over T0 =300s sliding1078

windows with an overlap of 70%.1079

This figure clearly shows the influence, on the distribution1080

of relaxation times, of the duration T0 of the window over1081

which the ACFs are computed. However, some characteris-1082

tics are preserved. In particular the change in dynamics be-1083

tween the gelation phase and the gel phase. During the whole1084

gelation phase, the dynamics evolves as a function of time.1085

Regardless the time at which the scattered signal is analyzed,1086

or the window over which the ACFs are computed, we al-1087

ways observe several relaxation times that are more and more1088

widely distributed as the gelation process progresses. The1089

overall dynamics slows down; the relaxation time with the1090

largest amplitude increases exponentially with time. Once the1091

system has turned into a gel phase, its dynamics changes. The1092

system is non ergodic but does not seem to evolve much with1093

time (at least not over 25 minutes); it is observed several relax-1094

ation processes between 10−4 s and 10−1 s, as well as a very1095

long relaxation time (∼ 15s), which is caught correctly only1096

if the ACFs are computed over a large window (T0 = 300s).1097

The fact that, in the sample, there are several relaxation times1098

of non-negligible amplitudes, distributed over 2 to 3 decades1099

in time, at the same observation window, most likely explains1100

the observed stretched exponential shape of the ACFs.1101

Our results are consistent with the results of other groups on1102

similar systems59,61. Nevertheless, we believe that the method1103

we have developed and are using (both signal acquisition and1104

Time-Laplace analysis) provides more information on the dy-1105

namics of the system during gelation and in the gel phase.1106

Again, the purpose of these experiments is not to precisely1107

study the dynamics of the processes associated with gelation,1108

or that of the gel phase, and therefore, we will not go further1109

in the discussion of our results.1110

C. Dynamics of a living cell nucleus1111

In this third example, we use the method to investigate the1112

dynamics inside a living cell nucleus. This experiment is the1113

reason why the method was originally developed (the combi-1114

nation of acquisition and signal processing). The first attempts1115

to study the internal dynamics of a living cell nucleus using1116

dynamic light scattering experiments date back about 10 years1117

ago33–35. These first experiments showed that DLS could be1118

useful to study these dynamics. Nonetheless for this approach1119

to be truly effective, an effort was to be done to dispose of1120

a signal processing of the scattering signal that takes into ac-1121

count the fact that a cell nucleus is an out-of-equilibrium sys-1122

tem, with a very broad relaxation time distribution.1123

To perform these experiments, we use the experimental de-1124

vice that has been developed by Suissa et al.33–35 to carry1125

out these first attempts to investigate the internal dynamics1126

of the nucleus of a living cell by means of DLS. The details of1127

this setup are presented in the references33–35. A He-Ne laser1128
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FIG. 9. Visualization of the data adjustment with the developed ILT
algorithm for transition sol-gel experiment. The yellow curve (stars)
shows the ACF computed from the data. The ACF was computed
23min24 after the beginning of the experiment with T0 = 60 s. The
green curve (diamonds) exhibits the distribution of relaxation times
Ĝ(s) computed with the proposed method with γ = 1. The gray curve
(crosses) is the ACF fit calculated from the result Ĝ(s) using eq. (14).

beam is focused with a microscope objective (Nikon, mag-1129

nification 20×, N.A. 0.45) onto a glass surface to which the1130

cells have adhered. Before passing through the microscope1131

objective, the laser beam is enlarged using a beam expander1132

(3×) to obtain a beam waist smaller than the nucleus diam-1133

eter. The laser beam waist diameter on the surface is then1134

of the order of 3-4 µm, hence less than the nucleus diame-1135

ter of the investigated cells. In order to enable us to visual-1136

ize the adherent cells, the objective lens that focuses the laser1137

beam is used to make a bright field transmission microscope.1138

The sample is illuminated with a white light that propagates1139

in the direction opposite the laser beam propagation. The im-1140

age of the observed field is formed on a CCD camera (JAI1141

CB-080 GE- Stemmer Imaging), thanks to a homemade ocu-1142

lar that provides additional magnification of the order of 1.6×1143

- 1.7×, thus the final magnification of this homemade micro-1144

scope (objective + “ocular") is of about 34×. By means of1145

this system the adherent cells as well as the reflection spot1146

of the laser beam on the surface can be observed and using1147

translation stages to move the glass surface, the nucleus of1148

one cell can easily be brought into the beam waist. The light1149

scattered by the nucleus is collected at an angle θ which is1150

either 12o;25o or 30o. For each angle, the image of the scat-1151

tering volume (i.e. the nucleus volume illuminated by the laser1152

beam) is formed on the entrance face of a single mode opti-1153

cal fiber (core diameter: 5 µm, N.A.: 0.6) using a focusing1154

lens of focal length 7.5 cm. This system of collection of the1155

scattered light selects only a part of the nucleus volume that is1156

illuminated; the magnification of the scattered light collection1157

optics is of the order of 1, thus the scattering volume is esti-1158

mated to be of about 50 µm3. An interferential filter (central1159

wavelength 630nm, 10nm bandpass) is placed right before1160

the optical fiber to avoid polluting the detection of the scat-1161

tered light with parasitic light.1162

The experiments were carried out on nuclei of HeLa line1163

living cells63, in the G1 phase i.e. the first stage of the cell1164

cycle). In order to keep the cells alive throughout the exper-1165

iment duration and avoid any kind of contamination by bac-1166

teria and/or yeast, the cells immersed in their culture medium1167

are introduced into the chamber described in the previous sec-1168

tion. Prior to the experiment the stainless frame used to make1169

the culture chamber is placed in a surfactant solution for two1170

hours (4% of Decon 90) then brushed before being rinsed1171

with both ultra-purified water (USF Elga) and ethanol. Fi-1172

nally this frame is dried with nitrogen and autoclaved. The1173

2 microscope slides are cleaned and autoclaved before being1174

stuck on the stainless frame using silicon seals. Once the seals1175

are dry, the cells and their culture medium are introduced into1176

the chamber through the channels drilled in the section of the1177

frame, which are then hermetically sealed so that the chamber1178

inside does not have any contact with the external medium.1179

The chamber is left horizontally in an incubator, at 37oC, for1180

three hours, to let the cells adhere to the bottom glass surface.1181

Then, the chamber is set vertically in a vice, with the glass sur-1182

faces perpendicular to the laser beam, the “bottom surface” set1183

further from the objective lens. By means of a heating resis-1184

tor set in the vise, we assure a temperature control within the1185

culture chamber at ∼ 37o C. The culture medium is made of1186

DMEM (Dubbelco Modified Eagle Medium), supplemented1187

with 10% of foetal calf serum, 1% of L-Glutamine 1M and1188

2.5% of a 1M Hepes buffer to maintain physiological pH.1189

These culture conditions (culture medium and temperature of1190

about 37oC) allow us to cultivate the cells in these chambers1191

under conditions approaching those of an incubator.1192

Figure 11 shows a scattering signal recorded as a function1193

of time for the nucleus of a HELA cell in G1 phase (δ t =1194

10−5 s, ∆T = 600s). This signal fluctuates a lot, with large and1195

rapid variations of the scattered intensity. Figure 12 displays1196

four different Time-Laplace analyses of this recording signal1197

with:1198

• T0 = 10s sliding windows with no overlap;1199

• T0 = 60s sliding windows with an overlap of 70%;1200

• T0 = 120s sliding windows with an overlap of 70%;1201

• T0 = 300s sliding windows with an overlap of 70%.1202

As in the case of the sol-gel transition, being able to com-1203

pute ACFs on temporal windows of variable size with an over-1204

lap between two consecutive windows that can be changed, al-1205

lows us to probe the nucleus dynamics between ∼ 10−5 s and1206

∼ 30s. It can be seen three different dynamics that are clearly1207

distinct: dynamics with relaxation times between ∼ 10−2 s1208

and ∼ 4 × 10−2 s; dynamics with relaxation times between1209

∼ 5×10−1 s and ∼ 1.5s and finally dynamics with relaxation1210

times between ∼ 10s and ∼ 30s. These dynamics do not seem1211

to change much over 10 minutes, however, if the same mea-1212

surement is repeated one hour later, the two fastest dynamics1213

appear to be different, likely due to a different biological ac-1214

tivity within the nucleus.1215

Our results are consistent with the results of Suissa et1216

al.33–35. Again, our purpose in this article is not to study the1217

dynamics of a living cell nucleus, and therefore, we will not1218
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FIG. 10. Density maps of the relaxation times computed with different parameters for the transition sol-gel experiment: a) T0 = 5s, overlapping
rate = 0%, b) T0 = 60s, overlapping rate = 70%, c) T0 = 120s, overlapping rate = 70 %, d) T0 = 300s, overlapping rate = 70 %. On the x-axis:
Time t when the ACF has been computed (in minutes), the scale is logarithmic. On the y-axis: Relaxation times s, in seconds, estimated
using the developed ILT algorithm, eq. (13); the scale in s is logarithmic. The color represents the density of the relaxation time, the scale is
logarithmic. γ = 1 for the four figures. Signal duration is 40 minutes.

N
um

be
r 

of
 p

ho
to

ns
 r

ec
or

de
d 

du
ri

ng
 δ
t =

 1
e-

5 
s

Time t of record [minutes]

FIG. 11. Light scattering signal from a HeLa cell nucleus in G1
phase. Signal recorded over 10 minutes at f0 = 105 Hz.

go further in the discussion of our results. Still, these results1219

prove that we have got the tools (both signal acquisition and1220

Time-Laplace analysis) to investigate the evolution of the dy-1221

namics of a living cell nucleus as a function of its biological1222

activity.1223

VI. CONCLUSION1224

In this article, we present a new method to analyze DLS sig-1225

nals from out-of-equilibrium systems. This method, we call1226

Time-Laplace analysis, is based on a regularized ILT of slid-1227

ing ACFs of the scattered signal, computed upon estimation1228

windows that can be modulated. This approach is then multi-1229

scale, systematic and more robust than the classical CONTIN1230

algorithm.1231

Here, we discuss the principles of the method, and we de-1232

scribe the signal processing techniques, as well as the ex-1233

perimental set-up, that we develop in order to use dynamic1234

light scattering in general situations. On different out-of-1235

equilibrium systems, we prove that this method enables us to1236

extract the non-stationary distribution of relaxation times from1237

DLS experiments. The main limitation of this multiscale ap-1238

proach is the necessity to compute the ILT over windows with1239
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FIG. 12. Density maps of the relaxation times computed with different parameters for the DLS experiment on living Hela cells: a) T0 = 10s,
overlapping rate = 0%, b) T0 = 60s, overlapping rate = 70%, c) T0 = 120s, overlapping rate = 70 %, d) T0 = 300s, overlapping rate = 70
%. On the x-axis: Time t when the ACF has been computed (in minutes), the scale is logarithmic. On the y-axis: Relaxation times s in
seconds computed with the developed ILT, eq. (13), the scale is logarithmic. The color represents the density of the relaxation time, the scale
is logarithmic. γ = 1 for the four figures. Signal duration is 10 minutes.

different time length T0, even if we think that an all-in-one1240

computation is possible. A minor limitation is the difficulty to1241

treat ACF decays faster than a simple exponential. Neverthe-1242

less, a possibility is to use Gaussian transforms as mentioned1243

in the article of Andrew et al.43
1244

Therefore, we would like to stress out that the obtained re-1245

sults clearly show that DLS experiments capture all the rich-1246

ness and complexity of the dynamics of various processes and1247

systems, and that the Time-Laplace method we have devel-1248

oped allows to extract them. Henceforth, the proposed ap-1249

proach can prove to be very useful for the study of the dy-1250

namics of many out-of-equilibrium “soft matter" systems. We1251

claim, indeed, that this signal treatment can be adapted to1252

numerous DLS experiments dealing with non-equilibrium or1253

non-ergodic systems. In our case we aim at applying this1254

method to investigate the internal dynamics of living cell nu-1255

cleus. Moreover, this Time-Laplace method could be applied1256

as well in XPCS, but also to all ACFs that could reasonably1257

be decomposed as a weighted sum of exponential decays.1258

Regarding the signal processing aspect, the next step is to1259

use more efficient algorithms to reduce the numerical expen-1260

sive cost raised by resolution of inverse problems. Further-1261

more, S. Provencher (more recently Andrew et al.43) brought1262

the idea64 in 1996 to find the distribution of relaxation times1263

for stationary systems by solving an inverse problem regard-1264

ing the decay times and the wave vectors i.e. in a 2D-space. In1265

the same spirit, we could imagine figuring out the distribution1266

of relaxation times according to the decay times but also to the1267

times of recording. This 2D-problem would bring a smoother1268

solution that would reduce noise in our distributions.1269

ACKNOWLEDGMENTS1270

The authors kindly acknowledge fruitful discussions with1271

Dr.Thibaut Divoux, Dr. Thomas Gibaud, Dr. Sébastien Man-1272

neville, Dr. Stéphane Santucci and Dr. Wilbert Smit and thank1273

Sami Lemaire and Dr. Zakia Mokhtari for their help.1274

DATA AVAILABILITY STATEMENT1275

Data are available upon request to the corresponding author.1276



A multiscale Time-Laplace method for non-stationary DLS 17

BIBLIOGRAPHY1277

1T. Tadros, R. Izquierdo, J. Esquena, and C. Solans, “Formation and stability1278

of nano-emulsions,” Adv. Colloid Interface Sci. 108, 303–318 (2004).1279
2P. A. Hassan, S. Rana, and G. Verma, “Making sense of brownian motion:1280

Colloid characterization by dynamic light scattering,” Langmuir 31, 3–121281

(2015).1282
3S. Bhattacharjee, “Dls and zeta potential - what they are and what they are1283

not?” J Control Release 235, 337–351 (2016).1284
4F. Nallet, D. Roux, and J. Prost, “Hydrodynamics of lyotropic smectics :1285

a dynamic light scattering study of dilute lamellar phases,” J. Phys. France1286

50, 3147–3165 (1989).1287
5T. Bellini, N. Clark, and D. Schaefer, “Dynamic light scattering study of1288

nematic and smectic- a liquid crystal ordering in silica aerogel,” Phys. Rev.1289

Lett 74, 2740–2743 (1995).1290
6É. Freyssingeas, D. Roux, and F. Nallet, “Quasi-elastic light scattering1291

study of highly swollen lamellar and sponge phases,” J.Phys. II 7, 913–9291292

(1997).1293
7M. Majumdar, P. Salamon, A. Jakli, J. T. Gleeson, and S. Sprunt, “Elastic1294

constants and orientational viscosities of a bent-core nematic liquid crys-1295

tal,” Phys. Rev. E 83 (2011), 10.1103/PhysRevE.83.031701.1296
8S. Zhou, K. Neupane, Y. A. Nastishin, A. R. Baldwin, S. V. Shiyanovskii,1297

O. D. Lavrentovich, and S. Sprunt, “Elasticity, viscosity, and orientational1298

fluctuations of a lyotropic chromonic nematic liquid crystal disodium cro-1299

moglycate,” Soft Matter 10, 6571–6581 (2014).1300
9W. Poon, “The physics of a model colloid-polymer mixture,” J. Condens.1301

Matter Phys. 14, R859–R880 (2002).1302
10T. Phenrat, N. Saleh, K. Sirk, R. D. Tilton, and G. V. Lowry, “Aggrega-1303

tion and sedimentation of aqueous nanoscale zerovalent iron dispersions,”1304

Environ. Sci. Technol. 41, 284–290 (2007).1305
11D. Saha, R. Bandyopadhyay, and Y. M. Joshi, “Dynamic light scattering1306

study and dlvo analysis of physicochemical interactions in colloidal sus-1307

pensions of charged disks,” Langmuir 31, 3012–3020 (2015).1308
12S. Brunetti, D. Roux, A. M. Bellocq, G. Fourche, and P. Bothorel, “Micellar1309

interactions in water-in-oil microemulsion. 2. light scattering determination1310

of the second virial coefficient,” J. Phys. Chem. 87, 1028–1034 (1983).1311
13H. B. Bohidar and M. Behboudnia, “Characterization of reverse micelles1312

by dynamic light scattering,” Colloids Surf, A Physicochem Eng Asp 178,1313

313–323 (2001).1314
14R. Ganguly and N. Choudhury, “nvestigating the evolution of the phase1315

behavior of aot-based w/o microemulsions in dodecane as a function of1316

droplet volume fraction,” J. Colloid Interface Sci. 372, 45–51 (2012).1317
15K. Devanand and J. Selser, “Asymptotic behavior and long-range interac-1318

tions in aqueous solutions of poly(ethylene oxide),” Macromolecules 24,1319

5943–5947 (1991).1320
16W. Brown, F. J, and M. D. Miguel, “Poly(ethylene oxide)-sodium dode-1321

cyl sulfate interactions studied using static and dynamic light scattering,”1322

Macromolecules 25, 7192–7198 (1992).1323
17J. Jansson, K. Schillen, G. Olofsson, R. da Silva, and W. Loh, “The1324

interaction between peo-ppo-peo triblock copolymers and ionic surfac-1325

tants in aqueous solution studied using light scattering and calorimetry,”1326

J. Phys.Chem. B 108, 82–92 (2004).1327
18H. Oguzlu and Y. Boluk, “Interactions between cellulose nanocrystals and1328

anionic and neutral polymers in aqueous solutions,” Cellulose 24, 131–1461329

(2017).1330
19A. Cumming, P. Wiltzius, F. Bates, and J. Rosedale, “Light-scattering ex-1331

periments on phase-separation dynamics in binary fluid mixture,” Phys.1332

Rev. A 45, 885–897 (1992).1333
20J.-F. Lutz, K. Weichenhan, O. Akdemir, and A. Hoth, “About the1334

phase transitions in aqueous solutions of thermoresponsive copoly-1335

mers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate1336

and oligo(ethylene glycol) methacrylate,” Macromolecules 40, 2503–25081337

(2007).1338
21W. Poon, A. Pirie, and P. Pusey, “Gelation in colloid-polymer mixtures,”1339

Faraday Discuss. 101, 65–76 (1995).1340
22E. Freyssingeas, M. Graca, S. Wieczorek, and R. Holyst, “Relaxation pro-1341

cesses in mixtures of liquid crystals and polymers near phase boundaries1342

and during phase separation,” J. Chem. Phys. 120, 8277–8282 (2004).1343

23S. Manley, H. Wyss, K. Miyazaki, J. Conrad, V. Trappe, L. Kaufman,1344

D. Reichman, and D. Weitz, “Glasslike arrest in spinodal decomposition1345

as a route to colloidal gelation,” Phys. Rev. Lett. 95 (2005), 10.1103/Phys-1346

RevLett.95.238302.1347
24M. Shibayama and T. Tanaka, “Volume phase transition and related phe-1348

nomena of polymer gels,” Adv Polym Sci 109, 1–62 (1993).1349
25A. H. Krall and D. A. Weitz, “Internal dynamics and elasticity of fractal1350

colloidal gels,” Phys. Rev. Lett 80, 778–781 (1998).1351
26M. Shibayama, “Spatial inhomogeneity and dynamic fluctuations of poly-1352

mer gels,” Macromol. Chem. Phys. 199, 1–30 (1998).1353
27M. Laurati, G. Petekidis, N. Koumakis, F. Cardinaux, A. B. Schofield, J. M.1354

Brader, M. Fuchs, and S. U. Egelhaaf, “Structure, dynamics, and rheol-1355

ogy of colloid-polymer mixtures: From liquids to gels,” J. Chem Phys 1301356

(2009), 10.1063/1.3103889.1357
28D. Larobina and L. Cipelletti, “Hierarchical cross-linking in physical algi-1358

nate gels: a rheological and dynamic light scattering investigation,” Soft1359

Matter 9, 10005–10015 (2013).1360
29V. W. van Megen and S. M. Underwood, “Glass transition in colloidal hard1361

spheres: Measurement and mode-coupling-theory analysis of the coherent1362

intermediate scattering function,” Phys. Rev. E 49, 4206–4220 (1994).1363
30L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Con-1364

dens. Matter Phys. 17, R253–R285 (2005).1365
31G. L. Hunter and E. R. Weeks, “The physics of the colloidal glass transi-1366

tion,” Rep. Prog. Phys. 75 (2012), 10.1088/0034-4885/75/6/066501.1367
32P. J. Lu and D. A. Weitz, “Colloidal particles: Crystals, glasses, and gels,” in1368

ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 4, Annual1369

Review of Condensed Matter Physics, Vol. 4, edited by J. Langer (2013)1370

pp. 217–233.1371
33M. Suissa, C. Place, E. Goillot, B. Berge, and E. Freyssingeas, “Dynamic1372

light scattering as an investigating tool to study the global internal dynamics1373

of a living cell nucleus,” EPL 78 (2007), 10.1209/0295-5075/78/38005.1374
34M. Suissa, C. Place, E. Goillot, and E. Freyssingeas, “Internal dynamics of1375

a living cell nucleus investigated by dynamic light scattering,” Eur Phys J E1376

Soft Matter 26, 435–48 (2008).1377
35M. Suissa, C. Place, E. Goillot, and E. Freyssingeas, “Evolution of the1378

global internal dynamics of a living cell nucleus during interphase,” Bio-1379

phys. J. 97, 453–461 (2009).1380
36S. W. Provencher, “A constrained regularization method for inverting data1381

represented by linear algebraic or integral equations,” Computer Physics1382

Communications 27, 213–227 (1982).1383
37S. W. Provencher, “Contin: A general purpose constrained regularization1384

program for inverting noisy linear algebraic and integral equations,” Com-1385

puter Physics Communications 27, 229–242 (1982).1386
38R. P. Bruce J. Berne, Dynamic Light Scattering: With Applications to1387

Chemistry, Biology, and Physics, 2nd ed. (Dover Publications Inc., Mineola1388

N.Y., 2000).1389
39R. J. T. Peter N Pusey, “Particle interactions,” in Dynamic Light Scattering.1390

Applications of Photons Correlation Spectroscopy, edited by B. J. Berne1391

(Plenum Press, New York, 1985) pp. 85–179.1392
40D. E. Koppel, “Analysis of macromolecular polydispersity in intensity cor-1393

relation spectroscopy: The method of cumulants,” J. Chem. Phys. 57, 4814–1394

4820 (1972), https://doi.org/10.1063/1.1678153.1395
41B. J. Frisken, “Revisiting the method of cumulants for the analysis of dy-1396

namic light-scattering data,” Appl. Opt. 40, 4087–4091 (2001).1397
42A. G. Mailer, P. S. Clegg, and P. N. Pusey, “Particle sizing by dynamic1398

light scattering: non-linear cumulant analysis,” J. Condens. Matter Phys.1399

27, 145102 (2015).1400
43R. N. Andrews, S. Narayanan, F. Zhang, I. Kuzmenko, and J. Ilavsky,1401

“Inverse transformation: unleashing spatially heterogeneous dynamics with1402

an alternative approach to xpcs data analysis,” J. Appl. Cryst. 51, 35–461403

(2018).1404
44R. N. Andrews, S. Narayanan, F. Zhang, I. Kuzmenko, and J. Ilavsky,1405

“Contin xpcs: software for inverse transform analysis of x-ray photon cor-1406

relation spectroscopy dynamics,” J. Appl. Cryst. 51, 201–205 (2018).1407
45A. G. Zilman and R. Granek, “Undulations and dynamic structure factor of1408

membranes,” Phys. Rev. Lett. 77, 4788–4791 (1996).1409
46A. Madsen, R. L. Leheny, H. Guo, M. Sprung, and O. Czakkel, “Beyond1410

simple exponential correlation functions and equilibrium dynamics in x-ray1411

photon correlation spectroscopy,” New J. Phys. 12, 055001 (2010).1412



A multiscale Time-Laplace method for non-stationary DLS 18

47A. K. Livesey, P. Licinio, and M. Delaye, “Maximum entropy analysis of1413

quasielastic light scattering from colloidal dispersions,” J. Chem. Phys. 84,1414

5102–5107 (1986), https://doi.org/10.1063/1.450663.1415
48Y. Sun and J. G. Walker, “Maximum likelihood data inversion for pho-1416

ton correlation spectroscopy,” Measurement Science and Technology 19,1417

115302 (2008).1418
49X. Zhu, J. Shen, W. Liu, X. Sun, and Y. Wang, “Nonnegative least-squares1419

truncated singular value decomposition to particle size distribution inver-1420

sion from dynamic light scattering data,” Appl. Opt. 49, 6591–6596 (2010).1421
50L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer, “Time-1422

resolved correlation: a new tool for studying temporally heterogeneous dy-1423

namics,” J. Condens. Matter Phys. 15, S257–S262 (2002).1424
51A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation1425

measurements of temporally heterogeneous dynamics,” Phys. Rev. E 72,1426

051401 (2005).1427
52A. Fluerasu, M. Sutton, and E. M. Dufresne, “X-ray intensity fluctua-1428

tion spectroscopy studies on phase-ordering systems,” Phys. Rev. Lett. 94,1429

055501 (2005).1430
53K. Ludwig, F. Livet, F. Bley, J.-P. Simon, R. Caudron, D. Le Bolloc’h, and1431

A. Moussaid, “X-ray intensity fluctuation spectroscopy studies of ordering1432

kinetics in a cu-pd alloy,” Phys. Rev. B 72, 144201 (2005).1433
54O. Bikondoa, “On the use of two-time correlation functions for x-ray pho-1434

ton correlation spectroscopy data analysis,” J. Appl. Cryst. 50, 357–3681435

(2017).1436
55A. Fluerasu, A. Moussaïd, A. Madsen, and A. Schofield, “Slow dynam-1437

ics and aging in colloidal gels studied by x-ray photon correlation spec-1438

troscopy,” Phys. Rev. E 76, 010401 (2007).1439
56L. Cipelletti, L. Ramos, S. Manley, E. Pitard, D. A. Weitz, E. E. Pashkovski,1440

and M. Johansson, “Universal non-diffusive slow dynamics in aging soft1441

matter,” Faraday Discuss. 123, 237–251 (2003).1442
57A. Papoulis, Signal Analysis (Dover Publications Inc., 1977).1443
58I.-G. Marino, “RILT procedure in MATLAB,”1444

https://www.mathworks.com/matlabcentral/fileexchange/6523-rilt (2007).1445
59X. J. Cao, H. Z. Cummins, and J. F. Morris, “Structural and rheological1446

evolution of silica nanoparticle gels,” Soft Matter 6, 5425–5433 (2010).1447
60M. Kawaguchi, “Dispersion stability and rheological properties of silica1448

suspensions in aqueous solutions,” Adv. Colloid Interface Sci. 284 (2020),1449

10.1016/j.cis.2020.102248.1450
61A. S. Zackrisson, A. Martinelli, A. Matic, and J. Bergenholtz, “Concentra-1451

tion effects on irreversible colloid cluster aggregation and gelation of silica1452

dispersions,” J. Colloid Interface Sci. 301, 137–144 (2006).1453
62W. Smit, T. Divoux, and M. Manneville, Result not yet published.1454
63Immortal cell line used in scientific research. It is the oldest and most com-1455

monly used human cell line. This line derived from cervical cancer cells.1456
64S. W. Provencher and P. Stêpánek, “Global analysis of dy-1457

namic light scattering autocorrelation functions,” Particle1458

& Particle Systems Characterization 13, 291–294 (1996),1459

https://onlinelibrary.wiley.com/doi/pdf/10.1002/ppsc.19960130507.1460


